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GENERAL THEORY OF EQUIVALENT PROJECTIONS
INTRODUCTION

Under this general title we shall treat the general principles that underlie all pro-
jections in which the area is preserved in constant ratio throughout the map in all its
parts. Such projections are also called equal-area and sometimes authalic. The
latter designation was employed by M. A. Tissot in his classical work ‘“Mémoire sur la
Kepreséntation des Surfaces.” In the course of this pamphlet we shall make much use
of the principles enunciated in this publication.

The law that underlies all of the projections to be treated may be stated as follows:
Every section of the resulting map must bear a constant ratio to the area of the earth
that is represented by it. As a result then, the whole map will have the same ratio to
the whole region represented. To accomplish this end it is necessary that the mathe-
matical expressions that give the coordinates of the map must meet certain differential
requirements. It is necessary that we first investigate this phase of the subject so that
we may have at hand the guiding principles in our further treatment.

Let us think of each point of the spheroid as corresponding to a definite related point
of the plane. This one to one correspondence is what we have in all kinds of maps
whether equivalent or not. In practice this generally consists of expressions for z and y
coordinates in terms of the latitude and longitude of the point on the®earth. We shall,
as usual, denote latitude and longitude by ¢ and A, respectively. The projection will
then consist of the two expressions

z=f(¢,\)

y=g(o\)
in which f and g denote functions which must be determined to fulfill the required con-
ditions.

The element of area on the spheroid must first be determined. If @ denotes the
equatorial radius and e the eccentricity of the meridian ellipse, the radius of curvature
in the meridian is

a(l—é?)
= i=e S'mz¢)a/2‘

The element of length in the meridian becomes

_ __a(l—edde
d8n=pm @*W
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Likewise, the radius of curvature perpendicular to the meridian is
_ a
Pr=(1—¢ sim’¢)®
and the element of length

e dx
ds,=p, cos ¢d)\=(1—(:2)—ss§12¢7)_".

The element of area on the spheroid is the right triangle formed by these two elements
of length as sides. This element of area therefore becomes
a*(1—é%) cos ¢ do dN
2(1—é* sin®p)?
In the plane the three points that correspond to the ¢, A origin and the ends of the
two elements of length are

—-lz—ds,,,dsp=

z, x-+ %cd)\, x+§—£d¢

oy by
¥ y+53dh y+3

The element of area is the area of the triangle formed by these three points. This is
given by the determinant

oz o

z, z+'b_)‘d)‘) 517+5-‘d¢ Z, a)\d)\: a¢d¢
k|1, v+ Shan, y+ g | =4y, San, Lo

1, 1, 1 , 0, O

or finally

o o

o\ 24 dz dy dr dy

O\ ¢

The condition for equivalence or equal-area therefore becomes

0z 0y _Ox Oy __a*(1—é?) cos $.
OAJ¢ OpON (1—é’sinZg)?

It should be noted that Y %{ ete., denote partial derivatives, that is, —g—: is a deriva-

tive of z with respect to ¢ with X considered as a constant and so with the other partial*
derivatives. In terms of the f and g symbols for z and y, if we denote by the subscript
1 a partial derivative with respect to A and by the subscript 2, the same with respect
to ¢, we have

3(1—¢
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We see at once that if the earth is considered as a sphere, ¢ will become 0 and we have

fxgz'—f'zgl:az cos ¢.
The formula is thus reduced to a much simpler form than is the case for the spheroid.

REDUCTION OF THE SPHEROID TO THE SPHERE

In order to make use of this simplification even when we wish to consider the
spheroid,we have employed a scheme of first mapping the spheroid on a sphere of equiva-
lent area and then we can map this equivalent sphere in'the plane and thus get an equal-
area map without the complications due to the spheroid.

The details of the scheme are now indicated. We do not change the longitude but
determine the latitude on the equivalent sphere so the map may be an equivalent one.
If we denote the latitude on the equivalent sphere by g8 and the radius of the sphere as e,
the element of area on this sphere would become

1/2 ¢® cos BdSdX.
This then must equal the element of area on the spheroid.
a?(1—e?) cos ¢ dpd\
2(1—e sm? ¢)2

Since we are going to take the longitude the same on the equivalent sphere as on the
spheroid, the dA will cancel out and we haveleft
a?(1—e?) cos ¢ d¢

(I—ésin? )7
First we determine the radius ¢ on the agreement that 8 and ¢ become 7/2 togetfler.

1/2 ¢* cos BdBdN\=

¢? cos BdB=

x[2 /2
d

1 1 1+e
F=ail— 82)[2 (i—e) T2 1°g"(1_—7;):|

in which log, denotes the Napierian logarithm. The radius ¢ thus becomes the radius
of a sphere equal in area to that of the spheroid. We have called 8 the authalic lati-
tude and the resulting sphere the authalic sphere. The difference between ¢ and 8 has
been developed in a series in Special Publication No. 67, “Latitude Developments Con-
nected with Geodesy and Cartography.” A table of the suthalic or equivealent lati-
tudes is also given for every half degree of ¢. If the g latitudes are used in place of ¢,
the spheroid can be taken into account with the simplified forms for the sphere. A copy
of Special Publication No. 67 should be procured by anyone who wishes to use this
method of procedure. _

From the equation of condition for an equivalent projection we see that the function
for either z or ¥ may be arbitrarily chosen and then the other so determined as to fulfill
the given condition. If the function for z is arbitrarily chosen as

z=F(\¢),

*See pages 7 and 8 for 8 method of evaluating the Integral on the right.
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we will find for the partial derivatives

or_
on 2
o _
2 L

In these » and ¢ will in turn be functions (¢, A\). It may happen that one becomes

either a constant or a function of only one of the variables. With these values of the
derivatives of z the partial differential equation in y becomes,

oy by a’(1—e”) cos ¢

qu—s =ersin® ¢)°

This can be solved as total diﬂerentml equatlons in the usual manner. The equations
become

dé__ _dx dy
P ¢ @0—e)cos¢ @)
(1—é? sin? ¢)?

If p and g are such that these equations can be solved, we get the function for y that
must be used in connection with the adopted function for z. This would give the
complete solution for the given projection. Later, we shall have occasion to make use
of this principle in our work.

DISTORTION IN LENGTH AND ANGLE

In order to derive expressions for the change in length we consider an infinitesimal
triangle with sides ds,, ds, and hypotenuse ds in which ds, is in the meridian and
ds, in the parallel and hence they are perpendicular and they form a right angled
triangle with ds. The linear elements on the map become

5=/ (54) +(35) %
ds, —\/< )dx

In many cases the representation of the merldlans and parallels on the map will not
form an orthogonal network; if the angle which they form at a point is denoted by ¢ and
if the angles that ds and dS form with the meridian are u, 4’, respectively, then we have

p d?,,.z +E,,2

and

tan u=%‘:
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dS=d8S,’ sin? (r—y¢) +[dSn—dS, cos (x—¢)J?
=d8,}+dS,'—2dS, dS,, cos (r—y)
=dS,+dS, +2dS, dS, cos ¢

dS,sin (x—y) _ dS;siny
dSp—dS, cos (r—y) dSn+dS, cos ¢

tan 4’ =

FIGURE 1.—Differential relations of azimuth and distance on the profection.

Since ¢ is reckoned positive to the north and X to the east, dSy, is positive north-
ward and dS, positive eastward. In like manner ¢ is the angle of intersection of
the meridian and parallel between the same directions. In general, east of the central
meridian ¢ is greater than 12—5 and west of the central meridian less than % The angles
u and u’ are, therefore, reckoned from the north in a clockwise direction.

The area of the infinitesimal right triangle formed by ds., ds, and ds on the earth
is represented on the map by the area of the triangle formed by dSn, dS, and dS. Since
the projection is equivalent we must have

ds ds,=dS, dS, sin ¥,

which determines the angle ¥ as function of the position.
Let
dS., s, ds
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When we introduce the values already obtained, we get

N R
N &R )(1—;:;:; o

sin ¥=pz
) () +2(a N @) o ¥
(&
(dS ds,

tan o'= )+(ds ds,,

h2+-k? tan? u+2hk tan u cos ¥
14-tan® u

=h? cos? u+k? sin? u-4-2hk sin u cos u cos

ds,,,

or

K=

k tan u sin ¢
" h+k tan w cos ¥

hk tan u sin ¢
T h*4hk tan u cos ¢

tan 4’ =

but

tan u
h*+tan u cot nl/

When ¢ equals 72-5 as is the case in many projections, cos ¢y=0 and sin ¢=1. The

tan 4’ =

above expressions then become,

K?*=h2 cos® u+k? sin? ©

1
h=%
k 1
tan o’ =z tan u=k2 tan w=ptan u.
_tanw’ h k
Ttanu b
tan v’ h-k
T N
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hence
tan u—tan w'__h—k
tan u-+tan v’ A4k
sin (u—u')_h—k
sin (u-+u’) A-+E
or

sin (u——u’)=% sin (u+u').

From this we can see that u—u’ will be greatest when u+u’==/2. Let this maximum
value be denoted by 5, then
h—k_ K—1_ 1—Fk

Rk RF1 LFRY

EXAMPLES OF ONE COORDINATE AS AN ARBITRARY FUNCTION

(A) Let us assume z to be a function of A alone.
r=F(Q\).
For the meridians on the earth \ is a constant, so in this case 2 on the map will be a
constant for a given meridian. The representation of the meridians are therefore

straight lines on the map which are parallel to the y-axis at the distance given by
z=F (\). In this case

sin 6—

or__ .07
a—F’()\) ; b_¢>—_0
Here we have p=F’(\); ¢=0.
Thus the equation (1) on page 4 becomes

dy _d¢
a"’(l—-eZ) cos ¢ F’()\)
(1—é? sin? ¢)?

or
a*(1—é?) cos ¢ do
F'(\)(1—é” sin? ¢)?
a2(1 —é?) cos ¢ do
S Lo Rt
in which G ()) is a function of A that depends upon the limits of the integral. When
¢=0 we have the Equator on the earth. If this is to be represented by a straight line
and if it is to serve as the z-axis, we must take G (A)=0. In this case, the above
integral becomes

dy=

I— ¢ cos ¢ dp
—Jo (1—¢* sin’g)?

let
sin ¢p=2
:  dz

o I—&2)7

I=
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To evaluate this integral we can proceed in the following manner. The formula for
integration by parts gives us

SJu dv=uv— Sv du.
In the integral

dz
1—e%22
let
dv=dz
=1z
then
=2
. 2¢2°dz __2(1—€*2%)dz 2dz
vdu=zdu (1—e*2®)?  (1—e%?)? + (1 —e222)?
—_ 2z |, 2z
1—e2? T (1—e6%2%)3
Hence P P
2 2
f(l ey e2z2+2 T—ez 2 (1—¢%2%)?
therefore
f dz 2 + dz
A= 2(1—e2) T2 ) 1—¢2
edz edz
TI—¢ zz)+4ef1 +ez+4e 1—ez

. 2 1+ez
== T 4e loga 7

On restoring the value of 2, we get for the pro;ectlon

_a¥(1—éd) sin ¢ 1+e sin ¢
Y="F0y | 20—¢ sin? )+4e log, —e sin ¢)_]
z=F(\).

For example if F (\)==a A\, F’(\)=a, and the equations become

r=a\

1+e sin ¢
y=a(l—¢ )[2(1 P sm2 @) +4e —e sin ¢)]

For the sphere ¢e=0 and the equations become

T=a\
y=a sin ¢.
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This is the Lambert equal-area cylindrical projection. (See fig. 2.)

b

——>

FiGURE 2.—Lambert’s equivalent cylindrical projection.

Since here, for the spheroid
bx__o 0z __
d¢ O\
by a(l—ez) cos ¢. 0y —0
T (1—éfsin’¢)? O
___cs¢ ., Ji—ésin’¢
Jl—é?sin®*¢ =~ cos ¢

hence )
sin =1,
so that the meridians and parallels are perpendicular to each other as is a priori evident.
1—e?sin® ¢
cos® ¢

(1—¢?) sin®* ¢
2—(1+¢°% sin® ¢

tan v’ = tan

sin 6= —

(B) As a second example let
z=f(¢)\
p=f(#); =S (&)
Therefore, the differential equation (1) becomes
d¢ an dy

@) T N(¢) E(1—¢) cos ¢
(=& sing)?

o az(l——ez) cos ¢ do
(I—e*sin’ )2 f()

RG]
>\ ) dé-

dy=

and
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The integrals of these equations are

Ty | cos ¢ do
Y o
and

IOgn A= —IOg,, f (¢) +10gn Ca
or

M(#)=cs.
The general integral of the above partial differential equation is given by ¢,=g (c,) in
which g denotes an arbitrary function. This gives

v—ai1—e) [ G @)=0(@).

If we choose for example

al\ cos ¢
x=p,(cos ¢))\=—1‘\/—:e—‘2—s——m:

then the lengths along the parallels will be maintained true to scale but the meridians
will no longer be straight lines for, when ) is a constant, z will still depend upon ¢.
In this case

1
f(¢)=ﬁi%’f'(¢)——((Ll(_ees);;n(b;/z’

therefore
2 dé
y=a(l—e) mﬁ-ﬂ@-
We can integrate this expression by the following procedure:

sin ¢ _singcosé 7] o ¢’ sin’ ¢ cos® ¢ | cos® p—sin® ¢
d¢ (I—¢*sin? ¢)t2 (1—é? sin? ¢)32 T (1—¢? sin? ¢)! 7
__€é#—2¢% sin? ¢p4-¢* sint ¢
T (01— sin? ¢)372
_1- 2¢? sin® ¢-t¢* sin* ¢— (1 —e?)
(1—é? sin? ¢)372
1—e?

— 2 [
R (T

On integration of this equation we get

— é? sin
(1——e2)f(1 —eé? sin? qb)aﬂ—f‘/l__‘32 sin® ¢ @—H%
hence

y_aE(¢) ae sm ¢ cos ¢
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in which E (¢) is the second elliptic integral of Legendre. We have taken g(z)=0, so y
may vanish throughout for $=0 and the equator becomes & straight line on the map.
It should be noted that y is merely the length of the meridian counted from ¢=0.
For the sphere, since ¢ becomes zero, we have

T=a\ cos ¢
y=ao.
With the values for the spheroid, we get
bx _a(l1—¢" sin ¢ or a cos ¢

T (1—eé sin? ¢)3/2)" o (1—¢* sin? ¢)#2

by a(l—ez) .oy
¢ (1—ésin? qb)‘””z’ O\

Hence

. 1
h=1FNsin? ¢; k=1; sin ¢=m

Asin ¢ . 1

€08 "’—m ¥=""Xsn ¢
tan ©

.
tan % T 1—\sin ¢ tan u+ N sin? ¢

The angle ¢ is the angle of the intersection of the meridian and parallel greater
than Z.
2

This formula gives us the alteration in the angle u counted from north in a clock-
wise direction with A counted positive to the eastward. When west of the central
meridian \ is negative and the formula is correct for the same considerations for u

’ _T . [ 1
and also 4. When U=z 41t can be seen that tan u Nsn ¢
angle of intersection as it should be. When west of the central meridian X is negative
and tan u’ is positive and we have the smaller angle of the intersection again as it
should be. Norbert Herz in his excellent treatise on projections, ‘‘Lehrbuch der
Landkartenprojektionen” makes a mistake in this formula by omitting the term tan«

————=tan ¢ the greater

in the denominator. If his formula were correct, © and u’ would become 5 together

and the meridians and parallels would be perpendicular at all points.

In actual practice we are not as much interested in the distortion of this angle
as we are in the direction of the arc ds with respect to the axes of coordinates. Since
the parallels are represented by straight lines parallel to the z-axis it is better to count
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our angle of direction from the parallel as initial. Let us take east as origin and reckon
angles in a counterclockwise direction. With this convention we have the relation

dy %y

tan ¥ ++5;
tan 'u,’=R 0% L b)\: tan u=M
ﬁt nut oz R’d\
R2g " UTRX

in which R is the radius of curvature in the meridian and R’ is the radius of curvature
of the parallel.

oy .
Ro¢ "'R'OM
oz oz
Bop— Msméipon=!
tan u _ tan %
1—Xsin ¢ tan 4 1-4cot ¢ tanu

» tan 4’ =tany or 4’ =1, the larger angle of intersection of the meridian and

tan ' =

™

2
parallels and cot ¥=~—\sin ¢.

When u=

To determine the axes of Tissot’s indicatrix ! we have the two equations

C+P=Rh+E=1+1+ N sin? =2+ N sin? ¢
ab=hk sin y=1.

From these equations we find
—
a=yf1+ 5 sint g+ S in ¢
—
b=\/1+2\; sin? ¢——3 sin ¢.

To determine the directions of the axes we must determine the maximum and
minimum values of K in terms of tan 4. We have

Kz_h2 tan? u+k*-+2hk tan u cos ¥
- 1+tan?u !

in which % and ¢ are reckoned from east in a counterclockwise direction and ¢ is the
larger angle of intersection of the meridians and parallels and cot ¥=—N\ sin ¢.

OK?  2R” tan u+2hk cos ¢
O (tan wu) 1+4tan® u
__ (A? tan® u+4-k"+-2hk tan 4 cos ¥) 2 tan w__
(14 tan? w)? -

1 For an account of Tissot’s indicatrix see Special Publication No. 57, General Theory of Polyconic Projections, pp. 153 et seq.

0
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(h? tan u-+-hk cos ¢) (1-4tan® u)—tan u (A? tan? u+k*42hk tan « cos ¥)=0
h? tan u+thk cos ¢+ h? tan® u+hk cos ¢ tan® u—A? tan® u—k? tan u—2hk tan® u cos ¥=0
hk tan® u cos y— (h*—k®) tan u—hk cos ¢y=0

2 2

2, TR —_1=
tan® u e tan ©u—1=0.

0s ¥
But for this projection we have
h2—Fk*=)\? sin? ¢=cot? ¢

hk cos Yy=cot ¢.
Hence we get

tan? u—coty tan u=1

2 2
tan® u—cot ¥ tan u+coi ¢=1+coi ¢
_cot ¢ cot’ ¢
tan u="—" ﬂ:\/1+“4
_ N . N 2
=—5 sin ¢:i:\/1+71 sin® ¢.
Hence,
tan Yy,=——a
tan u,=>b.
And so
tan w/=———2%
A U =TTaxsin ¢
b
’__________~
tan u, T 1—b\xsin ¢
, , —ab
tan u," tan u, ‘—l_i_(a_b)) sin ¢-—ab)\2 sin® ¢
but 3
ab—_—l ; a—b=7\ s ¢.
Therefore

tan u,” tan w’'=—1,

or the two directions on the projection are perpendicular to each other as they should be.
When the azimuths are measured from the z-axis of Tissot’s indicatrix, we have
the relation

tan u’=(—I; tan .

437697 —45 2
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From this relation we find
tan u—tan o’ —b

tan 4 +tan u _+a+b

or )
sin (u—u’) a—b

sin (wtu) " +a—l—b

This shows us that the maximum alteration of direction is found when u'+u=12£-

If we denote this maximum value of u—u’ by 8, we have

sin 6= -I— +b; cosB——zw_/*_:

a—b. 0_1—coss_(b—+a)?
tan 6= + \/_b, tan 1+COS¢3 (1[b+\/5,)2

~F_ \/5‘1

tan— 1/.__*_‘/_ Jb_l_l

e (1) n G-y

T8y T
W=g+5W'=7—3

If

we have

W+W’—— and W—W’=s.
Now, for the projection which we have been examining, we have
ab=1,

tan W=qa and tan W’=5b.

We have found the direction on the earth of the major axis to be tan %,=—a,
therefore

therefore

tan 4= —tan W=tan (—W)

or
T &
| u=—W=-3-z
and
T _ 9
=W 5
, T tan 4,
tan U =15 tan %,
but '

tan u;=—a
\ sin ¢=a—0b,
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therefore
tan w’ —a -—a —a __1___ b
'S ltale—b) 1ta—ab 1+a—1 e
therefore
tan u,"=tan (—W')= tan(———
80
PO
=3¢

Tissot’s indicatrix thus becomes

tan (u’+;'—;—%>=% tan <u+£+%)=b2 tan (u+z—;+6§)

It is evident that 4 and «’ vanish together as they should. With this projection the
equation

becomes
tan §=——F5—=—;cot ¢

in which ¢ is again the larger angle of the intersection of the meridian and paraliel.
At A=30°, $=30°, A sin ¢——— and tan B—ﬂ

tan 6=0.13089969
§="7°27'27"4

O __oogq9r49n
2 —3°43743"7
T3 4101671673
i3
T, os9r 9l
T 3=48°43'4377

Let us apply Tissot’s indicatrix for u=60°.
” +——— =b? tan (108°43743"7)
b=tan 41°16’1673=0.877631

b2=0.770236
tan (108°43'4377)=-—2.94948906
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tan u’+§——2‘§)=—2.27180266

u’'+41°16’1673=113°45"29"1
u'=72°29'12"8

N3 17320508  _ 1.7320508
e ~0.54655016
1—-75V3 1—75(1.7320508)

tan u' =

=3.16906101
w'=72°29"12"7

tan Y= —1—:= —3.81971864

¥=104°40"1477
smaller angle=75°19"4573.

We see that either of the formulas for tan %’ can be used since they give the same
result. Tissot’s indicatrix is merely another form of expression for tan 4’ and the one
formula can be transformed into the other by a little mathematical ingenuity.

We have given a pretty full account of this projection with the purpose of illustra-
tion of the use of Tissot’s indicatrix in case the parallels and meridians do notintersect
at right angles.

Since the equation for y in this projection is independent of A, this equation at once
gives the parallels which consist of straight lines perpendicular to the straight line
central meridian and parallel to the z-axis at the distance given by the expression of ¥
in terms of ¢. If we should want to get the equation for the meridian it would be
necessary to eliminate ¢ from the equation for x and y. However, since the expression
for ¢ in terms of ¢ contains an elliptic integral as well as the trigonometric functions, the
elimination is not readily practicable. Of course the elliptic integral could be expanded
in a series to a few terms and then the elimination of ¢ could be made in the approximate
equation.

Since the result in any case would not be simple and would not throw much light
on the nature of the curve, it is better to dispense with the effort. However, since the
form of the meridian for the spheroid does not differ much from that for the sphere,
we can get a fair idea of it from the formulas for the sphere. For the sphere the equa-
tions become very simple: '

thus the meridian has the equation
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The meridian of longitude \ is therefore a cosine curve with the distance X from the
central meridian at the Equator. Sinece a cosine curve is exactly similar to a sine
curve but differently placed with regard to the origin, this projection has been called
the sinusoidal projection. (See fig. 3.) It is also sometimes called the Sanson pro-
jection or the Sanson-Flamsteed projection. We understand that this projection was
employed by Mercator in his atlas and so some prefer to call it the Mercator equal-area
projection. The designation sinusoidal is so well known that it would be better to
designate it the Mercator sinusoidal projection to avoid confusion, if it is desired to
link it with Merecator.

N
el B
EN

-
e B
L
po—1
L4~

F1euRE 3.—Sinusoidal projection.

Since the equation for y for the ellipsoid is merely the length of the meridian from
the Equator and the length of the straight line parallels is exactly equal to the true
length of the parallels, the complete values for the construction of a map are found in
the polyconic projection tables. This map is therefore one that can be constructed
very easily and hence it is much in use for equal-area representation. For maps that
include more than a hemisphere, it is not very well suited because of the violent dis-

tortions of the part beyond A= 72—r

(C). If the parallels are to be represented by straight lines parallel to the z-axis,
then y must be independent of \. Therefore, ¥ must be a function of ¢ alone.

oY _.9%.
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and the differential equation to be solved becomes
0r a*(1—é%) cos ¢
’ o .
== o
Since this is a partial differential equation in d\, the expression in ¢ is considered as a

constant, and so e
__0(1—¢) cos ¢
PEF @ A—¢ sin? ¢)2()‘) +£(9).

If the central meridian is to be represented by the y-axis, then « must equal zero for
A=0, and f (¢) must be zero, and the general equation of this projection becomes

__d(1—é) cos ¢
x_F’(d)) d—¢ s’ d))z()\)

y=F(¢),

x___a?)\ cos ¢
F'(¢)

y=F(¢).
In these expressions the function F (¢) is still arbitrary. If we choose

and for the sphere

P (¢)=—pit)

(1__' & min? '¢' )3/2’

we get the sinusoidal projection that we have just treated.

We can specify that the meridians should be curves with particular properties; but
in so doing we cannot proceed arbitrarily. If the accepted curve is expressed by the
function

Gz, y, N)=0,

then in accordance with the assumed value of ¥ we must have

a*(1—e®)\ cos ¢
q (1—e?sin? ¢)2‘!ﬂ’ R =0
d¢
But from this equation A must cancel out for from our assumption, y is a function of ¢
alone. 'This faet is analytically expressed by the relations

d@_ . dG 2Gdz

- tornta "

and since

the relation becomes
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This equation expresses the fact that the function @ (z, ¥, \) with respect to 2 and A is

homogeneous of the first degree, that is, it is merely a function of% and is therefore of the

G(%y)=0,

which in fact satisfies the required condition. This can be seen at once from the fact
that in the elimination of ¢ from the equations for # and y the quantities x and A always

form

appear in the combination %
(D) If the meridians are to be represented by ellipses, the general equation of
which we write

LA
Fot o=
then, because these curves must all pass through both poles, the distance from the
origin of their intersections with the central meridian must be constant and equal to
half the distance between the poles. Since for =0, ¥ must equal & constant denoted
by m, we must have f; (\)=m, and the equation of the meridian becomes when the
value of z is substituted,

a?1—eHrcos o \?, /y\
. dy ) =1
(1—e*sin® ¢)2%f(>\)
If y is to be a mere function of ¢, then f (\) must be equal to nA in which # is 4 constant.
The equation for the meridian now becomes

¢ ¥
(VT

The equation for y now becomes
Vmi—y?__a*(1—¢?) cos ¢

m n(1—e* sin? ¢)2

d¢
or
v m 4 cos opdo

J:, Vmt—y? dy=at- (1—e) J; (=& sin” 9"

or by integration
Ly + g sin-1 L

M ” sin ¢ 1 14esn ¢
=a n (1—e )[2(1-—32 sin? ¢)+4e log. —esin ¢
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in which we have taken the constant of integration as zero because ¥ must equal zero
for $=0. To this we must add the equation for z,

a*(1—e*)\ cos ¢

z=
(1—é? sin® ¢>)"’ y
We can get more convenient forms for computa,‘mon by assuming
' y=m sin 6,
then the left side of the equation becomes
2
’% (20 sin 26).
If, for the sake of brevity, we take
2 sin ¢ 1 1+esin¢|
(1 6)[2(1_62 SiIl2 ¢)+4e logn —e Sil'l ¢ - (¢))
then the equation becomes
4a’g(9).
mn
The constants, m, n, that we have introduced are not independent magnitudes but
are interdependent for a given ellipsoid. A zone of the ellipsoid from the Equator to
latitude ¢ has the area

29-+sin 2=

0,=2ma’g(¢),

hence the area of the partial zone between the meridians at +% and —%‘ is
A Os, =g () \.
The lune thus formed from pole to pole becomes

1-——e2 l+e
—_— 2
=ag¥ 1+ P >)\

since ¢=%, and we have twice the area from 0 to —725 The area of the corresponding
lune on the map is
A
1rmn2,
and because of the equivalence if, for brevity, we set

(1+ "o 02 1+6)—

we have

lOl>‘

FMn5 ==\
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or
mn=2a%y
and so follows

20-+sin 2a=2"—-‘{7§¢—)-
From this we get

di_ 27 ,
2(1+-cos 20) do— 17 (¢)
or
dg_ 2(1—é? T COS ¢
2 _—
deS = (I—&sin’ 9)”
therefore
dy dd_ m (1—e®\ wcos¢
de~ ™08 od_¢_2 cos 0\ n J(1—e'sin’g)?

_a*(1—e?) cos ¢ ]
" ncos 8| (1—é®sin? ¢)?

=2\ 7 cos 0.

and consequently

As a whole then we have for the projection

o sin ¢° 1 1+esin ¢

294-sin 26 m(l—e )(1—e2 sin? ¢+2e log, —esin ¢
1+1_82 ! 1+4e
2e & T ¢

=7 sin B
in which B is the authalic latitude already referred to and,
z=nX\ cos 8
y=m sin 8.
The values of m and 7 are only limited to the interrelation #mn=2a%. If we take

n such that m=-1r—g—’ then the 90° meridian will become & circle. After the circle to

represent >\=-725 is drawn, the parallels can be located on the circle by
z=r cos §
y=r sin 6.
Straight lines through these points perpendicular to the y-axis give the parallels. The

meridians can be computed from their equations by using the adopted values of m
and n. The tables for the values of sin 8 and cos 6 are given in Special Publication
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No. 68, so they are not reproduced here. By interpolating the values for 8, the spheroid
can be taken into account.

oy a,z(l—e"’)r cos ¢ .0y =0
3¢ n cos 6 |_(1—é sin? ¢)? TN

oz df__  m\sin 0[ m cos ¢p(1—é?)

0 —nk sin 6 o d¢  2cos’d 7{1—é* sin? ¢)*

or

0z a’\1—¢’) sin § cos ¢ oz
6 m cos? 6 (1—¢? sin? ¢)? ’ b)\_n cos 6,

from these values, we get

_ a cos ¢ n )’
=7 o0s OyT—d T g \/1 +(m>‘ tan 8

P 9/T—e’ sin? ¢
- a cos ¢

hk:.\/l +<’I71LL)\ tan 0)2;

consequently
n
— A tan @

.
‘/ 1+(£>\ tan 0)2

sin ¢= 3 cos Y=

1
\/ 1 +(£>\ tan 0)2

n
cot Y= _171)‘ tan 6.

]
[/
i
HENEEN
Wl
J
| [ Il
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F1GURE 4.—Mollweide projection.
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This projection was first given by Mollweide. It was further employed by Babinet
who gave it the name of homalographic. (See fig. 4.)

(E) Another example of an equivalent projection with parallels represented hy
straight lines is the one given by Prépetit Foucaut called by him the stereographic
equivalent projection because the parallels are spaced along the central meridian at
the same intervals as in the stereographic projection. For the sphere, we have

- ¢
y=a tan >
dy __a
Z 2 cos2 2 cos? &
therefore
_a’\cos ¢ _ x3
z————dy =2a\ cos ¢ COS 5

d¢

To determine the equation of the meridians, we have

cos —-—
\/1+tan2 d’ \/1+(y) 'Ja/2+y

9_
sin 5 2-|—y
cos ¢p=cos? 2—sin2 2=a2—y2’
2 2 a4yt

hence

= a—Yy
= 2"(a2+y a“ry )"
The meridians on the projection are therefore curves of the fifth degree.
(F) In the Geographical Journal for November 1929, Lt. Col. J. E. E. Craster
proposed three equal-area projections with straight line parallels, one with hyperbolic

meridians, another with parabolic meridians and a third with elliptic meridians. The
most interesting one of these is the parabolic variant. (See fig. 5.) Let us take the
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FiGuRE 5.—Parabolic equivalent projection for the sphere, after Steers.

origin at the vertex of the parabola
y2=%mz

then, if we represent the central meridian by x=2m, the meridian from pole to pole
will equal 2m, with the half of the whole Equator also equal to 2m. This parabola
would then bound the hemisphere on one side of the central meridian. Another in-
versely similar parabola cutting the z axis at the distance 2m on the other side of the
central meridian and passing through the poles would represent the hemisphere on the
other side of the central meridian. The outer meridian would not thus be a continuous
curve but consist of the two parabolas meeting at the poles. We can just as well le
m become equal to one and thus have the whole Equator equal 4 and the whole central

meridian equal 2.
One-half of the area of a zone between the Equator and any given parallel will be

represented on the map by the integral
v
j; (2—2)dy

or
[ e—2pay
The value of this integral is
A=2y--§1¢f‘.
. Since, when ¥ is equal to 1, this map area must be equal to one-fourth of the area of the
given sphere or mR?, we must have the equation

4
2%,
=R =3
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Hence '
R=0.651470.

Now the area of a zone on the sphere from the Equator to latitude ¢ is known to be
equal to 2 R?sin ¢. Then the half of this zone must be represented by the expression
for A in terms of y as derived above. Hence, the equation for the determination of y
for the various parallels is given by the solution of the equation

2y—§y3=1rR2 sin ¢.

But we have already found = R? to be equal to 4/3. With this value the equation for y
becomes
y*—3y+2 sin ¢=0.

Now it happens that this equation has the root y=2 sin % Since y is thus a function

of ¢ alone, we have
9y_o.0¥_2 9
AT V1 d¢ 393
With these values, we get
2 ¢ Oz

-3" cos 3 a—)\=R2 cos ¢
2
x=3R cos¢¢ o).
2 cos 3
But
4
R2_‘3—7r"7
hence
x=2 cos ¢)\=2 )\(4 cos? ——3)
¢ s 3
T COS 5
3
y=2 sin %5
2, TL__
yia=t
2__1_72¢
y=l—5

This is the equation of the meridian at distance of \ from the central meridian with the
line of poles for the y-axis. This is the equation of a parabola, so all of the meridians
are parabolas.

For the outer meridian
y=1-g
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If it is desired to use this projection for the spheroid, it is only necessary to use the
authalic latitudes as given in Special Publication No. 67, Latitude Developments
Connected with Geodesy and Cartography, instead of ¢ in the computations. A table
of the values of these latitudes denoted by 8 are given in this publication for every half
degree of ¢. Tables for this projection are given in Special Publication No. 68, Elements
of Map Projection. We do not include hyperbolic and elliptic variants for they are
similar to other projections and are therefore not of special interest.

(G) We willnowgive an example in which the meridians are straight lines as well
as the parallels. The meridians, of course, must pass through a point which represents
the pole. As a result, they must be discontinuous at the Equator, the meridians in the
Southern Hemisphere being an inversely similar set of lines passing through the South
Pole.

Since by use of the authalic or equal-area latitudes we can pass from the sphere to
the spheroid, we will discuss the projection for the sphere. Since the parallels are to be
straight lines, we must have y a function of ¢ alone.

Then y=F(¢)
__a*cos ¢
=F@ V

The equation of the straight line which is to represent the meridian must Be

y—d=z tan a,
in which d is where the line intersects the y-axis or the distance of the pole from the
origin or center of the map and « is the inclination of the line to the z-axis.

Since all the meridians cut the y-axis at the same point, d must be a constant;
furthermore, the angle of inclination of the line depends on only the X of the given
meridian. Since this is so, we must have tana=G(?) and the equation of the
meridian becomes

y—d=zG(\).
This equation must be satisfied by the values of z and y given above, hence
a? cos ¢
F'(¢)
This equation can only become identical, that is, independent of X\, if G(N) ——: and
then we get

F(¢)—d= NEN).

@’ cos ¢
y—d= dy
"de
on, J
(y— d) y a® cos ¢ .

n
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By integration of this equation, we get
y*—2yd+C=

2a? sin ¢
n

7 AMNY

F1GURE 7.—Equivalent projection with meridians and parallels as straight lines.

Since y must be zero for ¢=0, C must be zero. Since further, y=d for ¢= : we get
2
_ d2=2a, ,
n
and by division we have
2yd—y? .
d2 =gin ¢.
The equation of the meridian becomes
(y_d)n)":x;
in which d, n, and @ are bound together by the relation
d'n+2a2=0

If we choose d and = arbitrarily, a will be fixed by the above relation.
If y=0, 2=~—dn)\, or —dnX is the distance from the origin of the intersection of
the meridian and the z-axis. If we wish the outer meridian to be inclined at 45° to

the y-axis, then we must have d=—dn %, or n=—;r2-- With this value of » and the

relation d?n-+2a?=0, we determine that d=a+/r. The equation of the meridian thus

becomes
(y—aﬁr)(—%));z

or
— Ty
a,Jﬂ-.__y:z—X-
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Returning to the equation of the parallel, we have
2yd—y?=d? sin ¢

Y’ —2yd+d?=d*(1 —sin ¢)=2d? Sinz(%_g

= Sdsn (T_2
y—d= \/—Z_dsm<4 5
or

y—ay7m=—a~Z sin (g—g)

y=a1/7_r|:1-—ﬁ sin g—g):l

This is not a particularly important projection and we will not discussat further.

PROJECTIONS WITH CIRCULAR PARALLELS

Let us now consider a case in which the parallels are to be represented by con-
centric circles. In order to treat the matter in all generality, it will be best to carry
through the computation in polar coordinates. With these coordinates the element of
area in the plane is expressed by p dp df in which p is the radius of the parallel and 6
the angle at the center of the parallel. This element for an equivalent projection must
equal the element of area on the ellipsoid.

a*(1—e’) cos ¢ do AN\

(1—e? sin? ¢)?
The negative sign is used because as p increases, the latitude decreases, so the sign ag
used is necessary. The values p and ¢ are functions of ¢ and X, so we must have
Op
0¢

oY’} oY’}
d0=ad)\+—6$d¢,

p dp do=—

do=22dr+ 284,

therefore

0pdf52, Jpdf—> dp 28 @gq) _ _@*(1—e?) cos ¢dpd\

3634 Tron an o +P(a¢ N T ox 26 )% N T T T s’ )7
If we adopt for p or 6 an arbitrary value, then we can find from the above partial
differential equation the value of the other unknown.

If p=F(4, \), a known function; then both g—i‘ and g—l;:

have a partial differential equation in 6 in place of which the total differential
equation becomes

are also known, and we

dn _ d¢ do )
FO_F_FD_F_ a*(1—eé?) cos ¢
0¢ “OA (1—¢” sin? ¢)?

637697°—45——3
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If =@ (¢, ), a known function, then in similar fashion we have for p

do_dr____pdp
o8 gq__ a’(1—e?) cos ¢
O\ 09 (1—¢?sin? ¢)?

For a given meridian A is a constant, hence d\==0; consequently on the map we have
00
dpn d  dfp=-=d
o™ D=5
therefore, the element of the meridian on the spheroid ds,=r,d¢ is represented on the

map by
dS = (0 d0.)* L —\/( +(32) de-

For a given parallel on the other hand, ¢ is constant and d¢=0; 80

doy=22dn; do,=22ax

and the element of the parallel on the spheroid ds,,-—r,, d\ is represented on the map by

i3

The two ratios of scale thus become—in the mendum

\/( bp 2(1—e? sin? (1—¢” sin? ¢)*?
h= d> -~ a(l—é&)

dp 2\/1—62 sin® ¢
k—\/ ( ) +( @cos ¢

All other relations remain exactly the same as they were in the consideration with
z and y coordinates.

in the parallel

. 1
sin ¢=m
K2=h? cos® u+k? sin? u-+2hk sin % cos u cos
tan u _ tan ¥
h*+hEk tan v cos ¢ h?-+tan u cot ¢

the angle ¢ being as usual the larger angle of intersection.

If the representation of the parallels is to be circles, then must the value of p
for any given parallel be a constant and hence independent of A, or it must be a function
of ¢ alone.

tan u’

p=F(¢).
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For the determination of 4, since g§=0, we have the equation

00 d*(1—é’) cos ¢
N F($)F'(¢)(1—¢ sin? ¢)*

the integral of which is ” )
_ a’(1—e?) cos ¢
b= — P F () (1 =& sin® gt M) T99).

in which g(¢) is an arbitrary function of ¢, the value of which is determined when A
is set equal to zero; then 6=g(¢). The function g(¢) thus is the ¢ for the central
meridian. If this meridian is to be a straight line and that from which the angle 6 is
reckoned, then must g(¢) be equal to zero, and the fundamental equations of this
projection become '

p=F(¢)

P a*(1—e®)\ cos ¢ .
 F(p)F'(¢)(1—¢* sin® ¢)*

(A) As the first épecial case, we will make the assumption that the parallel circles
on the map shall be spaced at equal distances. Then will

F(¢)=m—n¢
and
F'(¢)=—n
and therefore
a?(1—e®)\ cos ¢
n(m—ney(l—e? sin® ¢)?

6=+

in which both m and n are arbitrary constants. If we impose the condition that the
pole should be the common center for the circles that represent the parallels, then for

¢=7§r, p must be zero and
m——ng=0.

p=n(—’2—r—¢)-

a?(1—e*)\ cos ¢
w(5—9)(1—et sin® o)?

Therefore

=
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FI1GURE 8.—Werner equivalent projection,

Since n is still arbitrary, we can let n==a and, if instead of ¢, we use the polar distance
k)
5—9=p, We get

p=ap

_ 1—¢é sin p
=a=ewr 5

This projection was devised by Johann Werner of Niirnberg and it is called the Werner
projection. (See Fig. 8.) The parallels are represented by equally spaced concentric
circles with the pole as center. The spacings of the meridians on any given parallel are
equal, so it is only necessary to compute one and then the others can be stepped off on
the circle of the parallel on the map.

If we confine the projection to the sphere, we get

p=ap
sin p
o=""L
p »

or .
pf=al sm p.
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We thus see that the arc pf of the parallel circle of latitude ¢ on the map is equal to the
arc ¢ sin p of the parallel on the sphere; because of this, the construction of the net of
projection is a very simple matter. With the pole as center equidistant circles are
drawn which represent the parallels on the map and on these are laid off the true lengths
of the parallel arcs on the sphere. The complete map for the sphere thus becomes a
heart-shaped representation. For a map that does not extend very far from the central
meridian the projection is not too much distorted and could serve very well for practical
use.
From the equations for the sphere we find

20_dedp__, _,

0¢ Oopde &=

06 _06dp_(sinp cosp _sin 2

% opde \ P°

h—-\/1+)\ (sm P cos p)z; k=1

sin "b=ﬁ; cot Y=

hence we get

If, for a given p and ), the value of ¢ has been computed, then h = cosec .

(B) We will now consider a projection in which not only the parallels are circles but
also in which the meridians are straight lines that pass through & common point.
Besides the projection is equivalent and consequently a conical equivalent projection.
Because of the first condition we must have as before

p=F(¢)
g — a?(1—e*)\ cos ¢
T F(9)F'(9)(1—€ sin® ¢)*
Since the meridians are to be straight lines, the radius of the circle must represent
the meridian; therefore § must be independent of ¢, or
a*(1—e?) cos ¢
TF@F ($)(1—¢ sin® )t

in which m is a constant. Then we have

f=m},
and we have for the radius

Pl @ P ()= — AL S

or from this by integration,

pP+C=—

a,’(l—e’) sin ¢ + 1 1+e sin ¢
—e?gin’ ¢ ' 2e —e sin ¢,
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or in terms of the authalic latitude )
pP+0= —-27—nc— sin B.

For the determination of C, we can make several different assumptions.

(1) If the pole is to be represented by a point, for ¢=%, p must equal zero. In

. 2c2 .
this case C=_—7r7 and our equation becomes

B

2¢2 . 4¢? . T
2 — 2 (T__B
pPP==—(1—sin B) sin

4 2
)

6=mA\.

If 7, denotes the radius of the parallel on the earth 7, d\ on the earth will be rep-
resented by pdf on the map. But pdf=pm d\; therefore, the scale along the parallel
becomes

and

_mp
—

Since the meridians and parallels intersect at right angles, we have sin ¢y =1 and ¢=32-r'
Hence

=12
mp
2.2
m
tan u'= r.f tan w.
r

Since the meridians and parallels are orthogonal, « / and u are the correct angles for
Tissot’s indicatrix as appears in the last equation.

For the case of the sphere we get

£_¢)

cos 1 5 r-—m

Jm = =
o cos (773

h=

tan u’=—m—.'ta,n A
cos? ("1-9)
4 2

This projection originated with J. H. Lambert and was called by Germain, Lambert’s
isospheric stenoteric projection. (See fig. 9.)

It is evident that m should be less than unity for, if it is greater than one, we can
reduce k by reducing m and at the same time bring h nearer unity.
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F1GURE 9.—Lambert’s isospheric stenoteric projection.

(2) Since m is arbitrary, we can determine its value in such a way as to give cer-
tain advantages to the map. Let us suppose we wish to map a certain region. If ¢
is the latitude of the middle parallel of the region, we can take ym=

T
. T 0
2¢ sin (Z—E
for the parallel ¢,. For this parallel both & and k& will be equal to unity, and the scale
will be preserved along that parallel and the angles will be unaltered along the same
parallel. If we wish a map that will change the angles throughout as little as possible,

we can adopt the value of m= Tl - In this expression the sub
4¢* sin (— —ﬁ) sin (E—é)
4 2 4

one functions are for the lowest parallel and the sub two functions, the same for the
upper parallel. With this value of m, the a semiaxis of Tissot’s indicatrix has the
same value at the upper and lower margins of the map. At ¢y, ¢ lies along the parallel
and at ¢, along the meridian.

For a projection of this kind in which the earth is treated as a sphere, the equations
become

2a P
P=Tm 5
f=m)\,

in which p is the polar distance or colatitude of the given parallel. The distortion

equations are in terms of p
4
cos 5
3 2 k Vm

B M, —008—22')
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m
tan u'= tan u.

2
cos* 5
2

The projection of this type with minimum distortion of angles for a hemisphere has
for the value of m

m= —l—-—' _\/ o ::*1 .

2 VR
The alterations are null along the parallel of 24° 28’. The greatest value of @ is V2
or 1.189 and the smallest value of b is the inverse of this number, or 0.841 and the ratio
of length of the most expanded length to the length of the most reduced is V2 or 1.414.

v

Finally, the greatest value of sin § is tan® 3 which corresponds to §=9°53’ or for 25,
19°45°.

For the representation of the whole globe by means of two maps, it is not best to
adopt equatorial projections, that is, maps with the poles as centers, but what are called
meridian projections, or ones with centers on the Equator. In this way North and
South America will not be separated and Africa will not be separated into two parts by
the Equator. For the one center it would be best to locate it on the Equator at 70° east
longitude; and for the other at 110° west longitude. The maps would thus be transverse
conic projections. A table of distances and azimuths from a point on the Equator are
given in Special Publication No. 67 already referred to. If one wished to take into ac-
count the spheroid, it would only be necessary to compute such a table using the
authalic latitudes (B) instead of the ordinary latitudes (¢). The map instead of form-
ing a complete circle would be reduced to a sector of about 255°. The division line
for the vacant sector could be chosen in each so that one would lie in the Indian Ocean
and the other in the Pacific Ocean, thus leaving the land areas intact.

We have computed such a table for every 5 degrees of latitude and longitude and
the results are given in the table on page 68. These values can be used for any equivalent
projection with center on the Equator or for transverse conic projections with pole
on the Equator, such as suggested above.

This projection has null deformation at a radial distance from the center of approx-
imately 65° 30’; from this it results that in the Eastern Hemisphere, a circle through
Africa, Europe, Asia and Australia has null deformation throughout its entire length.
The circle in the Western Hemisphere which possesses the same property passes through
the Americas. Thus, not only are the deformations small but also the number of
points where they attain their maximum values are very limited in number. The pro-
jection is rather easy to construct and lends itself readily to determine the alterations
in length-and azimuth. The deformations are the same at points equidistant from
the center and a line drawn from the center to any point gives one of the directions for
Tissot’s indicatrix with a perpendicular thereto at the point for the other direction,
These two directions are orthogonal, both on the globe and on the map. The devia-
tions starting from either of these axes do not amount to 10° anywhere on the map.
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It is on these axes that the maximum and minimum scale distortions are found which
in no case differ from true scale by more than 20 percent.

Instead of taking m=‘/i.2—=0.707, one could take in round numbers m=2=0.75

which would be convenient for computation. The angle of the vacant sector on the
map would be only 90° instead of 105°. The circumference of null deformation would
be approximately 60° from the center and would pass through the continents close to
their central regions. The alterations would be slightly increased but they would be
diminished toward the center, that is, in the region where they change most slowly.
At the center of the map, we should have

a=-—==1.155; a’=%=1.333

2
V3
sin 8=%§ 26=16°26’,
and on the edges
a,=\/g=1.225; a,2=g=1.500

sin a=%; 25=23°04",

Besides the representation of the two hemispheres just described, it is sometimes
desired to represent the whole world on one map. If it is desired to have an equal-
area map of this kind, it would be necessary to use a conic projection with minimum
deformations between the north pole and 50° south latitude. The deformation beyond
the parallel of 50° south would not be troublesome as no land of importance lies beyond
that point, since only a tip of South Americe extends further south. The north pole
should be taken as the center and the separation should be made at 170° west longitude
which passes through Bering Strait and does not meet any land area. This projection
corresponds to m==0.342; it does not produce any deformation along the parallel of
18°25’ south; at the north pole, a singular point of the projection, 26 amounts to
118°26’. The greatest value of 25 besides this point is 58°43”; of @, 1.710 and of a?,
2.924.

LAMBERT’S AZIMUTHAL EQUIVALENT PROJECTION

(3) If, in the above-described Lambert’s projection, we take m==1, 0 will equal \

and the parallels form complete circles. With the authalic latitudes we have
. p
p=2c¢ sin (Z_é =2¢ sin 7'

If p'=5—8
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(4) Returning to the cone, we would have for the sphere

W, Y. K]
P+ O=—2a o
Let us suppose we wish the cone to be tangent to the middle parallel; then m=sin ¢,
and we have

p2+ 0= —2(12 E.n_g

sin ¢
and when ¢=¢y, p=a cot ¢q.
Hence
a? cot? ¢y+C=—24?
or

212 anf2 b — 9l __Sin¢>
p°—a* cot? ¢py=2a (1 Sin ¢g

2
p’=sh‘f—2—¢o (1+sin? ¢p—2 sin ¢, sin ¢)

P=§:—¢;1/1+sin2 $o—2 S0 o SIN .

== Sr. Seany
Sera j-;“\».&..'

FIGURE 10.~Lambert’s azimuthal equivalent projection,
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The distance of any parallel from the middle parallel becomes

o %[W%—smz ¢o—2 sin ¢y sin ¢p—cos ¢o]
__a_ 14sin® ¢—2 sin ¢y sin ¢—cos? ¢y
"~ sin ¢o+/1--sin? ¢p—2 sin ¢ SIn H4-COS ¢y

_ 2a(sin ¢;—sin ¢) )
" y1+sin® ¢p—2 sin ¢, sin ¢+cos ¢

a
q=p—p==

For ¢y=0, g=—a sin ¢ and g becomes = as do all of the p’s, but so that pf=a\.
It thus passes into Lambert’s equivalent cylinder projection for the sphere, with

T=a\

y=aq sin ¢.
BONNE’S PROJECTION

The spacing of the concentric circles representing the parallels are to be the
same as that upon the ellipsoid. We will start with the equations

p=F(¢)

a?(1—e?) cos ¢ A
T F(p)F'(¢)(1—¢ sin® ¢)*™

If C is the radius of the middle parallel of latitude ¢, then we will have
P= CHs— 8,

in which s, and s are the lengths of the meridian to ¢, and ¢, respectively, reckoned
from some initial point or from the Equator as may be. But we know that we have

a(l—eddo
ds=—{i—¢ sin? $)°
hence
d
o=F (¢>=0—“(1—62>f =F s
d 1—¢?
P/ ()= =~ (1=t g7
Therefore
a cos ¢
= Ji—c s ¢ [F(¢)]
From this it follows that

@ cos ¢

9F(¢)=P0'"m
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a cos ¢
Ji—¢ sin? ¢
above for pd is the arc length of the parallel for the longltude difference A, and pf is
the corresponding arc on the projection; it thus appears that the scale along the parallel
is preserved and that k=1. Of course the meridians and parallels do not interseet at

right angles for 6 is a function of both ¢ and N\. We have the following partial differ-
entials.

But since is the radius of the parallel on the earth the expression given

Op a(l—e?) .Op

¢ (1—é sin? ¢)3/2’ ON
96_ _a(l—¢é)sing /)\)+a2(1—e~) cos ¢/)\
¢  (1—é sin? ¢)™\ p (1—e?sin? ¢)2 \ p*

a(l-—.ez))\ [sin o— a cos ¢ ];

T p(1—é¥ sin? ¢)3 py1—e?sin? ¢

=0.

00 __ __acos¢

ON i sint g
From these we get
__ ____acosd
h—-\/l-]—)\z(sm ¢ py1—eé? sin? ¢ ¢>
k=1
sin Y= 1

= a Cos ¢ Z
“1—]—)\2(5111 L p+/1—é* sin? ¢)
A a cos ¢ )
cos y= )‘(Sm °” py1—¢sin’ ¢ v>7
a cos ¢ 2
1+)\2(sm Lo py/1—¢é sin? qb)

. @ cos ¢
cot gl/=——)\(sm ¢_;\/1_:~T—’*7>)

The expression for & shows that the scale along the meridians is not preserved on
the map; only on the central meridian is the scale true. As long as M is small, the dis-

tortions will also be small. For A=0, ¢=%5 hence the parallels are perpendicular to

the central meridian. In addition, for the meridians to be perpendicular to the middle
parallel, the function of ¢ in parentheses for sin ¢ must vanish for ¢, or
a coS ¢q

S o T sint gy

a cot ¢y
1—¢® sin? ¢

from which we get

Po= —_—0
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that is, the radius for the parallel of ¢, is the tangent to the ellipsoid at ¢, and the
cone is tangent to the spheroid along this parallel.

s is the length of the meridian as already stated. The values of s in meters for
every minute of ¢ from the Equator to latitude 75° are given in the Publication G-43,
Tables for the Machine Computation of Geodetic Positions. A table of the values
extending from the equator to the pole will soon be ready for use in such projections.

This projection is generally known as the Bonne projection, but authorities ascribe
it to Ptolemy and to Mercator. Herz prefers to call it the Mercator equivalent pro-
jection. However, we retain the name that is most commonly applied to it. This
projection was used for a map of France and it is sometimes known by the title, Pro-
jection du Dépét de la Guerre or Projection de la Carte de France.

We will now investigate the distortions due to this projection.

tan =M s acosé N L.
an ——§<SIH ¢—px/m% —-—'5 (] !p

Since A and k are conjugate semidiameters of Tissot’s ellipse, we have

of a cos ¢ 2
@b —R = 2+)\<sm R m}
ab=1
a cos ¢
(a+b):= 4—{—)\"’<sm o— oy1— sin? ¢>

2 2 _ __acosé Y
(@—by=¥(sin ¢ 0

(Note that the a on the left is not the same @ as on the right.)

ohbmyfen(dn o= )
a cos ¢

a—b= )\(sin ¢__ﬁ———7——-s_ilﬂ

74 cos ¢ a cos ¢
a——‘/l—}—4 (sm ¢— — ¢> +<sm ¢o— A— s ¢)

N/, a Ccos ¢ a cos ¢
b= _— —_— -
‘\/“4 (sim o=y ) oo o i)

On the projection we have

Op
tan u’——-—d&—— b¢d¢+ d)\
==

pa¢d¢+Pb
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On the earth for the corresponding curve, we have

tan u—’;’"—g%
?
in which r,=p, cos ¢.
But
1 9p 10
- (Pm d¢) += (rﬂ d)‘)
tan u’=—pp % rp o -
Pm a¢ (Pm d¢) + bk (7'7 dX)
or
1 9 19
ton o/ 060 vt
an u'=—
p 08 tan + p 08
pm O r, O\
On substituting the pa,rtlal derivative values given on page 40, we get
tan u’_ tan (:Los ¢
' X(sm P— ———— 2 tan u,
pyl—eé¥sin? ¢

in which u is reckoned from the east in counterclockwise direction and u’ is reckoned

from the tangent to the parallel at that point on the projection
We have already proved that the direction of the major axis of the Tissot ellipse is

given on the earth as — tan <Z+§) and of the minor axis, tan ~——> These values
are —a and b, respectively. The fermula above for tan u’ can also be written

tan u'— tan v _ tan u .
“1—(a—b)tanu 1-4cot ¢ tanu

By substituting the above values for tan 4, we find for the corresponding values of
tanu’
tan 4 === —a —-—l——b
MU =TY(a—be 1+ta—adb a
B0 % =1 _(@—b)b 1—abtb* b
tan u,’ tan 4y’ =—ab=—1.

Hence, the two directions on the projection are perpendicular to each other as well as

are the corresponding directions on the earth.
We thus find

=a

b T_8\_ 8 =
tan u;"=—tan (4 2)_-tan (2

tan u,’ =tan (§+%>;
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hence
i 8 = T8
W=g—g"h="1"3

| o

T, 0 T
U =7+5 =7~
4°'2 4
Tissot’s indicatrix thus becomes

tan (u'—l—%—% = tan ( + ~I—2>—b2 tan (u+£+§ -
We see that  and «’ vanish together. When u=12r—

U +‘—1~§ =— cot( —=—0
tan w'+b
1—b tan w'
tan ' +b=—"5b4-b* tan uw’
(1—5* tan w'=—b—p®
(a*h*—b*) tan w' =— (ab®*+b®)

hence 4’ =y, the larger angle of intersection of the parall'e]s and meridians,

mna=tan[(§+g)—(l' ) = )

—<Sm¢ acos¢ )
- ¢

“=—§ cot ¢

as already given.

By means of this indicatrix, the azimuth distortions can be computed at & point
and the scale in a given direction could be computed. For the ellipse, we have

Z=@ C0S (u+£+§)
y=bsin (u+3+%)

2+yP=a? cos? <u+-’5+8—>+b2 sin? (u+z+6§

= 155" vt (w5 7+5)]
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hence, scale in the direction & reckoned from the east point is given as

scale= 1/1?+y2=“\/ 1 "az_zbz sin’ (u+£+'62’)

(17

ALBERS EQUAL-AREA PROJECTION

We now come to one of the most important of the equivalent projections. Let us
return to the conic projection with the general equations already found on page 33 in
which we will change the constant m to » to agree with previous usage.

f=n\
2¢% .
p+C0=—="sin 4,
with 8 denoting the authalic latitude.

We now put in the condition that the scale shall be held true along two parallels
called the standard parallels. We must then have the relations

a cos ¢
0=pnA= ————=—\
po=h 1—eé? sin® ¢,
@ coS ¢,

= p A=
pr=pz 1—¢? sin? ¢,

Substituting these values of the p’s after dividing out the X and first multiplying the
general equation by n? ,
o +n2C=—2¢*n sin B,
we get
a? cos? ¢,
1—e¢? sin? ¢,

+720=—2¢%n sin B,

@ cos? ¢,
1—¢? sin? ¢,

+'n20= —2¢%n sin B2

The first terms in the left-hand member of these equations are 7% and r?, respec-
tively, in which the 7’s are the radii of the parallels of ¢, and ¢;, respectively. These,
in turn, are equal to N,? cos? ¢; and N2 cos? ¢, in which the N’s are what are called the
great normals of the ellipsoid or the radius of curvature perpendicular to the meridian.
By subtracting the two equations, we get

N2 cos® ¢y — N;? cos® ¢,=2¢n (sin B,—sin By)
or
N cos? ¢,—N,% cos® ¢y r2—r? .
2¢® (sin B;—sin B;)  2¢%(sin B,—sin By)
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This equation serves for the computation of the value of n. We get the values of p,
and p; directly from their equation in terms of ¢, and ¢, respectively.

a cos ¢, N, o
n=, ’———1—62 o n -— CO08 ¢1—n
@ cos ¢ N, 72

= =" 08 ¢y =2
e T—esin gy T ¢

By setting p equal to p; in the general equation, we get
2¢% .
Pl2+0=—7 s By,
Now by subtracting this equation from the general equation, we have
s g 20% . .
p'—p*=—r (sin f—sin B),
or
2+ (sm B—sin B).
In a similar way we can get
2¢ . .
p'=p"+=- (sin B—sin B).
Either of these equations can be used for the computation of the various p’s. With a
calculating machine these p’s can be computed rather rapidly.
For this projection we find, since it is a true conic projection and ¢=-72£,
_r_ Q cos ¢
np npy1—e? sin? ¢
np npwjl-—e sin?
a cos ¢

n"’p"’(l —é? sin?

¢)
o5 ¢ tan u.

tan 4’ =

This last equation is Tissot’s indicatrix as, of course, it should be. It should be noted

that p does not equal zero for B=%; the result is that the pole is represented by an arc

of a circle and not by a point as is usually the case in conic projections. The cone is
thus a truncated one and the projection is sometimes called a truncated conic projec-
tion. For mapping regions that do not extend to the pole, this feature is in no way
troublesome. For a map of the United States, for instance, no one would ever know
whether the map was a true conic projection or not, since only a small section of the
surface of the cone would be used in any case.

637697°—45——4
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PROPOSED NEW PROJECTION

In thinking about the projection called the stereographic equal-area, it occurred
to us to try a similar projection with the central meridian spaced as in the meridian
Lambert azimuthal equal-area projection. (See fig. 11.) As far as we know, no
such projection has been heretofore proposed. In order to take account of the spheroid,
we decided to project the authalic sphere as a further study in the theory of map
projection. Let us assume

—=2¢ sin B

| Yy=2¢ sin 5’

with ¢ as the radius of the authalic sphere and g the authalic latitude, as already ex-
plained. Then

Y ;oos B
28 —C % 3
oy_
o\
Hence, from the equation of condition for equivalent projections, we have
oz B_ .
Sy ¢ €08 g=¢" cos 8,
or by integration
2::c cosﬂﬁ)\,
cos —2-
z=cM 2 cos g- 1 B
cos 5
in B
gg —c sin g+ P2 5
2 cos? 2
Or_ccos B
2 cos g
. 2
sin ¢ B "
b= fex sin B4 —25 |+t oo § (P U0 200
2 2 B 2 (1—&)
2co8' 5

2

+-cos

sin g

2 B
2

26

_ ( @*(1—¢) cos ¢ \(A—e'sin® ¢)*2 [ f o By

¢® cos B(1—e? sin® ¢)?/  a(l—e?) 2 2 cos
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a cos ¢ B 2 5
‘(cos B(1—¢& sin® ¢)1/2>\/ sin +2 ot g +cos
’”)‘\/ M tan? g(1+

= C.cos BV1—e’sin’¢ z
- B acos¢ 7\
CcOs §

) +1—— cosec ¥

2 cos? g

For ¢=0, h=% and Ic=§, hence hk=1 and the meridians are perpendicular to the

straight line equator. For A=0,

B
@ €os 5 c0s ¢ jpC COS B(1—eé? sin? ¢)!72
c cos B(1—é sin® ¢)17 “ B

@ cos 5 cos ¢

h=

and again hk=1.

The parallels are straight lines parallel to the z-axis and spaced at the distance
y==2¢ sing from the origin. The 2 coordinates are linear in X and hence are equally

spaced, the expression in 8 being a constant for any given parallel. From the equations
of the coordinates we get
P2 cos? B)G"

2
g2 =
(302

:B_ 4¢*—q?
2 4

B8

cos B=2 cos? ——1

Ccos

4c2—1°
2¢?

_ 20—
T2

(4=’ , (2 —y7)?
4z ¢ A 4ct
4t —yHr=N(2c*—y*>.

—1




87

= W//@jﬁﬂ\\\ =
s Sy saaNanw \\\\\§§§§X§Q\x ‘
LZ%@CC////VU/////VJGAO.\\\\\FV\\\§%$@§§§%%N
[ L] ‘ XAZ RS \ \

NN
AN \\&\\\\\\\\\\
NS S NN /
SN\ \\\\\\ Q0L /0

ATAYAS DITAAOAD ANV ISVOD 'S A

= Al
SSSSSSSSSSSS



EQUIVALENT PROJECTIONS

s

tion for hemispheres.

F16URE 12.—Proposed equivalent projee:
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The meridians are therefore fourth degree curves. Since the projection is equivalent,

we have
hk sin y=1=sin \LJ)\Z tan? .g<1_|_ 1 B) +1
2 cos? ¢
2
hence
. 1
sin ¢ 3 S
N tan? of 1+ 5) +1
2 tos? 3
—A tang 1+ 1 5
2 cos? 5
cos Y=

cot Yy=—NX tan g(l-i— 1 23>
2 cos* 5
2

DETERMINATION OF THE AXES OF THE TISSOT INDICATRIX
The b and % are conjugate diameters of Tissot’s indicatrix, hence we have
a4+ b =h*+k2

ab=hk sin y=1.
From these relations we get

a= ST 2+ 2 VP —2

= VT3~ JPTF—2

= V=2

tan (Z—;+§)=a

Tr &
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DETERMINATION OF THE DIRECTIONS OF THE AXES

Since the parallels in this projection are straight lines, it is best to reckon the
direction from the east in counterclockwise direction. The positive direction on the
earth will then agree with the positive direction on the plane. We will count A positive
to the east to agree with the usual positive value for the z.

0

F16URE 13.—Differential relations for distance and azimuth from the parallel.

From the diagram we have
dS,, sin ¢ T
+dS, cos ¢’ ¥>3

28 =dS, +dS, +2dSx dS; cos y.

tan u =dS,,

On the earth we have

tan u—di
=T,

T =T+
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From these two relations we get

dsS,, ds,
tan ' — ds,, ds, sin ¢
u Tds, .

ds.,
ds,, ds ,,, )( cos ¥

fo:m:((‘ﬁf ) (éi;n) +(d8p) +2<d8m> ds, )(ds,, cos ¥
ds

1+(d8’")

or
tan uw/ — h tan u sin ¢ hk sin ¢ tan u
E+h tan w cos ¥ k*+hk tan w cos ¢
_ tan » .
" k*+tan u cot ¢
e h? tan?u-+k*+2hk tan v cos 2
1+tan®

From the equation for tanu’, we see that when u=-275 :

tan 4'=--tan ¢,
therefore

u'= ¥, ll’>12'r

or u' is the large angle of intersection of the parallel and meridian as it should be.
By differentiating the expression for K* with respect to tan « and equating the
result to zero to determine the maximum and minimum value of K? we get

hk cos ¢ tan® u— (h*—k?%) tan u—hk cos ¢=0

2% T
tan®u hk cos ¢
If tan u, and tan u, are the roots of this equation, we have

tan u—1=0.

tan 4, tan w,=—1.

Hence, u; and u; are orthogonal. By solving this equation, we get

, tan u,= +2hk cos :p +(2hk coSs t//

h2—k?
tan u,= +2hk cos ¢+\/1+<2hk cos \0

After tan u; and tan 4, are computed, it is necessary to compute tan %, and tan u,’
from the equation of relation between tan v and tan w’. We will not carry through
the computation in general terms since the expressions become very complicated as
can easily be seen. As a practical matter, it is better to make the computations step
by step as it would ultimately have to be done in any case.
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EXAMPLE OF THE INDICATRIX

As a concrete example of the working of the formulas, we will make the compu-

tations for ¢=30° and >\=60°=;—r- We must first compute & and & for this point.
log p, at $=30°=6.80506633
log cos $=9.93753063 —10
log r=6.74259696

r=5,528,368 m.
§r=5,789,293 m.
for $=30°, A= ’Sf 2=5,986,861 m.
5,086,861
k=5"7g0.995 = 103412645
1
1
cot Yy=—N\ tan g( +2 cos? [_3)
“ 2

tan £=0.26689969; cos £=0.96617836

cos? g —0.93350159

1+ =1.53561773

2 cos? g

1,02 tan §=0.27949670
cot ¥=—0.42920009
tan y=—2.32991563

¥=113°13"44"45

1
h=k sin ¢

sin ¥=0.91893573
h=1.05230399
h?=1.10734369
£2=1.06941751

RP+52=2.17676120
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tan 3=%\/0.17676120=Q.21021489
§=11°52'17"655

=5°56'08"828

+5=>50°56'08"828

TN

=39°03'517172

ST ST U

Wl

tan (’Z'+%)=1.23207119=a

T §
tan (Z—E =0.81164141=b

We can arrive at these values in another way and we will give this method as an
1Hustration.

tan n=%y sin 2y=sin ¢ sin 2y
n and vy being auxiliary angles

. ks
sin é=tan (Z_ )

a=+/cot v and b=+/tan v

2 h2
o8’ 1=y
sint 2n=2 tan 5 cos? 1)=,72_{£_——122

. 2hk .
sin 2’y=m sin IP

hzi_’r_%=0.99984821

sin 2y=0.91879624
2y=66°45"02763
vy=33°22'317315

x

i ¥=11°37'287685
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tan (g— 'y>=0.20571864=sin 5
6=11°52/17"655
cot y=1.51799942
cot y=1.23207119
b=+/tan y=0.81164141

We have thus obtained the same values as by the other method.

We will now proceed to compute %; and u, and then u,” and w,’.

h2 kz 2
tan u,= +2hk cos ¥ 1+(2hk cos ¢

h?=—1.10734369
k*=1.06941751
h*—k?=0.03792618
cos y=—0.39440730
2hk cos Yy=—0.85840019

R—
W/’_ —0.04418240

2
1+(2hk oo ‘/’) =1.00195208

'J1+(2hk cos ¥ =1.00097556
tan 4,=—1.04515796

h*—k?
tan ;= +2hk cos ¢+\/1+(2Mc cos \l/
tan u,=+0.95679316

tan = —1.04515796
1 7 1.06941751+1.04515796 X 0.42920009

1.04515796
=—151799940— —0-68851013.

ton 0.95679316
Al Yz =1 58941751—0.95679316 < 0.42920009

0.95679316
=0.65876180 1.45241142.
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We find

tan u,/tan u =—1
and u,” and ;" are also orthogonal as they should be.
tan ;= —1.04515796; tan w,’=—0.68851013
4= —46°15"53767 uy’ =—34°32"52"10.
These two correlative angles give the directions of the major axis of the ellipse, since

we know that this axis lies in the smaller angle of the intersection of the meridian and
parallel at the point. The relation for the ellipse thus becomes

tan [w' -+ (34°32’52’.’10)]=% tan [u+ (46°15'53"67)]
- =>b* tan [u- (46°15’53767)]
b*=0.65876178.

This equation should be valid for u=u'=0 and it is, as can easily be shown. For
u=g; u’ should be the larger angle of the intersection of the meridian and parallel.
tan [u'+ (34°32752710)]=5" tan (136°15'53"67)
=—0.65876178X0.95679316
=—0.63029877

u’+ (34°32752710)=147°46"36"55
u'=113°13"44"745
=y
This gives us the correct value for ¢ as already computed.

‘We have given this complete treatment of the indicatrix at this point as an example
of the case when the equivalent projection has variation of scale along both the meridian
and the parallel. A greater amount of computation is required than is needed for the
case.of a projection that has true scale either along the meridians or along the parallels.

Tissot uses the word automecoic for true scale; thus he would describe the sinusoidal
projection as one with the parallels automecoic.

HAMMER-AITOFF PROJECTION

This projection is based on the Lambert azimuthal meridian equal-area projection.
1f we have such a Lambert projection we can proceed in the following way. Turn the
map about the polar axis until it makes an angle of 60° with the horizontal. Then project
the map on the horizontal plane by a system of parallel lines all perpendicular to the
plane of the map. This will double the length of the Equator and all straight lines par-
allel to the Equator. Thus, the circular boundary of the Lambert map will be projected
into an ellipse with major and minor axisin the ratio of two to one. At the same time all
areas will be doubled. Now, if we have a Lambert map computed for every 5° of
longitude, we can double the « values for 5°, 10°, etc., and designate them 10°, 20°,
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etc., on the new map. At the same time the y values will remain unchanged. Note that
this procedure should apply to the values for 10°, 20°, etc., of latitude since the 5°,
15°, etc., parallels would not be wanted when the meridians on the new map are only
given for every 10 degrees. Of course one could compute the 2%°, 7%°, etc., of longitude
and then every 5° intersection could be shown on the new map. The resulting map is
strictly equal area for the area between meridians is doubled, so it is proper to double the
designation of the meridians.

A table for the Lambert azimuthal equivalent projection on a meridian is given in
Special Publication No. 67, already referred to. A table for the Hammer-Aitoff projec-
tion is given in Special Publication No. 68, “Elements of Map Projection.” These
tables are both based on the sphere and not on the spheroid. If the tables for the trans-
formation on the authalic sphere are used for a new computation, both of these maps can
be based on the spheroid with no extra labor of computation. These tables are given on
pages 68-74 and they were computed so that any future computations of eqyal-area
projections can make use of them if it is deemed necessary to take account of the ellip-
soid for such purpose.

CURVES OF TRUE SCALE ON EQUIVALENT PROJECTIONS

Since, in the directions of maximum alteration of scale on equivalent projections,
the scale is too large in the one direction and too small in an orthogonal direction, there
must be some azimuth between these two directions in which there is true scale. In
Special Publication No. 68 we called attention to these curves and stated that no detailed
study of them had been made. A couple of years ago we received a letter frora M. R.
MacPhail, Caracas, Venezuela, calling attention to our statement and enclosing a
study of the curves that he had made under the interest aroused by our statement.
His treatment was an excellent application of differential geometry to the subject in
hand. Mr. MacPhail was at that time employed by the Standard Oil Co. of Venezuela.
We appreciate such interest in a practical engineer and wish to give him due credit for
his work. We will now approach the matter in a slightly different way but will use two
diagrams that Mr. MacPhail sent us. His work was sent to us for any use that we
might wish to make of it.

As a start, it is evident that there are two sets of such curves forming a network on
the projection. We will make use of Tissot’s indicatrix in our study of the matter.
When the meridians and parallels of the map intersect at right angles, the directions of
the axes of the indicatrix ellipse are given by tangents to the curves at their point of
intersection. Then the scale along the parallel is reciprocal to the scale along the
meridian at the point and they form the ¢ and b semiaxes of the ellipse. The scale in
any direction on the earth is then given by the equation

a? cos? u+b? sin? u=K?,
But when the scale is exact K becomes equal to one and we have
=
a? cos? u+6° sin? u=1=ab (sin® v+ cos® u),
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or
(ab—b?) sin? u= (a’—ab) cos®u.

If @ is not equal to b, we get
b sin? u=a cos® u.

Note that ¢ will not equal b on an equivalent projection except at certain points or
sometimes along certain lines. When a does equal b any direction satisfies the condi-
tion but we generally consider the curves as then making angles of 45° with the merid-
ians. We should state that these curves are called isoperimetric curves on the projec-
tion. Returning to the equation we have

a w, 0
tan u= :]:\/7)— +a=4 tan (74+§)
% being reckoned from the major axis. From the equation of the indicatrix we have

tan 'u,’=é tan u
a
or
B T o
tanu—:l:bezl:tan<4 5)

hence

The isoperimetric curves thus run approximately midway between the two axes of the
indicatrix. With certain projections that have the meridians and parallels orthogonal,
we can easily get the equation of these curves. With the Albers’ projection

R=f(¢) 6=nA\

Since the projection is equivalent, the element of area on the map R dR df=nR dR dX\
must equal the corresponding area on the authalic sphere —¢? cos 8 dB d\, the sign
being negative because R decreases as § increases.

nR dR=—¢c? cos B dB

since the d\ cancels out, being a factor on both sides of the equation. By integration,
we get

%nRz=c2(A—sin 8),

¢? A being the constant of integration.

R=cy/ (A—sin ﬁ)i-

Since the scale is to be true along the standard parallels, we must have, r, and r; being
the radii of the parallels,
R10=R1n)\=rl)\

R20 =R27L) = sz
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or dropping the common factor on both sides and squaring we get
Rin*=r? and R n’=r,?

F(A—sin B)2 (nf) =y

c*(A—sin Bz)i(ng) =7,

¢’(sin B;—sin B;)2n=ri—r?
7'12—“7'22 .
2¢%(sin B;—sin B;)
This agrees with the equation for n in the Aibers’ projection as ordinarily given. The
R’s can be computed from either of the expressions

n==

2
=R+22 (sin p—sin f)
or
2¢ . .
R2=R22+—ﬁ (sin B,—sin B).

Since the isoperimetric curves intersect a given parallel at a constant angle, such
that the angle on the earth and that on the map are complements of each other, we
must have dR on the map equal to +ds, on the earth. We have

dR=—bds,,

Bndr=ads, t=p=pl

dR _ bdsm__ _b*ds,
Rnd\~ " ads,  ds,
but for the perimetric curves,
dSm
ds,
dR ds,
Bndn— ToP=*b=2pg n

. dR= +ds,, as stated above. But from the differential equation for B dR, we get

=zZa

_ _c*cos BdB
di= nR
and
ds,=c cos BdA\.
Substituting these values we get

¢ cos Bdr= :I:M

or d
cdB
dA\=4-—7% R
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In the equation for R, let ;3=277—I

2
then
22, .
R*=R+—~(sin Bi+cos 21)

cos 29=1—2 sin® 4

R2=R12+27%‘2(Sin 131—|-1—2 sin? 17)
2 2
=R+ sin gt 1)~ sint
2 2
R=\/R12—|—2%(sin g+ J1 20“’40. sin? 5.
o B2 in it 1) |

Substituting this value and noting that d8=2dn, we have
2¢ dn

dA=+ =
n\/Rf—i——:T(sin Bi+1) yI—KE sin® 5
with
n[R12+-—(sm B+ 1)]
Let
0, 26, .
R, +*n*(sm B:i+1)
2¢ =1
then J
g %7
M=t ey
and
R=2 et JI=F s’ 7.
By integration

nt()\ XO)—— f ‘_\/1__]{:2 sz

This is Legendre’s first elliptic integral. By proper choice of )\, we can take \;=0, then
sin n=4sn(Ain)

and sn (Mn) is the Jacobian elliptic function. Note that for any given parallel we can

choose any meridian from which to reckon A, since the angle of crossing is constant

for that parallel. After starting one curve, the same central meridian must then be

used for all other parallels for this curve., When one curve is computed any number of

others can be located by their points of crossing the parallels, since they will be

symmetrically related to another chosen meridian as the given curve is to its meridian,
637697°—45——b
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As 5 varies from 0 to g; B varies from -—1—2" to +1§r and hence covers the full range of

latitude. The computation of the \ values is sufficient, for these give us the points of
crossing the parallels for any given curve. For n=0, A=0 and we can start from any
meridian that we wish on the circle representing the south pole. The curve should
cross the standard parallels at a 45° angle.

The equations of the curves on the earth become on substituting the value of

n=§+§

sin §+§)=isn(nt>\).
As g varies from -g to +%, nt\ varies from zero to K, the complete elliptic integral

of the first kind.
Let us apply these formulas to & map of the sphere that holds the equator and 3G°

north latitude as standard parallels. In this case r=a, rz=§a, sin §;=0, sin 52=%

1
g

Substituting these values in the equation of R, we get

and ¢=a. With these values n== and R,>=16a?; these results give k?=2/3; t=+/6.

R=2\/§a\/1—§ sin’p=2+/6a dn(~/60), with k2=§.

From the relation

sin n=sn%g)\,
when
=T T
¢"_2’ 7 2
and

in which K is the complete elliptic integral of the first kind,
k=0.81649658
54°44’08"2
54°. 7356
By interpolation in Legendre’s Table by use of second differences we get

2.01327
41578
2.02905

—9
K=2.02896
4
JeK=33133=).
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It is thus seep that the total extent in longitude is a fraction more than = or 180°.
Mr. MacPhail has constructed a diagram showing this curve on the projection which
we have given as figure 16.

4,
<,
(o
%

J?Oa
600

FIGURE 16.—Isoperimetric curves on Albers equivalent projection.

We will now compute the constants for the map of the United States on the Albers’
projection. For this projection the following values given in Special Publication No.
68 are: log ¢=6.8042074; log n=9.7802478; R, for 29°30’=9,215,188. From Special
Publication No. 67, 8 for 29°30’=29°23"20./09. With these values we find &%

F= ac”
2y 268, .

o Re+2 in it ) |
k=0.97096108

t=1.32639929
n=0.6029035.

=0.94276541

With these values for &, ¢ and n, the longitude of the crossing of any meridian can be
computed by means of a table of elliptic functions. The formula for the computation
in terms of the authalic latitude is the one to use

sin (Z{—i—g): +sn(ntr).
The authalic latitudes for any given parallels are given in Special Publication No. 67.

For the south pole B=—1§r and A=0. To compute for the United States map one

could start with parallel 25° north. This will give a certain value of M and we can
choose the meridian that we wish to have this value. Suppose it is to apply to the
intersection of the meridian 120° with the 25° parallel. Then we compute the value of
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M for 30°; this will be a larger value than that for 25°. Subtract the 25° value from
this and that will give the X east of 120° on parallel 30°; in & similar way we can com-
pute the intersection for any otber parallel. We can use the same values starting
from the southeast corner and use the negative sign. This gives a member of the other
family of isoperimetric curves. After cne curve is computed, any number of others
of the same family can be constructed by movirg each intersection 1°, 2°, 5° or anv
number of degrees either east or west. The two families of curves are inversely similer
and one can be derived from the other by reversing the signs of the intersections. If
we started at the cenirs! meridian of the map we could lay our values off to the east
and to the west on any parallel and thus get the two curves that intersect on the starting
parallel. A diagram is given in Special Publication No. 68 with several of these curves
shown on it.

THE LAMBERT AZIMUTHAL, EQUAL-AREA, POLAR PROJECTION

This is a special case of a conic projection in which both standard parallels move
up to the pole. Then n=1 and E,=FK,=0 and sin f;=sin f;=1. Then

R?=2¢(1—sin ﬁ)=4c?‘s'm2<f—§ :
4 2
Let B=—g—-p’, in which p’ is the authalic colatitude. This gives us

’
R=2¢ sin 3—’2—; a=N\.

t=1 and k=1 and the elliptic functions becomie the hyperbolic functions in the follow-

ing way
snz — tanhz
cnzr —> sechz
dnz — sechz

The isoperimetric curves are spirals of the form
r=2a sech a=2¢ sech \.

The curve is shown in figure 17 with the two inversely similar curves shown on it.
On the sinusoidal projection we have shown the Tissot indicatrix in the form

rym_ )b T 0\ e T 8)
tan (u —|—Z——§ =3 tan (u-}—z-l—2>—b tan <u+4+2)
We have shown that the curves of equal scale have the directions :t(%—i—%) on the earth

and:l:(g——% on the projection. The plus values correspond to u=0 and u’=0.

These isoperimetric curves are the parallels which were constructed true to scale.

For the other curve we must have v’ +£——g= —z-l-% on the projection or v’ = —% -+6-
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Hence
2
f—e = —_———
tan 4’ =—cot § Nen o 2 tan ¢,
%’ 1s, of course, a negative angle.
Considering the earth as a sphere, we have seen that % on the earth is either 0 or

—(%-1—&)- For the second value

B TA N _ 2 d¢
tan u=—tan (§+5)—+c°t S=+575m ¢ dhcos ¢
gd_)\_SiTl ¢ d¢_0
by cos ¢

2 log M t+log cos p=log C
log C being the arbitrary constant
A cos ¢=C.

By assigning to C a valae of ¢=0 that will make the isoperimetric curve start at a
chosen longitude indicated by A, we should have the equation

N cos =N

By means of this equation we could compute the longitude of its intersection with the
various parallels. The N's, of course, must be expressed in radian measure and not in
degrees. This equation of course applies to the sphere and not to the spheroid, but if
the projection is based on the authalic sphere, the curves can be located for the spheroid
by using the equation

A2 cos B=Ag

There still exists the slight variation due to the mapping of the spheroid on the authalic
sphere, but for practical purposes this is a negligible quantity.

The same relation is found for the Bonne projection since in it the scale along the
parallels is constructed true; the parallels are therefore the one set of isoperimetric
curves, and the other set is given in direction by the same relation

tan ¥’ =2 tan ¢

in which %’ is 8 negative angle measured from the tangent to the paralle]l at the point.

For the new equivalent projection with the Lambert spacing on the central merid-
ian, it would be necessary first to compute the directions of the axes of the indicatrix
ellipse and then get the directions for the isoperimetric curves from them. For the
point ¢==30° and A=60° which we have computed we found

tan [u’-+ (34°32/52710)]=0.65876178 tan [u+- (46°15'53767)],

i(g——g = + (39°03"51717).



66 U. S. COAST AND GEODETIC SURVEY

FIoURE 17.—Isoperimetric curves on Lambert’s azimuthal equivalent projection.

Hence for one curve
u’ 4 (34°32752"710) =39°03'51717
u’=4°30'59707
and
w’ 4 (34°32752"10) = —39°03’51717
u’=—73°36"43"27
This is & sufficient number of examples to indicate the general method of handling such
problems in equivalent projections.

It should be noted that there are innumerable other projections of the equivalent
class that could be devised but we have given the most important that are in use today.
Of those given, various transformations could be devised by transversing the elements
in various ways. The conic projections can have the apex of the cone in any desired
latitude and longitude, but as a prelude to such a projection the arc distance and azi-
muths of great circles emanating from this point would have to be computed. These
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computations could be made on the authalic sphere and in this way take account of the
ellipsoid if it is deemed of sufficient importsnce to do so. We are including such tables
computed for a point on the Equator and these could be used for any transverse map
with this point serving as the pole. We are including a couple of illustrations of such
maps on the Mollweide projection that were adopted from the work of Colonel Close.
(See figs. 18 and 19.) These illustrations serve to show what peculiar distortions may
be found in a map that is still strictly equivalent in a mathematical sense.

FIGURE 19.—Col, Close’s oblique Mollweide projection, after Steers.



68 U. S. COAST AND GECDETIC SURVEY
TABLES

Transformation from geographic to azimuthal coordinates on the authalic sphere—Center
on the Equator

VALUES OF THE AZIMUTH RECKONED FROM THE NORTH, &} TAN ¢=SIN A COT i)

Longitudo
Latitude
0 5° 10° 15°
° o ’ ” o ’ " o ’ rr o ’ 1”
0 060 00.00] 90 00 00.00| 90 00 00.00 | 90 00 00.00
0 00 00.00| 45 (1 13.97 53 21 50.2 24 06.43
0 00.00.G5 | 26 24 20.61 44 41 2335 36 51 18.11
0 00 0C.00 18 03 40.61 33 03 51.72 | 44 (8 12.20
0 00 €0.00 3 81 31.02| 25 36 23.58 ) 35 32 21.37
0 00 00.00] 10 38 01487 20 3¢ 3538 ! 29 08 -22.06
0 60 00.00 8 37 22201 16 43 40.63 | 24 14 35.22
0 20 €0.0) 7 07 8.4 13 59 1979 20 22 132.62
¢ 00 §0.00 6 57 2400 11 44 37.23 | 17 12 55.86
0 00 00.00 5 00 12.82 9 53 41.65 i4 34 25.95
0 00 00.00 4 12 05.92 8 19 37.¢8 12 18 24.67
¢ 00 00.00 3 30 20.06 6 57 49.33 10 19 03.62
0 00 00.00 2 53 37.35 5 45 02.28 8 32 12.4
0 GO 00.00 2 20 16.25 4 3% 00.91 6 54 45.46
0 00 90.00 1 49 30.62 3 37 588.10 5 24 20.86
0 00 00.00 1 20 37.93 2 40 33.81 3 59 06.26
0 00 00.C0 0 53 03.99 1 45 42.25 2 37 25.35
¢ 00 00.00 0 26 19.90 0 52 27.60 1 18 10.¢9
0 00 00.00 ¢ 060 00.00 0 00 00.00 0 00 00.00
i Longitude
Latitude
20° 25° 30° 35°

90 00 00.00 | S0 00 00.CO | 90 00 00.00 { 90 00 00.00
75 42 40,04} 78 21 19.77 | 80 07 08.35| 81 21 57.67
62 49 56.63 1 67 26 41.84 | 70 39 2109 | 72 59 0405
52 02 58.82| 57 44 20.99 | 61 35 16.07| 85 03 3421
43 20 55.3¢ ) 49 23 32.51 | 54 04 1562 | 57 43 10.57

36 22 57.26 1 42 18 5551 | 47 07 34851 51 00 59.22
45 22,521 36 19 39.21| 41 Ol 18,67 44 56 30.75
03 00.30 | 31 13 42,521 35 39 08.82} 39 26 59.81
16 00.59 | 26 50 12.497 30 54 1423 : 34 28 33.59
57 40.71 ) 23 00 10.76 1 26 40 08.30] 29 56 58.81

04 54541 19 36 26,404 22 51 11441 25 48 08.88
31 26,161 16 33 19.03 | 19 22 3501 ] 21 53 16.94

06 07.28 | 11 11 5187 | 13 10 5498 | 15 02 19.98
07 40.21{ '8 47 £1.63| 10 21 3561 | 11 50 3831

39 53.83 8 45 35.09
48 04.00
08.83

00 C0.00
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Transformation from geographic to azimuthal coordinates on the authalic sphere—Center
on the FEguator—Continued

VALUES OF THE AZIMUTH RECKONED FROM THE NORTH, a; TAN a=8IN A cot B—Con.

Longitude

Latitude

48 57.26| 10 46 34.05| 11 39 02.41 | 12 26 0251
29 43.59 7 08 20.36 7 43 37.60 8 15 20.37
13 50.89 3 33 2176 3 51 0571 4 07 03.77
00 00.00 0 09 00.60 0 00 00.00 0 00 00.00
Lougituede
Latitude
60° 85° 70° 75°
o o ’ ” o ? " -] ’ " -3 ’ ”
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Transformation from geographic to azimuthal coordinates on the authalic sphere—Center
on the Equator—Continued

VALUES OF THE AZIMUTH RECKONED FROM THE NORTH, a; TAN a=8IN A cot f—Con.

Longitude
Latitude
80° 85° 90°

o ’ " o r r” o ’ ”
90 00 00.00( 90 €0 00.00 | 90 00 00.00
84 56 4593 | 85 00 12.84 [ 85. 01 20.94
79 53 37.85| 80 00 25.29 | 80 02 390.44
74 50 41.56| 75 00 36.97 | 75 03 53.12
69 48 02.46 | 70 00 47.51 | 70 04 59.75
64 45 45421 65 00 56.61 | 65 05 57.31
59 43 5462 60 01 03.98 | 60 06 44.06
54 42 33.37| 55 01 09.41 | 55 Q7 18.56
49 41 44.09| 50 01 12.72| 50 07 39.76
44 41 28.20| 45 01 13.81 45 07 47.01
39 41 46.08 | 40 01 12.67 | 40 07 40.07
34 42 37.12| 35 01 09.32| 35 07 19.14
29 43 59.67 | 30 01 03.87 | 30 06 44.83
24 45 51.17 | 25 00 56.48 | 25 05 58.20
19 48 08.21 | 20 00 47.38| 20 05 00.63
14 50 46.61 15 00 36.85| 15 03 53.90

9 53 41.60| 10 00 25.20 | 10 02 40.02

4 56 47.93 5 00 12.80 5 01 21.25

¢ 00 00.00 0 00 00.00 0 00 00.00

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, {;COS{ = COSAcos 3

Longitude
Latitude
0° 5° 10° 15°

o ’ ” o ’ ” o ’ ” -] ’ ”

0 00 00.00 5 00 00.00 | 10 00 00.00 [ 15 00 00.00

4 58 39.06 7 03 02.61 11 09 32.44| 15 47 10.62

9 57 20.56| 11 07 4590 14 04 30.01 17 56 23.32
14 56 06. 15 43 54.81 17 54 37.361 21 02 44.30
19 556 00.25 | 20 30 36.056| 22 11 41.17 | 24 44 55.40
24 54 02.69 | 25 21 58.90| 26 42 51.78 | 28 49 14.79
20 53 15.94| 30 15 53.83 | 31 22 08.83| 33 07 37.38
34 52 41.44] 35 11 23.11| 36 06 29.20 | 37 35 17.17
39 52 20.24 1 40 07 57.35| 40 54 11.92| 42 (9 20.37
44 52 12.99| 45 056 19.95| 45 44 17.19| 46 47 57.10
40 52 10.93 1 50 03 20.64) 50 36 07.25] 51 29 54.89
54 52 40.86 | 55 01 52.43 ) 56 20 16.83 | 56 14 23.94
59 53 1517 | 60 00 50.10 i 60 23 27.98 | 61 00 48.54
64 54 01.80| 65 00 09.31 | 65 18 27.24 | 65 48 41.94
69 54 59.37 | 69 59 46.27 | 70 14 03.94 ( 70 37 43.31
74 56 06.10 | 74 59 37.34) 75 10 09.10| 75 27 35.57
79 57 19.98 1 79 59 39.00 ! 80 06 34.90{ 80 18 (4.22
84 58 38.75) 84 69 47.73| 8 03 14.13 | 85 08 56.36
90 00 00.00| 90 00 00.00 | 90 00 00.00 | 60 00 00.00
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Transformation from geographic to azimuthal coordinates on the authalic sphere—Center
on the Equator—Continued

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, {; cos { =cos A cos —Con.

Longitude
Latitude
2° 25° 30° 35°
-] o ’ ” -] ’ 1" o ’ ” o ’ ”
20 00 00. 25 00 00.060] 30 00 00.00 | 35 0Q 00.00
20 35 07.61 25 27 33.93| 30 22 19.77| 35 18 26.67
22 14 58951 26 47 2591 | 31 27 43.99| 36 12 50.05
24 46 36.27 ) 28 52 23.44) 33 11 5820} 37 40 33.73
27 56 02.16 | 31 33 32294 ) 35 29 20.30 | 39 37 55.09
31 31 59.46} 34 42 31.87 | 38 13 52.86 | 42 00 43.88
35 26 26.37§ 38 12 28.39 | 41 20 10.38 | 44 44 53.53
39 33 56.30 | 41 58 08.18 | 44 43 39.23 | 47 46 40.09
43 50 49.60 | 45 55 38.77 | 48 20 39.42| 51 02 5.19
48 14 36.75| 50 02 09.72 52 08 17.94| 54 30 4L81
52 43 33.73} 54 15 356.36| 56 04 19.67 | 58 08 0l.27
57 16 20.15) 58 34 21.74| 60 06 68.71 | 61 52 58.74
61 52 19.27 ) 62 57 17.23| 64 14 51.16] 65 44 03.73
66 30 31.36 | 67 23 25.87 (| 68 26 49.44| 69 40 00.85
71 10 29.62| 71 52 02.80 | 72 41 58.04| 73 39 46.45
75 51 47.19] 76 22 30.83| 76 59 30.10 | 77 42 2557
80 34 01.28 | 80 54 18.17 | 81 18 44.96| 81 47 09.75
85 16 51.73 | 85 26 56.58 1 85 39 06.20 | 85 53 14.96
g0 00 00.00 ! 90 00 00.00; 90 00 00.00 | 90 00 00.00
Longitnde
Latitude
40° 45° 50° 65°
-3 o ’ r ° ’ " o ’ ”n o ’ ”
RO 40 00 00.00 | 45 00 00.00 | 50 00 00.00 | &85 00 O00.

40 15 24.55 45 12 56.40 50 10 51.84 55 09 04.1
41 01 03.02| 45 51 23.07 50 43 12.64 55 36 06.91
42 15 16.08 | 46 b4 15.44 | 51 36 10.74 | 66 20 39.80
43 65 36.60 | 48 19 5505 | 52 49 06.67 | 57 21 57.74

2 o e i ccccmameeememeeeeeeeaaaae———s 45 50 10.26 | 50 06 20.58 1 54 20 09.02 | 58 39 02.09
48 22 5.68) 52 11 19.07 | 5 07 50.86| 60 10 44.25
51 03 53.65} 54 32 3551 | 58 10 30.75| 61 55 49.21
53 59 25.50 | 57 07 59.73 | 60 26 26.64} 63 52 58.77
57 07 07.36 | 59 55 80.58 | 62 53 59.42 | 66 00 54.10
60 24 5463} 62 53 17.91| 65 31 3521 | 68 18 17.72
63 51 00.61 7 65 80 42,97 ] 68 17 46.40 | 70 43 54.71
67 23 53.69§ 69 13 17.74 | 71 11 12.05| 73 16 33.41
71 02 14.¢3 72 32 43.721 74 10 37.51 76 556 05.66
74 44 5566 75 58 50.56 | 77 14 63.87 | 78 26.71
78 30 58517 | 79 24 34.46| 80 22 57.05| 81 25 34.85
82 19 18.83 | 82 54 56.84 1 83 33 46.94| 84 15 30.96
86 00 16.30 | 86 27 02.82| 8 46 26.34 | 8 07 17.94
0 00 00.001 90 00 00.00 [ 90 00 00.00 | 90 00 00.00
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Transformation from geographic to azimuthal coordinates on the authalic sphere—Center
on the Equator—Continued.

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, {; 08 { = cos A cos —Con.

Longitude
Latitude
60° 65° 0° 75°
o o ’ ”n o ’ ” o ’ r” -] ’ n
60 00 00.00 | 65 00 00.00 { 70 00 00.00 | 75 00 00.00
60 07 28.82 ) 65 05 02.58| 70 04 43.05| 75 03 28.40
60 20 43.79 1 65 24 06.00] 70 18 49.37 | 756 13 51.80
61 06 40. 65 B3 57.561 70 42 10.58 | 75 31 04.86
61 57 34.49 | 66 35 16.62| 71 14 32.99| 75 54 b58.75
63 01 40.08 | 67 27 35.40| 71 55 37.86 | 76 25 21.33
18 36.05] 68 30 19.92) 72 45 01.95| 77 01 57.29
65 47 00.79 1 69 42 51.11| 73 42 18.00| 77 44 28.42
67 26 045 71 04 25.88| 74 46 55.27 | 78 32 33.79
60 14 46.34 } 72 34 18,12} 75 58 20.32| 79 25 50.11
71 12 04.00 [ 74 11 39.64| 77 15 56.52 | 80 23 51.89
73 16 55.60 | 75 55 40.94| 78 39 06.54| 81 26 11.79
76 28 19.99 1 77 45 3L.79 1 80 07 10.77 | 82 32 20.84
77 45 17.201 70 40 2170 ] &6 39 2869 | 8 41 48.68
80 06 49.08 | 81 39 20.23| 8 15 18.97 | 84 54 03.85
82 31 58.39| 8 41 37.13| 84 53 50.67| 86 08 33.93
50 49.58 | 85 46 22.47 | 86 34 48.40 | 87 24 45.50
87 20 28.06 | 87 52 46.57 | 88 17 02.84 | 88 42 05.82
90 00 00.00| 90 00 00.00 | 80 00 00.00 | %0 00 00.00
Longitude
Latitude
80° 85° 90°
o r ” o ’ ” o ’ 1"
80 €0 00.00{ 85 00 (0.0 ( 90 00 00.00
80 02 17.15| 85 Ol 08.05( 90 00 00.00
80 09 07.54| 85 04 31..72| 90 00 00.00
80 20 28.03[ 85 10 09.55| 90 00 00.00
80 36 13.36 | 8 17 59.10} 90 00 00.00
80 56 16.20 | 85 27 56.99 | 90 00 00.00
81 20 27.58| 85 39 58.87| 90 00 00.00
81 48 36.10| 85 53 59.49 | 90 00 C€O0.00
82 20 28.92 ) 86 09 52.66] 90 0D 00.09
82 55 51.40| 86 27 31.35| 90 00 00.00
83 34 27.35| 86 46 47.71 ! 90 00 0Q.00
84 15 59.07 | 87 07 33.06 | 90 00 00.00
85 07.59 | 87 29 38.00{ 90 QG 00.00
85 46 32.74 | 87 52 52.50 | 90 00 00.00
86 34 53.35( 88 17 0591 90 00 00.00
87 24 47.36 | 88 42 07.08 | 90 00 00.00
88 15 52.04 | 89 07 44.44 | 90 00 GO0.CO
89 07 44.12| 89 ‘33 46.12 | 90 00 00.00
90 00 00.00| 90 00 00.00{ 80 00 00.00
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Functions of authalic latitude for map of world on proposed equal-area projection

Latitude [} g 2sin g cos &
o L] " o ’ L4

0 00 00.000 0 00 00.0000 0.00000000 | 1.000000C0

9 57 20 561 4 53 40.2305 0.17354142 | 0. 95622831

19 55 00.252 9 57 30.1260 0.34586512 | 0. 92493366

29 53 15.944 | 14 56 37.9720 0. 51574568 | 0. 06617885

39 52 20.236| 19 56 10.1180 0. 68194530 | 0. 64007322

49 52 19.929 1 24 56 09.9645 0.84321448 | 0.90677854

59 53 1516061 29 56 37.5830 0.99824378 | 0. 86651366

69 54 59.367 1 34 57 20.6835 1.14505864 | 0. 81956982

79 57 19.983 1 39 39. 915 1. 28498084 | 0. 76620372

90 00 00.000{ 45 00 00.0000 1.41421356 { 0. 70710678

Latitude cos B cos Bfcos g tan g
-]

1. 06000000 1.00900000 0. 060000000

0. 98494169 0. 93367065 0. 08709923

0. 94018865 0. 95457053 0.17557758

0. 86700320 0. 89733269 . 256383068

Q. 76747532 0. 516364951 0. 36270861

0. 64449466 0. 71075200 0. 46405062

0. 50169877 0. 57893408 0. 57604254

0. 34338038 0. 41898738 0 69912203

0.17441212 0. 22760479 0. 83843884

0. 06000000 0. 00000009 1. 09000060

Table for an equivalent projection with Lambert, azimuthal, meridional, projection spacing
on the central meridian and straight line parallels

TABLE COMPUTED WITH AUTHALIC LATITUDES

Latitude v
Long. 0° Long. 10° Long. 90°
m
0 1,111, 949 10, 0C7. 539
0 1,099, 351 9, 84, 160
0 1,061, 434 9, 552,902
0 997, 810 8,920, 292
0 907, 794 8,170,150
0 790, 320 7,112,878
0 643, 801 5, 794, 206
0 465, 892 4,193,032
0 253, 085 2, 277,764
9, 009, 951 0 0




74 U. S. COAST AND GEODETIC SURVEY

TABLE OBTAINED BY MULTIPLYING THE ABOVE VALUES BY 1.5 X 10~° FOR A CON-
STRUCTION TABLE IN CENTIMETERS (WITH ADDITIONAL COLUMNS)

z

Latitude v
Long. 0° | Long. 10° | Long. 30° | Long. 80° | Long. 180°
0 1, 668 5,004 15,011 30,023
0 1,649 4,047 14,841 29, 682
0 1, 502 4,776 14,329 28, 659
0 1,497 4,490 13, 470 26, 941
[} 1,362 4, 12, 255 24, 510
0 1,185 3, 556 10, 669 21, 339
0 966 2, 897 8, 691 17,333
0 699 2,096 6, 280 12, 579
0 380 1,139 3,417 6, 833
0 0 1] 0 0




