usg U. S. DEPARTMENT OF COMMERCE
* } 0 ! SINCLAIR WEEKS, Secretary .

V)0~ b COAST AND GEODETIC SURVEY

f q 5 : ROBERT F, A. STUDDS, Director

{

Special Publication No. 301

REVERSIBLE SUSCEPTIBILITY

AND THE
INDUCTION FACTOR
USED IN GEOMAGNETISM

By
DAVID G. KNAPP

LIBRARY

JUN4 1992

LULLA
U.S. Dept. of Comimerce

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1953

For sale by the Superintendent of Documents, U. S. Government Printing Gffice
Washington 25, D. C. ~ Price 25 cents



National Oceanic and Atmospheric Administration

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such
as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library and the Climate
Database Modernization Program, National Climate Data Center (NCDC). To view the
original document, please contact the NOAA Central Library in Silver Spring, MD at
(301) 713-2607 x124 or www.reference(@nodc.noaa.gov.

LASON

Imaging Contractor

12200 Kiln Court
Beltsville, MD 20704-1387
January 1, 2006



U. S. DEPARTMENT OF COMMERCE
COAST AND GEODETIC SURVEY

ERRATA SHEET FOR SPECIAL PUBLICATION NO. 301

Possessors of Special Publication No. 301, “Reversible Suscepti-
bility and the Induction Factor Used in Geomagnetism,” are requested
to make corrections by hand as listed below, for typographical errors
that have been found to occur in some copies of the publication.

PAGE LOCATION ON PAGE IN PLACE OF READ
3 | Equation (4) - oo ceomcaaao (illegible) H=—H.—gl,
6 Equations (9) ) (10) ______________ Ia I'd
6 | Equation following (10)_.______.__ I I4
15 | Equation following (23)._..__-_. I4 Iq
23 | Lines 5, 8, 12 only_. ... .-__- Ir In

This sheet to be inserted back of title page.



Section

CONTENTS

Treatment of units and dimensions. ..o ocoo oo nceccaaacas

Background.._______.___.

The demagnetizing factor_
Minor loops, the reversible
The induction factor. .. ._
Effect of varying I.__.____
. Relation of «y to main loop

©P NS o

Magnetization and demagnetization curves_ ... o ..
Fullness or convexity of the curve_ .. meiececimmcacans
Comparing B/H and I/H curves_ ..

susceptibility, and magnetic stabilization__

10. Effect of T upon T o e e m e e

11, Temperature effects______

12. Effects of aging and heat treatment. . . v o cocmcooe e occcacacaaon
13. Curvature of minor lo0ps. - _ o~

14. Applieation. . ___.___.____
15. The induction coefficient_.

Summary of recurring notation . - - aeaaa
16-25. Appendix. Effects of the ambient medium. oo ocoocaoooo
References cited in this publication_ .. oo

Figure

ILLUSTRATIONS

1. Normal magnetization eurve. ..o oo .
2. Demagnetization and energy-product curves. .- oo ooaooae___

. He and gH, compared.____
. Minor or recoil loop._ ...
. Loops sheared to show effe

cts of ambient field ... _ .. ___.____
Nelson - e

. Relation between xg 80 LRee v o ccemee oo oo

3
4
1)
6. Gans relation and data by
7
8. Relation between x, and I4
9

. Hornfeck-Edgar curve compared with Gans curve_.____ ... .____.__.
10. Resolution of fields at surface of an ellipsoid. ..o oo _

11. Relation between T and m



TREATMENT OF UNITS AND DIMENSIONS IN THIS PUBLICATION

The functions discussed fall into two groups, namely (a) those for
which the units in different systems are of different sizes, such as B,
g, H, I, M, N, g Wg, x, and u; and (b) those comprising abstract
ratios, which remain the same regardless of the choice of units, in-
cluding d, f, m, Nu=*, T, u, «/u,x, T/V, and ¢. Equations and
verbal statements of relation are so written that their validity does
not depend on the system chosen. Numerical values have the same
generality insofar as they are expressed in terms of group “b” func-
tions. When numerical values are stated for group “a’ functions,
this is done in terms of the unrationalized c. g. s. electromagnetic
system, the one prevailing in geomagnetism.

The symbols #°, %, and u, encountered throughout the develop-
ment serve to adapt the equations to more than one systemn of units,
and in addition the x4, maintains dimensional coherence for the reader
who does not choose to regard that parameter as a pure numeric.
To somewhat shorten the expressions involving these factors, one
can make use of their values in the system of his own preference, as
stipulated on page 33.

To denote the magnetic condition of any given small volume of a
substance, one states how great the induction would be if the sub-
stance extended throughout space in that same condition. This is
termed the intrinsic induction, or (when divided by #%) the intensity
of magnetization. The actual induction at the site may be different,
because of the presence of nearby or remote boundaries, inhomo-
geneities, and macroscopic currents. The quantity, actual minus
intrinsic induction, when divided by p,, is called magnetizing field,
alias magnetic intensity or field strength. Clearly, the field strength
is chargeable to postulated pole distributions and to actual current
circuits, and may be expressed in terms of them as though they were
set up in vacuo.

The intensity of magnetization is treated as being dimensionally
akin to induction; this much-used convention lends itself to the dis-
cussion of elongated magnets, which tend to be conservative in B
when exposed to a changing medium. Susceptibility is taken as
having the dimensions and magnitude of I/H. Some readers may
find it helpful to substitute for this term and its symbol « the com-
posite expression ‘‘specific susceptibility times y,/#*"’ where specific
susceptibility is defined as (u—1).



REVERSIBLE SUSCEPTIBILITY AND THE INDUCTION
FACTOR USED IN GEOMAGNETISM

1. Background.—The measurement of the intensity of the earth’s
magnetic field has afforded for over a century one of the most precise
examples of geophysical measurement. This early achievement of
C. F. Gauss and his contemporaries was significant not only in geo-

hysics but also in the emerging realm of electrical technology, where
1t helped to meet for a long period the pressing need for a calibration
technique in a variety of measurements.

Among the refinements contributing to this high precision was the
recognition of the temporary change in the strength of the magnets
used, due to their varying relation to the geomagnetic field during
the measurements and to temperature changes (Lamont 1849).
This development took place so ecarly that the terminology and
conceptual treatment became congealed without benefit of {atter-
day insights into the behavior of magnetic materials. One objective
of the present publication is to translate these modern insights into a
heightened understanding of specific environmental effects on the
magnets used in geophysical work. Another is to set forth in sys-
tematic form for study and reference some empirical relations not
previously so assembled, ranging from well-known geometric properties
of the hyperbolic demagnetization curve to little-known interrelations
governing various aspects of the magnetizing process. No new experi-
mental data are reported, but some of the interrelations may appear
in a new light. In any event, there is a need among geophysicists
for such a connected account, to serve as a point of departure in a
variety of instrumental problems.

A summary of some of the chief results of this study (exclusive of
the appondixg,was presented orally at the 1951 annual mceting of the
American Geophysical Union in Washington, D. C. ‘

It is suggested that the reader become familiar with the notation
list on page 32 and refer to it occasionally during his study of this
publication. Where reference is made to other authors, the bibli-
ographyv on page 49 will identify the source.

2. Magnetization and demagnetization curves.—For a virgin
ferromagnetic specimen, the curve of magnetization will be somewhat
as shown in figure 1. The character of the initial part of the curve has
been intensively studied; Rayleigh (1887) found that it has a definite
slope at the origin, and that 1t can be represented by the formula

I=qH+bH? (1)

where I is the intensity of magnetization (magnetic moment per unit
volume), H is the eflective intepnsity of the magnetizing ficld, and a
and b are constants. DBidwell (1911) reviews this topic and gives
values of @ and b for different materials, as do Weiss and Ifoéx (1929).

According to a relation known as Fréhlich’s (sometimes as Lamont’s)
law, a portion of the curve lying up beyond the inflection point is
approximated by the cquation

H/I=¢'+H[I, (2)



DEMAGNETIZATION CURVES 3

where I', is the saturation 1500
value of I, and ¢’ is & con- ,
stant. This law makes a
chord from the origin to a
point on the curve have a
slope that varies in propor-
tion to (I’,— I) as the point |
moves. Though sup- /
planted (Gokhale 1926) by 1000

an exponential function
making a better fit in the V/
saturation region, ¥réh-
lich’s law is cited here 7 R
because Watson (1923)
found that asimilarlaw ap- p
plics to the demagnetiza-

tion culrve—that is, the 800
curve that is traced when ' : ;
H is caused to {all back / [ Inflection. point
slowly from a large positive /
value through zero to a //
reversed value H, just suf- /
ficient to reduce I to zero. /
This is a portion of the 1/ P

major hysteresis loop, and ol — Tarctan a _
H,is called the coercivity. 100 200 300

For this relation Watson H

replaced H with (I—I.}.I{c) Figure 1.—Features of thorl.\;)‘rx:::l magnetization
since the aforementioned cume, gonere

chord must now spring from the intercept FH=—H,. In order to ob-
tain the best fit for negative valuces of A (the range in which permanent
magnets are worked), we discard as Watson suggests the restriction
of using the true saturation value and replace /7, with I,, which is
taken as the level of the horizontal asympiote of the mathematical
function. In some cases this value may be considerably smaller
than the real saturation value, as Scott (1932) observes. The equation
may be written

I = — o = ]

oi/l,—H+gI+H.I/1,—H,=O0. (3)

Like equation (2), this represents a rectangular or equilateral hyper-
bola (see left part of fig. 2).

This equation has no theoretical basis, and indced cannot be exact
in the ncighborhood of the H axis, since in that vicinity the experi-
mental curve has an inflection point where the second derivative must
vanish; the hyperbola cannot meet this condition. Nevertheless, the
work of many investigators has shown the hyperbolic law to fit the
true curve so nearly that its gross characteristics are significant in

interpreting the latter. b o s s
The vertical asymptote of equation (3) is the line ﬁ“i{ ¥k %@



4 SUSCEPTIBILITY AND INDUCTION FACTOR

Now, we have called H the effective magnetizing field, but & more
specific statement is desirable. A given material is studied by insert-
in% a specimen into a magnetic circuit, impressing a succession of
values of magnetizing ficld on the circuit, and observing the changes in
the magnetization. For consistent results, the circuit must be ar-
ranged to minimize leakage so that conditions will be essentially
uniform throughout the specimen. The overall magnetizing field 1s
apportioned to different segments of the circuit according to their
relative reluctances. If the reluctance of the path external to the
specimen is known from prior experiments (it should preferably be
small), then the portion of the impressed magnetomotance actually
effective on the specimen may be computed, likewise the corresponding
field intensity, which we denote by H.

To make the effective field zero, we may adjust the impressed
magnetomotance until its ratio to the total flux just equals the reluc-
tance of the external path. If this state of the circuit is attained by
continuously reducing H from a large positive value, we get for the
specimen the value of  known as residual magnetization, and herein
denoted by Ir; it is evaluated by setting H=0 1n equation (3), whence

IU/IR=1+gI:/Ha- (5)

Now, comparing (5) with (4) we see that the abscissa of the vertical
asymptote, with its minus sign dropped, bears to the coercivity H,
the ratio 1,/I;. That is, the two coordinate axes must cut the curve
and the asymptotes at distances from the origin that are in proportion.
In fact, lines drawn through any point P parallel to the asymptotes of a
hyperbola will cut the curve and the asymptotes at distances from P

that are in proportion. If we let p=1z/I, we may express equation
(5) in the form

—91»,

Note that the third and fourth terms of equation (3) reduce by (5) to
HI/I,, whence we readily obtain

I_HA+H s
Tn H,tpH’

essentially the form of equation (3) given by Scott (1932). This form
has two advantages over (3), name% , it involves I only once, and it
dispenses with ¢, using instead the more general index p, which is
unaffected by a transformation such as applying & constant factor to
all the ordinates or abscissae. For another useful form we solve this
for H, obtaining

H  I.—1I
TH, Ta—pl 72

(In the notation used here, Watson’s a becomes g/#°, while Scott’s
A becomes 1/p.) :
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6 SUSCEPTIBILITY AND INDUCTION FACTOR

1t is also of interest to differentiate in equation (7), obtaining

dH  H.+pH ®
_ (Ir—pI)? .
= I H.(1—) (82)
_1=H.(1—p)
. TPy (8)

Since the demagnetization curve can be traced in one direction onl{r,
the derivative given by equation (8) does not describe any reversible
physical action, but is merely the slope of the curve at the specified

point. We may take note of two special values of ﬂ, to which-we

assign the symbols I, (for I=0) and Ir (for H =0)(?HW0 find that
I=1/g
=1/(1—p) (9)
Ir=1,(1—p) (10)
where Ly=Ip/H..

The demagnetization curve (insofar as it obeys the hyperbolic law)
is symmetrical about & diagonal axis (slope —1) which goes through
the intersection of the asymptotes (fig. 2). This axis is the normal
to the curve at its vertex or point of greatest curvature. Now,
practical curves must often be plotted with different scales for the two
variables in order to bring out the pertinent relations. The validity
of the properties thus far discussed is independent of such scale change,
but the coordinates of the vertex will depend upon the relation of the
scales. If we make one unit of ordinate correspond in scele with %
unit of abscissa, the vertex will have the coordinates

I,= I,(l——g”/k")
H,=g%k%I,—H,.

The gencral aspect of the curve depends chiefly on the value of
kIg/H,. By choosing k& so that this expression has a value between
(1—p) and 1/(1—p)—that is, by making 1/k greater than Ip but
less than J—we may cause the vertex to fall in the second quadrant
as in figure 2; and if we set k=H /I the axis of symmetry will go
through the origin.

The line from the intersection of the asymptotes through the origin
will not in general be the axis of symmetry, but it will always go
through the point whose projections on the axes are the intercepts of
the curve. This line is the locus of the equation

HcI+IRH=0. (11)

In figure 2 it is the line labelled “Optimum N”. It is obvious that as
the demagnetization curve is being traced, I/Ip falls continuously
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while —H/H, rises continuously. Since each of these ratios covers
the range between zero and +1, there will be a single point at which
they are equal. This point is evidently where the line given by
equation (11) crosses the curve, affording a simple means of locating
it graphically, as Sanford (1927) explains. It is also the point at
which the slope of the curve (eq. 8) is given by Ip/H.=1;, And it
can serve as & third anchor point for establishing the parameters of
an experimental curve—that is, we may stipulate that the hyperbolic
approximation shall be so drawn as to intersect the real curve at this
point as well as at the two intercepts. There is, furthermore, a direct
practical interest in this point, as will now appear.

If a ring were magnetized tangentially without leakage, its condition
upon removal of the magnetizing field would bo that represcnted by
the point H=0, I=1I,; but such a magnet would have no external
field. In a practical magnet there must be an air gap and this places
the normal operating point somewhere to the left of the 7 axis. Ina
subsequent section we shall discuss this quantitatively in relation to
specific magnet shapes. It has been shown (Evershed 1920; Watson
1923) that the energy allocated by a magnet to its external field is
measured by the product of the values of —H and I at which the
material of the magnet is worked, and that under stated conditions
this energy product shows the efficiency with which the material of
the magnet 1s utilized to maintain the desired field.

The curve showing the relation of the energy product to I is the
locus of the equation

ITH (Ix~1)
T . [4
¢ =T—pl (12)
where Wy is the value of —IH (see cq. 7a). Ordinarily W is plotted
as abscissa and [ as ordinate, to facilitate comparison with values on
the I/H curve. Equation (12) then represents & nonrectangular
hyperbola having a horizontal asymptote coincident with that of the
demagnetizing curve, and an inclined one represented by the equation

By pWe— H.I—H,I,(1—p)=0.

The energy-product curve for Alnico III is shown on the right-hand
side of figure 2, with portions of its asymptotes and transverse axis.

Watson showed that the maximum value of Wy for a given material
is reached when the coordinates of the operating point on the demag-
netizing curve are in proportion to the latter’s intercepts—that is, at
the point discussed above, where the curve is crossed by the line of
equation (11). By sacrificing this advantage it is possible to obtain
higher values of I, if desired. (The operating point of a real magnet
would not remain on the curve at all, but the maximum value of Wg is
nonetheless a useful criterion.)

For this optimum condition we first replace —H/H, in (7a) with
I/I; by (11). Then, using the subscript 4 to denote the optimum
condition,

I Ip—1,
I Ip—pl,

1p=@2—Igp/Is) Ip[1s
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Now let
d=1L/ I
Then
p=(2—1/d)/d
=(2d —1)/d? (13)
1—p=(d~'—1)

d=(1—y1—p)/p. (14)

If we let Hy denote the magnitude of H (i. e. the value of —H) for the
optimum condition, we may likewise write

d=H¢/He
whence
H‘; I3d2=H¢I¢1
= Wt(mx.)

These relations, due to Underhill (1944) and Desmond (1945),
afford a means of determining p from actual experimental curves, or
from published data. One might draw a distinction between d as fixed
by the point on the curve whose coordinates are in proportion to the
intercepts and d as defined for maximum Wpy. A difference of this
nature would serve as a rather sensitive test of the conformity of the
experimental curve to a rectangular hyperbola; its presence would
signify that the slope at the first-mentioned point was unequal to
I:/H.. In such a case, there would likewise be discrepant versions of
p, evaluated by equation (13).

Note the inherent restriction upon p and d, the former being con-
fined to values between zero and -+1, the latter to values between
40.5 and +1. It may also be of interest to note that the distance
from the intersection of the asymptotes along the axis of symmetry
to the focusof the curve, if measured in terms o% the H scale, is given by

Dx =%Jk_H,—_——IB(1 =7

and that Dy when multiplied by 2¥ gives the latus rectum or when
divided by 2¥ gives the distance from the intersection of the asymp-
totes to the vertex, the eccentricity being 2% for any rectangular
hyperbola.

3. Fullness or convexity of the curve.—In order to bring
curves for different materials to a common basis for comparison,
Sanford (1927) introduced the use of H/H, as the abscissa and I/[,
as the ordinate. Assuming both of these functions to be plotted to
the same scale, this device reduces any given curve to the form that
would have becn obtained by setting k=11,/I; it makes the charted
intercepts equal and causes the axis of symmetry to go through the
origin. Sanford further reports that by this means a wide variety
of magnet steels are found to conform fairly well to a single ‘“master”
curve for which 1/p was close to 1.38 (or p close to 0.725). Now,
Watson in introducing the hyperbolic law made clear his intention
to provide for curves that differed in convexity—that is, when plotted
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by Sanford’s method they would differ as to how nearly the vertex
and the intersection of the asymptotes approached one another.
This entails a variation in p.

 Within the applicable limits, d is a single-valued function of p and
vice versa. By equation (14), d? has the value 0.430 when p=0.725.
Scott confirmed the uniformity of I4F,/IxH, for a number of magnet
steels, giving a diagram that yields the value 0.422 for this ratio, this
being a direct evaluation of d®. Later in the same paper he concluded
that the demagnetization curves that he obtained were well approxi-
mated by a master equation, which is equivalent to Sanford’s but with
p taken as 2%, However, the corresponding value of @? is 0.421 (not
0,423 as stated by Scott). The index d? is called the ‘‘fullness factor’’
or the “curve factor” by Oliver (1938) and other writers. Fowle
(1933) and Oliver gave 0.42 as a value that is typical of most magnet
steels. Desmond (1945) quotes the same value for older materials
but finds 0.58 a better value for some of the newer alloys. :

- In any event, the development of the newer materials has disclosed
a wider variation in p and d than could be discerned from the older
carbon steels, as may be seen from table 1. Most of the values of p

TABLE 1.—Illustrative examples of data discussed in the text.*

IR H, | dnlp | 0N arl'y | wfuere | _ o |
Table2) ¢« IR e HoL| P o] T N
g/cud oersteds g8auss gauss
16| -. 465(157 74 780 .0004| .063
17 _. |2650 4530] 7.35 .38 - .008 .069
18 3.8 | 900 1600| 7.07 52 - .06 424
19/ 7.3 | 785 71501 1.38 .56 - .16 221
20! 7.1 550 6000| 1.15 .49 | 11600 .24 276
221 7.1 | 560 73500 .96 .67 - .24 230
23] 7.0 | 440 7300 76 .73 - .24 .182
25| 8.7 | 440 5300 1.04 .70 8600 24 .250
27| 8.4 | 250 10500  .299 .62 | 17000 .6 .180
28| - 240 9600 314 .69 [ _--
29 8.3 | 220 9500 201 .66 | 19000 5 146
30 7.7 65 9700 .0842 .65 -- 2.4 .202
31l 80 | 60 10800)  .0698 Jq0 0 . 2.5 175
32| 7.8 | 43 10000/  .0540 .70 | 21000/ 5.9 319
1} -. 52.4 7460 .0883 (.42)| 17800 3.36 297
33 -- 48 8600 .0701 .73 U -
20 . 16.7 13000 0161 5.66) 19820 5.71 092
34{ 8.9 lu 5000 .0251 .28)( 18000 5.5 .138
13| -. 7.53 9560 .0099 (.53)| 18060 12 119
5 _- 4.6 5300 .0109 (.82)| 16750| 14 163
10 .. 1.06 | 11400 .0012 (.54)) 21200 17 .020
38| 7.88 1.0 13000 .00097 .61)| 21500 20 019
40| 7.5 5 12000 .000524 .60)] 20000{ 32 017
41} 8.60 .6 2400 .00314 .19)| 12500{ 68 214
48| 8.60 .05 6000 .000105 | (.56)| 10700/ 716 2075
45| 7.88¢ 05 | 13600 0000462 | (.63)| 21500{1989 092
50{ 8.25 .04 7300 .0000689 | (.44)| 16500| 239 018
511 8.76 014 2500 .0000704 | (.42)| 6000|3183 | 224

» To convert o value from ocrsteds to M. K. S. units of magnetic intensity, multiply by 1000/x*. To
convert from guuss to M. K. 8. units of magnetization, divido by 10,000 =*. {n cither caso the exponent
of = is to be interpreted in terms of that system toward which the conversion is divected.
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TABLE 2.—Key to materials, to accompany table 1 and figures 7 and 8.

No. NAME AND REMARES Notes No. NANE AND REMARKS Nores

1 | Steel, V-121 (1% 1,71 18 | Vectolite (com-| 2,56

carbon). pressed oxides).
2 | Same_. ..o ... 711 19 New KS (18% Ni, | 2,5,6
3 | Common cast steel, 1,7 279, Co)
V-122 (0.56 9 car- 20 | Mishima (13% .1 126
bon). 299, Ni).
4 Same._ ... 21 Alnico III (=Mi- {1,2,5,6
5 Cast iron, V-118_._. shima).
5a | Same. . _._.._.. 2, 22 Almco II (6% Cu, |1,2,5,86
6 | Silicon steel, SJ4C 12, 5‘7 Co).
(0 3%, Si). 23 | Alnico I (20% Ni, [1,2,5,6
6a | Same_ . ... _.-..___ 2, 5% Co).
7 Slllcon steel SJ2OC 24 | Oerstet 500 (14% | 1,2,6
(1. 93% Al, 259% Ni).
7a | Same_ oon oo __ 2, 25 Magnetoflex (Cu 1,26
8 S)llcon steel, SJ50C with24% Ni, 35%
(4.459, Si. Co).
8a | Same_ .~ _-n__. 2, 26 | Magnetoflex (Cu 1,2,6
9 | Dynamo steel, V-120 with 20% Ni, 20%
(0.004% Si). Fe.)
9a | Same_ .. _.._.____._ 2, 27 | Remalloy (12% Co, | 1,2,6
10 | Swedish charcoal iron 179 Mo
(0.006 9%, Si). 28 Cobalt eteel (36% 5
10a | Same. . o ocoacemo-- 2, Co,4% W,59%Cr).
11 | Dynamo steel, V-117 29 Ongmal K@ (369, 1,6
(0.0289, Si). Co, 7% W, 3.5%
11a | Same. . - oo - 2, Cr).
12 | Electrolytic wrought 30 | Chromemagnetsteel 1,6
iron. 3% r, 04%
13 Llectrolytic iron, Mn).
plate A, 25° C. 31 Tungsten magnet 1,6
13a | Same, 97° C_.__.__. steel (5% W, 1%,
13b | Same, 205° C...o_-- C).
13¢ | Same, 295° C._..__. Mnnganese steel 6,9

13d | Same, 400° C.__.__.
13e ‘%nme, 505° Coooao
13f | Same, 595° C___.__.
13g | Same, 655° C.__.. ...
14 Elcctrolytw n'o&

08% M

33 Carbon st(,cl ¢ 19, C)

34 | Cobalt (99% Co)...

35 Permendur (499%
Co, 29, V).

36 Permendur (509%

Co).
37 | Perminvar (45%
5, 259, Co).
38 Magnetic iron
(99.94%, Fe).
39 Ticld iron (0.5% Si)
40 Transformer iron

4% Si)
41 Permmvar (709 Ni,
7% Co).

42 Mo-Perminvar (459,
N: 259, Co, 7.5%

43 Permalloy (45% N
44 | Mo-Permalloy (79%
Ni, 4% Mo).

148 | Same, — 120° Co___.
14b | Same, —61° C______
14¢c | Same, +23° C.__._._
14d | Same, 97° Coocn -
14e | Same, 195° C.._._._
14f | Same, 297° C.__..._
14g | Same, 392° C._.....
14h | Same, 496° C__.._-.
14i | Same, 550° C._.._..
14j Same 605° C._—._.
14k Same, 655°C.__._-.
15 Silmanal (9% Mn,
5% Al).

16 | Silver alloy (8.8%
Mn, 4.39% A)

17 | 77 Platinum-cobalt
(239, Co).

NN NN N N N NN
o o o o o O oot

@ B C1000000000000000000000 WONOOMOOM W00 0 =3I~ ~T=1 I3 ~I=T =~I~F ~I~T ~J~3~31-3
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o
oo
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TABLE 2.—Key to materials—Continued

No. NAME AND REMARKS NoTES No. NAME AND REMARKS Nortes
45 | Magnetic iron 3,6 || 48 | Permalloy (78.5% | 1,2,6
(99.989, Fe). Ni).
46 | Cr-Permalloy 2,6 Il 49 | Sendust (9.5% §Si, 6
(78.5% Ni, 3.8% 5.59% Al
Cr). 50 Hipernik (50% Ni)__ 3,6
47 Mumetal (74% Ni, 1,2,6 | 51 1040 Alloy (71% Ni, 3,6
59, Cu). L 15% Cu, 3%, Mo).
NOTES

. Quench-hardened.

. Aged by annealing or baking,

. Baked in Hz atmosphere.

. Data {rom Dotter (1031).

. Data from Fowle (1933 or 1049).

Data on p, ', and «e from Lecg (1039), also other data if no other soureo is cited.
. Data from Gumlich and Rogowskl (1911).

. Data from Terry (1910).

. Data from Sanford (1944).

OPNG B IN =

there reported are based on published data on d?. Those in paren-
theses, however, are cstimates formed by regarding I, as equivalent
to I’,, and are likely to be smaller than the real values of p.

Table 1 also shows values of H, and 4= that have been reported
for specimens of the yarious materials. These parameters, however,
are decidedly variable for a given composition, depending on hcat
treatment and other factors.  Furthermore, the values of I actually
encountered in magnetometer magnets are much smaller than might
be supposed from these values of 471p.  The reasons for this will later
become clear,

4. Comparing B/H and I/H curves.—Experimentally, an alter-
native procedure is to measure snd plot the induction B, that is,
"1+ u 4, rather than I itself. (Here #°is the ratio of intrinsic induc-
tion to magnetization, equal to 47 in unrationalized, and 1 in ration-
alized, unit systems—see p. 33.) The demagnetization curve of the
plotted quantity (or more conveniently of its fraction (B)=14pu,H/=")
may be regarded as an oblique hyperbola formed by vertically shear-
ing the rectangular hyperbola that would make the best fit of the
actual I/H curve. The two curves, oblique and rectangular, have the
same vertical asymptote; they interseet (as do their lateral asymp-
totes) on the vertical coordinate axis. That straight line which if
subjected to the same shearing process would coincide with the H
axig is called the shearing line; 1t is the locus of the equation

w°l -, =0, (15)

The sheared curve rises above the other one for positive, and falls
below it for negative, values of H.

Tollowing Bates (1948) we shall denote as pH, the value of —H re-
quired to make (w°J4-p 1) vanish—that is, the distance from the
origin to the H intercept of the sheared curve.  This point is the pro-
jection on the I axis of a point on the original curve, defined by the
atter’s intersection with the shearing line.  The portion of the sheared
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curve to the right of this point is an expanded version (now reaching
entirely across the socond quadrant) of a smaller segment of the basic
curve. Experimentally, sH, is determined by negatively adjusting
the magnetomotance to the point of zero flux, and A, by continuing
to the point where removal of the specimen would have no effect on
the fux in the circuit.

If we combine equations (7) and (15) so as to eliminate /, we may
then replace —H with zH,, obtaining

BHe

jig =14 7T o/H n,)(1— V1 —40)/2p (16)
where
o= 1r°p IR .
I‘ch(l + 7|'°IR/H0I‘0)2

Regardlcss of the magnitude of Iz/H,, 40<1. Hence we may use a
series expansion of the radical in (16), obtaining

!
‘}IF{‘=(1+a+2a2+5aa+ : +n"((‘72;2—1ﬁ o+ . O (AHou/xT5).

The disparity between zH, and H, amounts to 30 percent of H, for the
platinum-cobalt alloy listed in table 1, and about 3 percent for Alnico
11, but is quite negligible for most of the older materials. From
the last equation and the definition of I, it is obvious that

(po/m°Tr+1/H) ™' < pH. S Ipn®/pso. an

The upper limit was given by Hosclitz (1944), indcpendently of the
hyperbolic law. However, no such limit applies to H..

The foregoing comparison is the first step toward speciflying one of
the curves in terms of the other. To complete the process we must
take into account the relation between » (as defined in terms of the 7
curve) and pp (the corresponding parameter of the B curve). Now,
the data which define pp and dj are ordinarily established by a pro-
cedure equivalent to that outlined in section 2, disregarding the
obliquity of the B curve. That is, the sheared curve is simulated by
a rectangular hyperbola which it intersects in three points, namely,
the two intercepts and a point whose ordinate and abscissa are in the
same ratio as the respective intercepts. The broken curve in figure 3
is this rectangular version of the sheared curve, the full line being the
original rectangular curve corresponding to equation (7).

The equation of the broken curve is

B)_ sHAH

‘ Ir pH.4+Hpp

The problem is, given H, I, and zH,, to find a relation between pg

and p such that the expression [(B)——I —_ #7':1] vanishes for the point
@ defined by

(18)

(B)=Ind3-
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Figure 3.—H. and pII. compared for Vectolite. I scalo
graduated in ocrsteds, (B) scale in units of 4x gauss.

Using this condition and equations (7) and (18) we have

SHAH _HAH _pH_
BHc+pBIJ Hri-pH 7l p !

and replacing I with — ;7 dj (since point  is where 11, {or the broken
curve must fall) and replacing p, with an expression in dp, we obtain
an expression that reduces to

1—H./,H.dp

P= G0 T ol Ty T HeltLeds (19)
_ A=A+ N—4px .
dy 2p(1 + pH cuo/nI g) (20)
where
—& l"ch
x—_Blic-*—’ll'vl_n'

The relation between dp and pp is, of course, exactly like that between
d and p (see eq. 13).

Hoselitz (1944) shows that d cannot exceed (14 zH pu./7"Tg)"L
In consulting tabulated data in the literature it may be difficult to
ascertain whether 2 quoted maximum energy product is derived
8o as to yield d or dp. Some writers attach greater significance to

257687—064-——8
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the latter, but the above limitation means that when X, is large
ds® cannot range far from its lower limit of 0.25, whereas d? is (geo-
metrically) free to maintain a normal value irrespective of .. The
shearing line of equation (15) being invariant, any increase of H,
will distend the basic curve so that the intersection point defining
pH, shifts to the left; at the same time, the portion of the curve
intercepted between that point and the [ axis is & diminished fraction
of the whole, and its counterpart in the sheared version is conse-
quently reduced in fullness as compared with the basic curve. The
ultimate limit of s/, corresponds with the point on the shearing
line having the ordinate /g, for which the basic curve would cross the
shearing line horizontally. We see that the I/H curve can preserve
a normal fullness under conditions so extreme as to cause the B/H
curve to degenerate into virtually a straight line.

5. The demagnetizing factor.—Thus far we have been mainly
concerned with the description and properties of the fundamental
hyperbolic demagnetization curve, which is based on the bchavior
of a specimen under study in a closed magnetic circuit. One must
remember that a permanent magnet is not likely to be used in any
such circuit. Ordinarily we may cxpect the operating point to be
confined to a small range of values of 2. As we have noted, when
8 magnet is removed from the test circuit A does not become zero
for the magnet; rather, it assumes a negative value with a mcan
magnitude which, following Dubois, we shall denote by NI, where
I, 18 the mean magnetization left in the magnet (the remanent
magnetization) and & is an index to the self-demagnetizing propensity
of the magnet. Obviously I, must be less than Ip. Now, consider
N to be variable, as it would be for a magnet consisting of two semi-
circular segments hinged together on one side, or for a set of differcnt
bar magnets of uniform diameter but successively greater lengths.
Disregarding nonuniformity of I and H within the magnet, NV and
I, will be so related as to conform with cquation (7a), with I, replacing
I and NI, replacing —H. That is,

_H{IeI,—1)
N o (21)

whence we can find the value of N corresponding to any stated point
on the demagnetization curveé, or vice versa. Since N is ordinarily
a constant for & given magnet, there is but one point on the demag-
netization curve that can describe the condition of the magnet in the
absénce of an applied field. To work at a different part of the curve
we must alter V in some way. :

The demagnetizing factor N depends chiefly upon the proportions
of the magnet, and sccondarily upon the shape.of the demagnetiza-
tion curve (the latter effect arising from the nonuniformity of H
in diffcrent parts of the magnet). The value can be determined from
theory for ellipsoids, since in this case 7 is uniform throughout the
body. N is gencrally given for the longitudinal position. (g)bviously
a larger value would apply to a transverse position of the specimen
in relation to the applied field. (In the appendix, pp. 34-48, it is
shown that the demagnetizing factor is modified shghtly by the
presence of a medium surrounding the magnet. We are not here
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conclin;ned with this effect, which in ordinary circumstances is quite
small.

It is convenient to introduce the parameter p,n2N, which has a
value not dependent upon the system of units employed. (Here
#* i3 unity in unrationalized, and 4 in rationalized, systems.) This
parameter is of the order of 4 for globular bodies, but generally less
than 1 for bar magnets; it is very small for long thin wires or for ring
magnets with small air gaps. An empirical formula due to Neumann
and Warmuth (1932) relates N for cylindrical rods to their length-
diameter ratio m, where m is greater than 10 and the susceptibility
is large. Their formula, in our notation, becomes

o Nm?=25.26 log m—5.78, (22)

This relation is discussed further by Bozorth and Chapin (1942).

Thompson and Moss (1910) suggested that the cross-sectional area
might assist in comparing N for round rods with the values for other
shapes. They found that for rectangular bars, N is slightly less than
for cylindrical rods of the same length and cross-sectional area. This
reduction may be supposed to be a function of the radius of gyration
of the bar about its longitudinal axis. The latter quantity squared
is given by 372 for a solid cylinder, by 2 (*+? for a hollow ¢ylinder
and by §(s;°+s,%) for a rectangular bar, where s and s; are the half-
width and half-thickness. For bars of the same cross-sectional area
these three quantitics stand in the relation

Pl w/s | s
1: 7‘22/7’12—1 ) 6<32+31)

From a study of the data presented by Thompson and Moss, N seems
to vary inversely with the cube root of the radius of gyration. Al-
though this result is based on measurcments of solid bars, we shall
assumne (in the absence of a better rule) that to the moderate accuracy
required here it holds likewise for the tubular magnets of round and
octagonal shape used in magnetometers. On this basis, u7*N las
been calculated for the “long’” magnets of several of the magnetometers
used by the U. S. Coast and Geodetic Survey. The values so deter-
mined range from 0.12 to 0.25. It will be noted that the cube-root
rule given here allows a wide range of forms of cross scction with but
little change of V. Scott (1932) reports N to be approximately inde-
pendent of shape when the ratio of length to cross-sectional area is
held constant.

Table 1 includes a column for finding IV, that is, the value of NV that
would have to be used for each material in order to realize the maxi-

mum energy product of that material. From equation (11) it is seen
that

Ny=H.[Ir (23)
=1/Id

The tabular values seem to suggest 369, cobalt stcel as a material
well suited for magncts of the proportions customarily used in this
application, at least so far as this criterion is concerned.
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One effect of the nonuniformity of H may be noted briefly. The
material at the extreme ends of, say, & cylindrical magnet may drop
to a point low on the demagnetization curve, but the central portion
of the magnet might well remain up close to the I axis, all intermediate
points on the curve being likewise represented at different places in
the specimen. The mean values of 7 and H will depend on just how
the actual operating points for different parts of the magnet are
distributed along the curve. In any case, it is clear that when mean
I is plotted against mean H, the point obtained will fall inside the
curve rather than upon it; and if IV is varied, the mean operating
point will describe a curve that is less convex than the basic one
determined for the same specimen in a closed magnetic circuit.

6. Minor loops, the reversible susceptibility, and magnetic
stabilization.—If at any point in the demagnetization curve the
downward progress is arrested and the applied ficld is caused to re-
trace some of the values it has just been taken through, I does not
increase as rapidly as it was decreasing but rather follows a flattened
curve more nearly resembling the initial part of the magnetization
curve, the part governed by Rayleigh’s law (eq. 1). Upon resumption
of the former progress of the applied field, this flattened curve is
approximately repeated upside down until the major loop is regained,
whence the rapid fall resumes. These interim changes constitute a
minor hysteresis loop (Ewing 1892). The important role played by
these minor loops in the behavior of permanent magnets is now well
recognized. Figure 4 is from Sanford (1927).

For sufficiently small changes, the curvature of these minor loops
may be disregarded and we may take them as straight lines, coincident
for upward and downward changes. We shall here be concerned
with the slope of such a line—more formally, the limiting slope of the
line joining the tips of & minor loop as the loop is made indefinitely
small. This slope is known as the reversible susceptibility (Gans
1908, 1910; Fowle 1933) and designated by the symbol «,. (The
symbol x, which Gans sometimes used will here be reserved for the
reversible mass susceptibility, given by «,/p where p is the density of
the material.) The corresponding slope for a minor loop on a B
vs. H diagram is the reversible permeability, u,, & quantity equal to
o+ 7%, as can readily be verified.

Now, a magnet with an external field is vulnerable to fortuitous
fields which it may encounter, and for this reason the operating point
has no security in its perch on the demagnetization curve. In fact,
it cannot long remain in this condition. An external demagnetizing
field will soon be encountered (if not applied intentionally) and this
will cause a further downward shift along the demagnetization curve.
Upon removal of this field, I does not recover its former valuc but
instead follows a minor loop to a new operating point, again determined
by N but no longer lying on the main curve. If N may be taken as
independent of I under these conditions, the new point will lic on a
straight line joining the previous operating point with the origin.
This line has a slope equal to —1/N, or (u,— 7*/N) for the B/H curve,
and is called the air-gap line. (The assumption that N is independent
of I for a given dimension ratio is not accurately valid for the smallest
values of N, as noted by Shuddemagen (1910). This means that
those air-gap lines that lie close to the vertical axis will be curved
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slightly near their upper extremities.) Johnson (1939) gives a figure
showing for round rods the air-gap lines corresponding with 16 different
values of m, without indicating how N was calculated.

At its new operating point the magnet is stabilized with respect to
any fluctuations of applied field smaller than the minor loop which
brought it away from the demagnetization curve. By applying a
greater stabilizing field it can be protected from larger fluctuations,
at a further sacrifice of . The operating point must be brought down
to a point on the air-gap line where there is room between it and the
main curve for the largest anticipated minor loop; any subsequent
minor fluctuation of the field simply causes a circulation about a minor
loop to the right or to the left of the mean operating point. In the
words of Watson, ‘It is clear that the normal working point must lie
on a reversible cycle, and that the length over which the cycle is truly
reversible must exceed the variations which may be met with in
practice.”

We now see why the
magnets of magnetom-
eters are lLimited to
rather low wvalues of B,
magnetization  inten-
sity. The demagnet-
izing factor is too large
to permit I to remain
close to I, and the sta-
bilization so essential for
consistent results de-
presses I still further. M B
IFor the magnetometers
used in Coast and Geo-
detic Survey work, val-

ues of I are found to be Ba
about one-fourth of the Mz L M3 gz

published values of Ig
for similar materials,
Let us now see what
sort of demagnetization
curve would beobtained
if we studied a speeimen
ir}l1 the ot[))cn by varying
the ambient ficld, in- :
stead of placing it in a He e Hi s °
closed circuit. Under
these conditions (assuming for simplicity an ellipsoidal specimen
m a vacuum) we might plot I against A, the externally applied
field, obtaining a curve such as the heavy line of figure 5. To
relate such a curve to the fundamental major loop, we note
that H must always cqual H,—NJ. Then to each point on
the solid curve of figure 5 there corresponds a point on the
fundamental curve (light line), displaced laterally through the dis-
tance NI. In other words, the curve having H, as the abscissa
is a sheared version of the fundamental one. The vertical coordinate
axis for the regular I/H curve becomes a sloping line (shown dotted)

Figure 4.—Minor or recoll loop (after Sanford).
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in relation to the I/H, curve. This linc is the reflection in the I axis
of the air-gap line already discussed; the latter is hence sometimes
called the shearing line. Note that for a given material there are
many H, curves, corresponding to different values of N, whereas the
curve of I versus H is independent of V.

Alternatively, one might
begin with the vertically

I sheared curve of figure 3;
'"'""‘7[/ then the new shearing

/ would be sufficient to bring

,’ the air-gap line into coinci-

A L / dence with the vertical
. axis, but the direction of
400— displacement would be

/ parallel to the line #°f
- p 1 =uH, rather than hori-

)
K / /’ 1 zontal. The H, ntercept
Sonof inor loops II of the final curve would

/ then fall somewhat to the
200 right of the point defining
[}

s, but the analysis is

/ quite cumbersome and

! need not be pursued here.

/ Not only the major loop

/ but minor loops as well

/ may be thus sheared, to

indicate how a particular

-600 -400 -200 Y 200 400 magnet is affected by flue-

He tuations in the ambient

Figure 5.—Major and minor loops sheared to show effects of ﬁeld. The She&l‘ed miD.OI‘

piiens ged 1T Deaior A ML wlth e Nken 300 Joop s the basis of tho

concept of false reversible

susceptibility x’,. The effective change of H (or AI) 1s less than the

change in the applied field AH, by the amount of the change in the
term NI. That is,

AH,=NAI+AH. 29

Evidently we may genecralize equation (24) to write
1/K’f=N+ 1/'(7 (25)

or by eliminating Al instead of AH,

AH,=(N«+1)AH. (26)
Note that if N or «, is sufficiently small, ¥/, may be taken as equal
to «, (e(L. 25) or &’y equal to k. Thus, in the measurement of weak
susceptibilities by the method of Johnson and Steiner (1937) or that
of Hoylman and Durbin (1944), no significant error is introduced by

taking the response as proportional to susceptibility, although if
either method were extended to much higher susceptibilities one



INDUCTION FACTOR 19

would need to recognize that the procedure described actually.yields
«’c rather than x,. The disparity is likely to be considerable for
permanent-magnet materials. :

As another incidental application of the above relations, we note
that because of the practical necessity of stabilization, Evershed’s
energy-product curve based on the major loop (eq. 12) is not strictly
pertinent for actual magnets. What is really needed is a curve of the
3uantity (We—IAH) plotted against I, where AH is the effective

emagnetizing field to be stabilized against. If we are to consider
AH, as the corresponding applied field, which would presumably be a
specified maximum, we see from (26) that the modified energy-product
curve would intersect the regular one at the origin and would fall to
the left of it by increasing amounts as I builds up and N decreases.
‘The value of I for maximum ecnergy product wouFd be a little below
I;. The disparity would be less than that obtained by assuming AH
equal to AH,; in the latter case the curve would simply be sheared
leftward so as to cross the I axis at the level at which the abcissa of the
Evershed curve is JAH. 1In figure 2, the lighter curve is the modified
energy-product curve, taking AH, constant at 100 oersteds. A some-
what different approach to this problem is given by Sanford (1944),
who also points out that the effects of leakage require empirical modi-
fications in designing magnets for most effective utilization of the steel.
The foregoing remarks about the modification of the energy-product
curve apply with equal force whether the curve is based on H, or on
sH.. It has been stated by Edwards and Hoselitz (1944) and by the
authors of several subsequent papers that the curve based on sH,
must be used to obtain an authentic maximum energy product.

7. The induction factor.—We now take up the practices in
geomagnetism which were mentioned at the outset. When a mag-
netometer is used to determine by Gauss’s method the horizontal
intensity of the earth’s field, one allows for the small change in the
moment of the magnet due to that field by the use of an index vari-
ously known as the Inductionsféhigkeit (Lamont 1867), the induction
factor (Hazard 1911), and the induktive Kapazitit (Venske 1913).
Here we use the second of these thrco names. The induction factor
of any magnet is historically defined as the temporary change in
magnetic moment which it undergoes due to unit change in the am-
bient field. No symbol has met with full acceptance for the induction
factor. Perhaps the one most frequently seen since the time of Welsh
is the Greek letter 4. In this publication T is adopted in order to
avoid confusion with permeability, which we denote bf’ r as is general
in the literature of physics. Iurthermoro, we shall attach to the
increment of field the coeflicient u,#%, in order that values of the ratio
of induction factor to magnet volume may be the same regardless of
the units chosen.

In comparison with the field in the neighborhood of a magnet, the
geomagnetic field is weak, and may be treated as a small increment
superimposed on the demagnetizing field corresponding to the air-gap
line. Then we have

pem*T=AM/AH,
=VAI/AH,

=V,
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where «’, is the same as in equation (25) and V is the volume of the
'mixgnet. Combining this result with equation (25), we have the useful
relation

Viwer®T=N-+1/x, @7
=N+1/x:p

whereby there is demonstrated a simple connection between induction
factor and reversible susceptibility, permitting ready conversion from
one to the other index, provided the values of V and IV are known.
Also, differentiating in equation (27) we find

ar
dN~

There are recorded in the literature almost as many methods of
determining the induction factor as therc are investigators who have
studied the subject. Lamont’s original method, however, remains
the one most widely used ; it is described by Hazard (1911) and others.
Electromagnetic methods have been devised by Weber (1855) (see
also Kohlrausch 1892), by Schmidt and Venske (Venske 1913), and
by Nelson (1938). Weber used a ballistic galvanometer, while the
others named impressed upon the magnet being tested a known field
from a coil. Regardless of the method used, certain precautions are
essential if consistent results are to be obtained. The magnet must be
stabilized as explained in section 6, to such an extent that the applied
field will not carry the operating point back to the major loop. Sta-
bilization must be repeated for each new level of magnetization if
the magnet is being tested at several points. The applied field should
be within the limits for which the assumption of linearity of the minor
loop is justified; this point has been discussed by Venske, and earlier
by Chree (1899). Again, one should make sure the applied ficld is
known with an accuracy commensurate with that desired in the
induction factor. Another point discussed by Mascart (1899) is the
usually neglected effect, in the measurement of horizontal intensity,
of the component of the earth’s field transverse to the axis of the
magnet. The transverse induction factor is customarily much smaller
than the ordinary one, on account of the larger value of N involved;
by the same token the former is less sensitive than the latter to change
of «,, hence not so effectively reduced by the use of the newer magnet
alloys. The two factors appear in the torque equations with contrary
signs, hence they might be equalized and their effects canceled (in
theory) by suitably choosing the composition and proportions of the
magnet. .

here has been perennial uncertainty whether the change of moment
is the same in magnitude for positive and for negative increments of
applied field. Lamont found a greater effect when the field was such
as to decrease the moment, but his result is of doubtful relevance,
since the Importance of first thoroughly stabilizing the moment was
not then appreciated. Of the subsequent investigations of induction
factors, those of Kohlrausch (1884) and Wild (1886) are pertinent on
this matter: both conclude that with sufficient care in the measure-
ments the difference is eliminated. Chree (1899) leaves the question

_#verz/V. (27&)
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open, likewise Hazard, though the latter considers the difference to
be negligible in practice. It now seems clear that & persistent differ-
ence of this kind would imply an irreversible change of moment,
entailing indefinite weakening of any practical magnet by reason of
unavoidable minute fluctuations in the ambient field. The practical
stability of the best modern magnets proves that it is possible to realize
full reversibility of small changes—in other words, that (as Wild’s
tests indicate) there is & true reversible susceptibility, independent of
the direction of the applied field, though in measuring it the minor
loops must not be allowed to reach a size that would take them too
near the main demagnetizing curve.

8. Effect of varying
I—A related question 1s o S noxten steal Cobalt steal
whether and in what way «, o H
and T are affected by dif- v o\Pi’i p~ Mognet 3ILT ©
ferences in the intensity of 0 _lo Magret 3ILC ©
magnetization. The op- \\
erating point may bo situ-  ©9 A%
ated anywhere within the M\
major loop. If it is near : \
the descending branchand ™ N
if a negative increment is
applied to H, the point o4
must shift along a minor \
loop so as to como nearer A
to the curve, or at least not o2 A
recede from it: otherwise \\
the major loop could not
have been established as it © 02 o4, — 06 08 10
ggis;;uelt;t:fy i;,i}llitsl(l))[l)%cgf Figure 6.—Gans relation and data by Nelson.
the major loop at any place in its course constitutes an upper limit
on «, for operating points in that vicinity. But the slope of the major
loop is vanishingly small at the tips, in the saturation region. Hence,
«» must be a function of 1.

A relation between these two quantitics was noted long ago by
Rayleigh (Rayleigh 1887: Ewing 1892). Williams (1913% reports
that «, increases slightly with decrease of I, the maximum difference
observed being about 8 percent. We find that the relation has been
reduced to law through the investigations of Gans (1911) and Brown
(1938). The relation is in the form of a sot of parametric equations
which may be written

I/I'=coth 3—1/n } (28)

ke/ko=3/19?—3 csch?y
where «; is the value of «, obtained after traversing the major loop
down te a slightly negative value of I, then following a minor loop
to the H axis. It is nominally the same as a in equation (1)—that is,
the initial susceptibility.
The series forms of equations (28), valid for »*<#? give us
I/, =n/3—7%/45+20%/945— . . . }

krlko=1—n*/5+29'/63— . . .
257687—B4—4

(29)
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It will be noted that as % increases without limit, I/I’, approaches
unity and x,/k, vanishes, whereas the converse is true for 5 vanishing.
In figure 6, the full line shows the relation between I/I’, and «./x,.
Three typical values of I/I’, arc indicated along the upper edge of the
graph, assuming 7*u,N=0.15 and assuming [ stabilized at 80 percent
of the value on the main curve.

9. Relation of x to main loop.—The Gans equations, by fixing
the ratio «,/,, indicate that «, is a function of I for specimens exhibiting
any one hysteresis curve. This follows from the fact that «, is by its
nature not variable with 7. However, Gans is silent as to the actual
values of «, and «,, aside from their ratio. We are thus led to inquire
whether there is any law by which such values might be deduced
from some aspect of the hysteresis curve. Gumlich and Rogowski
(1911) have noted that x, bore a loose relation to maximum sus-
ceptibility (the slope of OR in figure 1) which in turn seemed to
depend on the ratio Ip/H,. More recently, Underhill (1944) gave
a rule prescribing that «, is closely approximated by the slope of the
main curve at H=0, given by I in equation (10). However, this
last cannot be a precise or general law. Any rule which allows no
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Figurae 8.—Test of relationship between x¢ and fs. Bcales graduated in c. g. 8. units.

variation of «, with I isincompatible with the inherent limitation that
is set forth above and embodied in the Gans relation. In this case,
the rule must fail in respect of all values of I greater than I, since
the slope of the major loop would then be less than .

The possibility remains that «, rather than «, is equal to Ir. Such a
relation would be a refinement of Underhill’s rule and would not
conflict with the Gans relation. It will be convenient to test the
matter by plotting log x, against log I for a variety of materials,
as derived from published data (fig. 7). The line shows where the
points would fall if , were actually equal to fr. Though most of the
points fall under the line, the 45° slope does seem to be maintained,
suggesting a linear relation between I and x,. Many of the points
involve a doubtful evaluation of p, as already mentioned. Noting
that fr=(1—p)1;, it would scem that the factor (1—p), seeing that
it fails to make the line fit the data, might be discarded in the interest
of simplicity. In figure 8, then, we plot log k directly against log
I.=log (Ix/H.). The scatter of the points is not noticeably aggra-
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vated by this simplification. Now, let
f =Koy

K
=TJH. (30)

The significance of f lies in the fact that its value appears to undergo
little if any systematic change under changes of «, covering a span of
nearly seven orders of magnitude. Values of f for some of the
materials covered by figure 8 are given in table 1. Lines are drawn
in figure 8 to correspond with equation (30), assigning to f the three
arbitrary values .04, .10, and .25.

It is of some interest to evaluate T,, the predicted induction factor
for optimum &, in the light of equation (30). If we assume the typical
values »=0.725 and [=0.6 I,, we find that I=0.28 I,, which may
be approximated as =0.28 I’,, and from figure 6, x,==0.86 r,. Under
these assumptions we deduce

. _ Ko
“WTMV—1J6+MN;

. Ko .
T 1164 f
and fqr the same conditions, by equation (27a),

an__ vy
AN~ p, (1164 f)?

It has been urged by C. E. Webb (Desmond 1945, discussion)
that u, must be closely related to Bp/H,. Equation (30) may be
regarded as a modification of this concept. Webb himself congrms
that u, is affected by shifts of the working point; we have already
seen that for this reason «, is preferable to x, and a similar distinction
applies to permeability. The choice of x, rather than u, offers the
advantage of placing the lower limit at zero instead of unity; similarly
we choose H, baseg on the I/H curve, called ;H, by some writers
(Bates 1948; Stoner 1950)—not the smaller ,H, which we have seen
cannot exceed Ign®/u,. If Bg/pH, were chosen as one variable, it too
would have unity as 1ts lower limit; whether a linear relation between
this variable and g, would fit the data better than equation (30)
could only be decided by means of more extensive data near the
lower end of the curve. For large values the data would form the
same pattern in either case.

Figure 8 leads to two observations. First, the various ferromagnetic
materials form a long unbroken sequence extending from very large
to very small values of Jg/H,.; the difference between permanent-
ma%net materials and such alloys as mumetal appears in this respect
to be one of degree only. That is, the magnetization curve and
hysteresis loop for any ferromagnetic substance may resemble that
for any other with suitable changes of scale. Perhaps the extension
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of experimental techniques to more and more intense fields may
further enlarg}; the list of ferromagnetics; such materials, if they have
values of [,/H, much lower than those shown on figure 8, may well
be now masquerading as paramagnetics, on account of the difficulty
of polarizing them. The values olfzxo/p,vr” for paramagnetics generally
fall in the range betwen 107 and 1077. The second point about
figure 8 is the considerable variability of f, that is, the scatter
of the points. Attempts to reduce the scatter by means of other
variables such 88 kmax &nd the Steinmetz hysteretic coefficient have
proven unavailing with the meager data at hand.

A further indication of the variability of f may be found in a paper
by Hornfeck and Edgar (1940) which deals largely with Alnico I.
V)t’mlues given there are: H,=430 oersteds, 4mJp=7400 gauss, and
47l/p=10,000 gauss, agrecing fairly well with other sources (cf.
item 23 of table 1). The paper cited also contains a graph (their
fig. 9) showing the relation of reversible permeability to the slope
0% the air-gap line. When the latter is zero the ordinate of the curve
represents initial permeability, and we thus deduce that x,=0.51 g, #%,
about twice the value derived from Legg; and the corresponding
value of fi8 0.37. . Thus,nf i8 not necessarily the same even for different
specimens of the same alloy.

1.0—===
Kl \\
08 s

0.6 A

04 : S

0.2

o 200 400 I €00 800

Figure 9.—Hornfeck-Edgar curve compared with Gans curve. I scale graduated in
units of 4 gauss.

In figure 9 of the present publication, the cited curve has been
redrawn to show «,/x, 88 a function of I. When so drawn, the relation
shows, for values of I a little less than I, a pronounced knee that is
obscured in the original curve by the rapid change in 1/N as N ap-
proaches zero. The form of the curve here presented might be com-
pared directly with the Gans relation if I’, were known; alternatively,
we may assume a value of I/, that will lead to agreement at some
special value of I and then make comparisons for other values of 1.
By taking I’,=1300, we obtain agrecment at /=>580; the dotted
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curve of figure 9 is a replica of figure 6 under this assumption. The
abrupt decrecase of x, as I approaches I in the solid curve might be
avoided by a slight modification of the parent curve. It has no
counterpart in the Gans curve.

The latest investigation of reversible susceptibility is that of
Tebble and Corner (1950). They develop some limitations on the
finding of Gans (1911) cited by other workers (Weiss and Foéx 1929,
Legg 1939), that «, is a single-valued function of I/I’,.

10. Effect of I upon T—Consider next how variations in I affect
the induction factor.. Kohlrausch (1892) indicated that T is slightly
greater for unmagnetized than for magnetized bars. There is some
direct experimental evidence on this point. Venske determined under
varying conditions the induction factors of six magnets of the kind
used in magnetometers, finding a very small increase with magnetic
moment, followed by a decrease when the bars were magnetized to
successively higher values. Again, Nelson (1938) made similar
measurements upon two magnets, his results indicating substantially
constant T. However, it is not clear in either case whether the ex-
periments included the step of stabilizing the moment prior to each
test. Particularly vulnerable in this respect are likely to be those
measurements made in the saturation region (by Venske). With the
exception of those few values, none of the measurements extended to
the higher values of I/, (that is, values close to or exceeding unity),
being confined to bar magnets with the operating point always on
or near the air-gap line. Within this limitation it appears that T
is relatively insensitive to shifts of the operating point. (Equation
27 demonstrates that T is less sensitive to I than is ). As an addi-
tional aid in examining these results, Nelson’s data have been re-
plotted on figure 6 using equation (27) to derive «, from T, and esti-
mating Nu,7"=0.15 and V=4 cm?. For magnet 31LT, 4xI’, is
estimated as 20,000 gauss.

11. Temperature effects.—In discussing the behavior of ferro-
magnetics in weak fields where equation (1) holds, Weiss and Foéx
state ‘“The values of ¢ and b vary markedly with thermal treatment

. and in a very complicated fashion with the temperature, pass
through an acute maximum near the Curie point and become zero at
. that point. As the temperature changes progressively from —188° C.
to the Curie point, they satisfy the relation bc=a"; the values of
¢ and » depend upon the substance and its past thermal treatment.”
It follows that the temperature should always be determined and
reported as an essential element in any determination of T, «,, or any
other quantity dependent upon x. X¥or further information on this,
we turn to the work of Terry (1910) who investigated two samples of
doubly purified electrolytic iron over a wide temperature range,
determining the values of H,, Bg, I’, and «. He found H, to fall
and « to rise with rising temperature, whereas By seemed but little
affected in the ordinary range.

It is difficult to extrapolate Terry’s values of x down to x, with
satisfactory precision. Hence «, can be deduced well only for the
unannealed specimens and not even for them at the highest temper-
atures. However, such data as could be obtained in this way have
been added to figures 7 and 8. Their general trend is similar to
that of the lines of constant f ‘(equation 30), with enough disparity
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to make it doubtful that f is entirely independent of ¢, though neither
do the data lend appreciable support to any suggestion that tempera-
ture differences could directly account for the scattering of the other
points (in view of the wide temperature range in Terry’s data).

It is, of course, well known that magnetic moment is subject to
change with temperature. The fractional decrease of moment per
degree increase in temperature is known in geomagnetism as the
temperature coefficient of a magnet, denoted here by ¢. This index
cannot be independent of the temperature effect mentioned above,
and we shall examine a possible relation between them.

Consider the region within the major loop to be traversed by a
family of curves such that each curve has a slope at every point
corresponding to «, at that point. If in the pertinent area x, may be
taken to be & single-valued function of I, these curves will be replicas
of one another, dispersed laterally across the diagram. Consider
how this system of curves may be affected by temperature, assuming
a simple kind lof behavior consistent with the changes usually found
at ordinary temperatures. We postulate two effects—a uniform
vertical expansion or contraction (coefficient ) and a lateral change
such that the slope of the curves (the resultant of both effects) would
be governed by the coeflicient 8. If the operating point is on the
vertical axis it will be affected only by a, otherwise by both « and 8
(supposing that the point is carried by the motion of the particular
curve on which it lies to a new position on the air-gap line).

As a first-order approximation, we may suppose the minor loop on
which the operating point lies to be represented by a line whose
(fa uation is found by using the prescribed slope and I intercept, as
ollows: ~

I—I a1+ at—)]=Hk14+B1E—1))]

where It 1s the I-intercept of the line for reference temperature
" and «,* 1s the value of «, at that temperature.
We may set t=t%, I=1I% and H=—NI"in this equation, obtaining
Iin*=I8(1+ Nk
whence

I—T[1+Ne )1+ a(t—t9)] = He M1+ Bt —t9)]

In order to place the operating point on the air-gap line we now replace
H with —NI. The resulting equation (with suitable approximations)
leads to the relation

QA=I/IYt—=(1+1/Ngt—a @1
=fNK A—a

P
=s(1-%5)-

=BT, o_
=7 Ny, x"—a.
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But the left-hand member of (31) is the expression defining ¢. This
equation is, of course, not rigorously valid in view of the assumptions
mentioned, but it may be an instructive guide in the absence of more
definite information. In particular, it brings out the manner in which
N and «, probably affect g.

Whether « an({ B are independent of I" is not clear. Even if they
are, the value of «* must vary with I" according to something like
the Gans relation, so that ¢ must decline a little with increase in
moment. However, ¢ is surely not, as has been suggested, inversely
proportional to I%; for if it were, a bar would be magnetized in zero
field merely by a change in its temperature.

It appears that § is generally positive, while a seems to be less
definite in sign. Supposing that « as well as 8 is positive, an appro-
priate choice of N would make ¢ vanish. As a matter of fact, Ash-
worth (1898) found results indicating that suitable heat treatment
and choice of N would have this effect.

The relation between «, and I/H, seems to be a rather loose one.
Hence it will not be surprising if in some particular temperature
range «, rises faster than [p/H,, signifying that the above-mentioned
family of curves representing reversible changes is compressed by
rising temperature or expanded by falling temperature at a more
rapid rate than the major hysteresis loop.

Now, the main loop does not affect the operating point unless they
impinge on one another; if by reason of a falling temperature they do
come together, any further temperature drop would be expected to
shift the operating point irreversibly to a different curve of the afore-
mentioned family. By the same token, it would appear that when a
magnet is magnetically stabilized at a given temperature, its margin
of safety against further irreversible change is impaired at lower
temperatures. When Fleming and DeWar (1896) subjected newly
magnetized bars to the temperature of liquid air, the initial effect
was an irreversible drop in moment. Their conclusion was that these
very low temperatures might be used to stabilize & magnet.

12. Effects of aging and heat treatment.—The process of
moving the operating point away from the major loop along the air-
gap line is one kind of stabilization. Whether accomplished mag-
netically or by means of temperature changes, it does not entail any
permanent change in the geometry of the curves. There is, however,
another kind of aging which definitely alters the shape of the major
loop and the slope of the minor loops. This is a slow spontaneous
drift, which may be hastened by annealing. This kind of aging is
regarded by Sanford (1944) as the delayed and muted manifestation
of certain structural changes that were largely suppressed by the
quenching process during the making of the specimen. Examination
of the pairs of points connected by dotted lines in fig. 8 confirms the
usual experience that H./I5 is increased by quenching and reduced by
annealing. (Most of the change is in H, rather than Iz.) Venske
(1914) found that for bar magnets T is raised by annealing, and con-
sidered that natural aging should have a similar effect. Whether f is
systematically a.ﬂ'ecteg is not clear.

The effect of this sort of aging on I is usually (but not invariably)
a decrease. ILike the temperature effects alrcady discussed (though
differing from them in being irreversible), the gradual change of I may
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be regarded as a composite result of two coefficients—one building up
'R anﬁ the other affecting the I intercept of a minor loop having the
operating point at its lower end. The second one is usually either
negative or numerically too small to overcome the first one. If it is
positive, we should expect a spontaneous increase in moment for
sufficiently small values of Nk, by the same reasoning followed in
connection with equation (31). But it does not follow that a magnet
showing spontaneous increase in moment will also have a negative
value of g; for the constituent coefficients for the spontaneous changes
are not necessarily in the same relation as those for the thermal
fluctuations. Indeed, one instance may be cited (Howe 1943) in which
there was a spontaneous increase of moment coupled with a tempera-
ture coeflicient of the ordinary sense. Howe’s finding that the spon-
taneous change was faster at high temperatures is consistent with the
idea that aging and annealing are fundamentally the same process.

It is generally understood that magnetometer magnets should be
safeguarded against vibration, jars, and wide changes of temperature
or applied field. It is reassuring to note, however, that when an
accident does occur, the outlook for continued usefulness of the magnet
is good. Even with complete demagnetization, it may be expected
that remagnetization and magnetic stabilization will impart the same
degree of stabilitf; that had been attained before the accident. That
is, the blow or other occurrence would probably have no serious effect
on the shape of the curve or on the basic parameters which determine
the usefulness of the magnet, though it might well change the dis-
tribution factors, requiring restandardization as for a new magnet.

13. Curvature of minor loops.—Evidently the primary branch
of a minor loop having the operating point at the origin is identical
with the initial part of the normal magnetization curve. There appears
to have been no evaluation of the curvature of minor loops when the
operating point is away from the origin. However, the close relation
between b and ¢ under thermal change suggests that a similar con-
nection would govern the curvature of minor loops in relation to «,.

14. Application.—It appears from the preceding sections that an
estimate of the induction factor can be formed with a knowledge of the
cight values H,, I, p, f, I's, N, I, and V. (It is possible to determine
the first thrce if any three points on the demagnetization curve are
given.) Knowing these eight values, we can find «, by means of equa-
tion 30, then «, with equation 28, and finally T with equation 27,

Conversely, it would be of considerable interest if determinations of
the induction factor were generally accompanied by statements not
only of temperature but also of the volume and mass of the stripped
magnet and its demagnetizing factor (or the basis for computing it),
permitting the derivation of the reversible susceptibility referred to
unit volume or mass (x, or x,). Such a criterion, particularly if {further
generalized by reduction to «, or xo, has the cogent advantage that
1t is directly comparable and significant, either for different magnets
of various sizes and compositions, or for the same magnet at different
working points.

15. The induction coefficient.—One final point remains. It has
been understood from the first that the induction factor depended
upon the size of the magnet. Wo have scen how this drawback is to
be countered by converting to , or x, (a step not proposed in the prior
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literature, so far as the writer is aware). But we should not attach
undue significance to the so-called induction coefficient,! a quantity
ecﬂlal to T/M which occurs in the computation of the induction factor
when the method of Lamont or the related one of Nelson is employed.
In these methods the initial moment serves as an implicit datum per-
mitting the measurement of induction coefficient without calibration;
this result is then multiplied by the moment of the magnet to get the
induction factor. Some methods by-pass the intermediary function.
Welsh, for example, added a separate deflection to find M/H,; his
equation gives the induction factor directly (Whipple 1877). Alter-
natively, one might use Lamont’s initial equations (Hazard 1911) but
calibrate the set-up with & magnet having known moment; this
procedure would permit the measurement of an unmagnetize(i bar,
for which the induction coefficient becomes infinite. In the Schmidt-
Venske method, too, the induction coefficient is not involved since the
absolute change of moment is the measured quantity.

The induction coefficient is seen to afford a ready-made index for
comparison of differently constituted magnets as to t}’neir vulnerability
to the effect of the earth’s field, in geomagnetic measurements.
Unlike the induction factor, it is roughly comparable for magnets of
different sizes. However, we see from its inverse relation to 7 that it
is an unreliable guide, giving no true characteristic of the material used
in the magnet; it is not constant even for a particular magnet, as has
been pointed out by Lamont (1867), by Hazard, by McComb (1929)
and by Nelson. That is, the induction coefficient is grossly affected
by chanﬁe in I/Ig, whereas 7T is virtually independent of such change
within the relevant range.
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1 The literature reflects some disparity in the use of this term, Wo here follow Lamont, Bartels, Hazard
Venske, and Chapman in what seems to be prevalling usage. B. Stewart, and after him C. Chree, appllo&
the same name to what is here called induction factor, whereas Kohlrausch (1892) bestowed it upon 8 third
quantity, which we recognize as F,T/M. Kohirausch (1884) also introduced the *inductions constant”
equal to T/p V., This would approach x. for small values of N (seo eq. 27).
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SUSCEPTIBILITY AND INDUCTION FACTOR

SUMMARY OF RECURRING NOTATION

Taany | Aviaes Stonmoavo Toumne oo
Page
" Reflecting the ambient or extraneous field. 17, 42
B Magnetic induction, or flux density. 11, 34
(B) =Bfx". 11
B Pertaining to the B/H curve, as distinguished
from the I/H curve. 11
. Coercive; pertainin%to the point where the
curve crosses the H axis.
d =I4/Ig
=(Hq4l 4/ H Ig)* 8
dp = B4/ Bp. 12
a Pertaining to or derived from that point of the
demagnetizing curve whose coordinates are
in proportion to the intercepts of the curve,
or that point corresponding to the maximum
of Wg 6,7,15
. External; applying to the external space
about a magnet, or the gap in which the pro-
perties of the medium are active and mani-
fested. 34
{, =xNg. 24
Magnetizing force or magnetic intensity. 1,4,34
I Magnetic polarization; intensity of magnetiza-
tion
=(B—u,H)/x". 1,2, 34
r, Maximum (saturation) value of I, correspond-
ing to the horizontal asymptote of the major
. hysteresis loop. 3
1, Fictitious saturation value of I, corresponding
to the asymptote of the hyperbolic approxi-
mation to the demagnetizing curve, 3
¢ Internal; applying to the material of the speci-
men magnet 34
M Magnetic moment of a magnet
=/ 1dV; for an ellipsoid M=V1I. 19,36,40
m Ratio (m & magnet having axial and polar
symmetry) of the dimension along the axis
of revolution to that along an equatorial
diameter. 15, 38
N Dema;;netlzmg factor of a magnet
14,16,34
" Pertammg to that point of a curve at which a
given specimen remains when all external
magnetizing force is removed; used in de-
noting remanent magnetization. 14
=4iR/Ls
=1—(d"1—1)? 4,8
Ps =1—(dpt—1)3 12
q Temperature coefficient of a magnet
=-1d 27,28
~ o Idt s
R Residual; pertaining to the I-intercept of a
major hysteresis loop—that point at which
the self-demagnetizing field has just become
sufficient to annul the applied magnetizing
field. 4
(R) Pertaining to the I-intercept of the straight
line approximating a minor loop. 27, 38
r Reversible characteristic of material of a
specimen magnet. 16,35,38
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T -
Tananr | A T W
Page
. Saturation value or a value analogous thereto
(see I, and I',). 3.
T See text. 36, 37
t Temperature. 27
U Specific permeability; ratio of permeability of
o specified substance to u,. 34, 42
|4 Volume of a specimen magnet. 19
We Ener%y product
=—HI. 7,19
) Seec text. 40, 46
¢ See text. 35
[ See text. 40
X Magnetic susceptibility, I/H
=.:‘r—:(u—1) 1, 16, 39
x False susceptibility. 18
M Magnetic permeability, B/H
- . 1,11
Re =B/H for a vacuum, sometimes called the 19"34’
permeability of space; its value is 1 in the ’42'
¢..g. 8. electromagnetic system and =vX10-7
in the M. K. 8. systems,
x* Ratio of intrinsic induction to magnetization;
unity for rationalized systems, 4= for un-
rationalized ones. 1,11
E 4x/%°; unity for unrationalized systems, 4= for
rationalized ones. 1,15
P Density, i. e., mass per unit volume. 16
T Induction factor=V«',/u,»*; a measure of the
temporary change in magnetic moment
which a magnet undergoes due to unit change
in the ambient field. 19
X Mass susceptibility
= p. 16
See text. 40
0 Pertaining to I=0, or the initial part of a
magnetizing curve (at the origin). 18,21,29
] Pertaining to reference temperature, as dis-
tinguished from actual temperature. 27
b Signifying that & dia- or paramagnetic ambient
medium is taken into account. 34




APPENDIX. EFFECTS OF THE AMBIENT MEDIUM

16. Limiting conditions.—This study is concerned with the
effects of an isotropic ambient medium on the magnetic moment and
field of & permanent magnet, and with the bearing which this topic
may have on the question of what we are measuring when we make
observations with the theodolite magnetometer by means of oscilla-
tions and deflections. The medium is considered to have no external
boundary close enough to influence the results,

Some aspects of this topic have been considered by L. Page in a
paper published in 1933. The development given here is consistent
in result with that by Page, but differs therefrom in two respects,
namely (a) it has & somewhat broader scope, covering for instance the
case of 2 magnet not ideally hard, and (b) by exploiting the concept
of a replica field it takes greater advantage of older developments in
magnetic -theory, to mitigate the mathematical complexity of the
aspect here under consideration.

To permit exact results, we shall confine our attention chiefly to
axially symmetrical, ellipsoidal magnets (prolate or oblate) which will
be assumed to be magnetized parallel to their axes of revolution. The
term ‘‘ellipsoid” will be used only in this restricted sense, unless
otherwise stipulated.

The ellipsoid has a certain magnetization which is the result of its
past history and which maintains a demagnetizing field in the magnet,
precisely like an inverse applied field; the operating point lies in the
second quadrant, somewhat within the major hysteresis loop (because
of stabilization), being specified by the ordinate /> and the abscissa
H{. (It must be borne in mind that 4 has a negative value, since
the direction of the field is contrary to that of the original magnetizing
field which caused the specimen to acquire the magnetization it
possesses.) We use the symbol N* to denote the ratio —Hp/Ip.
This is, of course, the demagnetizing factor of Dubois, here given the
affix * because it 18 found to depend upon %, as will be shown.

17. Basic relations and definition of T.—The three quantities
fl B, and I at a surface point maintain definite proportions as,

ollows: -

For the exterior (fig. 10, right side),

g:—:=u,p,, (32

=t = 1; (33)
and for the interior (fig. 10, left side),

‘%"JZ\%" o, (34)

—;—j‘%:l/]\". (35)
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These magnitude ratios apply to the whole quantity, and equally to
the normal components thereof, because our initial stipulation making
I} uniform and parallel to an axis of the ellipsoid implies that B/ and
H} are likewise uniform and parallel to said axis, as is well known.
Of course, B, and I, must everywhere conform in direction with
Hp, since u, is assumed uniform. The six basic scalar quantities
involved in these equations are the magnitudes of vectors, each of
which is labeled in figure 10 with the corresponding symbol having
an arrow over it. The scalars are all positive save /., for which a
reversed arrow is used in the figure. . :

Figure 10.—Resofution of external and internal fields at the surface of a magnetized ellipsoid.

(See note beneath table 1, p. 9, regarding conversion of numerical values. The arbitrary values shown
hcrg have 'g;rlo)s based on 0.833 for T'and 1.667 for ., chosen for ease of illustration. The ellipsoid is oblate,
with m=0.655.

Now, it has been shown by Maxwell that the tangential component
of H does not change in passing through the surface, nor does the
normal component of B. That is, :

—H} sin {y=H, sin ¢, (36)
By cos =B, cos ¢, 37)

where {; and ¢, are the angles which the field (B or H indifferently)
makes with the normal to the surface. These four components are
designated in figure 10 by means of the broken lines. Note that the
lines of force pass through the surface of the magnet without crossing
the normal.

In respect to the conditions within the ellipsoid we shall deal only
with the reversible kind of permeability and susceptibility (p. 16).
The more common sort (representing the whole value of B or of
I divided by that of H;*) would be of scant utility here; instead of
serving as an index to the property of the material, it would merely
afford a distorted measure of N?, as a moment’s reflection will verify.



36 EFFECTS OF THE MEDIUM

We have noted on page 14 that N is primarily a shape index. The
basis of this effect was discerned by Maxwell (1873). :

Page has shown that H is dependent on the external medium,
but in a real magnet this makes /> so dependent to a minute extent.
In the examination of this relation, we take ‘“magnetic moment’ as
meaning the magnetization integrated over the volume of the magnet;
then the moment too must be influenced by the medium, as we shall
see. '

We can use equations (32) to (35) to replace B and B,> in equation
(%7) ‘with expressions more useful for this study. In this way we
obtain

—H cos ¢y
—_—

Hp cos ¢, 38)
Ifcos ¢y u,+T
I cos i, u,—1’ 39
where
R (40)
T 1
Nbl‘v
Combining equations (36) and (38), we have
__tan $e.
“ " tan 1

The development thus far presented has not established whether 7 or
N¥ or both of these 1uantities would be affected by u,, though equa-
tion (40) requires at least one of them to be so affected.

" 18. Configuration of the field unaltered.—The field at an
point is ascribed to the combined effect of the moment of every small
element of the magnet and of every small element of the magnetized
medium. With respect to cach of these, the field can be analyzed as
due partly to a volume distribution of poles, with density equal to
the divergence of I, and partly to a surface distribution of poles with
pole strength equal to the normal component of I. It has been well
established that the first part must vanish in any region if (a) « is
constant, or (b) I is uniform, throughout that region. The region
occupied by the medium satisfies condition (a), so that we may deter-
mine the field arising from the magnetization of the medium if we
can find the surface-pole distribution which it develops at the boundary
surrounding the magnet. We may think of the space occupied by
the magnet as a void into which the flux emerges from the medium,
developing surface poles at the boundary. S

On the other hand, condition (b) is met in the magnet by reason of
its shape. Consequently, the field due directly to the maguet is also
representable as the effect of its surface-pole distribution alone.

Equation (39) shows that the normal component of I outside the
ellipsoid, adjacent to a particular surface point, bears a definite ratio
to that inside—-a ratio that is independent of the location of the chosen
surface point,. ' o
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This means that the surface-pole distribution in the medium is &
replica to a smaller magnitude of that in the magnet. Consequently,
the field at any point will consist of a primary constituent due immedi-
ately to the magnet and a secondary part (due to the medium) that is
directed the same as the primary part for & diamagnetic medium, or
exactly opposite thereto for a paramagnetic one. The two parts will
preserve a magnitude ratio that is constant in space but depends on
the permeability of the medium. (The pole-strength ratio is the
negative of the normal-magnetization ratio given by eq. 39, since the
flux enters the medium where it leaves the magnet and vice versa.)

 In other words, the configuration (that is, the geometric pattern)
of the field remains unchanged when the medium changes—only the
pumerical magnitudes are affccted. From this it may be shown that
the induction at any point preserves a constant ratio to that at any
other point, and specifically that

Bab Btb
B.~ B (42)

19. Significance of T and some of its properties,—The con-
servation of the patterns under change of u, means also that {, and
¢t¢in equation (41) are not aflected by change of u,, and hence that T
is likewise independent of w,. Then its magnitude as determined for
one medium must be valid for all media. In short, T is a purely geo-
metric parameter, dependent solely on the dimension ratio of the
ellipsoid. Page uses in & similar fashion a geometric parameter 7
which turns out to be (14 7)'=1—Np,/7°. It can be shown that
for a ring magnet with a very short air gap, T as defined by equation
(40) is essentially the ratio of the length of path in the gap to that
in the magnet. Its independence of u, is also readily shown.

Equation (41) has an interesting significance in geomagnetic theory.
The tangent of the magnetic dip on a body of the sort we are studying
bears a uniform ratio to the tangent of the latitude, the latter being
defined as the angle at which the normal erected at any surface point
would pierce the equatorial planc. This constant ratio is 1/T; it is
2 for a sphere, as is well known.

Now, equation (10) may also be written

N=T___, (43)
My %'*' 1)

and for a vacuum we may simply change N* to N and «, to 1, the 7'
requiring no change. This leads to the relation

N 14T
TV—zu,—}- T (44)
Note that N* reduces for small 7 to 7*T/u,u, and for large T to
m*fp,. The latter result accords with the well-known statement that
for a thin magnetic shell NV is 4, the maximum possible value. Note
also that N* is not affected Ly «u,, since the latter quantity does not
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appear in equation (43). This equation further shows in a simple
way just how NP is affected by wu,.

gain, equation (43) yields an expression for NV in vacuo which may
be substituted in formulas for N given by Dubois, yielding equations
that connect 7 with m, the dimension ratio. These equations are given
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Figure 11.—Log T'asa function of log m for ellipsoids. The function is governed
by the following equations:

1 1 (™ .
For m<1 (ablate elltpsold): 1= s (1 etk m)
For m>1 (prolate ellipsold): ; +11 T m’l—l 1/_'_':___1 log, (m+mi—1) —1].
mé—

The broken line shows log m=3/? for comparison.

beneath figure 11, which shows log T plotted against log ;. As an
approximation it appears that Tmi is nearly constant, since the broken
line in figure 11 representing log m™} is nearly parallel to the most
useful part of the curve. Figure 12 shows T'm} plotted against lo
m; this bell-shaped curve may be used as a rather accurate empirica
means of finding T when m 1s known. A computed value of m™$ is
merely multiplied by a value of 7'm? scaled from the curve. To illus-
trate: If m=15, then log m=1.176, m~¥=0.0172, and (from fig. 12)
Tnd=0.63. Multiplying the last two together we find 7’=0.011. °
20. Magnetization and magnetic moment.—It is demonstrable
that the moment will vary with u, for any except a ring magnet. We
shall develop this relation for an ellipsoid, but first we recall that any
change that affects H,> must cause the operating point to move along
a gentle slope (strictly it describes a minor loop) represented by the
equation
I¢=1I@+xHp (45)

where I is the I intercept of the line taken to represent the minor
loop. By this treatment /5 is a constant that does not depend on
the medium. In a sense I, is analogous to I, since it approximates
the magnetization that would prevail if the stabilized magnet were
either subjected to just enough magnetizing force to annul its self-
demagnetizing field, or immersed in a medium of great permeability
with no applied field. :
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Figure 12.—Practical curve for determining T when m is known, for an cllipgoid,

In equation (45) we can replace — H with NP I? (sco last paragraph
of section 16) and then use cquation (43) to remove the N, obtaining

]1b 1+T/’u,

Ty~ T+ 1w, “0

and similarly for a vacuum,

I, 14-T

A 1L 47
I(R) 1+Tu, ( )
We have made use of the formula relating «, and wx¥that follows

directly from definitions, applying the concopt of reversible changes
(see p. 16).
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21. Effect of the medium on the field.—We now take up the
following question: Under the conventional postulates as to the field
of an isolated pole, how does the field of an ellipsoid change in a
changing medium, if its moment be governed by equation (46)? -

In vacuo, the field of a magnet with axial and polar symmetry is
described as to magnitude for any external point S by the equation

M

=5 (148)(3 cos® 6-+1) - 48)

™’ H,=

where M is the moment of the magnet, r is the distance of S from the
center of the magnet, 6 is the angle between the axis and the direction
of S, and § is a correction that depends on the shape of the magnet.
This is a correction to the field, not to the moment. It provides for
the departure of the field pattern from that of a dipole; in general, it
is a function of », T and 6, but in any case it vanishes for T=4% (a
sphere) and is negligibly small for sufficiently large values of r. We
shall consider that the effects of the medium are expressed separately
and do not enter into 5. :
We write from basic definitions

Bp=n"I}+Hpy,
By==n"I+ Hyp,
and, applying equation (42),
' B}l _=*It+Hpy,
B, =°I;+Hy,
I¢ =Ny,

=7;-- _—_—-1r'—Ny, .

Let
v 14 Tu,ju,
T 14 Tu,
and
_14T/u,
h=TxT
Then, using equations (43) and (44) to remove N* and N,
By_I¢
Ba - Iﬂ(’l,
and from equations (46) and (47),
MYM=1})I,=y/p="T%/1. (49)

The last member is established by using equations (27) and (43) to
express T in terms of %, ¥, and 7', then dividing this result by the
corresponding expression for- vacuum. The introduction of M’ and
M comes from definitions (p. 36). B
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. Now, our objective is to depict Hy in a way that will spotlight the
cffeets of the medium. Again invoking definitions, we write '

Hab/H,=B,b;l.,/B.’u,p.
. Hp=H,M"'{Muy, (50)
= H.,[yu., - (50a)

and either of these forms may be combined with equation (48) to
eliminate H,; then

o M '
® H,b=m;;r—a(l +5) (3 cos? 0+ 1)“; (51)
rHp=—2L (148 cos? 64 1)% (52)
¢ Vi, “nrs )

These equations serve nicely to bring out the effects of the medium
on cllipsoidal magnets. The effects are reflected in ¢ (or ;) and M?P.
So far as y-and ¥, are concerned, the effects of the medium are ex-
plicit in the defining equations, since 7" has been found independent
of u,. Equation (52) has yu, to represent the whole effect of the
medium, while equation (51) shows two distinct effects. That is, the
change of the magnetization of the magnet is reflected in M* (a func-
tion of N* and hence of u,), whereas the influence of the polarization
of the medium is covered separately by y,u,. The necessity for ¢,
is easily overlooked. It may be regarded as a correction for the
absence of the medium from the space occupied by the magnet.

Of course, ¢ reduces to ¢, for the perfectly hard magnet. Our
ugy corresponds in significance with Page’s v, and examination of his
result confirmg that they are the same. He also derives the value
for a sphere (T'=%) which in the present notation is u,¢1= (24, +1)/3.

At constant u, and u,, ¥ is by definition s single-valued function
of T; the smaller m is, the larger T, and the more cfosely ¥ approaches
1/4,. On the other hand, ¥ approaches 1 for small 7. In other
words, irrespective of u,, for a magnetic shell the effect of ¢ is to
remove the u, from cquation (52), whereas for a long thin rod it has
no effect. In order to make yu, fall midway between 1 and wu,,
we must have T=1/u,; and the corresponding condition for yyu, is
that 7'must be 1. An ellipsoid satisfying the latter condition would
have the proportions of a doorknob, with m=0.55, approximately.

Note further that, from the definition of ¥, '

__!_'—l/ue
MY, (53)
wUg—1 T
~a TEim - (3w

and (1—4,) is represented by the same expression with u, taken as 1,
These forms are instructive in the usual situation where T'<1. - To
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tﬁke a typical case,let m=15, T=0.01, u,=14(4X1077), and %,=15;
then ’

1—y=5X107%
1—¢=4%107"

Ta sum up, the field strength of such & magnet is modified by the
medium in three distinct ways. As compared with the field in vacuo,
the modifications due to air, expressed as parts in 1,000,000,000, are
as follows:

400 parts decrcase (direct effect for constant moment), deter-
mined by u,;.

4 parts increase (correction for absence of medium from space
occupied by magnet), determined by yi;

48 parts increase (correction for change of moment arising from
reduction of demagnetizing field), determined by ¥/¢;.

Finally, we see that tﬁe presence of ¢ is equivalent, for the two
limiting cases of thin wire and magnetic shell, to the presence of u,
with suitable exponent, and that for the first of these limits the u,
appears in the fashion prescribed in the simple, elementary treatment.

22. Torque on a magnet.—A¢ this point our inquiry turns to the
ponderomotive effect attaching to the concepts of magnetization -and
field strength. The torque developed upon a long, thin magnet placed
transversely in a uniform, horizontal geomagnetic field H, is of course
proportional to H, and to Afb, the integrated magnetization of the
magnet. Now this relation, in consequence of the convention we
have chosen for the character of I and M, does not involve u,; and
u, 18 likewise absent, conformably to the conclusion stated in the
preceding paragraph. That is, the equation

Torque=H MY (54)

is accepted as a fundamental one, with a validity that is unimpaired
by the presence of a medium so long as the transverse dimensions of
the magnet are sufficiently small.?

As another result of the above-mentioned convention, the factor
uo7” must appear in the denominator of the expression for the torque
between two thin magnets in vacuo. To allow for the presence of a
medium in this expression we must furthermore insert %, appropriately.
It too goes in the denominator (again assuming long, thin magnets)
since only thus is the expression capable of being reduced to the form of
equation (54) by the replacement of one of the %l’s with its equivalent
in terms of the field set up by the magnet. Then we have

MpM,»

Torque=
q qu¢ F'7.3

(55)

where it.is supposed that the magnets arc placed one above the other,
both directed horizontally but in azimuths differing by 90°, and that
no field is present other than the ficlds set up by the magnets. Here

3 Note added in proof: The elementary treatment, being found applicable for larze m to the esmputation

of the field of a magnet, is similarly adopted for thg computation of torques. A more rigorous basis for this
extension is avallable in the study cited on page 48.
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fand m distinguish the two magnets, which may be regarded as “fixed”’
a}r:d “movable’’ respectively, and r is the (great) distance between
them.

The effect of the magnetization of a thin wire may be regarded as
the integrated effect of a great number of pole pairs that form a line
sequence along the axis of the wire. Since the aggregate of any number
of separate effects all having the same form is stiﬁ of that form, we
see that equation (55) applies to a pair of schematic magnets consisting
of single pole pairs as well as to long, thin wires; consequently it is
consistent with the classical expression of Coulomb’s law for point
poles in a medium. In our notation this law is written

Force=—3—i‘—&—§-
T UghtoT

Equation (55) is not very informative, owing to the simplifying
conditions laid upon it. Our next objective Wﬂ% be a relation of the
same sort but somewhat broader in scope—one that will apply to
ellipsoids with nonvanishing transverse diameter, situated at moderate
separation. The torque on each magnet (regarded as “passive”) is
necessarily governed by the field it experiences from the other or
“active’’ magnet, in accordance with equation (51). Thus, the torque
developed at magnet M,* depends upon the field of magnet M, and
hence upon (1 + &;) (I -+ 3 cos® 6,)4/y1,;. The same statement holds
with the m’s changed to f’s and the f’s to m’s, by symmetry. The
torques on the two magnets represent different aspects of a mutual
interaction. There is a distinction between them, in that the view-

oint chosen determines which valuc of 4 is operative; it must clearly

e the value pertaining to the “active’ rather than to the ‘“‘passive’”
magnet. This distinction vanishes when 8 is 90° for both magnets as
in the situation postulated in equation (55) and here as well. Then
the torque has strictly the same magnitude from both viewpoints, and
the expression for this magnitude must incorporate values of (1 4 8) /¢,
for both magnets in precisely the same way. At the same time, the
whole expression must reduce to the style of equation (55) if the two
values of & vanish and those of ¢, become unity. It will be found that
the only form satisfying all requirements is

(1 + 5!) (1 +am) Alfmeb.
lehﬂlll,,,’d,uﬂ‘s ® 6)

If the passive magnet be translated to a positon in the same horizontal
plane with the active one, on the latter’s axis (Lamont’s first position),
the effect of the radical containing 6 is to inject the factor 2 in the
numerator of equation (56). In the converse arrangement (Lamont’s
second position), equation (56) holds without this factor.

A similarly broagened relation is needed to supplant equation (54).
Using equation (51) with §=90°, let us replaco (1 + 8)m*/y, for one
of the magnets of equation (56) with an expression in Hp. Let the
line of separation of the magnots be lengthened without change of
direction, by translating that magnet to a remote position. The H,»
that was just now iniroduced still sufflices to denote the effective
field of that magnet at the position of the undisturbed one, but the

Torque=
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remaining value of § now becomes negligible by reason of the increased
r. Now let us eliminate the remote magnet and replace H} with H,
to denote a horizontal geomagnetic field, so that the equation then
expresses the torque developed by H, upon the remaining magnet.
The resulting form may readily be modified to encompass varied
azimuths of the magnet. The complete expression is

Torque_—_—: M_MOS_‘I’] I{‘x sin ¢ (57)
vl Y1e
= Mﬁ"‘ T"—b"‘g) l‘v'ﬂ'wHa cos ¢] H¢ sin @,
Vi \$1 Y

(57a)

where. the magnet lies in azimuth ¢ relative to the ficld, and the
subscript ¢ identifies parameters taken transversely to the long axis
of the magnet (see p. 20). The effect of longitudinal induction,
inherent in M, is made explicit in equation (57a) by replacing the
M with M, pius 8 term in I, 1%, where M 18 the value of MP at
zero extrancous field. These equations reduce to the primitive form
of equation (54) when 7=0 ang $=90°. ~

Two general comments are now appropriate. Equation (57), with
¢ set at 90°, shows how the customary expression connecting torque,
moment, and transverse field must be qualified to allow for the pros-
ence of a permeable medium, by inserting ¢,; for without the ¢, the
equation is incomplete and may not be used as a means of defining
magnetization.?

And we see now that the assumption of point poles in the classical
foundation development of magnetostatic theory amounts to a re-
striction to line magnets, having the cffect of suppressing the shape
factor. The wecll-known disparity between the behavior of current
loops and that of magnets now seems less paradoxical. For we sce
that (a) & magnet approximating a magnetic shell would behave like
a current loop, maintaining a steady H field under a changing medium,
whereas (b) a needle-shaped magnet maintains a steady B field. For
intermediate forms, the varying effect of ¢ must be taken into account;
thus, neither of these generalizations is accurate for thick bar magnets
or for ring magnets with a considerable air gap, though (b) is apt to
suit the usual dimensions far more closely than (a).

23. Application of results.—The foregoing results are obviously
of interest in relation to the Gaussian method of measuring the
geomagnetic field. We consider deflections first; in this step, a
suspended magnet is deflected by a stationary one (the deflector),
and the amount of the deflection is a measure of the ratio of the field
of the deflector to the earth’s field at the point which marks the
center of the suspended magnet. For many purposes it is immadterial
whether we regard the field quantities deal}t,; with as B or H, since in

3 Note added in proof: The quantity Mb/y: appearing in seversl important equations may be nssigned a
apecisl status as the rirtual magnetic moment, that is, the quantity which deserlbes the strength of the magnet
in a given environment, with resyect to all its external manifestations, Thus, the ‘‘moment’’ defincd through
torque is the virtual moment, Me/¥1—a composito of the volumo integral of magnetization over the magnet
itself (Ay) combined with that for the surrounding medium insofar as the medium derives its magnetization
by induction from the magnet. A paper by Déring (Ann. Phys., 6 60-88, 1949) provides the basis for this

point of view. Incidentally, Diring thereby adduces new grounds for upholding the definition of mag-
netization as having the dimensions of B (the ono adopted in this publication).
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any particular case the two must coincide in direction, and their
magnitude ratio can be determined from the properties of the medium.
The question does, however, possess some interest if we imagine the
procedure conducted successively in two different media.

In deflections, we deal with the ratio of two quantities that are of
the same species; thus, for Lamont’s first position the basic equation
may be written

b
[

sin £=IIII ,

Bp

B,

=-H cbua# »
B,

where £ is the angle of deflection. In the last form we replace the
numerator with an expression in M by means of equation (52); the
result is :

%% gin f= %4 . (58)
oM»
= 'l’lBa (59)
__OMbl W”CT" 8in f
VB T um (60)

where C represents the two factors involving § and 6 in equation (51)
and need not concern us here. In this relation the transverse induc-
tion factor plays no part, because whatever transverse moment is
developed in the deflector has & field at the deflected magnet that
coincides with the latter’s axis, as a consequence of Lamont’s arrange-
ment. Equation (58) shows that if the magnet has a known moment
in vacuo, the deflection it produces in another medium will depend
on »*yB, This would mean that if it were an ellipsoid in the shape
of a long, thin needle, we would be measuring #*B,, but if it were a
“shell” type (flattened) oblate ellipsoid we would be measuring
w¥u H,—assuming M to be known in either case.

By equation (57) we confirm the conclusion by Page (1935) to the
effect that in deflections a value of ¢, for the suspended magnet would
enter into the couple developed by the field of the deflector acting
upon the suspended magnet. But the same effect must likewise be
manifested in the opposing couple due to the action of the earth’s
field upon the suspended magnet, and the y; for the suspended magnet
would clearly be eliminated in the equilibrium equation. The
simplest way to look at this physically is to recognize that the sus-
pended malg-net merely indicates the direction of the resultant field
(earth’s field plus deflector field) and its own field may be ignored
entirely. Thus, in deflections it is only the deflector for which we
need be concerned with such effects.
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In oscillations, the torque is governed by equation (57). As a
variation, one might substitute M/y for M"/¢y; and with M known,
one would measure H, with oscillations of a needle-type ellipsoid, or
B./u, with oscillations of a shell-type ellipsoid. However, in actual
practice we have no independent knowledge of M, but rather conduct
both oscillations-and deflections under the same ambient conditions,
the oscillating magnet of the first step being used as the deflector of
the second. The pertinent relations are expressed by equations (57)
and (59), both of which involve M*/yy, but the latter expression drops
out when the equations for oscillations and deflections are combined.
Under this routine, then, the composite result is a measurement of
(H B3 —that is, of I ,(Uepon?)i=DB,(7"[u.u,)}. This function is
not affected by the dimension ratio. In view of the relation of
oscillations to equation (57) and deflections to equation (59) it seems
quite proper to look upon oscillations as measuring field strength and
deflections as measuring flux density.

Since M is affected by longitudinal induction stemming from the
ambient field, it has slightly different values in deflections and in
oscillations. The difference is taken care of by the usual routine,
using the longitudinal induction factor, and this routine is valid
irrespective of the presence of a medium, as may be seen from the
following relation:

My AMP
7O 7 O
=1 _u,ww%ﬁ sin ¢ (61)

In this equation T*/M" may be changed by means of equation (49)
to T/M;; and with the flat signs (*) thercby eliminated, the right-hand
member represents M/M,, thus showing that M*/M?*, is independent
of u,. Here, as in cquations (57a) and (60), the subscript 1 attached
to M or to M signifies the value at zero extraneous field.

The increment of torque due to the transverse induction eflect is
likewise dependent on ¢ and hence different in oscillations and
deflections. The correction for this inequality depends on ., but it
can be shown that for clongated magnets this subsidiary effect of the
medium is substantially smaller than the latter’s other effects through
self-polarization and through change of the moment of the magnet.

24. Limitations on application.—We have not cxamined here
the effects of the correction & in equations (48), (51), and (52). This
correction takes care of the departure of the field from that of a
dipole. There i3, of course, no effect of § in the oscillations, since
there we are concerned not with the detailed configuration but only
with the overall effect as reflected in M?P/y,. DBut in deflections we
must take § into account. Its evaluation is awkward even for an
ellipsoid. The relation of N and m cited in section 19 is closely
associated with this problem, for the external and internal fields of an
ellipsoid are both based on the solution of the same integral but
with different lower limits, as discussed by Chrystal (p. 232) and by
Abraham and Becker. A substitution is made (see Gray p. 54, or
Abraham and Becker p. 144) such that the integral assumes a form



SUMMARY 47

that can be integrated—specifically the one which Dwight lists as
formula 152-1 on page 29. But the lower limit makes the result
cumbersome for the external field.

For cllipsoids that have all three axes of different lengths, it might
be possible to deduce relations by following & procedure along the lines
of Page’s 1933 development. For shapes other than the ellipsoid,
no general calculation is feasible (except as they reduce to limiting
cases of the ellipsoid). In practice, the magnet is taken as equivalent
to one or more schematic magnets consisting of pole pairs with various
separations. As one step beyond the simp%o dipole, a single pole pair
is used in most of the older literature of geomagnetism and suffices for
most purposes. The value of § on this model 1s a rapidly converging
series of which the first term (for §==0 as in Lamont’s first position) is
20%/r%, | being one-half the distance between the poles (see McComb,
1952, p. 14, equations 37-38). : :

Schmidt has gone into the question by means of spherical harmonic
analysis, by which the field of a specific magnet may be represented to
a}rlly desi;;»d accuracy, as explained by Bartels (Chapman and Bartels,
chapter 2).

While T has been discussed only for ellipsoids of revolution, it might
be instructive to regard equation (40) as defining T for other shapes,
with the understanding that N® refers to average values of I and H .
For ellipsoids of revolution, the effect of u, on N* is not carried over to
T'; and for other shapes it seems possible that 7 would be at least less
sensitive to u, than is N>,

The conclusion of section 18 to the effect that the geometric pattern
of the field is unaltered by a change in the medium does not apply
to the tubular shapes used in geomagnetic measurements, for the
postulation of a zero convergence of I no longer holds, and the field
of tho magnet cannot be attributed exclusively to a surface-pole
distribution. It might be conjectured that the change in pattern
would bear a relation to the disparity bétween the demagnetizing
factor for the shape in question and that for an ellipsoid with the same
dimension ratio. It would appear that the change in pattern would
become insignificant for a shape approximating an ellipsoid and also
for a long thin rod or a ring magnet with very short air gap, for which
the effect of the medium is swamped by the relatively high reluctance
of the internal path; and both of these cases represent low values of the
said disparity.

Alternatively, the effect of the medium arising through nonuniform
magnetization of the magnet might be regarded as making & a function
of u,; since § is not particularly sensitive to m, its response to u, would
be expected to be quite small, though we cannot be sure that it is so
small as to have no bearing on the results obtained in this appendix.,

25. Summary of results.—We have shown in this appendix how
the demagnctizing factor of an ellipsoid of revolution is influenced by
the surrcunding medium, and how its magnetic moment and field are
affected by the medium. Such a magnet in a variable medium gives
rise to & field that is virtually constant in H or constant in B, in the
special cases in which the magnet approximates a magnetic shell or
a long, thin wire, respectively. For a prolate ellipsoid, if we correct
for the effect of the medium on the moment we may say with even
better approximation that the magnet’s B field is independent of the
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medium, -- What - this .statement- neglects is a minute effect of the
polarization of the medium; this. correction appears not only in the
field of the magnet, but also in the torque developed on the magnet
through its reaction against an extraneous transverse field. Hence,
the conventional rule that the torque equals the integrated magnet-
ization of the magnet times the transverse field strength is rigorously
valid only in vacuo.

Finally, we have seen that we may look upon deflections as measur-
ing #*B and oscillations as measuring H; strictly speaking, the com-
posite result is (w*BH)}. ‘This latter result, developed specifically
with regard to the ellipsoids stipulated at the outset, extends by
intuitive reasoning to magnets of any shape whatever. Though one
mey be unable to formulate an explicit statement of the influence of
the medium on the magnet’s field, yet the effect, viewed as a simulated
change of moment, must by the argument advanced on page 46 be

the same in oscillations and deflections, hence must drop out of the
final result. '

NoTE ADDED IN PROOF: It has been learned that this study parallels in some
respects an investigation by H. Diesselhorst (Ann, Phys., 3 11-30, 1948) in which
the effects of a medium are developed by means of Maxwell stresses. Upon
comparison of the two studies, with due allowance for rationalization and other
differences in notation, there are readily obtained several equivalence relations,
of which the following are examples (Diesselhorst symbols used on the left side,
those of the present study on the right):

{no}=mn", 62)
{H}=H/x® 63)
{Ig}=n"I (64)
{Is}=1/u, (65)
{Lo}=Iwm/u, (66)
{N}=Nl‘v/7r'
{N}=1/uy (68)
(mn)=LEtDw (69)
(Ma} =147 (70)

Aside from the benefits of simplicity and brevity stemming from its restricted

objectives, this appendix differs from Dicsselhorst’s analysis in several particulars,

e. g., in using the ratio by which the magnetization of the magnet is affected by

the presence of the medium (eq. 49). Only by replacing each Mb/y, in our

equation (56) with the corresponding M/¢ can we submerge this effect, thereby

:ihan 412155 the equation to one with the same significance as Diesselhorst’s equa-
on .
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