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1. Introduction
In his psper, 'Convergence Rates of Iterative Treatments of Partial

Differential Equations', Frankel [1] has studied the convergence rates
of Richardson's and Liebmann's iterative methods when applied to the
numerical solution of the two-dimensional Laplace equation o = 0. His
results &pply without eny modification to the Poisson equation ¥¥¢ + q = O
as well, It is shown in the third chapter of thig paper that with slight
modification it is also applicable to the Helwholtz equation V7¢ + b + q = 0.
Frankel's results, in perticular his determination of an optimum over-
relaxatioo coefficient have been very useful in numerical weather prediction
when foreéasting by means of one- and two-level models. In dealing with
multilevel models, for instance of the type designed by Charney and
Phillips [2], it may be desireable to solve the associated system of
equations simultaneously rather than to reduce it to & number of Helmholtz
equations to which Frankel's theory applies almost directly.

This paper deals with the convergence criterium and the determination
df optimum overrelsxation coefficients when epplying Richardson's and
Liebmann's iterative methods to the numerical solution of a high order linear
system of the form

n
+ T b

"e,1,0 Y15 Tkt Pt T %1, 70

L

(k =1,2,3, ....mn)

vhere L is the finite difference form of the two-dimensional Laplace
operator. Far lack of & better notation, the linear system above 1s here
referred to as a system of Helmholtz-type equations. The method used is



‘#nsentially an extension of the one 1aid down in Frankel's paper, ana Yor
%_nience Frankel's theory has been included as a separate chepter (No. 2)
‘of this paper. In the third chapter his theory is extended to the spectal .
case m = 2 and in the fourth and last chapter to an arbitrary m.

o Upon completion of this vork it has come to the suthor's sttention
/that much the same problem has been trested by D. Young [3].

. 2, Frankel's Theory for the Convergence Rates of Richardson's and Liebmann's

Tterative Methods

The convergence rates of Richardeon's and Liebmann's iterative methods
~ tor __-Ehe solution of the two-dimensional Laplace equation V2¢ = O have been
' inyestigated by Frankel (1]. The Laplace equation is approximated by the
'wfgrence equation ‘ '

.'L.’(x: y) 2 o{x +"5) y) + ¢(x - h, y) + o(x, y + n) + O(x, ¥y - h)
-4 o(x, y) =0 (1)

As usual we put x = ih and y = Jh and denote the value assigned to ¢(ih, jh)
at the nth etage of iteration by o”i’J. The liamit to which o“i,J approaches

'fuith increasing n is denoted by °1.J and is the solution of (1) for the

. given boundary conditions. The boundaries have been chosen to be rectangu-

lar and fixed values assigned to 4 there. The coordinates i and j assume
the valuea

1=0,1,2, .e009; J=0,1,2, .... q;
At interior points the equation

hoo =0 (2)
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'holds and at the boundaries oni 3 = by 4 for all m.
’ 4 »

Alithough Frankel deals with the Laplace equation, his theory applies
to Poisson's eguation

Legg - Y,3=° (3)



as well. Since the latter is of greater importance in numerical weather
prediction, we shall refer to (3) imn the following discussion; the boundary
conditions are the same as those given above.

For interlor points Richardson's iterative scheme 1s defined as
follows:
n n

¢ + a R (%)

— n - . -
¢ =gyt olley -y ey 1,3

1,4 i,

where 0 is a real positive nmumber, the optimm value of which is 0.25 as
we will see later; R" is the reslidual in the point 1,) after o completed
scans, '

1,d

The errcr at each stage is denoted by eni IE
2

- o0
1,3 =9 1,4 B Qi:J _ (5)

where ¢, j is now the solution of (3). Substitution into (4) gives the
2

error recurrence reletion

= (1 +a1) €, , =K €*, .. (interior points)
i,d 1,J; -

= 0 (boundary points) ' ' (6)
since L 0 1,3 - q )3 = 0., The convergence rate is now studied by investigating

the solution of (6). For this purpose the error field ¢° (n = 0) is ex-
panded into & series ” '

11 " s Brye €700 - )
where
‘r’si,J = gin (%ni) sin (gﬁj) : : i: 2: :::: z;:’i (8)
Apf;ication of the operator L, see eq. (2), to (8) éivea
L’er’ﬁ‘i’J = [2 cos % n + 2 cos % a - k]er’si’J : (©)

= - 2 ¢, 2 'B.- r,s
Heto® () + ota® () T,

3



The quantitiles

r=1, 2, oo -1

Log™ b [:mr’*(g‘]‘!,T a) + sina(é%if);] (10)

B=l,2’oo-.Q"1

are the eigenvalues of the operator L. The smallest and the largest magnitude for
these elgenvalues are obtained for r = s = landr =p -1, 8 =q -1 and '
are denoted by L, end L, respectively,

-2 -2)

= - 2 = 2 1~ _ .2
L, 4 [pin §5+sin 2q] ~=(p  +q {(11)

Ihn..u[sma%;%“smeﬂ%n]=-(8+Lo)':-e+a2(p‘2+q‘25

Referring to =q. (6) we must require that for all the camposents of the
error field the corresponding Kr a
. Bt J

). 4 =1 +al
b o

T,8 (12)

’B

have a magnitude less than unity, since otherwise Richardson's iterative
scheme would not generally converge. The ultimate convergence rate is de-
termined by the maximum magnitude of K *,8 which we shall denote by K*.
All Kr,a lie in the range '

i
-

Km§l+aLm5Kr,a__<_l+ﬂLo (13)
the equality signs holding for r =8 =l and r =p - 1, 8=¢q -1, Kt is
equal to IKOI or Ixm[ depending on vhich of these two has the grester magni-
tude, As a increases from zero K0 drops slowly and Km rapidly from unity
and the latter changes its eign when & reaches the value 8. For
a = B"%i_ Km takes on the velue - 1. The smallest K* occurs when

o

Ko + l&‘ =0
i.e., vhen Ko and Km heve the same magnitude but different signs. Hence,
for the most rapid convergence we choose

.. 2
ao":o—rr.;"% (18)



For this optimum o-value the shortest and the longest error waves de-
cay at the same rate while other error wvaves decay more rapidly. For K%
we have the following relation:

2 -‘ -
K* = 1 + % L,¥1 - %;-(p 2 4 q 2) (15)

For & large grid K¥ may be quite close t0 unity which means slow convergeace.
Por p =19, q = 29 L, = - #1072 and K#* = 0.990,

forp = 30, q = 3h Lo = - 2‘10—2 and K¥* = 0,995

The Lietmann iteration proéess deviates fram Richardson’'s in that the
cosrected ¢-value is used in subsequent operations in that iteration step.
We assume that the grid is scanned in the same direction along successive
rows, starting at the intérior point 1 = 1, J = 1, then the iterstive scheme
is defined as follows: '

n+ 1 n n, n+1 n n, n+ 1

Ly = ¢ +a (L ¢’ - = ¢ +aR’”’ 6
1,0 =% 1,5 %0 1, "%, =%,y *OR 1,5 (16

vhere
n, n+1"° -+l n n+ 1 n
L ¢ 1, ° 1 -1, %1 +1,0%° 1, -1%%4,341
-4 R 1
1,3 (17)

The iteration equation for the error

18 obtained by substitution into (16) and utilizing (17),

o+l n n+ 1 n n+1l
€ 1, %1,37 ¢ Le 1-1,3 €1+1,37%F¢ 1,4 - 1
n n .
te€yye1 b 61’31, (interior points)
(18)
= 0 (boundary points)
and may be written as '

€n+l=K(a) en (19)



where X(a) is & linear operstor, depending on the paremeter a, to be deter-
mined, Ve seek & solutiem of (18) of the form

Tr,s = At X J . 8
e’i’J A Bin(pﬂi)B sln(q:,j) (20)

end substitute into (18), which, when connected with (19), ylelds:

(K - 1 + 4a)-al.sd sin (%’- x 1).sin (% )

x(1-1)+Ai+lsin%ﬁ(i+l)]

a B sin(%ﬁj) (ks " 1 sin

r
P

varton Er1) o8 " tamZa(g-1) 2! Tema (g1

a Al sin %n 3 {(K~A°l + Aﬂ) sin (-g x 1} cos % n)

-1

- (KA = A+l) cos (% % 1) sin % n]

+ o AlpY ain (g x 1) [(K«B'l + B+1) sin (-Z— n J) cos %-x
- (KB']' - B+l} cos -3— 2 J sin %:t] (21)

The appearance of the cos (% n 1) and cos (% # J) terms are prevented
by requiring

A2 =82 =K ' (22)
whereby equaticn (21) reduces to

A2-1+hanw[cos§x+cos§n]

A2 - 20tA + b -1 = 0; tmeos§n+conu (23)

vaetakeaﬂ%theroabsof(zﬂm

' o}
A={t/2



. The larger root corresponds to
a2 ol.2 12 r_ o, .8 2
K = A Tt u[cosp:+gosqu] o (2h)

The greatest value for K occurs when r ='s =]l]andr=p-1,8=q-1,
and 18

K* = %; fcos % + cos _ud]? '3'_[1 - %—2 (p'e + a5 (25)

Comparisca with (15) shows that in each iteration cycle the most resistant
errors are reduced as much as in two cycles in Richardson's procedure.

As will be shown below, o = F 15 not the optimm velue for Liebmann's
method, Solution of (23) glves '

Aléat‘l-"‘/-aatz v

. (26)
A, sat =Y Pt? - a4l

A-atf"k/r;.ztz.-ha+1'é

Fora=0A= 'f 1; increaéing O cmuses Al 1o decrease and A2 to increase
wntil both becane equal to at when a reaches the value given by the smaller
of the two roots of

a*'*‘tz-ha{lmo (27)

Thie o is the optimm value correspanding to that particulsr t. The
ultimate rate of comvergence is determined by the largest and smallest
tuvalues both of waich have the magnitude 3 ‘glven by

t = 'cos‘-l. +cos L2 =.+._L° s 2 (l - ol (P-E + é-—i’)) (28) |
Equation (27) may be written as follows:
(20 - 1)% - (4 - £8) P = 0
We define cos 6 = = (cos -1-.--1 +cos 2 q) = :
: 2 P q 2

then » - t2 = 4 81n%6



(20 - 1 + 20 8in 0) (20 - 1L - 20 81n 6) = O

The emalier root is

1 .
a”e(li-ain 9) : (29)

vhere s8in ¢ is always posit.ive and can range from uni.ty (whmr nga.nd
s = %) to sin g

vhere .
1 1 %
cos 6 =z (cos 5 *+ cos E)

The optimm a-valuse, a.s is

.

R ) {1 +1si.n ) )’E% (1 - g; (P.a + q--z) ) (30)
° ;

When a exceeds the value given by (29), the roots of (26) beccme complex and
both have the magnitude Lo - 1; thus

— ,,,_.-—-u..n-.......-w-n-.__

x*shao. 1-21/“2(p'+q2 =1 - ﬁ'u(p +q )% (31)

For large p and q K* as determined from (31) is a comsiderable improve-
ment upen K* ag determined frem (25). Attention 1s drawn to the fact that
@ cannot exceed the value 0.5 since the magnitude of X would in that case
exceed unity for all t's. . |
: Forthetwoe;ridspnl%q 29andp=30,q-3ha is 0.43 and 0.h5
regpectively. CorrespﬂndingK*a(at )2=l&a -_11;073ma080re-
spectively. ‘

Pig. lahovstbetworootal\.landhz of (26) ‘whent==t andL =-2.102
(p = 30, q = 31*)-

. £
3. Extemsion of Frankel's Theory to a System of Two HeJmhofz'-type

Equations
- Frenkel's theory is easily extended to the Helmholz equation which in
difference form is




Loy, g+ Dy 30,5 3 = (L 4Dy ()0 49 40 (32)

Instead of dealing with the eigenvalues of the operstor L as defined by (2)
we nov have to deal with the eigenvaluss of the operator M defined as

M=L+Db {2a)

Because of the simple relatismship between these two operators we can
immedistaly write the eigenvalues of M which have the smallest and the
largest magnitude as

" " ;
Mo'2[°°’§+°°'§'2]+b'1'o+b (11a)

- p-i [ L - -
M, 2{cos 5 T+ cos A= x 2] + b L +b= (8+Lo)¢b

It follows from the study in the previous chapter that in order to ensure
coavergence of Richardson's iterative scheme one must require that

L +b<0  fe. b<e (7 +q?) (32)

Simiiarily we find the optimm value for @ to be

2 1
o = - =2 (lh)
o MO + Mm -

Thus for b negative the optimm o is less than 0.25 and approaches zero
vhen b» <+ - =, For K we obtain the following relation

L, +b L, k+Lo
K*’l+m“l+-u—-+mb (15‘)

For negative b the convergence is more rapid than in the case of Poisson's
equation,.
When the Liecbmann method is used, equation (23) is replaced by

A2 - 20tA + (b -b)ax-1=0 (23a)

For g = E—%-S- (23) has the roots



0
A= 2t
T -
The larger root is always less than cae in magnitude ir (32) 1s fuifilled.
When ¢ -.to we get '

he® Y41,
wowE C )

K#* = AS =

The optimum q-value corresponding to a particular t is the emaller cme of
the two reots of '

o?ﬁ"-(h-‘n)a+i=:0 | (27a)

Analogous with the solution of (27) we find that the selutien of (270) 18

o & —p 1 ; 8in 6 >0 ' - (29a)

2 (1 “E)1+etme)

where
i re ax
I cos IE + cos —
( P . q

¢co 0 = ——m———
2(1-%)

The requirement |cos 6| < O is fulfilied if comdition (32) is satisfied. '
.. As before we set t é“to in order to get the g-value which ultimately gives
_ the most repid rate of convergence, thus 4 ' ‘

1

a = {(30a)
°© 2{1 - %)(1 + 81n 8,)

Fér large p and q and small b a, is spproximately

_ _ , _
a =3 (1 -1/§ (r2+q%) =) (300)

" and

i0



KA =ba -1=1-xB(p P4 q?n)r (31a)

-_It can be shown that the inequality (32) must hold for the Lietmann method
to converge. As in the case of Richardson's method, negative b improves
t.he rate of convergence as compared with b = O (Poisson's equation)
We shall now deal vith the convergence rate of two Helmhofz-type
equations
L ,,0 ¥ P11 %1, Pla® -9 =0
' (3v)

%,1,1 * P %11 0 P2 %2,y R =0

vhers the b's are constants or given functions of i and J and ¢ is known on
- the boundaries. As in the simple two dimensional case we will uge an
iterative scheme of the form

o, + 1

1 + b ¢

0,8 +
v o (L k1,5 ¥ Y 1,1,5°*

Lom On
k,1,8 7 k,1,]
(16a)

n v -4
k2 ® 2,1,) ~ k=12

b
vhere the double superscript n, n + 1 refers to Liebmann's method and where
it is .assumed that the first level (k = 1) is scanned first; the operator
L is defined by (17). Equation (16a) spplies to Richardson's scheme if
n, n+1is replaced by n and L defined by Eg. (2) (except for the equality
sign in (2))

We define 1':he ‘error e® x,1,3 88
n n
€ ze -6 k=1, 2
K1, % ,1,9 " %K1, | ’ (5e)
where ‘x )1, 1s the solution of (3b). Substitution for ¢ and ¢® * 1 by
mesns of (5&) into (16e.) gives the error recurrence relation
n+1 n,n + 1 0,0 +1
EWRL R L R T 1,1,3 %
: . (6a)
by 0%, 1; k=1, 2

2 L,}



at interi.or points and zero at boundary points.
We will now define an operator K, (ak, i) k2’ such that

n+1
€

n . ) |
x,1,0 M ¢ k1,85 k=1, 2 (198)

and substitute for e 1 tram (19a) into (6a) which then ylelds

Ki€,e,5 " “,1,0 * A1 -1t S0 417 11 4 1,0

+Kj€y g g1 - - by €1a,g * P €2,1,3)

. (33)
Ka€p 1,3 = €2,1,9 % % 2,1 - 1,3 % “2,1,0 +1 7 "2,0 + 1,3

+Kx€p01,3 -1 (3 -Dy) €5 1.9 %Py K21 4,3
vhere the superscript n has been omitted, We seek a solution to (33) ot
the form )

T,8

€
k,iﬁJ

= at 8 .c,_ sin (% x 1) ein (%; )3 K =1,2 (208)
and substitute in (33) which yields
[K__L -1 + (& - bll)all Ail-B‘jl-cl sin (% x 1')_ - s8in (% n J)

- dlAai.l'Bdl.ci°(sm g- x 1)-sin (% x 'j)[(xl'rll_ + &) cos ;—x +

cos (% x 1)e8in < =

( At - ) 2 + 7} +B.) cos 2 x+
cou(i n j)-sin 2 c

(k8% -B) 4 9 4 b . 2]

KBy -B —m (f:"’ py 12 ° ¢

for k = 1 and & similer equation for k = 2.
We now regquire

2
' 12



which when substituted in the equation above yields

C

Kl”l"("'bn)“l“e“l“lt*“lblzé%

and for k = 2 gives
¢
,Kz‘1*(1"bez)azsaaz“at"“abelxeﬁe’

wheretscos%+cos% r=l, 2 ceuP=-1; 8 =1,2, co. g1

Utilizing (22a) we may write

'e‘ﬁm’““” - 120.)“1"1
¢, (23v)
2 =2
(l- 2210)A —?atA?+(h-b22)a,. -1=0
If Richerdson's iterastive method 1s used (23b) is replaced by
02 _
K1—2(11t+(1&—bll-b12_- c—l)alﬂlno
¢, (23c)
Ky - 205t + (B = D5 - By - E;)az'l“o_

then the equationa (23b) and (°3c) are ccmpared with ( 63&) the main differ-
ence is the occurrence of the unknown smplitude ratio E']; vhich initially can
be quite arbitrary. For this reason there 1is generallygno means for keeping
the megnitudes of KJ. and K both less than unity in the first iteratj_.on
steps unless both b12 and b are equal to zero., In this case, however,
there is no feed-back from one level to the other and (23b) and (23c) are
reduced to the types mlready treated. Before dealing with (23c) in general,
we will consider the two special cases b,, = 0, by # O and, by, =0, by, #0
i.e., a one-sided influence from level 1 to level a or vice versa.‘ One of
the equations (3b) is in each of these cases reduced to the Helmholz equa-

tion dealt with in the beginning of this chepter and will convergs if
13 |



condition (32) is fulfilled. Both iterative achemes initially end for &
certain mumber of scans may show divergence when applied to the other
equations. Take the case that b,, = 0, then after a sufficient number og
scans Cl is for all practical purposes equal to zero and the term Q 2 2] Cl
in (23b) as well, which reduces the eguation containing this term to a ty%e
dealt with earlier. Thus, convergence ls ensured when (32) is satisfied .
where, however, b is to be identified with bll and b22 reapectively. The
same conclusion is reached when b, = 0, by, # 0,
As a further step towarda generalization we shall deal with the special
case/thu initially C s Cl. The application of previous results to
Egs. (23c) immediately renders the following cfiteria_as sufficient for
the magnitudes of K1 and Ke to both be less than unity after the {irst
iteration step.

12

Lo + bll

+ bl <0
(32a)

Lo + b22 + lbal’ <0

The optimum <, which in general is different for the two ievels, is

_ 1 L _ 1
%o TFTB, - To 0 %2 T W Th,, - Ib

H 1kb
21( (1¥0)

Corresponding expressions for K¥ follow from (23c) When ae takes on fhe
~ value Hf——b y the value o A given ebove and these or substituted in

'(23b) it is easily ahavn that the magnitudes of both Al and A2 are less
than unity if conditions (32a) are fulfilled.

We now solve (23b) with respect to A, and A, {C, = ilcl) and cbtain:

A = alt"’l/azt S - '-i;blé}alj-l'

e 1 | (268)
a2t . 1[ 2 * P 1 |
2 5 - KQ X 02 " :

14
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In order to investigate under which couditions I.All and IAQI are less than

unity we differentiate (23b) with respect to a and obtain the following
da ,

, 34
expressione for —— and ———:
Coam A,
1 +
aw,  ty -2+5 (b - Pig)
doy A -t
(35)
w, A -24.9'2-(13@:1)21.«22)
o, v Ry - oyt

Por oy =&, = 0 (268) is reduced to A =21 ang A, = + 1 end since the
denominatoras of the expressions for and ___;2; are positive for the

two larger roots of (26a) it is easily verified t%at these roote will de-
crease with increasing o if the conditioms (32a) ere fuifilled. It is
furthermore clear that the derivatives will stay negative for increasing
a. Similarily it can be shown that the smaller roots of (26a) will in-
creage with increasing o when {32a) is satisfied.

The optimum values for CL_L and a, are the smaller roots of each of the
equations

. 2 —— -
dalto-(h—bll+b12)al+l 0

(27v)
Pot® - (b -Dby) kap +x =0

where x is given by (34%). The solution of (27b) renders the following
expressions for a , and o , (Zoxr details see Appendix),
] r

- 1
%l T2 =L (5, + b L[J(L +s1n Bor1)

(30¢)

1
%,2 T2 (T - £ (b, + I, 1)1 + 8in Bor2)

vhere

15



- 1 b3 X
cos eo,l l-n G (bll T IbRU (cos > + cos q)_

= 1 E n
cos 90’2 “FECE (b ‘bgl” (cos = + cos q)

If the :lnequalit.ies (32a) are fulfilled cos e ,1? cos 9 2 as well as
K* and K* are all less thas unity. Apprcu:imate values fur a, y» ao o7
,

K* and K* for large p and q and small hll’ b12’ b21’ aad ‘o,,2

1’ 2
obtained from (30b) and (31a) where b is to be replaced by b, lb !
and b, + l‘b21| respectively.

c
86 far it has been shown that 1f initially the ratio 6‘2” =+ 1 for
- 1

all components of the error field, the X* for the first scen will be

jess than unity for both levels provided (32a) holds true. After the

: (1)
02 02 c 2
first scan q in equations (23b) ig replaced by R;: . q = 5"(’1')_ . For
: 1

cne or more components of the error fleld this new ratio or its inverse
may, however, exceed unity at ‘one of thé levels and we will therefore have
to consider the ganeral cease that 02 and Cl are unequal in magnitude either
initially or after a certein number of scans. It is sufficient to deal

' wvith the largest wave camponent correspending to the elgenvalue I‘o' Let
us assume that [C,| > lcll initfally and write the conditions (32a) in
the more convenient form '

L, +b, +4 Iblel = 0
(32v)

L, + by, + M, by | =0

" vhere M1 and M2 are posit:l.ve purbers both larger than unity. If the ratios

| czl and | ll are initially less than M, and M, respectively and remain so
2

throu.ghout the relaxation procedure, this is anslogous to the case C, = 1
_ already dealt with end its convergence ias ensured when (32a) is satisfied.

The remaining cases to be censidered are therefore those where | 2] 2 M
l

16



either initially or after & certain number of scans. let us firgt take

- the case where |“2/€1| at the cutset exceeds M. Tt then followe from the
cage C2 = i.Cl discugsed above tﬁat aftey the first scan K*l > 1 end

K*, < 1, i.e., the smaller error C1 is megnified snd the larger one ge i
diminished. Consequently the terms b,, - C,/C; and b,, - C,/C, emi

in (23b) will beccome respectively smaller and larger which, in turn, causes
K*l and K* of the second scan to respectivpiy'decreuse and incresse. Thus,
the smnller error will increese and the larger one decrease at a decreasing :

rate until the condition |c°/cl| <M is fulfilled after which both errors

are decresged until the requirasd solu@ion has been reached. With increasing
number of scans both errors will either-become equal and then Jdecrense
eagentially st the same rate towards the tolerance limit, or if ope is
initially below this limit the larger error may surpass this 1imit before.
equality is reached. It therefore follows that the convergence critecia
(32a) obteined for the case 2/01 = ¥ 1 also ensures ccnvergence for the
more general casge Ic?/cll > 1.

The case that {ce/cll is initially less than M, after a certain mutber
of scans is obviously in eagsence the same as the one Just treated. Finally
the case [°1/°2] > M, cen be treated in a similar way as the cese | ?/Cl‘ > M
and leads to the same results.

Thus, ﬁe mey conclude that the condition (32a) is a sufficient condition-
" for the convergence of both Richardson's and Liebmaun's iterative methods
whan ggg}iéd to the system (3b). In general this condition is also nec-

essary.

L. Extension to a System of en Arbitrary Fumber of Helmha%i'atype
Equations ' . ,

_ The theory of the preceding chapter is readily extended to an arbitrary

' nunmber m'of Eﬁlmnofé'-type equations {m-levels). This we may do by first

replacing the system (3b) by

“ue [\ - =
%,1,§ " P21 ®1,1,3 TPk 2 %,1,5 " Yian *m,1,9 T %,4,3

(3¢}

My 1,9 " %,1,5 "0 ,1 21,2 -eeem
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_ The iterative scheme is of the form

n+1 n n,n + 1
. = + ¢ 7 -G 3
T s T T % M L, T %130

k,l =1, 2, **+ m {16b)

where the linear operator M_ is defined by (3c). As in the case m = 2 we
will sgsume that the first level (k « 1) is scanned first, then the level
k = 2, ete. successively, ending with the mth level after which we again
" sean the first level and repeat the whole procedure as often uas necessary.
The double superscript n, n + 1 refers as before to Liebmann's method and
is réplaced by the sing;e_auperscript n when Richardson ‘s method is used.
In the latter casc M ¢n&:111:3 18 unsmbiguously defined by (3c); this is

not the case for M&n’n + l} N j<HMere the distrivution of'superscripts are
g~y

determined by the particular sequence in which the m levels are ascanned.

With the sequence described sbove Me™'® * 1 where the distribution of

T,1,)
superscripts are determined by the particular sequence in which the n
levels are scanned, With the sequence described above Mo * ll 1,4
’ y=s
is defired as follows:
. n,n + 1 . . an,n + 1 k-1 n+ 1 . m n
¢’ N = Le? + I b $ . + I b, .. 9
Hk 1s1,3 - k,i,] 1=1 k3 1s1,d 1=k+1 kK, 7 1,144
N n .
+ by, ¢ K,1,4 (2v)

wvhere

k-l n + 1

L %® L ‘ = Q for k = 1

1=1 Kb Lyisd rEE

As before the erxrror e is defined as
k,1,J
n - D ,

1,3 TV, " Y,y KT R T (50)

where ¢, 3 is the solution of (3c¢) with proper boundary conditions; as in
ry ' . - -

the previocus cases we assume to be kmown in the boundary polnts.

k,1,3
18



Substitution for ¢° and ¢° * 1 in (16p) by means of (5b) resulte in the

“recurrsnce yelation

n+ 1 n n,n + 1
€ 3 + . 13 X, =1, 2 »«»m {(6c
g k,i,J = e k1,3 % Mk 123,35 i ’ (6e)

n,n+1

vhere M_ ¢ is defined by (2b). We now define an operstor

K (ak, bk,?_)' such that

n+1 : on S
€ K,i,3 = L K,1,3 (_intglior points)
_ : : (19b)
= 0 (voundary points)
and substitute for ¢© * 1 from (19b) fnto (6c) which then yields
Kk€ o, = +ak[Kk£ +e , . & ~
. k"iJJ k’iJJ h,i - llvj ) kli!\j + l+ k)i + l.’-j
M-I IUETL R e W0 I W I 3:1 P 1,1,
m '
] | L | (338)

+ X b €
1=k+1 X, " 1ls)

where the superscript n has been omitted. We seek & trigonometric solution
~of the form (20a) to (33a), utilizing (22a) to arrive at the Following
system of equations

K ol (hon)a =am ok vo (S n L Sy

-1+ «~ b = 7 W R B, ., A=+ I b :

Ke - b e O =B Ao L2 K 0 8 " gk &
where

taéos%nvcoa%g; r=1,2, ‘s p-1l;8=1,2, c«v g ~ 1

= p2
sime Kk = A g We may write

) o,
(1_""1;?5 Ac“a '2“1(%*(}"” _§+1kzc)°’k‘l=°

K21, 2, e m - (e3d)
If Richardson 8 iterative method is used (234) is replaced by
19



. C '
K - 2ms e (b E i m g) e -0 (z3e)

As in the special case m = 2 we will first assume that lanitially 1% =
lckl, whereas the ck 'y for different k's may differ, and subaequently
4treat the general casge that [CLI # kl Furthermore, @ince the ultimate
convergence rate.is determined by - the t-values corresponding tor =8 = 1
and r =p - 1, 8 = Q“- 1 ve will confine curgelves to these twoc t's; in
Liebmann's method they are both aqual to ty defined by (28). For these
two t-velues (23e) becomes

K =1+a[Lo+bkk } r=8g=1

0,k K -1 121; I,

: : m :
= 14+ [-(8+L)+b,, + L 5 b, .} r=p ~1;
Km,.k %% o Kk =1, 16k k.,"( s =g -1

where the gubscripts O and m have the‘meaning glven to them in chapter ope
(see Eq. (11)), and & = X 1. It follows from the first Eg. (36) that after

the first iteration step |K l < 1 only if
L +b,  + £ |Pk,1f <0 (32¢)

[+] kk Iﬂl, l#k
Moreover, the optimum value for ak is .

e (b -b, - % P, i1t B (1kc)

e .
Kk~ l"}iﬁk

0,k

" for which |¥o,k]| = |¥a m4| = K*

We nov return to Liebmann's iterative method by solving (234) with re-
apgét to Ak’

et b R

_Ak {akt b V£ t2 - (- o "1 §+15'bk,1) RO+ Ry 1 (26p)

 where -
- 20



-1 - P xy = -*1
®x 1 aklz Bbk,l" ) l, 5=21

In order to 1nvestigate under which condition !Akl is leas than unity we
difrerentiate 23d) with respect to o and arrive at the following ex-
pressien for ' aq

2+ 2 (b 2 e T b )
tAy -2+ 5 (b + A% L BB+ E BTy,

'
L "k P T Kt

(358a)

Similar reasoning as used for the-case m=2 leads to the conclusion
that both roots of (26b) are less than unity in magnitude when the con-
dition (32c)_1a fulfilled, The two roots become equal when o, assumes
the optimum value ao,k which 1s the gmaller root of the equation

- m
o® % - (b - b, - 1=§+15 bk’l) K0 *+ Ry = O (27c)

When we substitute for k. Prom (34a), (27c) may be written in the
form
m k-1

2 - o -
(6% + (& - b, 1_§+1 B bk’l) 151 ® bk’ll oy
(274)

(b = b, - % 8 b + ki 50b } ak +LaQ .
: - KE Yskel 1 = k:\

The solution of this equation renders the following expression for a,
?
(optimm value of ak);

ao,k = [x (1 + sin 90)]—1 (304)

vhere

x=2[1-%(v 1%k, 1)) (37

m
+_ T
kk. 1=1, lfk
and
21



o s x . %
cos aoai[coss-o-cos E] (38)

' The details of the derivation of (30d4) are found in the ubpendix.

As for the general case that 1€1] ¢ ||, a reasoning enalogous to
the one applied to the case m = 2 leads to the gemeral conclusion that pro-
vided (32c) 1s satisfled, the initially largest errors (1), will decay
during the relaxation procedure until after & certain number of scans it
becomes equal to, or possibly less, than one or more of the other errors.

' The new maximal error will go through a similar procedure until all Cys
have been diminished below the tolersnce limit., Similar to the conclusion
reached in thé special cage, wa find that the condition (32c) is sufficient
to ensure convergence of both Richardson's and Liebmann's iterative methods
when applied to the system (3c). In general (32¢c) is also necessary.

Appendix
The first of the two equations (27b) may be written as follows:

ct"’tzo-(h-b 12)a+1=(xa--l)2-22d2=

1 +P
(1)

(xa-1+zao)(xa-1- za) =0

vhere the unknown x and z ere to be determined. It is rendily verified
that

"’2[1'5("11’ 12”’ e -, (D)
We now define
A .
a ..._o. a a ' 2 eea
cos = -—, thus tZ x* cos 6, and,

za-'é ' _sina e

Eq. (1) may now be written as



(x(1+eme)a-1)(x(L-6ng)a-1) =0 (3)
The smaller root for a is therefore -

a=[x (1 + sin eol'l o (%)

vhere x is given by {2)
Since O necessarily must be real, one must ascertain that cos 90 <1;

1 1
tO 2+ ELO - 1+KL0

2 -f (g Eo)] 13 (o 2y
1
N
1§ (b, + [P22])

Therefore, cos 90 < 1 if the first inequality of (32a) is fulfilled;
moreover, we replace * b, by + Iblal in the expressions for x and Q.

The second of the two equatiocns (27b) 18 now treated similarly to
the firet ome as follows

Qa‘ta-(h-b&)na-!-xﬂO
vhere x =1 3 0 b,y

We substitute for x and obtain after rearranging terms

(6%, 2o, (B - 5)] o - (b - by, 21)o:-c»l's(xa-l)-:2<7¢2=.=o
la)

The unknown x maud z are given by the equations

23



L. _
=2 (1 - g T o) )5 2 = Ty (b -y - eF
- 1 - 1 -
K2 F by (% -byy) =B 1 -5 (byy T by) + 75 (b T 0y)°]
o, %0 + b : (2a)
::l}[l-}-(b '+b )+1(b _+-b )2]=22[1"1(b +b )]2"'}{2
- 2 Va2 T 21 ig ‘22 — "1 Y Ve~ "n/? T 71
' We now &ef;ﬁe
_ N

2

i w2 = 2
cos 0, - e, t2 = x%) cos® @ and

2 .02 Ty - L2 o 2
%2 Fhy (k4 byy) - t5 le sin 920
‘The smaller root for & 1s therefore
sin 6 _] . _ (ua)

a =[x +x

_ It 18 readily verified that o is real and cos 8, < 1 if the second

ineqpality of (32a) is satisfied. In selecting the optimmm value forff;
_ we replace ‘the term * by, by + |b211 in the expressions for x, x,, and
€, whereby x becomes equal to x; and (ka) is reduced to

=,{_x."(1'+ sin 5 )17 (p)

: Fothjeqna£iona_(27b) are speciel cases of Eq. (274):

t2 h - v, - 5 b zab ]cx2 S TR Y B b, .
(42 + " Py 1,=£+1 kl)L =% Pr, KK Ty aker XSl
k-l
+‘1£lb by K1 ak +.1 o (27d)

..=-("°‘k - 1)_ -z =

Analogous to the special cases we find the unknown x and z to be given by
| 2



the equaticns .

I R m. L
x =2 :['1. - ; (bkk,_+ 1-§+16,P,k.’1' - 150 %)
o (2w)
. m [
.a;ﬂ - (b v, - 1 ﬁu k’1).1:: by g - L
. Now :l.i_
':‘:2,-.15'-'-’."---‘-":':" z‘. b, ) =k 1- b z b,
| (= P Yokl 1) 3 k‘ [ §( TS R
k<l =
RERAY
T m = T m k-l
R § - :
* 15 P +1-?»,1%“ IR TR MU
l’ ' ."‘._k_l',-]a..xz
=4 [1 - 5 (b 4’1_'1‘315'%’1 +'1'E_1§b“'-1) | = 1
- We now define |
cos 90, - q(’ wvhich renders -
= ;'_._’."i_. - *’1“'290 = 1"”2 _‘.’?o.-
' Thus, the smaller root of (279) 1s
aslxvmamel? (k)

In oprder. to, ensure ultiutc cmvergence, \lhich in turn requires cos 6, <1
meq,unity (32c) -u-t be latilfied, and in selecting the optimm value i‘or
e e rophco L by l k,ll, dropping the symbol & in the expressions for

- x, '1’ ‘and o . xore'by x becqlu equal to x, and (4c) is reduced to '

@ = lx (1 + otn 6,1 o (4a)
25 |
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