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PREFACE 

In the twenty-fourth volume of the Quarterly Journal of Math- 
ematics~~l890, A. C. Dkon, of Trinity College, Cambridge, ublished a 

9 + y" - 3 a q  =1." On reading this excellent paper the though! waa 
suggested that it might be of interest to consider in more detad the 
cas? arising when a is taken as zero. The author at once started upon 
an investigation, and some results were obtained that are considered 
to be of rather general interest. The formulas developed for the 
functions connected with the original curve are, in general, valid for 
the curve 9fb-1, if the a in them is set equal to zero. These 
results formed the starting data for the further investigations. 

In 1864 H. A. Schwarz proved that a ircle could be mapped 

paper, On the doubly periodic fumtiom arising out o P the curve 

conformally upon a regular polygon of n sides B y means of the integral 

The same thing was shown by Weierstrtass in 1866. Consideration 
of this fact ave an added reason for investiqating the properties of 

functions with rather unusual characteristics. 
In the second volume (1879) of the American Journal of Mathe- 

matics, C. S. Peirce, at that time an assistant in the United States 
Coast and Geodetic Survey,.pubIished an account of a conformal 
projection of the sphere With a square, He called this pro'ection 
the quincuncial rojection of the s here. In h a l e s  hydro- 

R e  theory of R related projection derived in an entwely different 
manner. These were the h t  examples of the ap lication of elli tic 

$he functions to the construction of ma 
purpose of this ublication is to &trate.a number o projections 
most of which a epend upon elliptic functrone or elliptic inte ale, 
although some are defined by Abelian integrals that have%- 
developed in eerip. 

These projectlone are interesting spplications of the theory of 
functione of a complex variable to cartography. It is hoped that this 

enera1 theoq, both of the functions and of their a plication to 

workiag along this line 01 investigation. 

this partic J ar class of Abelian functions whch &. J, in fact, elliptic 

aphques, secon a aeries, volume 9,188 ! , Lieut. E. Guyou pubhhed 

Yes. for geograpgc p 

fhe construction of maps may be found of interest to t i ose who are 

11 
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ELLIPTIC FUNCTIONS APPLIED TO CONFORMAL WORLD MAPS 

By OSCAR S. ADAMS, Geodetic Mathematician, United States Coast and Geodetic 
Survey 

ELLIPTIC FUNCTIONS CONNECTED WITH THE CURVE ss+ya= 1 

The theory of the elliptic functions is generally developed by use 
of integrals connected m t h  the tacnodal quartio 

ya =(1-  za) (1 -kzzB) (Jacobian theory), 

or with the cubic 

y3 =4a? - g2z - g, (Weierstrassian theory). 

There are other cubic and quartic curves that could be used as a 
basis for the theory; in fact the lemniscate functions are developed 
from the curve ya 1 1 -  z'. It is interesting and instructive to make 
use of some simple curve to serve as a basis for the theory. We shall 
attempt a short development based upon the curve Icg+y" -1. 

Let us start with the Abelian integral of the first kind 

We shall now invert this integral by setting 

5 =sm w; 

am w being a function the properties of which we aim to investigate. 
We shall also let y -cm w, cm w being an auxiliary function that 
is to be investigated a t  the same time. The fundamental algebraic 
relation between these functions is given a t  once as 

sms w+cms w =I. 
From consideration of the integral we have a t  once 

hence 
sm (0) -0, 

cm (0) -1. 

By differentiating the equation of the curve, wo get 

1 
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therefore 20, which equals the int,egralp$ also 

PI 

equals $9 5' 
The definite integral is a constant that we shall denote by K; S'. 
sm K-1 and cm K=O. 

If, now, y equals the z in the integral w =  we shall 

havew'-K-wandsmw=cmw'-cm (K-w). 
By setting w for K- w, we get c h  w =sm (K- w> I 
By differentiating the expression 

we get 

and 

or 

and 

dw 1 
z - p ,  
aw 1 q= -2' 

sm w =amz w, a 
& 

cm w = -smt w. d 
2% 

This last differential e uation shows that cm w =sm ( K - w )  in 
which Ria the constant o ? integration. We have 
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By inte ation am-1 (cm w) = A  - w, or cm w = am (A - w). Now let 
w PO, t i? en we have am A -1, or A can have the value K, therefore 
cm w=sm (Et-w). 

Considered as functions of w, am w and cm w are uniform functions 

of w. It is evident that am w and am w can not both be equal to 

zero for the same value of w. Hence there are no branch points at 
which this condition is fulfilled. The same is true of cm w. The 
only other condition for branch points is that some one of the suc- 
cessive differential coefficients should become infinite. 

d 

But a 
a w  - am w =cma w, 

and 
d 
- cm w = -ama w. a w  

Hence no differential coefficient of either can become infinite unless 
either am w or cm w becomes infinite. Also from the equation 

sm8 w+cm8 w "1, 
it follows that, if one of these is infinite, the other is infinite also and 
that in such case cm is finite. 
Also 

snd 

a i  cmw a a- wsmw ----(=> 
d cmw 1 

dwsmw s m a w  
--= --. 

and E?!.! are rational and 1 
sm w Hence, the differential coefficients of 

1 cmw integral functions of -- and -a am w am w 

Thus when am w is infinite, it  is still a uniform function. Hence, 
sm w is everywhere uniform and by a similar process of reasomng the 
same can be-pfoved of cm w. 

In the mcimty of w 4, am w and cm w can be developed in series 
of ascending powers of w. The series for am w can be denved either 
b reversion of the series for the integral or by Merentlation and 
d e  use of Maclaurin's development. The senes becomes: 

For om w, we get 
1 1 23 wg+-----wW"- 25 . . . . . 
3 18 2268 13608 cm -1 - - d + - wb- - 
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Also 
1 

- 9  
--_ l + l w 2 - - w 6 + .  . . . 
s m w - w  6 252 

c m w  1 1 
am w w 6 252 

and 
1 d-----UP-. * . . * -=--- 

These series can be considered as definitions of the functions in the 

We have 
vicinity of w -0. 

-- d l  -=I -(-) c m w  a , 
dw sm w sm w 

or 
d l  

dw sm w sm-w 
while 

Therefore 

or 

and by integration 

1 -=am (0-w),  sm w 

U being the constant of integration. 
Let w = K, then 

1 sm ( C - K ) ,  E K =  

sm (C- IO -1. 
or 

Therefore C may have the value 2R and 

1 sm (2X-w) =-e am w 
It is evident then that 

Cm 'Uj cm (ZE-w)==-- sm w 
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In these equations by putting K-w in place of w we obtain the 
relations 

1 

O m W  
sm (K+w)=-, 

and 

Hence 

and 

Finally 

sm w cm (R+w)= -rw* 
cm w 

S M  (2K+w)= -- sm w' 

sm (3K+w) -sm 20, 
and 

cm (3K+w) =cm w. 

The functions are therefore periodic functions of w, the period 

In the expression 
being 3 K. 

put K+w in place of w and we get 
sm w sm (-w>-cm (K+w)=-- cm w' 

m d  from 

we get 
cm (K-w) ==sm W, 

1 cm (-w)=sm ( R + w ) = = ~ *  

The integral l$ is many valued, since it can have any one of 
the values K+3mK, in which m is an 
negative. By K we shall understand 
the axis of reds from 0 to 1, just aa we 

oJ1-2 s' &z. 
It is thus seen that we have the following values: 

sm K=1, 
cm K=O, 

sm 3K==O, 
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We therefore have the following results: 

or 

also 

or 

-m 

the integrals being taken over the real values of the variable in each 
case. 

If we denote the roots of the equation 23= 1 by t ,  P ,  and ta -  1, t 
will have the value--+- i, in which i denotes as usual 4-1. 
The equation 9+y"- 1 is satisfied not anly by sm w and cm w, but 
also by t sm w or ta sm w together with cm w. The series for sm w 
given on page 3 shows that t sm w=sm tw and t2 sm w=sm taw, 
since sm w = w P ( d )  in which P(w") denotes an integral power 
series in ascending po'wers of d. On the other hand, cm w is an 
integral power senes in ascending powers of We (see p. 3), so that 
cm tw-cm w and cm t2w-cm w. 

It can now be proved that 3tK is a period and that 3t2K is also a 
period of the functions. It should be noted that these two corn lex 

Function of a single variable can not have more than two independent 
periods. It is obvious that, in this case, we have K + t  K+t3K=- 0, since 

1 + t  + F- 0.  

1 J3 
2 2  

eriods and the real period are not independent; in fact, a uni P o m  

sm t R- t sm K- t ,  

cm t K= cm K= 0, 

sm P K- I? sm K= P, 

cm tax- om K -  0. 
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t t sm (w+tK)  -t sm (taw+ 9) = c ~ w = ~ w ~  

sm taw sm w cm (w+tK)  -cm (taw+ 9) = --= - p  - cm taw c m  w’ 

1 1 t cm (w+2tK)-cm (tgw+2K)P.-E--=--- s m f w  ~ s m w  sm w’ 
sm (w+3tK) = t  sm (Pw+3K) = t  sm taw=sm w, 
cm (w+3tK) =cm (taw+3K) =cm taw-cm w. 

In a similar way we may show that for the values with ta we have 

bl sm (w+taK)=-- cm w’ 
sm w cm (w+t’H)= -t - cm w’ 

and 

cm w sm (w+2PK)== -t - sm w’ 
2’ cm (tu+ W E )  = -, sm w 

sm (w + 3taX)  = sm w, 

cm (w + W K )  = cm w. 

If we denote z + ~  1 8  i by 5, s will be a root bf the equation a? -1 : 

also $ =t, and 8 -1  +t = - P. We see then that 35 E is a eriod of 
the functions, since it is equal to 3R+3tK or to- 3PR. b e  have 
then 

sm (K-tw) sm (w + s E )  -sm (w - I? H) -P sm (tw - E )  I - ta cm-(Hztw>- 
cm tw cm w 
sm tw sm w’ n - t a -  = - t  - 
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These functions, being uniform functions of w with two inde endent 

plex lane, are elli tic functions of w. #e note that the periods do 

trigonometric functions and with the Jacobi and Weierstrassian 
elliptic functions, but into thirds corresponding to the three parts 
into which the curve is divided by the three collinear inflections. 
The curve cuts the axis of 2 a t  2 = l  and is perpendicular to the axis 
with a point of inflection a t  the point of intersection. The same 
thing is true in regard to the axis of y. The line 2 + =O is an as mp- 
tote of the curve. The third real oint of inflection is a t  idn i ty .  

periods and having no singularities a c e  t poles in the who 5 e com- 

not a ivide natural f y into halves and fourths, as is the case with the 

The form of the curve is shown in l? igure 1. 

U 

Fro. 1.-The curve of ua+u3-l 

We also have the following results: 

= t cm w, t 
cm (-w) sm (tK-w) = 

cm (tR-w) = - t 2  = ta  smw, 
sm (-w) 

cm (-4 
s m ( - w )  smw’ sm (%IC-- w) = - la 

t cm w cm (2tK-w) ==- = - t  - sm w’ 



ELLIPTIU FUNUTIONS APPLIED TO WORLD MAPS 9 

sm (PK-w) =ta cm w, 
cm (PK- w) -t sm w, 

t sm (2PK-w) =- sm w) 
cm w cm (2PK-w) =-P smw. 

Therefore we find the following relations: 

sm ( tK-  K )  =an ( tK- taK)  =sm ( t a l l -  K )  =sm ( P K - t K )  
=sm ( E - t K )  =sm ( K - P K ) = O ,  4 

cm ( tK-  K) =cm ( K - P K )  =cm ( P K - t K )  a t l ,  
cm ( K - t K )  =cm (PE- R) =cm ( t g - t a K )  =t,  

sm ( t K -  K+w) =sm (K- taK+w)  =am ( t a K - t K + w )  =t sm w, 
cm ( t K -  K+w) =cm (K- taR+w)  -cm (tZK-tK+w) =t”m w. 

Also 

and 
sm ( K + t K + t a K )  “0, 

cm ( K + t K + t a K )  -1. 

NUMERICAL VALUE OP K 

The numerical value of K can be computed by means of the beta 
function. In  the integral 

let 

then 
2 =z+, 

1 ax z--+az, 

By use of Legendre’s table of the gamma functions we can com- 
pute the following values: 

log K -0.24714775222484, 
K = 1.76663875, 
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GEOMETRICAL INTERPRETATION OF to 

The uantity w has a geometrical intrepretation when z and y 
are con ned to real values. In the curve 18 + y" = 1 we have z = sm w 
and y-cm w. The polar element of area is 'z (zdy-ydz) ;  that is, 
1 1 ( - sm3 w - cms w) dw or - 2; dw. If the angle 8 of the radius vector 
is to turn counterclockwise or in the positive direction, we should let 
y=sm w and z-cm w; the element of area which is now traced out 
in the positive direction by the radius vector is equal to i dw. The 
quantit w is tllerefore twice the polar area from w=O to the 

the first quadrant, or twice the area between the curve and its 
asymptote in either the second orthe fourth quadrant. 

1 
i? 

1 

value o ip w. The quantity Kis twice the area of the part inclu 

ZEROS AND INFINITIES OF T E E  FUNCTIONS 

Let us take as fundamental periods for the functions sm w and cm w 
the values 3 K and 3t K. The eriod parallelogram will then be such 
as is illustrated in Figure 2. Fhk period parallelogram is obviously 

PIG. %The complex plane divided into period parallelograms 

a rhombus, since the absolute d u e s  of the two eriods are equal; 

We shall now investigate the zeros and infinities of the functions 
in this fundamental parallelogram. Since d~ sm w = cm2 w and cm w 
is given in terms of sm w by a cubic equation, the number of really 
distinct arguments for which srn w has a gven value is three, or am w 
is an elliptic function of w of the third ordef, and hence there must 
be three zeros and three infinitick in the penod parallelogram. The 
s&me reasoning is applicable to cm w. If z=sm w, $ has three 

that is, t K  is just R turned about the origin throug E an angle of 120Q. 

a 
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values and therefore w has three noncongruent values for each value 
of 2. We know, therefore, that both sm w and cm w have three zeros 
and three infinities that are noncongruent in the fundamental parallelo- 
gram. For sm w we have the three eeros w = 0,2 K+ t K, and K+ 2tK; 
moreover, these three values of w are the only values in the eriod 

arallelogram for which sm w = 0. According to the theory of e P liptic 
functions the sum of the w values for which the function sm w becomes 
zero can differ from the sum of the w values for which it becomes 
infinite only by integral multiples of the periods. That is, Zw, - Zwm 
must be congruent to zero modulus 3 K ,  3tK. For the zeros of sm w, 
we have Zw, = 3 K+ 3t K; that is, this sum is itself congruent to zero 
modulus 3K, 3tK; therefore, for sm 20, we must have Zw, congruent 
to zero modulus 3 K, 3t K. We find that the infinities of sm w are 
given for w = 2 K ,  2tK, and K+tK;  giving as it should the sum 
3K+3tK,  congruent to zero, modulus 3 K  3tK. The zeros of cm w 
are given by w- K, tK,  and 2 K f 2 t K .  $he infinities of cm w are 
the same as those of sm w. Therefore, with cm w, we have each of 
the sums of the w's congruent to zero, modulus 3K, 3tK. 

The theory of elliptic functions also requires the sum of the 
residues of the infinities to be equal to zero. A residue is the coefficient 
of the term that has the first power of w in the denominator of the 
development in series in the neighborhood of the point. For sm w 
we have 

+ P  (w), cmw 1 sm ( w + Z K ) = -  - 1 0 - -  sm w w 

sm ( w + 2 t ~ )  = -P --= -? + p  P (w), em w 
sm w w 

+tP  (w), cmw t sm (w+ K + t K )  = -1 -5 -- s m w  w 
in which P (w) is an integral power series in the variable w. We 
note that each of these infinities is of the first order and that the 
residues are - 1, - ta ,  and - t with the sum - 1 - ta - t=  0 as it should 
be. In the same way it can be seen that the zeros of cm w are of the 
first order, and that the residues of cm w are, respectively, I, 1, and ta 
with their sum e ual to zero. Of course a priori consideration would 

infinity of the second order must be counted as two infinities. Since 
sm w and cm w each have three zeros of the first'order, they can not 
have more than three infinities in the fundamental eriod paral- 

each of the functions becomes infinite; therefore each of these 
infinities must be of the first order, since the number of mros must 
equal the number of infinities in the fundamental parallelogram. 

ADDITION THEOREM 

show that each o P these infinities must be of the first order, since an 

lelogram. We have found that there are three values o F w for which 

Since these functions are uniform elliptic functions, they must 
The curve Y+y' = 1 has no node and no 

(See fig. 1.) Hence, 
$ is 5n Abelian integral of the first kind which has 

have addition theorems. 
cusp and its deficiency is equal to unity. 
the integral 
no points of discontinuity. Thus 

s" 0 @+Jxa Ya 0 @+f" y' 0 @=constant, YZ 
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. sm w,, cm w,, 1 

am w,, cm w,, 1 

am w,, cm w,, 1 

= O  

the determinant will be satisfied. 
Q can be determined by substitution in the equation s,9 + c,S = 1. 

The value of the ratio of P and 

+ ~ ~ Q ' C , C , "  + Q'c," * Pg + 3PzQ + 3PQ2 + Q 8 .  

On canceling the equal terms and rearranging we get 

or 
P (S,'S, + C,aC, - 1) = - Q (S,S,a + C,C? - 1) , 

P 
Q The second expression for-- can be shown to be equal to the first 

by cross multiplication; that is, 

(818; + CiC? -. 1) (Sic,+ S~CI + 81C.J (S,2S2 C?C, - 1) (82C2 + 8,C! + 8,Ci) .  
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P By substituting the second value of -- and reducing, we get Q 
stc, - s:c, s3= - # 
S1C1- SZC2 

and 

But 

SIC; - S2C1" 
C, = 

S1C1- SZCZ 

sm (w,+w,)-sm ( - w ~ = = - %  

1 cm (wl+wa) =cm (-w3>=-, 
c3 

c3 
and 

theref ore 
sma u cm v- sma v cm u 
sm u cm2 v - sm v cmZ-2' 

sm (u+v) = ______ 

and 
sm u cm u - sm v cm v 

cm (u + v, = sm u cml v - 
These addition formulas can also be verified by partial .differentia- 

If - f (u, v) -% f (u, v), the functionf (u, v) must be a func- 
Denoting sm u by s, and smv by sa, etc., we find 

a a 
au tion. 

tion of u+v. 
- a S~C, - S,~C; ( s,C, - saca2>' 2 s,aC, - q c ,  
au 8 4  - Sac, 8,c: - sacl av S,C: - sacla' 

Hence, the given function is a function of u-t-u. Moreover, it 
becomes sm u when v = O ;  therefore it represents the function 
sm (u+v). By the same process of reasoning the formula for 
cm (u+v) can be shown to be correct. 

Lettin v become negative and substituting the value of sm (-v) 
and cm t-v) (see p. 5 ) ,  we obtain 

ama u cmv-sm'v cm u 
s m u + a m v c m u c m a u '  sm (u-u)= 

and 
smv+sm u cm u cma v 

c m ( u - - u ) ~ s m u + s m u c m v c m a u *  
By multiplication and use of the fundamental algebraic equation 
sm8 u + ema u - 1, we can prove the identity 

This gives a second form for the addition formula for sm (u+v) from 
which a third form can be obtained by the interchange of u and v. 
Hence we have 

(8, + S,C,C,~) (SIC,a - sac,') = (s,9ca - s:cJ (c, + s,C,s:). 

s m a u c m v - s m a v c m u  
am u cm' v - sm v cma u sm (u+v> = 

sm u +sm v cm v cm2 u- sm v + sm u cm u cma v 
c m u + s m u c m u s m 4 v  c m u + s m v  cmvsmau '  

e -- 
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These formulas also give 

sma u cm v-sma v cm u 
sm u+sm v cm v ema u 

= s m u c m 2 v - s m v c m 2 u ~ s m u c m u - s m v c m v  
c m v + s m u c m u s m ~ v ~ c m u c m ~ v - s m ~ u s m v ’  

sm ( u - v ) ~  

sm u cm u- sm v cm v ’ 

cm ( u + u ) = s m u c m ~ v - s m v c m ~ u  
cm u cma v-sma u sm v cmvcm’ u-sm2v sm u 
cm v+sm u cm u sm2 cm u+smv cm v sm’ u’ 

sm v+sm u cm u cma v 
sm u + sm v cm v cma u 

cm u + sm v cm v sma u cm v cma u - sma v sm u 
cmv+sm u cm u smav cmucmav-smausmv’ 

e - - 
Also 

(u-v) 

=-- -=- 

FORMULAS PESULTIIW FROM THE ADDITION THEOREM 

Let sm u-s,, cm u-c,, ~ r n v = = 8 ~ ,  and om u=ca and we get 
8 ‘C - 8 3 C  

Cs 81C182“ 

C, 81C,81:’ 

8% + 81CiC2’ 
ca + 8148;’ 

sm (u+v) sm (u-v)- 

cm (u+v) cm (u-v) = 

sm (u+v) cm (u-v)- 

cm (u + v) am (u - v) = 

sm (u+4 81 +8,c,c,2 
sm (u -v) 814’ - 83Ci’’ 

a 

C,C: - 838 

81c1 , 
C, 81 Ci 82 

Cm (U+’V) ,ClC2-8?8,  
81C: - 8,Cia’ 

’ ( 1 + C J  (81-81C3+8,C,1) 
Ca + 8 1 C 1 8 2  

(1 + C,) (C1- CiC, + 8281’) 
Cz + 8gC18,1 

sm (u+v)-sm (u-v)=- 

cm (u-u) -cm (u+v) = 

sm (u+v) -cm (u-v) = 

cm (u+u) -sm (u-v) = 

(81 - CJ (1 - 82C& - 818,CJ 
C, -I- 81C18: 

(C1 - 81) (C? + 8 2 4  $. 828,) . 
C, + 81C18: 
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We also obtain the following formulas in which sm a-s, cm a-c, 
sm u = 8,’ cm u =cl, sm v ‘82, and cm v =c,. 

em (a-u) +sm (a-u) em (a+u) sm (a+v) sm (a-v) 
- - c (1 + 8,) (c, + 8,C1S,1) 

(c, + 8C8,’) (c, + 6c8;) ’ 

s(lfc3) (c t- +scs,) L2.2 
(c, + scs,a) (c, + scs,”) ’ 

- (c8 - 8’) (c, + s, c, 8:) 

sm (a+u) +em (a+u) sm (a-u) em (a+v) sm (a-v) 

cm (a-u)  cm (a-v) em (a+v) -sm (a+%) sm (a+v) sm (a-v) 

- 
(C, + 8C8,’) (C, + SCS,’) ’ 

sm (a+u) em (a-9)-sm (a+v)  em (a-u) 

sm (a-v) em (a-u) em (a+v)-sm (a-u) cm (a-v) em (u+u) 

- - c (1 + 8’) ( ~ 1 ~ 1 -  sac,) 
(C, + 8C8,’) (C, + 8C82); ’ 

sm (a+u) sm (a-v) em (a+v) -sm (u+v) sm (a.-u) em (a+u) 

I f  we divide an one of these equations by an other with or 
without changing t E e sign of either u or v, the nght- c and side will be 
expressible in terms of 2a, u+v, and u-v; for we have 

c3-85 

c (1 +e,)‘ (’ +“) and cm 2a- sm 2a- 
c (1 +83) 

This process gives relations amon the am’s and cm’s of u,, u,, u,, u,, 

zero; for we may take u -a+u, u,=a-u, u = - a+v, and u, = - a-v 
as the four arguments t]le sum of whch is identically equal to zero. 

u,+u u1 +u8, and ul+u,, if we ta a e the s u m  of the four u’s equal to 

As an example we have 
om (a+@)-am (a-u) am (-a+v) sm ( -a -u )  

cm (a+u) cm (a+v) cm (a-v) -sm (a-u) am (a+u) am (a-v) 
e ~~ 

(C* - 8’) (C:Ca - 818;) C, + 8C8; 
(C, + 8C8,’) (Ca + 8C8,’) ’ ClCa - 88,’ 

(8 - 8’) (CtCa - 8182) 
(C, + SC8,’) (C’C, - 88,’) ’ a 

cm (u-u) -sm (a+u) sm (-a+v> am (-a-v> 
E m  om (a-u) cm (a+w) cm (a-v) -am (a+u) sm (a+v) am (a-V) 

cm (a+v) om (a-v)  
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By division we get 
(c8 - 83)  (C,aC, .-2-, - 8 S 2) (c, + 8 C q )  (CZC, - SS, , )  

(C1-k Sc6:) (6%~ - 88;) (8 - 8’) (C, + 8,C18;) 

=a cm (u+u)-sm (u-u) s m  (-u+v) sm ( -a-u) 
cm (u-u)-sm (a+u) sm (-a+v) sm (-a-u)’ 

or 
c,fc, - ~ ~ 8 , ’  cm u, - sm u, sm u, sm u,. 
c, + s,cls; E cm ua - sm u1 sm u, sm u, 

But 
C?C2-8 8 a =cm (u+v) cm (u-u), 
c2 + 8 1 V 2  

also 
u +v =u1+ u,, 
U - v  =Ui+U4. 

Therefore 
cm u, - am u2 sm u, sm u4 cm (ul + 

Cm (ul + u4) = cm u2 - 8m ul sm sm ug * 

A great variety of such formulaB could be derived. 
If u1 + u, + us -0, we have 

8,CZ - 8,C,1. 
ca = 8,C1 - S2C, 

Hence, we have 
CiC,Cs 8 1 8 3 8 8  1, 
8,C, + 8,C, + 88C, = 0, 
8,C1 + 89C3 + SicB = 0. 

Of these relations (c) comes from (a) by putting - R-ul, R-uz, 
and -us for u u2, and us, respectively, of which the sum of the 
ar ments is stili equal to zero. 

%om (b) and (c) weget 
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theref ore we get 

( s , ~ + s : + + ~ ~ - ~ s , s , s $  (c: + c : + c ~ ~ - ~ c ~ c , c $  (s1+tsa+taa,) (SI + t'sa + tsa) (81 + 8 ,  + S$ (c,+ tat, +IC,) (c,+ t c a  + P C S )  (c,+ C ,  + C$ 
= (sic, +sac, + 8&8)'.  

FORMULAS FOR am u EQUAL TO A CONSTANT 

If we let c m  u assume a certain value, we shall have cm u, = cm 21) 
-cm us and sm u will be determined by the cubic equation 

= 0. 

Therefore, u,+u +u, is c o n p e n t  to zero modulus 3 K ,  3 t K ,  since 
the three points fie on a straight line. If we take the sum as equal 
t o  zero and not merely congruent to zero, we shall have 

u, =tu, or tau1, 
u3- tau ,  or tu,. 

Let us use the first values since the second pair merely interchange 
ua and u s .  We have then 

U,  +u, +u,=u~ +tu, +taut = ~ 1 ( 1  + t +  ta) -0. 

SIMILAR BORMULAS BOB rm Y EQUAL TO A CONSTANT 

On the other hand if we wish to let sm u equal a constant, we may 
take the relation 

and 

We have now 

and 

cm (X- u) = sm u, 

sm (K-u) -cm u. 

8 ,  = 8 ,  = Ss) 

c ,  +c,+c,-0, 
C,C, +c,C, + C,C,=O, 
c,c,c, = 1 - 8 3  = c:, 

C a = b i ,  
c,  = t'c,. 

hence, 
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We shall then have 
utl = K- u1, 
ut2= K-tul, 
ut = K - taul, 

and the s u m  is c o n p e n t  to zero modulus 3 E. 
To make the sum equal to zero, we may take 

utl= K-U1, 
u ' ~ = K - ~ u ~ ,  
uta = - 2 K- taul, 

the s u m  of which is evidently equal to zero. The equation K+tK+ 
taE is a particular case of cm u equaling a constant, namely, that in 
which cm u is equal to  zero. 

FURTHER ADDIRON FORYULAS 

We can now derive some new forms of the addition formulas. Let 
us take the case of c,=cm w=constant; then sm vl=sz, sm v ~ = & ~ ,  
sm v,=t%,, Let us denote sm u by s1 and om u by cl. We have 
then 

(81C2'- f82C:) (8,Cza - taS,C:) = 8: C,' + 8182 C,2Cza + CtS:, 

I sm(2R-uu-9)=sm (K-u+ K-u) =sm ( u + v ) ~  

By other similar transformations we get finally the six forms, as 
follows : 
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In all of these formulas we ma interchange u and w which would 
give 12 formulas from the 6. d s o  by substituting -w for v we can 
get formulas for u-w or by substituting K-u in a formula for 
sm (u+w) we can get the correspondin formula for cm (u-v), since 

can make a similar substitution in the formulas for cm (u+v) and 
get the formulas for sm. (u-v). 

sm (E-u+w)=cm (u--9); also cm ( !& -u+w)-sm (u-v) and we 

FURTHER RESULTS OF THE ADDITION FORMULAS 

By use of these formulas we derive the following results: 

3 s c l  sm (u +v) + sm (u + to)  + sm (u + tzw) = - 1 1  cp + s,'c,8 ' 

cm (u+tv) cm (u+Pv)+cm (u+Fv) cm (u+w) 
3c,2c,a 

cp + s,8cp ' +om (u+v) om (u+tv)= 

cz" - sp cm (u+v) cm (u+tv)  cm (u+t%)= c,' +s,'c,8 ' 
sm (u-v)+sm (u-tv)+sm ( u - ~ v ) =  381c2 

8,' + c,'c;' 
sm (u - tu)  sm (u - Pw) + sm (u - t a w )  sm (u -v) 

3C,a8,2 
811) f C:Ct ' +sm (u-v) sm (u-tv)= 

c; - c,9 
8,' + c,'c; ' sm (u-v) sm (u-tw) sm (u-tav) = 

3c,c," cm (u -v) + cm (u - tv) + cm (u - t 2  v) = 

cm (u-tv)  cm (u-t%)+cm (u-PV) cm (u--9) 

8: + C;C:' 

3c4; + cm (u -VI cm (u - tw) - sp + c,sc;' 

1 - s,9c,9 om (u-v) om (u- tv)  cm (u-Pv)=---- 
s,' + c;c;' 

am (u +u) cm (u + tv) cm (u + t%) +om (u +v) sm (u + tv) cm (u + 2%) 
3s,c:cz 

C,' + s,'c,s' 
+ cm (u +u> cm (u + tv) sm (u + tau) = 
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om (u+u) sm (u+tw) sm (u+t2v)+sm (u+w) om (u+fv) sm (u+t2v) 

sm (u+tv) ern (u+Fv)+sm (u+t"v) em (uf tv)  
+ sm (u +v) cm (u + tv) + sm (u +v) cm (u + tau) 
+ cm (u +v) sm (u+ tv) +cm (u +w) sm (u + tzv) 

- 381C1 (1 + c t )  - 
c;  + s,8c; * 

In the last three formulas by changing v to -w we can derive the 
correspondin formulas for u-w, u-tw, and u-Pv. 

R-w, R-tv, and K-t% for w, tu, and fv since it is not necessary 
that the arguments should sum u These formulas give 

We 
shall give one example to illustrate the procedure. 

To derive f ormulas for which sm is a constant we can substitute 

new, since they are mere P 7 to speclal =Fo* relations which can be 
from the arguments for whch cm v equals a constant. 

sm (u+ H-w)+sm (u+ K-tv)+sm (u+ K-t2v) 

cm (u-u) cm (u-tw) cm (u-Cv) 
1 - - l +  l +  

- cm (u- tv) cm (u- Cw) +cm (u- tzw) cm (u--9) + cm(u - t u )  cm(u -v) 

- 3c,c,a 

- 
cm (u--9) cm (u-t-9) cm (u-fv) 

--. 
1 -8:C: 

Now, denoting K-u b v,, R-tu by v,, and K-P-9 by vug, we shall 
have to replace v by I?--wl in the right-hand member whch merely 
interchanges the functions with subscript 2. 

Therefore 

In  a similar way a great number of other formulas can be developed. 
A number of interesting products can be derived such as the 

following : 
[l-sm (u+w)] [l-sm (u+tv)] [ l-sm (u+tzv)1=81Bc13+cp~ (cz - 8J3 
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s c 13 e,' + 2S1ClCZ 4- S,aC,a 

spc: + cp C,a - S,CIC, + S,a%Z ' +sm (u+t~v)l=(~t+ 1 2  I--- 

[cm (u+v)+F sm (u+v)] [cm (u+tv)+tz sm (u+tv)] [om (u+Fu} 

[l-cm (u-v)] [l-cm (u-tv)] [l-cm (u-tzw)j-c,9cas+8p~ (Ca - cJ8 

[ l - tcm (u-v)][l-tcm (u-tv)][l-tcm ( U - B ~ ) ] = ~  (c -tc1)3 
p a)+sp' 

(8, + C ~ C , ) ~  - 5: + ~s,c,c, + c:c;, 
8; + cpc; - s,A - s,c,c, + C,aC,a 

+ sm (u - t2v)] = 

[cm (u-w)+tsm (u-v)] [cm (u-tu) + t  sm (u-tv)] [cm (u-taw) 

By a substitution similar to that above we can derive such formulas 
for w,, v,, and v, for which sm v is equal to a constant. 

FORMULAS FOR MULTIPLE ARGUMENTS 

If we let u=b in the ordinary addition formulas 

and 

8 c c,' 
c, + 5, CIS:' sm (u+u> ='I+ 3 2 

c,c,1 - 5,s; 

c, + B,C,S,' ' cm (u+v)= 

we get the values for sm 2u and cm 2u 
s (1 +c") 
c (1 $83) '  

c3 - 83 

c ( 1 + ~ 3 ) '  

sm 2u- 

cm 2u= 

Again, if we let w-2u and then substitute L e  values o1 sm 2u and 
cm 2u, we get 

and 

8C (1 +e9+S~+C'-c?9B+s~) 
G + 388' - 8' + c'83-' am 3u-- 

ce - s3 - 3s5c3 - 86 
cm 3u"d + 3dZ -e'+ C'83. 
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We oan show by induction that sm nu tnd cm nu are rational 
functions of d and 8 multiplied, respectively, by 

sc and 1 if n s O  (mod. 3), 

8 and c if n,= 1 (mod. 31, 

8 1  - and - if n= - 1 (mod. 3), 
C C 

n being any whole number either positive or negative. 

DIFFERENTATION AND INTEGRATION 

A complete algorithm for the functions must include the con- 
sideration of differentiation and integration. We have 

a - sm u=cmau, au 

a 

a 

a% cm u- -sml u, 

then 
(sm u cm u) -cm8 u-srn' u, 

asa ~ ~ = ~ + s c = s m  u cm u-sm (-u) cm (-4, 

a &log (C+8)  =c-8 ,  

a 
au ' -log (c+i%)=tc-tas, 
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Hence, the integral of cm u du and sm u du, as also cma u du and 
3ma u du, may be expressed in terms of elementary functions. Thus 

du du , c m u  srnu au 
also we can integrate - t  - - du, - du, as  SO C F U d  crnu s m u  s m u  crnu 

sma u 
3ma u sm' u cm u du, and I du. du ,cmau -- 

If we wish to integrate any rational inte al function of sm u and 

of the fundamental cubic equation. Hence, we need only to consider 
the inte als of smn u cma u du, smn u cm u du, and smn u du. The 

cm u, it may be brought down to the secon r degree in cm u by means 

.first of t r ese is integrable at  once as follows: 

1 
n+l  1 smn u cma u au = - smn+1 u. 

The other two integrals have reduction formulas which we shall now 
give. 

and 

By means of these formulas any one of the forms can be integrated 
wlth no more complicated functions than logarithms, except those 
that result in sm u cm u du. This form can result only from the re- 
duction of the integral of smn u cm u. du. Let us denote this irreduci- 
ble integral byf (u). We have then 

f (u)-[sm u cm u au. 

From inspection we note that the inte ral of smn u cmm u du will 
result in this form if m=1 (mod. 3) an % if m%n (mod. 3). 

If we wish to integrate any rational fractional function of sm u 
and cm u, we can first reduce the denominator to the form P + Q cm u 
+R cma u by means of the fqdamental  cubic, P ,  Q,  and R being 
rational integral functions of sm u. If we now multi ly both numer- 

0111' u) the denominator will take the fonn P+&" cm8 u +B3 cma u 

If we now substitute for cm* u its value 1 - sm' u, the denominator 
becomes a rational integral €unction of sm u. We can then reduce 
the numerator so that it will contain on1 cm u and cml u. The 

part occurs, it can be inte rated as already indicated. Thus, the 
.only new forms that we nee8 to consider are the following three: 

ator and denominator by (P + Qt cm u + RP cma u)  X ( f: + &P cm u +Rt 

integrand can. next be broken up into partia 9 fractions. If an integral 

-3 P&R cm* u. 

$ (sm ?+ a)n* 
s and cma u du s (sm u + a)"' (sm u +a> 
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Let us denote these by the symbols P,, Qn, and %, respectively. 
We have then the formulas 

1 
P,=constant- (n-1) (smu + 

PI =constant + log (sm u +a) 

cm u 
(n - 1) (1 + aa) R, =constant - (sm + 

cm2 u 
( s rnu+~)~- l  (n - 1) (1 + as) Qn = constant - 

+ (3%-5 )  a2Qn-1- ( 3 n - 7 )  a&,-,+ (n-3)  Qn-9. 

By means of these reduction formulas we can express &, and R, 
in terms of &, Rei, Q , R,, Qi, and R,, of which thelast two are the 
only new irreducible forms. Thus, we have only to add to the 

former irreducibles the integral sm du, in which A and B 
are constants. 

Scmu+B 
PROPERTIES OF f(u) 

The functions s m u  and c m u  are uniform continuous functions 
having no other singularities except poles; hence the function smu  
cmu  is also uniform, all the infinities of which are of the.second 
order. Hence, the integral of this product is a uniform function of u 
with poles of the first order. We have then 

f(u> = 1 sm u cm u au. 

To derive the addition theorem, let us suppose that u+w equals a 
cons tan t . 

Then du = - dv, 

and f(u) +f(w) = sm u cm ZL - sm 2) cm 9 "[  1 
=crn (u+o) (sm u cm2 v-am w cma u) 

= - c m ( u + o ) ~  d (smusmu).  

By integration we get 

f(u> +f(u) -f(u + w) = - cm (u +u) mn u sm v, 

since u+u is a constant andf(F) vanishes with u. 
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We have the following examples of the addition theorem: 

sma u f(lK+u) = k f  +fW - 
cma u f (2 tK+u)  = 28%’ +f(u) + Z’ 

f (3 tK+u)  -f(u) -3k’, 
f (u)+J(rK-u)=f(rK)-L”,  let us say, 

and so on. 

ZK, 2t K, and 2P K of u. 
The functionf(u) becomes infinite of the first order for the values 

The addition theorem shows that we have 
f ( 2 K - ~ ) + f ( 2 K + ~ )  = f ( 4 K ) s 4 k ,  

with similar formulas for 2tK and 2PK. 

Then 

and consequently 
f ( u )  +f(tu) +f(tW = 0, 

k +k‘ +k“ = 0. 
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IlVTEQRdLB OF T E B  T X R D  PIND 

The other irreducible integral was the form s”” Bm u + A  u+Bau. Let 
A, cm u+B, sm uec, -du, which includes the 

US consider the form- cm ~ B, sm + c, - -  
former integral as a special form. 

The integrand generally becomes infinite for three values of u 
the sum of which is congruent to zero, modulus 3K,  3tH.  But we 
know from the theory of Abelian functions that it can be expressed in 
terms of u and of two integrals, each of which has but two points of 
discontinuity. The most general form of such an integral is 

cm u, cm a,, cm a, 
sm u, sm a,, sm a, 

1, 1, 1 
cm u, cm b,, cm b, 
sm u, sm b,, sm b, 

1, 1, 1 

(fa: 
in which a, +a,& +b,  (mod. 3 K, 3tK),  the discontinuities being for 
the values b, and 6, of u. We need to take only one particular 
of values of a and a,, for if Ube the integral for any one pair a, an a, 
and 17’ that )or a’, and at3, there is a relation U‘= A U+Bu. 

Let us then write b,=a+b, b,-a-b,  and take q = u + K - t K ,  a,- 
a- K+tK. 
The numerator then becomes 

cm u, t cm a, P cm a 
Isml;, tl s c  a, t sm a 

1 

which is a constant multiple of 
e 

sm a cm u+cm a sm u+sm a cm a. 

The denominator becomes the determinant 

cm u, cm (a+b),  cm (a-b) 
sm u, sm (a+b),sm (a-b) 

which on development, after multiplication by a constant, becomes 

(1-cma b) (sm a cm u+cm a sm u+sm a cm a)+sm b (1+cm 6 )  

Neglecting constant factors, we can adopt the form for the integral 

1-cm S smacm’u+cmasmu+smacma  smb 

1, 1 

(cm~acmu+smaasmu-1)4  

au 
cma a cm u +em% a sm u - 1 $2 
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But we have 

sm a cm u +cm a sm u +sm a cm aEsmu cm a+cm usm a +am u cm u 
c m a a c m u + s m a a s m u - l  

cm' a cm u+sma a sm u-cma u cm a-sma u sm a 
smacma-smwcmu 

cma u cm a+sma u sm a-1 

E 

cm a cma u-sma a sm u cm u cmz a-smlu sm a 
s m a c m a - s m u c m u  smucmu-smacma 

= -  - 

=-sm (u-a-X)-cm (u -a -m.  1 1 
= -EJiX$ -sm (u-a) 
Also 

Hence, if we put H + b  for b and u + a +  Rfor u, we have brought the 
third kind of Abelian integral to  the form 

du S om u+sm u-cm b-sm b' 
which is discontinuous for the values b and K -  b of u. 

continuities coalesce. 
second kind becomes 

The integral reduces to the second kind if b = 2 K, since the dis- 
Since cm 2g+sm 2R=0, the integral of the 

By multiplying both numerator and denominator by the same 
factor we get 

S cmu + smu - cm b - sm 6 

cma u - sm u cm u + smlu + (crnu 
+smu+cmb+smb)(cmb+smb) 
cm' u+sm* u + 3 cm u sm u (cm 6 

(cmb-sm b )  (cmau-smucmu+smau)+(cmu 
+sm u+cm b+sm b )  (cml b-sma b)  S 3(cm b+sm b )  (sm u cm u-sm b cm b )  

1 
cm b - sm b 

au  -s + sm b )  - (cm b + sm b)' 

du 

au = 

cmz b+sm b om b+sma bdu-u) 
sm u cm zc-sm b cm b r; 

k - u ]  cma b+sm b cm b+sma b 
3(cmb+sm 4s ) smucmu-smbcmb 

= 
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cma b+sm b cm b+sm2 b du-u 
sm u cm u-sm b cm b 

cm (2K+u-b)+sm (2K+u-b)  
cm (-u-b)+sm ( - u - b ) p *  

I__ ________ 

- - 
1 

+ 3 (cma b - sma 6) log 
Putting 2R+b for b in the integral in the above expression, it 

becomes a constant multiple of the integral sm ucmu' 
Hence, the integral of a rational function of sm u and cm u can be 
,expressed in terms of sm u, cm u, f(u) and cm + sma sm cm 

au 

au 

cm b+sm2 S 
S 

THE FUNCTION ~ ( u )  

Let us assume a function of u such that 

and therefore 

If u be very small, we have 
sm (2K+u) cm (2K+u)=sm (2tK+u) cm (2tK+u)=sm (2taK+u) 
cm (2t2K+u) = -7 - -- +positive powers of u. 
Hence, if f (u)  becomes infinite for any value u of u)  f(u) behaves 
in the neighborhood of a like G, and therefore g(u) behaves in 
the same neighborhood like a constant multiple of u - u. Therefore 

does not become infinite for any finite value of u, and it is, 
9 (0) 
moreover, a uniform continuous function o! u, since f(u) is such a 
function. It can therefore be ex anded in a senes of ascending 

!his development will be given later in this publication. 
ating the expressions containing f(u) on page 25, we 

c m u -  1 
sm u u2 

owers of u, which is unconditiona B y convergent for all values of u. 

get By the intT fol owing formulas: 

. 
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In these formulas we may throughout put tX  and k' or t2K and k" 
for K and k, res ectivel rovided that in the fourth formula we 
multiply the left- fl and si *i' e E y t or ta as the case may be. 

We have also 

in which R and K, denote any two of the periods K, tK,  and[taK, 
and similarfy k, and k, denote any two of the quantities k, k', andik". 
In  

substitute the value of cm u - 9(-"), 
9 W  

1 Now let u - -- K and we have 2 4; K)=e+kKg(;  K ) ~  9( K )  

Theref ore 
g (E) -efkK g (0). 

In the expression cm u = 9(-u) s let u =? - - 9 (u) x K, 

but 
cm (a K)=sm (f K),  

th'er ef ore 

9(; .)- -9( -3 .)a 

Now, in the formula 

3 
2 let u= -- K and we get 
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therefore 

We have definedf(u) by the integral 
g ( 3 K )  - d=g (0). 

f(tzc) -$‘t  am tu om tu du-tl Bm u cm u d ~ ,  
0 so” therefore 

in like manner 

In particular 

Hence 

fb) = t 2 . m  ; 

f(t*u) = tj(U1. 

k’=tak and k”=tk .  

k + f?k + tk = 0. 

We can now find the vduea 

but 
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We have 

hence 
g (21) = g (XI - u)#kIu--fk=, 

or 

ABELIAN FUBCTfOIW COnNtCTED WITH sq u AND om (c 

Let us denote the function 

and we have 
h (u) 

am “ “ g 0 ’  
and 

These functions are Abelian functions which can be expanded 
into series that am convsrgmt for all valuee of u. They can &o be 
expressed as Fourier s e x y ,  or aa infinite products. From the 
fundamental algebraic equation between am u and am u rn get 

Ala0 from 
h*(4 +gY-21) =P(u). 

sm u=cma u, a 
& 

we get 
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From the addition formula of f(u) (see p. 24), we have 

f(u>+f(-a)-f(u-a)-t + cm (u-a) sm u sm a 
cm a 

By subtraction we get 

sm usm a 
cm a PI- [cm (u+d cm a+cm (u-a)] 

), =- cm a (iiiia+smucmusmsci sm u cm u sm a 1 +cm* a 

but 

hence, by addition, we get 

2 f o  -f (u + a) +f (u - a) 

j sm a sm u cm u+sm u cm u cm8 a -sm 
cm a+sm u cm usma a cm a 

=--( 
2 sm u cm u sm a cma a - amz a 

- - -&log (cm a+sm u cm u em2 a). 

By integrating this equation with reapect to a from 0 to a we get 

au 2 am u cm usm a ma a-sma a 
sm u cm u smz a+cm a 

by &(u, a ) ,  we have 

Hence, any rationid function of cm u and sm u may be integrated by 
meam of the function g(u) and its derivative g'(u). 
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RELATXOIW BETWEEN THE ABELIAX BUNCTIONS 

if we multiply both sides by 

(-u-a) h(u-a) @(O) 
$(a> qw sm u cm u-sm a cm a= g 
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Inte atin with respect to u from 0 to u and remembering that 
g (t$=g (8 and g (tau) = q  (4,  we get 

sm u cm' a +sm a cm2 u - sma pc sm' a cm u cm a 
- - h(u+a)g (u+kc)g (u+t~U)g~(o )~  

s" (4 9" (4 
In a similar way we may continue to develop relations between these 
Abelian functions. 

TEE PmPCTION (2 ((I, a), ADDITlOl OF ARGUMENTS 

We have derived the formula 

Thus we get 

set 
1 a - 5  (u-v), 

and we get 
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Again set 

Hence 
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(u-a)+sma (u-a) am (u-a) cm (u-a) 
cm (u+a) +am2 (u+a) am (u+a) cm (u+a) 

cm a+smz a am (u+u+a) cm (u+u+a) cmz a] 
‘cm a+sma a am (u+u-a) cm (u+u-a> 

This last form can be verified in the same way as the preceding one. 

Now we have 

1 1 in this expression let u , = = ~  (u+v), y=% (u+u) +a, 

1 1 %==z (u-v), u4-5 (u+v)-a. 

With thew values we me that 

4+8282C7xCg+8:84C4, 1 -am a cm (u+v+a) sm u am v 
4+a,1a4c, c,+s~a,c, 1-am ( - a )  cm (u+u-a) am uam v’ 

1 1 -am a cm (u+u+a) am u am u 
1-am ( - a )  cm (u+u-a) smusmw 

since log C, +:’&I ” ‘’ C1+ 8:’8& is the complicated expreeeion given 

INTERCHANGE OI ARGUMENT AND PARAMETBR 
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or 

cm(u-a)cm(u-b)cmacmb 
&(u, 4 +&(u, 2,) -&(% a+b) =log[ m u  cm (a+b) cm (u-a-b) 

]+2u cm (a+b) sm a am 6. 'l-am(-u) cm(a+b-uj srnrrsrnh 
1 -sm u cm(u+a+b) sm a am 2, 

This give8 the theorem for .the addition of parfuzletm. 
NUMERICAL VALUES 

From the expression 
gm (E-4 ==Car 16, 

we get 

hence 

ahd a~ already given 

Hence, 
log I(;) = 0.42796274931426. 

log k = 9.83636023405378 - 10 

k = 0.0840634. 
26183-25t4 
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We have 

TRAlSFOPMATIOAS 

We have already listed aeveral transformations which give the 
values of cm and sm u for various combinations of one-third of 
the periods. If we denote eT by 8, then 38K is a period tor the 
functions, since 38K- 3 K+ 3t K= - 3C K. To investigate the behavior 
of the functions for an argument SU, we hsve 

Tf 

I 
1 1 cmm==cm(-t%)6-=-. cmt% c m u  

This transformation tells us some facts r ardiq the Ab&m 

equal to (-u), we know that in the aedes of owers of ua that ex- 
reams g B u) the odd powers are present aa we8 as the even powera. 

gince e" = - 1, we have 

functions Mu), g(u) and g(-u). In the f b t  7 p ace smce g(u) is not 

g(& =g(--'21), 

9(-8u) -g(u), 
hence 

cm 8u---+@--.--. 1 
g ( 4  g -4 c m u  

The function h(u), which is zero for u = 0, must be hf the form aP(u@), 
h which P(u6) denotes 8 power series in ue. It results that h(8u) - 
&(u) and we have 

We know then that h(u) is an odd funotion of u. The produot 
g(u) (- u) must be an even function of u. The fundamental eriods 

should be noted that the area of the rhombus would be the same in 
either cue. 

could be taken aa 2 K and 38K, altho h in some rea ects B K and 
3tK are preferable as 8idw of the fun 3 mental para fl elogram. It 
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TRANSFORMATION FOR THE ADDITION OF A HALF PERIOD TO THE ARQUMBFT 

Another transformation that might be noted is that for the addition 
of the half period. 

# s m ( u + y ) -  smau+2 + c m u  
2 cmau-smu 

.) am u-2 cmau - *  2 smucmu-1 

2 % + s m u c m u  

cm u-2 smau 

sm u e m  u+2+ 
( "1- sm u--2 cma u 

emu-2 + thnrn% 

- +  2 soa~omu-1 

cma u+2+ sm u, 
=2+sma u-cm u 

# + P 

+ cm u+- 

Evidently the argument u - yshould give the same transformation 
or a second application of the transformation should restore the 
original functions. 

TRANSFORMATION FOR A PURELY IMAGINARY ARQUYBNT 

An imaginary transformation can be applied by noting the identity 

* t - P  
2 s - o  

v5 
Hence we have 

U ( t -  1) am 3- om 5 
%-ta3- cm8 5 sm iu-sm(t 

U 1 + t a  sma - 43 
J3 i am --e cm 

cma -$ - t sma -- 43 
=I 5, 

U 
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U 1 +t sms- 

1 +la sm8- 
=t J3 

4- 
U 

A second application of this transformation will give sm ( -u )  and 
cm (-u) expressed in terms of the functions with the argument f i  

or b multiplying the argument by 3 we shall have sm (- 3u) and 
cm 9-34 expressed in terms of sm u and cm u. This im inary 
transformation wi l l  be found very useful when we come to?kcuss 
the use of the function for mapping purposes. 

TRAHSPORMAflOH ?OB THE M D I n O I I  OF f K  TO THE ARGUMENT 

Aa another transformation we have 

cm u-2t sm2 u 
2t+sm u cm u 

icc- 

2) oma u-sm u. 
2 j cmu+smau  . 

3 

SBCOND TRAHSFORMATION FOR A PURELY IMAGIlPAPY ARGUMENT 

We shall now note some transformations that change the curve 

Let us stakt with the expressions 

d + y" = 1 into the more general curve 9 + y" - 3axy = 1. 

omu+smu-1  
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It will be found that these expressions satisfy the equation 

41 

s m S ( ~ ) + c m s ( ~ ) - 6 s m  ($) - cm ($)=l, - 

so that a = 2 .  

We should have then 

and 

It can easily be verified that these relations are valid. Itlshould be 
noted that if CY is p r m t  in the original funatione this transforma- 
tion is expressed as 

iu (1+a) 2-ff 
7’ l + a  

and 

in which 2La denotes the new alpha. Since the alpha to start with h l+ f f  
this oasb was zero, we have as above 

and 

am(-$, 2) 

om($, 2)- 

If we apply the same transformation a lseokd time we shall&& 
sm u, sm ( -u ,O)=- -  cm u 

and 
1 cm ( - U ,  O)---. 

O m U  

It is easy to verify this fact and it givea a good check on the trans- 
formation. 

It is interestin to note that we have alread deduced an imaginary 

particular one could not be derived in a similar manner. 
We can derive the relation betw4wn &e newf and g functions and 

those of the original functions, 

transformation t a at keeps the funotions in- t  E e claab of &PO. The 

f w , 2 ) - J ) - ~ a o ,  
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It oan easily be verified that 

u. B, UOAST AND O E O ~ T I O  ammy 

-- 1 ( c + 8 - 1 )  ( tc+t%-l )  1 + d tC'-ta8' 
3 ( t ' C c t 8 - 1 ) '  =8c- - 3 &t'c+ts-l' 

and therefore 

A second integration gives 

T w o  other trwfom&ions may be derived from these by putting u 
equal either to tu or to tau. Such formulas could be written down 
at once. 

TRAHIIBORMATION OB THE S E C O ~ D  ORDER 

3 We have seen that om 2 K -  -1  and that sm8 i g P 2 .  Let b 
from the transforma- 

8,  c,  s/, c' for sm u, cm u, 

we have 

8 + 8'+ bcc' = 0, 

c + c' + bss' = 0, 

8 C ' + 8 ' C = 6 .  

From them results it is s e h  that 
6 

(8 + 8')' -k (C -!- C')* = 2 + 3CC' (C + C') -k 3SS' (S d- S' )  6'- 5 (8 + 8') (C + C ' )  . 
Therefore 

while we also find 
(88')' -k (CC')' - 3 b88'CC' -k 1 - 0, 
a 

au 

&.PO, -88'==0, -Gd=l. 

- (- 88') - b (CC')' + 6'85'. 

Fqrthermore, when 

Hence 
8 (8' + 5%) 
=s-bc" sm ( -bu,-b)  = -sm u sm 
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There me three such transformations, one for each of the roots of 
the equhtion b* 2. 

We find that 

When an ar is present, this transformation is expressed as 

bar-2 that is, the new a is 7 

Now we shall transform sm (-bu, - b )  or sm (-2tu, - 2 t )  with the 
new b = - 21, then 

sm (-2u)- -sm(-2*u, - 2 9  sm 

since the new CY is 1;ero. We can thus duplicate the argument by 
two second-degree transformations followed by a negative trans- 
formation. 
We have, further, ' 

From the formulas on page 26 it may be seen that 

A second integration gives the formula 



44 U. & UOAST AXD QEODI$TIO SUavIEY 

TRANSFORMATION OB THE THIRD ORDER 

Let us sup ose that we wish to construct functions with the 
periods K an8 3tK. The functions sm u sm (u+ K )  sm (u+2&3 
and cm u cm (u + R> cm (u + 2 R> are each equal to - 1, and hence 
are not available for our purpose. If we set 

x-sm u+sm (u+Iz )+~m(u+2X) ,  
and 

y=-cm u+cm(u+ H) +cm(u+2E), 

then x and y are such functions as we want. 

so that we get y from x by the interchange of s and c .  

Hence 

d + @ +6zy = a constant, 

To find the value of this constant, let 

1 1 u p z  K, then z== y=- - 1 + 4 2 ,  9+++6xy==2z'(s+3) vi2 
= 2 ( ~  1 -1+42)1(&+2+42)-9.  

Thus 
9 62 

while, when 
1 X 

Y v u=O, - -0 and- - -it 1. 

Then 
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Two other similar transformations could be made starting with the 
expressions 

sm u+sm (u+tR) +sm (u+2tR), 
and 

sm u+ sm (u+tzK) +sm (u+2taK),  

.. iuch, however, have no added interest. 
Transformations of higher orders could be obtained, but since 

they all lead to functions other than those with a = 0 they are rather 
beside our present purpose. It is more directly in line with our work 
in hand to derive the transformations that reduce the functions 
sm u and cm u to the Weierstrassian functions and to those of 
Jacobi. Such transformations will now be given. 

TRAHSFORYATIOHS IBDUCIHQ sm u AND cm u TO 
W~ERSTRASSXAH FUNCTIONS 

TER COHQRUENT 

We note that sm u cm u has a double infinity for the value 2 E as 
also for 2tK and 2taE. At 2K the infinity behaves like- --j. 

Let us appl 
(2 -4 

the transformation u=2K+u,  so that the double 
infinity may t e transferred to the origin, 

cmu 1 am (2K+u) cm (2K+pl )==-sru -  --+P u, (u), 

P(u) denotin an inte ala power series in u. The Weierstraesian 

hood it ie of the form p ( u ) - ~ + Q ( u ) ,  Q(u), denoting an integral 

power series in u. This would lead us to suspect that p(u) might be 

To verify this supposition, let cm u equal to - a  sma u 

1 
function pfu)  a as a dou r le infinity at  the origin, and in this neighbor- 

cm u 
am' u' 29- 

a x  1+cm8u 
&== - smau ' 

4 cm' u+sma u 4 cm* uf (1-om8 u)l (1 fcma u)l 4 9  + 1 - ~ ~ - -  = SI ----. 
sm8 u sme u sme u 

Therefore 

d_"= - 4 4 9 +  1. au 
We have then 
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and 
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z - p ( u ) ,  (g,-o, sa- -1 )  

e, = - 24, e, = - 2-1.4 e, = -2  t2 .  -it 

cm u Hence we find that p ( u )  does equal the given function G2;9 

or 

3 The right-hand member has the real period 3 K .  hence w1 - 2 X, 

In the first integral, in the right-hand member, bet 429-u1 

1 x - -  u+, 
21. 

1 ax=- 3.28 u-+aur 

and we have 

From the definition of p(u ) ,  we see that 

p ( X )  "0; hence 

In the second integral, in the right-hand member, let 
41= -u, 
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then 

If we call this value 2, we have 

1 - 
3 . 3 )  

1 
3 . 2 %  
__ 

Therefore, as already stated 

In the first part of the right-hand member set x = tz,  and we have 

t k  0 a x  0 ax 
2) fi 

Therefore 

and the full period is 

20, -2 K +  tE 

A Weierstraas p function constructed with the periods 8 K end 2 K+ t K  
will be con ent with the functions sm u and cm u. The relation 

~arallelograms is shown in Figure 3, in which the funda- 
~~~~f$ ! io ! s  for sm u and cm u are taken as 3K and &E. It 
should be noted that the area of the parallel0 8m for p (u) has one- 
third the area of that for sm u and cm u. yhis is evidently theo- 
retically required, for each zero of sm u ie a double infinity for p (u) ; 
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also p(u) has but the single double infinity in the fundamental paral- 
cm u lelogram. The six infinities of zu due to the duplicate infinity for 

each zero of sm u are divided into the three double infinities in the 
three parallelograms of p (u). 

Ro. 3-Relatlon of the period p fd le  r a m  of the  Dixon elliptic functions to thoae of the congruent 
%ebr6t-n ImJImr 

IDEIPTIFICATION OF THE ABELIAN FUNCTIONS WITE KHOWN 
WEIERSTRASSIAN FUNCTIONS 

This relation that we have established gives us the means of 
identifying many of the functions already employed. We have used 
the relation 

log sm u-lug h(u) -log g(u), 

but by definition 

8 log g(u) -8m u cm UT 
hence 
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In the Weierstrassian theory we have 

by one integration this gives 

a a & log h(u) =- log &) + A ,  du 

and a second integration gives 

or 
lag h ( 4  -log u(u)+Au+log B,  

Mu) = BeAuu(u), 

in which A and B are constants to be determined. 
Whatever expression we adopt fbr g(u), we can make g(0) equal to 

unit for it would only be necessary to divide the ado ted expression 

would be unity for u=O. HereafLr we ahall consider SCOT to be 
sm u unity unless a special note is made to the contrary. Now- 

converges to unity as u converges to zero. But 

by t t e constant g(O), and then the valuq of the res uf ting ex ression 

u 

s m u  u 
U - g m '  

u hence -- --- must converge to unity for u== 0, and since g(0) - 1, 

p$] must equal 1. We know that __ equals unity when 
U-0 U 

u equals zero. Therefore 

g(u) 
4 4  

becomes B = 1 for u = 0. 
Hence 

h(u) = eAu du) .  

From the Weierstrassian theory we have 

a(u+o)=-ehu ,  
b o  



3 Now w = 3 K, but we must determine the relation between q and k. 
We have 

p ( 2 E - 4  = -sm u cm u, 

and hence, by multiplying by du and integrating from 0 to u, we 
obtain 

t 

-f(2E-u) + m m  -f<.>* 
1 Let a- E and then K and we obtain the results 

On page 26 we have the formula 

or 
J ( z l )  +f(E-u) ==E,  

Also from above 
2 m m  =ft4IF-), 

but 

or 

hence 

f(3K+ u) - f (u) = 3k, 

f (4E) - k - 3 k ,  

f (412) - 4k, 
2{ (2 K) - 4k, 
r ( 2 m  32k. 

3 Since 5 Xis a half period 

hence 
1 

- t )  + 2k- 9 k, 
or 
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Returning to the Weierstrassian formula 

61 

we see that it becomes 

Now let u- f K and we have 

But 

since p' (9) is equal to - 1. 
Hence 

which combined with the expression above gives 

or 

u ( 2 K ) = d ( K ) ,  

19 ( R )  = d k K ,  

u ( K )  d". 

h (u) - eAn u (u) , 

h(u+ K )  -ehN+tkKg(u), 

Returning now to the formula 

and remembering that 

we get 

hence 

or 

and 

h(R) U( R) , 
h ( X )  - C K  u ( R ) ,  

, e A K - 1 ,  

A - 0 .  
We have finally established the fact that 74%) and u(u):are identical. 
We have 

Since h(u) and u(u)  are identical, we have 
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We have defined g(u), such that 
a2 

a u 2  
- log g(u) = sm u cm u. 

Hence 

Also 
g(u)g" (u) - [9' ( U ) y  = h(u) g (  -u). 

d2 cm u 
-- log h(u) = -- aua smau' 

and so 
h(u)h"(u) -[h'(u)]Z= -g(u) g(-u). 

From 

we have 

Theref ore 
a s  sm u 
du2 - log g(-u) = -su, 

1 u "u) 
24 $ (21)' 

p(u) f- 
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SOME NUMERICAL VALUES OB TEE ABELIAN FUNCTIONS 

We have already seen that with g(0) - 1 
g(@ -etkK, 
h ( K )  = u  (R) ==e-, 

g(- '0, 

9 ( 2 m  =o, 
h(2K)  =e2kK, 

g( -2K) - -e2kK, 

OLK 
g(3K)- -e , 
h ( 3 K )  -0 ,  

DEVELOPMENT IN SERIES 

Let us assume the series 

s m ~ ~ a o ~ + a I ~ ~ + a l u ~ + a a ~ l o + a , ~ l a +  . . . . . . 
cmu-bo+b,ua+b,~a+b*~60+b,P1'1+ . . . . . . . , 

then 
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n being a whole number greater than zero and u0= 1, bo = 1. 

r e  computed. 

This 
'ves recurring formulas from which the successive a's and b's can 

We have 

di.2 2 7 28 364 
1 1 1 3 ul"+ - da- . ...  log g(u) ==sm u em U = U - - U ~ +  -u7- . I  

a= 

which by one integration from 0 to u becomes 

d ; l o g g ( u ) 5 ~ u ~ - - u ~ + - u ~ - - L u ~ ~ + - u ~ ~ -  a 1 1 1 3 . . . . .  ., 
10 56 308 5096 

and by a second integration 

1 1 1 1 1 
6 60 504 3696 25480 logg(u)--u~- -u6+ -ue- -uU"+ -u1a- . . . . .  ., 

and 
uD+ 1 1 1 g(u)-l+3ua- -d- - . . . . . . . . .  360 45360 

5 

1 1 1 
6 360 45360 g(-u)=l--u*- ---?he+ -uQ+ . . . . .  ., 

In a similar way, we find that 

1 
840 h(u) =us -u'- . . . . .  ., 

or h(u) can be written down from the known development of u(u)  

for?g, hese - series confirm our former conclusion that g(u) was a ower 
series in u' and that h(u) was u times a power series in ue. %ese 
developments are not particularly important,. since for computation 
i t  is more convenient to use trigonometric series. 

0 and g3=-1 .  

TRIGONOMETRIC DEVELOPMENTS 

Since h(u) is identical with u(u) we can adapt the expressions 
given for u(u) to serve for h(u) 

--- 
If we take q = e  243 and then substitute,iq for in the expressions 
for a(u), we shall have the correct expression for R (u). 
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Now substitute iq for p and drop the factor (G)' from numerator 
and denominator and we get 

These expressions give 
U U  3~11 5?ru ' 7m 9?ru sin--- t p a  sin---po 3K s i n g g - p 1 ~ s i n m + p m 8 i n ~  3 K  

1 l ru  13m 1511% +pBOsin--pa sin---p sin=+ . . . . . . . .  3K 3K 

sin( ;;+ t )  + pa sin (s + 2) - q e  sin(:? + $) - q13 sin(.= 
sm u p  

-a" s i n ( x + - g - ) - p  13ru 18a s in (=+T)+  16au 151 . . .  

+%)+do s in(?+g)+g Bin(++=) 7r l l r u  

-pa sin (13a +- 1 3 ~ ~ )  - q 6 0  sin (15a -+ 1 5 ~ ~ )  
3 H  3 -3-x + . *  

7 - __ -. 
in which p = e z 4x0 
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SOME CONSTANT RESULTS 

3K -P 1+3~a-5qd-7~'3+9~a0+11f'-13pll-15f'+ ,_ . . . . . 9 

or 

3 J g K  1+3p'-5pb-7~1z+9~20+11psO-13p"-15~66+ . . . . . 
-mu 

27r l+$-q'"qn"-a"- . . . . . 

A SECOND TRANSFORMATION TO WEIERSTRASSIAN FUNCTIONS 

am u The funotion r-ru has a double infinity at the origin, and hence 
we shall examine ita behavior. Let us set it equal to y, 

am u 
Y'1-Cmu' 

then 
d (1-cmu) cmau-sm8u 

cmz u- 1 1 + c m u  
(1-cmu)2=-1-cm u' 

2= (1 - C m  u)' 

= 

and 
4 -8 u- (I -cm uY' 

4p-1= (1-cm uy 

4 s m 8  u- 1 + 3 cm u- 3 cm2 u +  cma u 
E 

(1 - cm 

3 ama u+3 cm u-3 cm3 u 
(1 - cm u)' 

= -____ 

¶a 3 (1 +cm u+cmz u) $3 cm u 
(1-cm u)a 

3 (1 +cm u)' 
(1 -cm u>a ' = *. 
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Theref ore 

and 

so that 

and we have 

ThisljfunctionLle;lves us the means of expressing sm u and cm u in 
terms of the p function. 

We have r( 
I fC I I lU  

so that by division we get 

Mor&ver 

P’ (5). 48 
cm u= 

sm u= (1 -cm u) p - 
C;3) 

2 4 3  p (;3) 

J3-P’(%) 
- 

This is the solution in Weierstrassian form of the problem considered 
b Cayley “On the elliptic function solution of the equation d + = 1 ‘ I  

consideration to this problem later in thw publication. 
(8ollected Mathematical Papers, vol. 12,*p. 35). We shall give 7 urther 

1 t  t’ The roots of the equation 423 - 1 = 0, are 2 = - 9  - 9 and - When 23 23 2,’ 

( ‘) has any one of these values, then p’ ($) = 0; but when 

p’ (5) equals zero cm u = - 1. The solution of this equation will 
73 
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therefore give the half periods for the function p 
3 of u for which cm u- - 1 in the fundamental parallellogram are 5 E, 

3 3 -tK, and 2PK. The periods for this function are therefore the same 2 
as those for the functions sm u and cm u. “he fundamental periods 
can be taken as 3 K and 38Kif it is desired. Of course, if the function 
is expressed as (u), then u must be increased by &R and 4%3K to 
make the periocf We have then 

and 

This transformation is not aa interesting in itself as the former 
one, but it is important aa furnishing a means for com utm a table 

for this caae of the Weierstrassian functions was computed by A. G. 
Haddock and published by A. a. Greenhill in connection with an 
article entitled “On the trajectory of a particle for the cubic law 
of resistance” (Proc. Royal Artill. Instit., vol. 17, p. 1-36, 1889). 
The table is also ‘ven by JaWe und Ehde in “EPunktionentafeln 

valuee for p and ‘ a table wm ~ompufed for an u wd cm a by 
just established. Two serioua errors were 

noted in the Weieratrass table; the value of (u) for r - 3  should be 
of p’(u)  for r-35 

should be -75,9603 instead of -73.4302, as given in the table both 
in the Artillery Journal and m the Jahnke und Emde publication. 
It should be borne in mind that r -  120 is the value corresponding 
to K for which value p(u) = 0. 

of the functions am u and cm u. A table of the p an S B  p’ unctions 

mit Formeln und f m e n , ”  pages 73 to 75. By using the tabulated 

employing the reation rp 
1537.9625 instead of 1468.820 and the vaue P 

TRANSFORMATIONS OF THE FUNCTIONS Ern u AND cm u TO THE 
JACOB1 FORMS 

Let us consider the form 

@ 4  @ sin4 - - J3 sin2 - cos’ -- + COS‘ - J42 + 1 a 3’ cot - coseca - 2 “J 2 ; 2 2  2’ 
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- 2a4 

3 2a4 

f i 4 2 + 2   COB'^--&^+ J8cosa4 

m 4 2  - &i + (2 + 43) cos' 4 

hence 

J r  

If we start with 

we have shown (p. 46) 

reduces the integral to 

and the further transformation 

80 that 

and 

v - 4 -*- 

The transformation therefore beoomes 

with 

or 

2 + 43, 
4 K' 

59 
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If L denotes the half eriod of the Sacobi functions, the fraction is 

zero u=-- 3 R  
equal to zero when s ' vs u - 2 L ;  however, Then the fraction is 

Therefore we have 2 

34 
4* 

L = - - K .  

Le endre's table shows that this result is correet. 
b e  can express sm3 u and cms u in terms of p' (u) .  We find 

n 

However, we can not-express sm u and cm u in rational real values in 
terms of this p function. 

u rationally in terms 
of p(u) as also of sm u and cm u. 
On the other hand, we can express cn 2/5 

and 

and finally, after substituting the value of p ' (u )  in the above ex- 
pressions, we get 

2.3314 dn 4 3  4 3  u(1 +cn Gi 4% u)112- (1 - cn V4 4'3 u)S/' 

2.3914 dn .t/ i / S  u ( 1  + c-2 43 u)'I2 + ( 1 - cni/3 y3 U)"' 
cm3 u =  

TRANSFORMATION OF THE SECOND p FUNCTION TO THE JACOB1 
FORM 

We shall now transform the other p function to the Jacobi form. 

9 r 4 2 = 1 + &  cot'5 

9 , a d z  = - a cot coseca a9, 2 
qZb- l=31/3Got~~f9  9 C O t 4 g + 3 J 3  cot"ijr 9 
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hence 

We have already seen (p. 57) that starting with 

reduces the integral to 

and the final relation 

reduces the integral to 
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Hence 

and 

Hence 

with 

or 

.i/3 
i / s  I$ =am--u 

44 
43 

cos 9 - cn -u. 

In this case 

or 

which can also be tested by means of Legendre's tables of the first 
elliptic integrals. 

CAYLEY'S PROBLEM 

This is the function which Cayley used in the memoir referred 
to on page 57. The sRme transformation is given as a problem in 
Whittaker and Watson's Modern Analysis, second edition, page 526. 
There are two mistakes in 'the statement as there given, so that 
the student would have difficulty in proving the exercise. These 
errors will be pointed out in the course of the analysk that will 
now be given. 

We have already derived the formulas 



and 

But 

so that 
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P!(:Z)+ J3 

PI(%)- J3 
cm u- 

63 

By substituting these values we get 

TO make the expression simpler, we shall replace - a - u by u and we get 
4 3  

iB fi ( l - c n u ) [ l $ J ~ + ( ~ - i I ) c n u ]  
i /4  2 i / % s n ~ d n u + ( l - c n u ) ~  9 

sm --U 

and 
*g cm -,- = u - 
4 4  

2 4 3  an u dh u- (1 -cn u)1 

2d'g sn u dn u+ (1 -cn UP' 
The first expression can also be transformed aa follows: 

-_-- 

but 
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or 

and 

Now the expression becomes 

This is the form in which, the solution is iven in Whittaker and 
in their 

expression corresponds td the sm function-as given here. t may be 
seen that in their expression for y the.factor 2' should be 2" and the 

u should be )c times the integral instead of J 2 d 3  8s given by them. 
In  Cayley's memoir &lready refehed, to the coordinates are given 

in the form 

P Watson previously referred to. It should % e noted that 

43 - 4 -  

4 4  

This result iq obtained from the former result by increasing u by 2L, 
which change$ the sign of cn u and sn u. We must then set x equal to 
1 sm 
- and y to - - - 9 which, of oouree, ie a transformation of the x om % em 
and y. In  Cayley's collected papers there is a mistake of sigh in the 
formula for y at  tho top of pa e 36 of volume 12; it can be checked 
u by the correct form for #given near the bottom of the pa e. 
'&ere are severbl other typographical errors in this memoir in t a e 
collected pa em. 

of the elliptic functions. 
Various ot Fl er forms oould be given for x and y by transformations 

We shall list a few. 

2 43snudnu+(1+cn ,uY 
2 4'3 sn u dn u- (1 +cnu)" X =  

24 cos a x (1 + cn' u) (1 -tan 5 ch u) 
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dn dnu-sin-snu 12 

2 i/ cos$jcn u+(dn u+cos;snu) 
----__-___ 12 12 

Y=- 

2 i / 3  i sn u dn u- (cn u- 1Ia 
2 i / 3  isn u dn u +  (cn u- l)z' 

X =  

In  the last set of values, we have 

IC=sin 75" 

in place of sin 15' as in the other sets. 
be derived from the e 

illustrate the various ways of possibie expression. 

This last set of values could 
ressions for sm3 u and cma u given on page 60. 

Many more values co uxp d be derived but enough have been listed to 

IMAGINARY TRANSFQRMATION OF p(u)  INTO p (J?) 
The function 

is the imaginary transformation of the function 

s m u  , 

We can show this directly; it  is known that p 
g, chan ed into-g, since g,==O. 
cm iu t % eir values given on pages 39 and 40, we get 

Now, substituting for sm iu tmd 

U U ( t - P )  sm - cm J3 J3 
I -- __ __ 

- p  (9 3 =--- 

U U ( t - P )  sm -- cm - 

u - ( t -  P) sma - - 

t 
J3 43 

-__I___-- __ 

J3 
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We can now replace -- b u and we have 
Ju3 

cm u 
p(u) =zu* 

TRANSFORMATION OF p ( f z )  TO p(u) 

In  the formula for the imaginary transformation of cm u let us 
replace u by 1/3u and we get 

1 + t  sms u cm J3 iu = ~ --- 1 + t a  sm9 u’ 
hence 

l.-cm d i i u  1-cm d3iu - __ - - __ __ sm8 u- - 
t2 cm 4 3  iu-t t(t cm 4 3  iu- 1) 

- t  cm J3 iu+t2_t--cm - _ _ ~  -43 - - ~  i v  , 
t 2  cm J3 iu-t tcm 43iu-1 

and 
cm3 u= 

With these values let us make the-substitution in 

or 

Now, replace 4 3  iu by u nnd put in phce of p (-$E) its value 

9 in which q3 is now equal to - 1 instead of + 1 ns in the 
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former p(u),  and we get 
sm u 

p($3>=1-cm u' 

The imaginary transformation can be applied directly to the formula 

1 J3 l+cosc#l 
P(;;>-;;a+2$ 1 -cos 9' 

i U  but we must remember that - changes to u just the same asLchanges 
into L' in the Jacobi or Legendre form, 

J3 

Now, by the Mercator transformation we can write cosh 4=sec e 

or 

This is the formula for transformation of the Weierstrassian form for 
g2=0, g,=l  into g2=0, g 3 =  - 1 .  

Hereafter we shall call the functions sm u and cm u the Dixon 
elliptic functions of u, since Dixon has written such an excellent 
memoir upon the whole series of functions connected with the curve 
2'+f-3uxy- 1. Much use has been made of his work in deriving 
the theory of the special class of such functions treated in this 
publication. 

APPLICATION OF THE DIXON ELLIPTIC FUNCTIONS TO MAP 
PROJECTIONS 

As has already been stated, H. A. Schwarz, of Halle, in 1864, called 
attention to the fact that a circle could be mapped conformally upon 
a regular polygon of n sides by means of the function 

In  1866 Weierstrass gave the same function in a memoir to the Berlin 

function of this kind was made 
shall now show in what manner 
for a particular series of projections. 

Academy. In 1879 the first 
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We start with the function sm w, but for computation purposes the 
To 

Let us sup ose that sm w=Reio; then 

real and the ima 'nary parts of the function must be separated. 

jugate corn lex quantities. 

cm @=reid. 

attain this end, ff et w=u+iv and @=u-iv. Then wand @ are con- 

am Z=Re+! Let us further assume t P, a t  cm w=re-Id and then 

The values of T and d can be computed from the relation 

or 

Taking the Naperian logarithms of both members we get 

3 log T - 3 2  - log [ (1 - R3 cos 3 ~ ) ~  + P sin2 3c] 1 

B equating the real parts and then the imaginary parts we obtain 
a 9 ter reduction 

TB=1-2R3 cos 3c+R6, 
R3 sin 3c 

tan 3d"1-Rj cos 3c' 

or 

hence 

1-2R8 COS 3c+R8 1 + tan2 3d = seca 3d = - R8 cos 3c)2 I 

TO 1 
Ii-Ra COS 3 ~ ) " ~ c O s 2 a '  

After d is determined from i t0  tan ent it is more convenient to 
compute r from the form last given. h e n  T and d are determined 
numerically, we know the values of cm w = re+d and cm iij .p reld 

Now we have 

Since sm 221 i s  entirely real the imaginary 
member must be identically equal to zero. $8 have, therefore, 

R[COS ( c - d ) + +  cos (C+2d)+R8 cos (2c+d)+R"?JJ] 
r [ l+2R*cos(c+2d)+R']  

art of the right-hand 

P sm 2u- 
as also the identity 

sin (c-d)-1'8 sin (c+2d)+R8 sin ( 2 c + d ) = O .  
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This identity is a consequence of the relations already established 
between the various functions. Again we have 

sm w om2 8-cm? w sm w‘ 
cm c + s m  UI cm w sm2 w‘ sm (20-E) =sm 2iv- 

2iRr sin (c+2d) 
sm 2iv= e1d + RSe-l(c+d) 

But from the imaginary transformation given on page 39 we have 

2v 2v f i  i sm cm J3 
1 + t 2  sm3 --,2 2v ’ sm 2iv- 

therefore 

2v 2P7 43 i sm - cm-- 
43 J3 = 2iRr sin ( c + 2 a )  

2v eld + RSe-l(C+Q)-’ 
1+t2~m3--  43 

or by dividing by i and equating the reciprocals, we get 

Now, by equating the real parts and then, the imagin.ary parts we 
obtain 

1 2v l-Z 8rn3 - 
cos d + R8 cos (c + d )  43 5: 

2v 29 2Rrsin ( c + r ’  4% am 3 cm 23 

and 

sm2 -$. 
sin &-R8 sin (c+d) -= - 

cm -$ Rr sin (c + 2 4  
’ 
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Since both of these equations are valid, we can divide the fimtjby 
the second and thus obtain 

or 

- sin ( ; - ~ ) + R J  sin ( ; + c + d )  
- 

R3 sin (C + d )  - sin d 9 

hence finally this becomes 

2u 

4 3  ~3 sin (‘+c+a)+sin 6 - d )  

R3 sin (c +a) -sin d sm8 -= 

FIQ. rl.--Reletion of the Dixon rhombus to the axe8 of coordlnates 

If the numerical value of sm w =.sm (u + h) is given, we can com- 
pute cm w, and hence T and d; wlth these values by means of the 
above formulas we can compute the value of vm 2u and that of 

2u - Then, by means of a table of the functions we can determine 

u and v which are the coordinates of the projection. These rec- 
t a n p a r  coordinates, u and u, are laid off along the axea as illustrated 
in Thk relation of the rhombus to the axes of coordinates 

sm i z  
igure 4. 
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is illustrated in the same diagram. If sm w is equated to any analytic 
function of the isometric coordinates of the s here, the resulting 
projection will be conformal, as was proved by gauss and the proof 
of which is given in any treatise on the eneral theory of conformal 

stereo raphic projection plane will serve the pur .ose in this case and 

of a part of it, as the case may be. 

projections? Any analytic function of t 5 e complex variable in the 

will o B necessity give a conformal projection of t R e original sphere or 

2v The formulas for the computation of sm 2u and sm - *I2 are some- 
what involved, and the amount of calculation required is consider- 
able, although it is all eas the trigo- 
nometric functions. For a 1  coordinates lying moderate near the 

logarithmic work includin 

origin it is more convenient to 1y use a series development of h t e int,egral. 

2 1  2 5 1  2 5 8  1 2 5 8 1 1  1 = x + $%"4 + - . - . -27 + -. .-.-,Jyo + . - . - . - . - 4 3  + dx 
3 6 7  3 6 9 1 0  3 6 9 1 2 1 3  

2 5 8 1 1 1 4  1 
8'6'9'12 .-.-de+. 15 16 . . . . . . . J  

or 

. . .  
Therefore 

2 1  2 5 1  
3 4  3 6 7  u = R c o s c + - * - R ' c o s ~ G + - - . - - . - R ~ c o s ~ c + .  . . . . . . 

2 1  2 5 1  
3 4  3 6 7  v=R sin c +  -.-R4 sin 4c+ . - . -R7 sin 7 c + .  . . . . . . . 

The logarithms of the coefficients of the above series are as follows, 
beginning with the second: 

log a3=9.2218487-10 
log aa=8.8996294-10 
log a4=8.6935749- 10 
log a5=8.5418430- 10 
log a8=8.4217031-10 
log a7=8.3222459- 10 

log aQ=8.1633868- 10 
log alO=8.097778- 10 

log ala=7.985370-10 

log ~=8.2373875-10  

log ~ll=8.038851- 10 

log ~ls=7.936413- 10 
log ~14=7.891274- 10 

log a15=7.849400- 10 
log ala=7.81035-10 
log all=7.77377-10 
log al8=7.73936-10 
log alo=7.70688- 10 
log azo= 7.67613- 10 

log alg=7.61913-l0 
log az,=7.59261-10 
log az4=7.56724- 10 
log a~5=7.54294- 10 
log az6=7.51962-10 

log nzl=7.64693- 10 

I O g  Un='i.49721-10 

In all of the rojections depending upon the Dixon elliptic func- 
tions the periof parallel0 ram is a rhombus with one pair of the 
angles equal to 120' and t 5 e other pair equal to 60'. In fact, any 

1 See General Theory of tho Lambert Conformal Coiiic Projection, Cnited States Coast and Geodetic 
Survey Spec. Pub. No. 63. 
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projection defined by the Schwarz integral, *, will be con- 

nected with a rhombus which becomes a square in case n =4. This 
class of projections has accordingly been Gven the generic name of 
rhombic projections. An indefimte number of individual conformal 
projections belong to the rhombic class. A few of the most interesting 
members of this class have been computed for this publication, the 
analytical development of which will now be given. 

dx 

PROJECTION OB THE SPHERE IN A RROVLAR HEXAGON 

If sm w is placed e ual to the corn lex variable in the polar stereo- 

an  equiEterai triangle, and the Southern Hemis here wrll fill the 
graphic lane we shal 1 have the Nort K ern Hemisphere mapped within 

remalnder of the regular hexa on separated into t !l ree distinct parts 
of 120' of longitude each. wg e have then 

in which P 
P 
2 sm w =tan - eth, 

is the complement of the latitude and A is the longitude 
In  the general formulas R becomes reckoned rom some chosen point. 

P equal to tan - and c becomes equal to A. 2 

We have, therefore, 

tans X sin 3~ 

1 - tan8 p cos 3X 2 

tan 3d-  (see p. S S ) ,  

1 - tan3 $ cos 3A 
(see p. 68), cos 3r- rJ=  

tan [cos (A - d )  + 1.3 cos (X + 2 4  

+ tana $ cos (2X + d )  +./.3 tana 
sm 2u=- 

1 f 2 t8n9 5 cos (A+ 2d)  +tan' $ 
tan8 $ sin ( ~ + d ) - s i n  d 

I --- 2v 

73 tans sin (;+X+d)+sin ( x - d )  

and the series development becomes 

(see p. S S ) ,  

(see p. 70), 

2 1  u s t a n  cos A + $  tan'goos 4 X + .  . . . . . . ., 
~ = t a n P s i n X + ~  2 1  .4tan'$sin4X+. . . . . . . .(see p. 71). 

2 
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The meridian for X-W0 projects into the straight line drawn to 
the second vertex of the regular hexagon, the first vertex lying upon 
the axis of u. When h -60’ 

sm w’=8 tan 2. 2 

Now, place sw in lace of w’ in which case w lies along the straight 
line drawn from t R e origin to the second vertex; then 

sm w‘psm m=8 tan 2 t 
2 

but 
sm w sm 8 W - 8  Tw’ 

hence 
- =D tan 21- smw 
cmw 2 

This gives us 

cm w 
or 

This is the most convenient form for computing the values along 
this meridian, and the analysis proves that the meridian is repre- 
sented by the straight line. After w is determined by this formula 

we have u=- w and v-- w. 

The Equator in the first of the three rhombuses is represented by 
the long diagonal; that is, the straight line joinin the first vertex 
of the hex on with the third vertex. Along the B quator the. com- 
plex variab e becomes elk; that is, the E uator is represented m the 
stereographic projection by the circle o unit radius. In this case 

Now let 

in which case w is reckoned along this long diagonal, and we have 

sm w’==sm (K+siw)=eik. 
But 

1 4 
2 2 

9 T 
sm w’ =elk. 

w’= K+siw, 

W 1+P sm87c 
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To investi ate whether we were justified in assuming this equality, we 

We see that the numerator is the conjugate of the enominator; 
hence 

2 must see w 5 ether the absolute value of this expression is e ual to unity. 

W W 
1 + t sm3 - 1 + t 2  sm3 -- 

J3 

1 +ta sm3 - 1 + t  ~ r n 9  - JS J3 
J3 - 1. 
W 

(absolute value)2 = ~- -- W 

We are therefore justified in assuming the equality 

W i+ tsm3 -- 

1 + t 2  sm3 - 43 
J3 =&, 
W 

I t  follows that 

Furthermore, we get 

W 
3 smo 3 

W W 
1 -sm3--- + sm6- 

= 1 -COY A, 2 

J3 J 3  
and 

or 

A 
-I_ _ _ _ -  -__I.. - -cot2’  2 1 

w 4 3  1-cosx J3 s m 3 3  

1 x +--cosx J3 sin(; +;) 
A sin 3 

5 
1 1 4 3  A 2 2  2 

_c_ -- 9 - 2  +yet 3 ”  . x  
sin 

sm3 3 
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so that finally we have 

After w is determined by this formule we have 

urn K -  & w 
2 

1 
V ” 5  w. 

75 

FIG. 5.--Rhombic projection of the world In 8 W U l a r  hexxpgon 

The rojeckion is shown in Figurc 5. It will be seen that in eac,h of 
the tire0 rhombuses the four sections formed by the diagonals are 
symmetrical; each of the diagonals is a line of symmetry in the 
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rhombus and the intersection of the diagonals is a center of symmetry 

coordinates for only one of these four sections and '3: t en to the compute others can the 
for the whole rhombus. It is therefore necessa 

be constructed from consideration of s mmetry. This similarity of 
the sections of the rhombus is found in a of the pro'ections computed 
with it tu basis, and hence we shall prove the fact or this projection 
onl . 8 , X are the spherical coordinates of a oint in the first quarter of 

with respect to the first point. 

I 5 

the r % ombus, p ,  120' - X  will be the point t g a t  should be symmetrical 
Then we shall have 

sm w= tan 2 .elx, 
2 

an'd 

= t  tanpe,iA, 2 

-tam Z, 

=sm tiE 
Therefore 

w - tz, 
and this evidently locates a point in the second quarter symbetrical 
to the first point with respect to the short diagonal of the rhombus. 
Again, if; - 4, X represents a point north of the Equator. 5 + 4, X will 
be the symmetrical point south of the Equator. This gives us 

and 

Then 

or 

and consequently 

or 
sm w' = sm (sK+ st%), 
' 

w' = sK+stW'= SK- tW. 
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This point in the rhombus is the reflection of the point w on the long 
diagonal, and hence the two oints are symmetrical with respect to 

quarter is symmetrical to the third with respect to the lo 
the long diagonal. In a sim I; ar way wa can prove9 that the fourth 

If w is any point in the first r Fl 

or to the second quarter with respect to the short di 
to the first quarter with rea ect to the intersectioa 

p, X then p, 12Oo+X should be a 
rhombus. 

Now we have 

sm w-tan{eIX, 

or 

- t  Slpl w 

-sm tu), 

W ' 5 t W .  

Therefore, the &st rhombus turned about the ori in through an 

thud rhombus is again the b t  rhombus turned about the on  in 

within the equilateral trian le, just as his theorem stated that it 

has been mapped from the stereographic plane within the triangle. 
We can also mag the whole sphere in the triangle, but such a pro- 
jection would not be especially im ortant €or geographic purposes, 

To find 5n expression for the ratio of scale, we may stmt from 
the expression of definition of the projection. The scale is the 
same in all directions at anJ: point, since t%e projection is conformal. 
If, therefore, we get the ratio of tu to p at any point, this value ocu1 
then be taken for the general scale ratio at that point. We have 
then 

angle of 120' gives the second rhombus, just as it s E odd do. T h e  
through an angle of 240'. This  is the pro'ection referred to % y 
H. A. Schwarz, and we see that the Northern Irr emisphere is mapped 

would be, In reality the circ I erepresenting the Northern Hemisphere 

so that no computations were made P or it. 

sm w = tan 5 eiA, 

hence 

or 
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is used to denote the absolute vaIue of the ratio of 
scale, and will so be used in the other projections. 
But we have 

V V 2, 2, 1 -sm3 - +sma - -3  sm u cm u sma - - cma - & J3 J 3  J3 

Hence we have finally 

We know, however, that 

and 

hence 

cm w = TeTidr 

cm V=reid, 

cm 2u an W=r2;  

tbis piws the abovs gxpression ia the form 

In an event it wauld be more co?venient to compute r rather than 

The points of discontinuity are found on the perimeter of the 
hexagon stsrti with the vertex 1 ing on the positive section of 

md fifth vertices. At these points r becomes equal to zero, so that 

fourth, and sixth vertices, but r is also infinite at these points and 
such that ; sec $ is finite. These points are, therefore, ordinary 
points in which the conformality is preserved. 

This projection is shown in Figure 5 ,  from which it will be seen 
that it is not particularIy well fitted for mapping the whole sphere. 
The projection is, however, an interesting case and even for geographic 
purposes the Northern Hemisphere is pretty well represented. 

use t z e complicated expression given above. 

the lwria of u an 7 including every ot K Br one; that is, the first, third, 

becomes infinite. The factor sec E becomes infinite in the second, 

1 
I 
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PROJECTION OF A REMISPHERE IN THE RHOMBUS WITH THE POLES IN THE 120' 

ANGLES 

If the projection is defined by the expression 

a zix 
smw-tan* ;ea ,  

2iX 

the hemisphere will be mapped in the rhombus. When A = 180°, es = t 
and 

2 

sm wt-t  tan? $ = t  8m w - m  tw 

in/which w is the value for A =O. Hence, wf =tw, or if the axis of 
u is turned about the origin through an angle of 120' we shall have 
the second side of the rhombus adjacent to the origin and wf is mapped 
along it. 

In  the general formulas R becomes equal to tan* 5 and c becomes 

&, SH, b t .  we have 

tan 3d= (see p. 68), 
61119 f sin 2A 

I- tan2 cos 2~ 

1 - tan2 $ cos 2~ 
(see,p. 681, cos 3a 1.3, 

tans [cos ( $ - d ) + ~ c o s  ($A+2d)  

+ tan2 cos ($+a)  +9 tans '1 (see p. cis), 
1 + 2 tan2 c i m  

tan2 E sin @+d)-sin a 

sm 2u= 

sm3-- 2u ----.-.- (see p. 70). d3 tang P sin (g+:A+d)+sin 6-4) 
2 The series expression follows a t  once from R-tan? and c s 3 X .  By 

analysis similar to that on page 73, we find that along the short 
diagonal the relation becomes 

srnwmsini $, 
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1 u-3 w, 

Along the long diagonal we have 

with 

The symmetry of the four sections of the rhombus is the same tis ip 
the case of the first projection. 

We can find the expression for the ratio of scale at a Mt by differ- 
entiating the expression of definition 

or 

This expression becomes either infinite or zero for each one of the 
vertices of the rhombus; hence these points are critical points of 
discontinuity for the functional relation. This fact is evident since 
180' is represented by each one of the angles. 

This projection is shown in Figure 6. The representation of the 
Western Hemisphere is shown in a fairly exact manner by the rojec-. 
tion. The exceeding1 bad distortions in the 60' angles are t L own 
in the ocean areas an B hence do little harm to the land areas. 
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PROJECTION OF A HEMISPHERE IN THE RHOMBUS WITH THE POLES IN THE 60' 
ANGLES 

If in place of using latitude and longitude as the spherical coor- 
dinates we employ the great circle distance and azimuth computed 
from a chosen point, we can locate the pole wherever we may wish 
within the rhombus. In the United States Coast and Geodetic Sur- 
vey S ecial Publication No. 67, Latitude Developments Connected 

coordinates computed from a point on the By using these 
coordinates and by reckoning the azimuth from the ole we can 

becomes 

E with e eodesy and Cartography, there is ublishod a table of such 

locate the poles in the 60' angles. The definition of t R e projection 

from the pole. + he formulas are the same as those for the last pro- 

shown in Figure 7, from which it will i e seen that the representation 

quator. 

r 
2 sm w = tang - etia 

in which { is the reat circle distance and a! is the azimuth reckoned 

jection, with { replacing p and (Y re lacing A. The projection is 

of the Western Hemisphere is fairly good. The great distortions in 
the 60' a les lie in the polar regions which are in general of but little 
interest. T h e  critical points again lie in the vertices of the rhombus. 
PROJECTION OF A HEMISPHERE IN THE RHOMBUS WITH ONE POLE AT THE 

INTERSECTION OF THE DIAGONALS 

If the projection is defined as in the one last described in t e r n  of 
the great circle distance from a point on the Equator and of the 
azimuth of this line, a pole can be located at the intersection of the 
diagonals of the rhombus. In  this case the azimuth must be reckoned 
from the Equator as zero, so that the pole will have a! = 90'. In  all of 
these projections it is more convenient to reckon the azimuth counter- 
clockwise, as is usual in plane coordinates. 

The definition of the rojection is exactly the same as that of the 
last projection, but for t R e computation a new table of T and d would 
have to be calculated. If the series development is used, the a! 
would be different in the two projections. This rojection is shown 

sentation of the Northern Hemisphere. In  all three of these projec- 
tions of a hemisphere in the rhombus the intersections on the diagonals 
are the same and do not have to be recomputed. It is only a uestion 

projection. 'fhis fact saves a considerable amount of recomputation. 

in Figure 8. As might be expected it gives a rat E er distorted repre- 

of rearrangin them in the new table to fit the new con 1 ition of 

so we can arrange to map t K %  e w ole sph?re within the same area. 

PROJECTION OF THE WHOLE SPHERE IN THE RHOMBUS WITH THE POLES IN THE 
120" ANGLES 

Just as we succeeded in ma pin a hemisphere within the rhombus, 

Let us define the projection by the expression 

+ P Bib, smw=tan - e 2 



ELLJPTIO' FUNCTIOMS APPLIED Fa WORLD MAPS 83 

FIG. 7.-Rhombic projection of the Western Hemisphere, polas In the 60° angles 
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Now when 1 =300', et'' - t and we shall have reached the second 
side of the rhombus adjacent to the origin. The Equator will be 
represented by the long diagonal, but the 360' of longitude will be 
mapped upon it. With this definition R becomes tan* $ and c 

1 becomes 3 X. 

The general formulas now become as follows: 

tan sin >. 
1-tan f cos x 

1-tan E cos x 

tan 3d- (see p. 68). 

(see p. 6@, Id= cos 3a 

sm 2~-- (see p. 68), 

u - t a n t a ! s i n - X + ~ . ~ t a n d % s i n 3 X + .  1 4 . . . . . . . (seep.71). 
2 3  

By analysis similar to that given on pege 73 we find that along the 
short diagonal we have 

with 

P * tan+ sin 
smw=--- =[ - I t  

 tan $* dnsin(i-t;) 

1 u--w, 2 

43 v 5 - W .  2 
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Along the long diagonal the expression becomes 

with 

sin 1 x 
W 6 

4' sin ($+:A)' 
sm3- - 

1 
v--w. -2  

Again, we can find the ratio of scale by differentiating the expres- 
sion of definition + P i i x  smw=tan  - e  2 

or 

This expression becomes either zero or infinite in each one of the 
vertices of the rhombus, but it is finite and different from zero a t  all 
other points. These four points are therefore the critical points for 
the projection and are the points of discontinuity for the re resenta- 
tion of the functional relauon. This projection is shown in !i igure 9. 

CONFORMAL MAP OF THE EARTH IN A SIX-POINTED STAR 

The function defined by the integral 

ax w=l---- (1 - x+ 
belongs to the class mentioned by Schwarz in his memoir. If we 
assume the relation 

x= t a n p  elx,  

one hemisphere will be conformall mapped in a regular hexagon, as 
Schwarz stated; the other hemisp lT ere is conformally mapped on the 
six triangles that complete the star. 

2 
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On the other hand, if we assume the relation 

the hemisphere will be mapped within the rhombus, with the poles 
in the 60’ angles. This would give, except for the matter of scale, 
the same projection that we have given on page 82 and illustrated in 
Fi ure 7. 

%he value of the integral from 0 to 1 is easily seen to be equal to the 
following result: 

If we denote this constant by M, we find from Legendre’s tables the 
values 

log M=0.04646108844886 
M-1.11291268. 

For computation purposes the integral may be developed in series. 

= ax 1 1  1 4 1  1 4 7  . - . -. -xl@+ 1 (.-so m * = x +  ?j .7x7+3 ‘ 3  1321-9 c3 19 . . . . . . . ., 
but 

w=u+iv, andx-tan- P “ A ,  

2 
hence 

u=tangcosX + ~ * f t m ~ f c o s  7 ~ + .  . . . . . . * ?  

P 1 1  v =  tan ain x + t a n 7  $ sin 7 ~ + .  . . . . . . . 
The logarithms of the coefficients of the series as far as it waa found 
necessary to extend the values for computation are aa follows: 

log ~8.0777807-10 
log aa -8.232844 - 10 
log a4 = 7.958889 - 10 
log U S  ~ 7 . 7 0 0 5 2  - 10 
log uo 217.00495 - 10 
log a7 -7.47690 -10 
log 12s ~ 7 . 3 6 8 2 2  - 10 
log U P  == 7.27371 - 10 
log alo=7.19012 -10 

log all = 7.11 5 19 - 10 
log a1,=7.04730- 10 
log ~ls=0.9852 -10 
log ~14=0.9281 - 10 

log ~16=6.8258 - 10 

log aie=6.7361 - 10 

log a16=0.8761 - 10 

log a1,=0.7795 - 10 

The pro’ection is shown in Figure 10. It will be seen that the 
Northern kemisphere is fairly well represented within the regular 
hexagon. 

By starting with a similar function of the fifth de ee we can map 
the sphere in a five-pointed star; with the eighth cr egree we get an 
eight-pointed star, and so on. 
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From the sgrmmet of the Figure 10 it  dl be men that we aeed 
to compute only coorxnates for 30' of longitude north of the Equator, 
These values are given in the table on page 116 ; the other sections are 
re lica of this quarter of one of the six rhombuses. 
$his integral can be inverted in terms of elliptic functions, but the 

eqressions are so complicated that it is ,tiore convenient t u  use the 
benes for computation purposes. The amount of cotnpttatibn 
required is very small because of the symmetry of the vandub sec- 
tions, as has already been pointed out. 

V 

Fxo. lO.-Rhombic projection of the world, in a six-pointed stnr 

CONFORMAL PROJECTIONS IN A SQUARE 

We have stated that C. S, Pekoe was the first one to compute a 
confomtzl projection for geographic purposes based u on elliptic 

intendent of the United States Coast and. Oeodetio Survey for 1877 
ahd lahr waa ublished in the American Journal of Mathematics in 

f w c t i m .  This work was first published m the Report o f the Super- 

1879, as has BQ ready been stated, 
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This projection, called the quincuncial, 
integral 

SURVEY 

is connected with the 

which is a member of the Schwarz type of integrals in which n Is 
e ual to 4. In fact we get this identical projection if we assume the 

x==tsn2?e’A. 
re 7 ation 

2 

We can also map a hemisphere within the square by the definition 

I tw1/2 2 etiA 
2 

in which the poles lie in two of the an les of the square. This projec- 
tion is shown in Figure 16. Althoug% the projection could be com- 
puted with this definition in the usual way, we shall give the interesting 
method of Lieutenant Guyou which was actually used in the compu- 
tation of the table for the projection. 

ELLIPTIC ISOMETRIC COORDINATES 

If an attem t is made to develop conformal projections that 
depend upon e&ptic functions directly from the complex variable in 
the Mercator plane or in the stereographic plane, in general the 
formulae obtained for computation are comparatively complicated 
and require long and Isbrious calculations. A set of isometric 
coordinates for the sphere can be determined that will admit of trans- 
formations that are easily ap lied. Attention was finst called to the 

graphiques, second series, volume 9, 1887. 
existence of these coordinates ?i y Lieutenant Guyou in Annales Hydro- 

Fia. 11.-Elllptlo coordinates far Qnyou’s proleatian 

A spherical ellipse is the locus of points on the sphere such that 
the sum of the two reat circle arm whch join them to two fixed 
points is constant. t h e  two fixed points are called. the foci of the 
ellipse. Let us consider two such ellipses which have one focus in 
common and the &her foci a t  the opposlte ends of a diameter. In 
Figure 1 I let F be the common focus and let F’ and Ft be the dhler 
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foci. Place the s here so that P, the ole, bisects the great circle 

PF =PF’ = c. If h re resents the longitude reckoned out from the 
central meridian PA,&) the plane of which is per endicular to the 
plane of FPF’, and if cp represents the latitude of &, we have 

cos a =cos c sin I$ - sin c cos $ sin A, 

arc joining F and %’. Let F’iK-a and 5 iK= b, then F,M=u- a; let 

and 
cos b ==cob c sin $+sin c cos + sin A. 

If $ and h are the parameters, the equations of the coordinates of 
the unit sphere are 

x -cos $ sin h, 

y =cos $ COB A, 

-z -fin rp. 

Since c is taken as constant, we obtain 

Now let 

Then 
a$ = u and a T b  - =u. 

x ==coset c sin u sin v, 

z -sec c cos u cos v, 

y = 41 - cosec2 c sin2 u sin’ v - sei? c  COS^ u cos’ v 

- J (1 - seta c cos3 u) (1 - cosec’ c sin’ 0). 

The radical can of course assume either the plus or minus sign. This 
’ves the coordinates of the sphere with u and v aa curvilinear mor- 

%nates. 
We can now express the element of mc upon the sphere in terms 

of these parameters. 

-- ax cosec c cos u sin zI, 
au 

ax  - = cosec c sin u cos v, av 
a2 -- -sec c sin u cos v, au 

e= - sec c cos u sin v, av 



E= (?;y+ (!y + (%)L (sin2 u cos1 v - cos2 u sina v) 
au >au sina u- sina c 

(u,-p) sin.(u-v) I sin a sin b 
sin3 u - sina c sin' u - sin2 C 

ax  ax ay ay az az- F= - -+- -+- --q 
a u a  auau auao 

(sins u cosa v - cosz u sins v )  
sin2 c - sin2 v 

sin (u;t-v) sin ( U - V ) ~  sin a sin 6 
i- - -7- 

p-- 

sina c - sma ZI sin' c-sir i lv '  

Therefore 

Since F is zero, the v curves are the orthogonal trajectories of the - 
family of u curves. 
Now, in Fi e 11, let AC be denoted by n and AB by m, WAE 

representing t f? e Equator. Then 

Let A b& $he interseation of the Equator and the meridian, the 
of which is perpendicular to the plane of the meridian WPEP, $E 
from the Light spherical triangle FCP, we have 

sin n = sec c cos u, 

and from the right spherical triangle F,BE we get 

sin M = cosec c sin v. 

By differentiating this equation, we obtain 

but 
COS m dm = cosec c COS v dv? 

- __ . __ 
cos m = cosec cJsina c - sina v, 
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hence 
cos v dv dm= 

Jsin2 c - sin2 v 

cos v = 41 - sin2 c sin2 m, 

dv dm 
Jsin27--siFv- J 1 s i n 2  c sin2 m 

But 

therefore 
____  

Now, by differentiating the equation for sin n, we get 

but 

hence 

cos n dn= - sec c sin u du, 

cos n = sec c JCOS~ c - cos2 u = sec c Jsinz u - sin2 c, 

dn= - sin u du 
JsinZ u - sin2 c 

sin u = 41 - cos2 c sin2 n, 

du 
Jsinz u- sin2 c 

But _ _  
therefore 

d n  
. . __.  - _  - 41- cos’ c sin2 no 

The expression for the differential length of arc now becomes 

We can now obtain a set of isometric coordinates by the fdowing 
re1 abions 

P=L 4 i i ~ ~ ~ ~ s i i i 2 ; = J  41-iina c sin2 m’ 
and 

= - 141 - cos2 C n =  1 41- cos’ c sin’ L q=L’dsinz u-sin2 i 
The differential element of arc now becomes 

In dm 
_ _ _  . 

av 

I 

d n  dn au 

dsa =sin a sin b (dp2 + @). 

p and p are expressed as elliptic integrals of tho first kind; that is, 
p = F  (m, sin c) ,  

q = F (n, cos c) e 

After m and n are computed the values of p and p can be traken from 
Legendre’s table. As a check on the computation we have ,the 
relation 

cos m cos n= d(1 -cosecz c siniv) (I -se$ c 00s’ u) -y=oos 4  cos.^. 
20183-26t-7 
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p,..d.pIt? 
assuming t E e 

a set of isometric coordinates for the sphere and a con- 
of the sphere upon the plane can be determined by 
relation 

5 +iy = f ( p  + ;PI, 
the symbol f denoting any analytic function of the complex variable 
p +;P. The simplest map of this kind is given by the equation 

or 
2 +iy “ p  + iq, 
z - p ,  
Y ‘ Q -  

PROJECTION OF LIEUTENANT GUYOU 

The most interesting caae, and the one especially treated by Lieu- 

4 
In this case 

r tenant Guyou, is that in which c- -  

1 cos u s -  sin $-cos $ sin X), JZ ( 

cos b = - (sin $ +cos $ sin A), Jz 
sip M 5 42 sin v, 

sin n- J5 cos u, 

1 

-- sin’ m 
and 

an . 
,/I-; sins 7t 

Therefore, 2 and y depend upon the mme integral and the hemisphere 
is mapped within a Bquare, the side of which has the value 2F (f $) 
or the 2Iz value for a= “his gives the map as constructed by 
Lieutenant Guyou. The poles are in the middle of 
two opposite sides of the square. 

From the expression for the differential element of arc it can be 
seen that the ratio between the element in the plane and that on the 
sphere becomes infinite for the pointa taken as foci and their antip- 
odal points. At these ointa either a or b becomes 0 or r .  These 

the ontical points for the pro’ection at whwh the conformahty fails. 

that is, the system”of spherical ellipsee can be related to the mendians 
abd pardeb m any way that we may chooee. It is merely necessary 
to express u and 6 in terms of 4 and X for the new position of the foci. 

3 
(See Q. 12.) 

pbinte, are +resented E y the cmem of !he square, and these are 

These critical points may b e located anywhere upon the sphere; 
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PEIRCE'S QUINCUNCIAL PROJECTION 

Let us make the transformation that will place the foci on the 
Equator in place of u on a meridian. (See fig. 13.) Let P and P ,  
be the poles and WAS the Equator; also suppose the planes of the 

eat circles PEP W and PAP, erpendicular to wch other. Let X 
reckoned out fhxn PAP,  an B let F and F' be two foci so that 

n- AF=AF'=c= 4- 

Then 

cos F'db-cos F'P cos M P f s i n  F'P sin MP cos F'PM, 

P 

F! 
PIQ. l%-Elliptio coordinated for Pelroe's quincunclal pdeotlon 

but 
f F'P= 5 '  
U MP- 5 -+, 

L F'P.iK= f +X, 

therdore 

Similarly 

The angles m and n we computed IM before, as are also the values 
This pro'ection places the pole at the center of the 

incrthses from0 to $ 9  we obtain the values f e  one- 

of z and y. 

fig. 14.) If 
square, and the four si d ea of the square repment the Equator. (See 
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eighth of a hemisphere; the symmetrical image of thk with respect to 
the y axis completes one quarter of the hemisphere; the other three 
quarters are just re licas of this quarter. In this position just one- 

uincuncial projection devised by d S. Peirce and first published in 
%e United States Coast and Cfeodetic Survey Superintendent’s 
Report for 1877, as has already been stated. In this derivation the 
axes are differently situabed from what they were in the development 
given by Peirce. In this case they ard taken perpendicular to the 

elghth of a hemisp 1 ere has actual1 to be computed. This is the 

FIG. 14.-Peirce’s qubmnolal projection 

sides of the square, but in the f m e r  development they were taken 
along the diagonals. The f,mules for ths expressions of the coor- 
dinates were 

by the relation 

Zjcated in tbe earlier devdo ment because of this 
can be ohecked from v &f) uas derrved as above 

2 f =  m- X + Y ,  

yf==%, 
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2 and y being the coordinates as expreased above and 2‘ and y’ being 
Peirce’s values and K being expressed in the form, 

In this tzansformation it should be noted that X is differently reckoned 
in the two cam. It isreckaned out from the 2 axis in both cases, so 

that there is a difference of in the position of the prime meridian. 
It will be evident to those who have com uted any of the coordinateb 

simpler. In this position the check on the computation is found in 
the relation 

for Peirce’s projection that this metho a of approach is by far  the 

cos m cos n =i sin 4. 
PROJECTION IN A SQUARE, POLES IN A PAIR OP TEE ANGLES 

AB a thjrd example let us place one focmat the pole and one on the 
Equator. (See fig. 15.) 

P 

FIO. 16.-Elliptfc eoordha- br tbr rbombb pmjeotbn b qm, pglw In a pak of the a q h  

In this position if we reakon X out from the central meridian 
PAP, we get 

1 a- PiK- 3 -4, 

b -  EM, 
cos b - m ~ a i n X .  

The angles m and n are comppted in the same way aa before. The 
check on the computation is gmen by the relatlon COS rn cos n,= cos 4 
cos A. The directions of the axes in t h s  position are determmed by 
the great circles through A bisecting the angles PAE and P A  W; that 
is, the planes of these circles are inclined 2 and 7 to the plane of the 
Equator. The axes in the plane will be as before parallel to the sides 
of the s uare, and the origin will be at the center of the square. One 

3?r 

of the 3 iagonals of the square represents the Equator and the other 



the central meridian, both of which are straight lines on theprojec- 
tion. The four quadrants of the hemisphere are symmetmcal, SO 
that it is sufficient to compute one quadrant. With the axes placed 
as indicated above part of the x coordinates will be positive and part 
of them negative. For convenience in drafting it i s  better to turn 
the axes through an angle of If x and y represent the valuea as 
computed and x', y' the new values, we obtain by the kansformstion 
of axes the new values 

FIG. IA.--Hhombic prolcrtion of the Western Hemisphere In a square, polea in a pair of the anglw 

A table of these coordinates for 10' intersections of meridians and 
parallels computed for one uadrant of a hemisphere is given on page 
116. The complete hemishere is given by all ossible combinations 

of the ma in the square is new at least in its application to geographic 
maps. $he projection is shown in Figure 16. 

of signs of these coordinates. It is believed t R at  this arrangement 
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Paojocmon IN A SQUARE WIWE WOULD BE SUITABLE BOB THE UNITED STATES 

The four points that are to become the critical points can be placed 
upoh any reat circle of the sphere. The best map for any particular 

to 'be mapped as the pole of the great circle upon which the critical 
inta &re ,to be located, Assuming that the cente? of the United 

Rates is approximately a t  the intersection of the fortieth parallel 
oPith'the ninet fifth meridian, we could get a satisfactory map b 

side of the ninety-fifth meridian distant 57' 16' 03!4 in longitude 
from this central meridian. In  this position the formula for a would 
be 

cos a=cos (122' 47' 51F9) sin ++sin (122' 47' 51?9) cos + 

region cou P d be computed by adopting the central point of the region 

i assuming the r- oci at  latitude 32' 47' 51?9 south and one on eac 

COS (X-57' 16' 03!4), 
and for b 

.cos b=cos (122' 47' 51?9) sin ++sin (122' 47' 5149) cos Q 
cos (Xf57' 16' 0374). 

These can be put into better shape for logarithmic computation by 
assuming in the first equation 

tanf=tan (122' 47' 51?9) cos (X-57' 16' 03?4), 

upon which the first equation becomes 

cos Q=COS (122' 47' 51'9) secfsin ( Q + f ) .  

Similpdy, the assumption 

tan g-tan (122' 47' 51?9) cos (X+57' 16' 03?4), 

redu- the second equation to the form 

eos b-cos (122' 47' 6ll)S) sec g sin (++g) .  

Consideration of symmet show that it would be sufficient to 
compute the half on either si 7 e of the central meridian, since this line 
is an axis of symmetry. The angles m and n are corn uted as in all 
of the other cases from the computed values of a and i . 

be derived from the coordinates as given in this deve P opment in the 

PURTHER COIWIDERATIOB O? PEIRCE'S QUINCUNCIfi PROJECTION 

The formulas that Peirce used for the quincuncial rojection may 

following way: By turning the axes through the angle i g  we get 
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2‘ and y’ being coordinates for Peirce’s projection. 
tion, we obtain 

From this relo- 

cn 2 cn y-sn 2 sn y dn 2 dn y cn JZ x’=cn (y+z)== t 

1 -z snz z ena y 1 

sn x=sin m= 4 2  sin @), 
sn y-sin n= JZ cos P+)# 

a- a-b 
2 2 ,  =cos - 

Substituting these values we obtain 

a-b a+b a-b a+b d-cos(a + b)  cos(a;- b)  -2  sin 7 cos -cos- sin - 
a- a+b 

Q 2 2 cn JZ x’= 
cos1 - a 1-2 sin1 2 2 

a-b a+b a-b a+b d-cos(a + b)  cos(a;- b)  -2  sin 7 cos -cos- sin - 
a- a+b 

Q 2 2 cn JZ x’= 
cos1 - a 1-2 sin1 2 2 

1 
2 J-cos (a+b) cos (a-b)-- sin (a+b) sin (a-b) 

1-2 (sin ‘&-sin 6 ) l  
1 

i= 

Since X is to be reokoned out from a meridian passing through one of 
the critical points, we must sibtract from the old X. We therefore 
have 

cos a ==COB 4 cos X, 

cos b =cos 6 sin X. 
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When these values are substituted, we get 
1 
2 cnJz x' = 

U. 8. COAST AND GEODE!L'IC 8#VEY 

41 -cos'+ COS'X - COS'+ sin2 h + - (cos24 sin'h - cos2 + cos2 X) 

1 1 - 2 [2 - COS2 + cos' X - cos2 + sin2 h 
- 2 J(1- cos' + cos' X) (I - cos2 + sina A)] 

1 
__ I 

9. 

2 sin +- cos2 + cos 2h 
cos2 4 + J4 sin' 

1 + J(2 tan + sec +)'+sin' 2~ 

+ cos4 + sin' 2~ ' 
- 2 tan (b sec - cos 2X 

(2 tan + sec +-cos 2~ ) [1 -  J(2 tan 4 sec 4)2+sina 2x1 
1-4  tan' I$ sed r$-$ina 2X 

I 

?r Symmetry shows us that when h'=3 -A,  x' changes into y' and y' 
into x'. Makmg this substitution and dropping the prime on A, we 
get the value of y'. 

J(2 tan 4 sec 4)'+ sin2 2~ - 1 
2 tan r$ see +-cos 2X Y ' P  

This value may be checked by direct development if it is desired. 
If we assume the auxiliary angles 

J(2 tan + sec cp)a+sin2 2 ~ - 1  
cos 2 ~ + 2  tan + sec + -' cos a = 

&2 -tGit$sSc cp)' +sin* 2x - 1 cos 6 = 
2 tan 4 aec 4-cos 2x ' 

the coordinates become 
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This ia a&ient if we are willing to let the coordinetea be expressed 
directly in the values of the elliptic integrals. Peirce's table is com- 
puted with the length of the semidiagonal of the square aa unity. 
The above values must therefore be divided by f i  9, since this is the 
length of the semidiagonal in terms of the integral. This give$, on 
dropping tke primes, 

RATIO OF SCALE FOR THE S UARE PRO ECTION, POLRS IN A 
PAIR OF $HE ANGLEE! 

To determine the ratio of scale in the projection illustrated in 
Figure 16, it is better to make use of the definition in the form 

x = tan4 e*iA. 

By differentiation with reepeot to p, we get 

But 

hence 

and 80 

or 

This expression shows that the points of discontinuity 
of the uare. it is evident, a priori, that these points are such since 
the cogormaiity fails in each of them, 180' being mapped in a 90' 
angle. 

lie in the- angles 
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CONFORMAL PROJECTION OF THE SPHERE IN A N  SLLLPSE 

We shall now give consideration to 8 rojaction thati does not 

in that it depends u on a projection that is defined ja terms of elli - 
reine und angewandte Mathematik, page 115, H. A. Schwarz mentions 
the fact that an ellipse with foci a t  u= f 1 can be conformally map- 
ped within a circle by the function 

belong to the rhombic class but which 1 e m  some rel@ion to it 

tic functions. In  t E e seventieth volume of Crelle’e Journal fiir (PT e 

s = sin amr:arc sin u)  

in which u = 0 is the center of the diwle with the radius of the circle 
1 

noted that conversely the circle could be mapped 
by the same relation. It seemed desirable to map 
an elli se such that the major axis would be about 8 was found that this end could be attained 

Accordingly, t 1 e full definition of the projeodon waa taken in the 
if k were taken e ual to sin 65’. 

form 

in which W = u - iv. 
It was found most convenientito make the computation step by 

and so, in accordance with this plan, a projection was computed 

This definition maps the sphere within a rectangle with base 2 K and 
altitude K’. The Equator is represented by the line y = z  K’; the 

oles lie on the axis of y, one at  the origin and the other at  y= R’. 
&his projection is illustrated in Figure 17. The projection is very 
much elon ated and of course has no further interest than being 

the four quadrants of the rectangle are symmetrical ima es of any 

the first uarter of the projection. 

each of the y’s of the table from $K’.  The effect of this process 

was to move the axis of z up to the point y=! K’, with the coordinates 

1 

the baais o f the projection within the ellipse. As could be foreseen, 

one of them. The table given OR page 117 gives the coor 5 inates for 

From B t is table 8 new set of y values was derived by subtracting 
1 

2 



FIO. 17.-conformal projection of the world in a reet.nde 
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'ven for the section of the rectangle in the first quadrant of coor- 
%nates. If we denote this new complex variable by z', we have 

2 K  1 .  
z = - arc sinG + -- z K', 

?r 2 
or 

1 %arc sinG = z - i K', 

2 K  1 -arc sin w=Z+ - iK '=z ' ,  
T 2 

lr 

and 

or finally 

This gives us 

. 7 F  w=sm 2'. 2 K  

if we let 
z' = 5 +;y. 

This gives us the final definition of the coordinates within the ellipse 

This projection is shown in Figure 18. The ellipse is about the 
same as the one used by Mollweide for his e ual-area projection of 
the s here. Since this projection is conforma?, i t  avoids the violent 
a n d a r  distortions that are resent in the equal-area pro ections. 

Aitoff equal-area projection but which should rather be called the 
Hammer projection, since i t  was Dr. E. Hammer, of Stuttgart, who 
called attention to the fact that an e ual-area projection could be 

1892, p. 85 et. seq.) We are glad to take this opportunity to state 
that we were somewhat at  fault in using the name Aitoff in pre- 
vious publications when the originator of the equal-area ma of the 
world wa8 Professor Hammer, as is shown by the article citecfabove. 

An expression for the ratio of the linear arcs is so complicated 
that it is of ve We shall derive it to help 

If we differentiate the general expression of definition of the 
projection with regard to p we get 

"he same ellipse is used in t R e projection that has been c ,i led the 

so constructed. (Petermann's Geograp Ri 'sche Mittheilungen, Bd. 38, 

in locating the r lacontinuous points. 
small practical value. 



0 
h 
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or 
' A  cot4 seea [ ( I -U~+U~)~+~U~TY]*  

(1 -2k tan f co8 X+P tan2 3 
The critical points are thus seen to lie at .p  = 0' and p = 180'. 

A~ALYBIB #OR TBB PROJECTION OB THE BPHERE IN A RECTANGLE 

We shall now indicate the method used in the computation of the 
rectangular projection. We have the definition 

and 

Now msume 

and 

then 

But, 

or 

heme 

and 

cn z = r1e-", 

1 tan f sin x 

1 -z 1 tang cos %tan 2f = 
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By an obvious reduction, we get 

r,' 
1 sec2 2 f = __ 

( I - g  tanPcosX 2 
or 

1-- -  1 P  tan -- cos X 
k 2  

cos 2f r: = 

Again we have 

or 
dna z = 1 - k 3  ma 2, 

Hence we get as before 

2 tan sin x 
tan 2y- , ?  

1-k tangcosX 

or 
1'- k tan $ cos 

cos 2g rZa = 

After f and g are computed it is more convenient to use the m n d  
ex rcssion for r, and r2. 

sn 22-sn (z+E)== 

Row we get 
sn z cn F dn I + s n  2 cn z dn z 

1-72 sna z sna 5 
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Also we have 
an z cn B dn z-an E cn z dn z 

1 -ka an1 z sna z’ sn(2iy) =sn(z-3) = 9 

or 

hence finally 
2 - tan* f r,r, sin 

tan am(2y, k’) 5 f i  
1 - tan3 $ 

k‘); 
then from Legendre’s table with k- sin 65’ we get u and wtt  k’ 
sin 2 6 O ,  we get v. The computations are not so formidabIe aa they 

can be made appear at first sight,. A table of the values 

for the various latitudes and this table may be used in the compu- 
tation of the coordinates. 
On the Equator and the central meridian the formulas can be sim- 

plified. 

With these formulas we can compute am (22, k) and am (2 

2 - tani Jk 
1 -tar? ; 

On the Equator, we have 

or 

Hence 

and 

But 

i 

1 +k en* a 
1 1 i  1 

=- cos - A +  - sin -X. 

+ 

JH sn a +- cn a dn a 

4E 2 .\I& 2 
Jk  

Since some of the interpolstipns required by this formula with 
Legendre’s table are rather laborious, we can compute an a from the 
formula 

I+k- .2/1-2k COS h+P,  
1--- -- 

sn a =  
2k cos zx 
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which is, of course, derived from 

On the central meridian we have 

or 

coIQcLusIoR 
This concludes the list of projections that we wish to discuss at this 

time. It is believed that practically all of the varieties developed in 
this publioation for which tables are given are new, at  least as to a pli- 
cation to geographic cartography. Many other varieties cod  B be 
deduced from the princlples laid down in these 
included enough to fully illustrate the methods 
jection of the whole world within the 6Oo-12O0 
poles symmetrically looated on 
a time, but the amount of work 
excessive in view of the small 
for the necessary coordmates of the various projections are added 
to this work so that the7 will be available for immediate use. The 
other oints of the projections for whioh coordinates are not given 
must B e plotted from consideration of symmetr . The amount of 
computatlon for the various tables was considerabye, The author has 
had the pleasure, if such it be, of personally carrying out most of these 
com utation? He is sure that the work will be useful in many prac- 

diryronal was oonsidered for 
for the computation seemed 

df such an axample. Tables 

tica f applications. 
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Hemisphere in  the rhombus, poles in  the 60' angles 
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Entire sphere in  a six-pointed star 

Y 
_. - 
0.00000 
. 18776 
.37713 
,57005 . 76957 

.98071 

___--___ 

Longitude 0" 

.30902 

.30387 

.21592 

.00000 

______~ 

Longitude 10' 

1.21079 
1.47.583 
1.81415 
2.02205 

Longitude 20" 

1. 43804 
1.40448 
1.32225 
1.21717 
1.10094 

.97579 

.83&34 

.680% 

.47979 

.m 

Longitude 30' 

0. woo0 
,28140 
.55265 
.78339 
.WHO 

1.2wBB 
1.41208 
1.84540 
1.93612 
~ 0 2 2 0 5  

~ 

Y Y 

__ 
Y 

__ 
1.3588 
. m 3  
.2419 
.1981 
,1596 

.1245 
,0910 
.wo3 
.m 
.m 

Latitude 
2 2 

- 
0.9051 
.7778 
.em 
.5418 
.4380 

.a20 
,2518 . 1657 
.OB22 
.m 

__ 

2 

__ 
0.8347 
,7150 
.I3031 
.4Wl 
.4030 

.3152 
.2321 
. 1627 
,0758 
.m 

1.1128 
. a663 
. 7 w  
.5784 
.4M5 

.3640 

.2679 . 1703 
,0875 .oooo 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0.9838 
,8287 
.0m . ,64389 
.4W8 

.3584 

.m9 

.17% 

.0882 

.m 

1.2x19 
. 1 m  
.1254 
.lo12 
.0812 

.&I32 

.0465 . 0306 

.0152 .oooo 

,4133. 
.3482 
.m2 
. a 3 0  

.J339 

.0882 . M3i . ooou, 

Hemisphere in  a square, poles i n  a pair of the angles 
~ . 

Longitude 40' 

_ _  __ 
Longitude 10' Longitude 30' 

Latitude -. 

I 2  
Y Y 

_ _ _  
0. OOOM) 
.19940 
.38888 
.59938 
.la349 

1.01688 
1.24476 
1.50494 
1.835u1 
2.62205 
___ 

2 

_ _  
). 72923 

. 7 m 2  
,88817 
.61969 

.%I45 

.49042 

.40304 

.a552 .m 

. 72im 
0.00000 . 17458 
.35m 
.53818 
.72923 

,93713 
1. If3817 
1. 43809 
1.78811 
2.62205 

. - 

I. 17458 
,17363 
.100&3 
,16287 
,15305 

,1399; 
.1%41 
. lo200 
.07% 
.m 

-~ - 

0.00000 
.17030 
.35524 
,53974 
.73369 

f94182 
1.17280 
1.44221 
1.78823 
2.62205 

- 

D. 35209 
.34983 
.a124 
,32692 
. m 7  

.28190 

.24672 
,20347 
, 14479 
,00000 
___ 

0.00000 
.lac41 
.30311 
.55073 
.74672 

,95780 
1.18573 
1.45479 
1.79868 
2.02205 

I 

Longitude 80' I Longitude 50° Longitude 60' Longitude 70" - 
Y 

___ 
0. m 
.21710 
.a117 
.&pa5 
.8.1054 

1.00355 
1.28934 
1.64358 
1. maso 
2.02205 - 

__ 
Y 

3. 00000 
. M 7 4  
.47w3 
.70081 
.91349 

1.12479 
1.34602 
1.69030 

2.62205 

...~ 

1. am98 

- 
Y 

- 
Y 2 z 2 - 

2.622oh 
2.03027 
1.77959 
I. 57913 
1.39852 

1. n3M 
1. 04283 
.E4246 
,59178 
.ow00 

-I- 
1.18817 
1.1m1 
I. 10024 
1.02111R 
.94073 

.84059 

.72047 

.417WI 

.m 

.59im 

1. 78811 
1.70379 
1.55618 
1. 40490 
1.25584 

1.10454 
.94472 
.70407 
.53791 
.00000 

0. M)ooo 
.a283 
.M7% 
.89028 

1.09870 

1. 28230 
1.49031 
1.70870 
1.98061 
2.62205 

O . m >  
.59178 
.a4240 

L 04283. 
1.22364 

1.39852 
1.57912 
1.77959 
2.03027 
2. M 2 a 5  



ELLIPTIC FUNCTIONS APPLIED TO WORLD MAPS 117 
Entire sphere in a redangle, poles at the middle points of the long sides 
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