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Abstract

Background: Dyskinesia, a major complication in the treatment of Parkinson's disease (PD

can require prolonged monitoring and complex medical management.

Discussion The current paper proposes a new way to view the management of dyskinesia in
an integrated fashion. We suggest that dyskinesia be considered as a fadtpmahta-s

noise ratio (SNR) equation where the signal is the voluntary movement and the Réise is
symptomatology, including dyskinesia. The goal of clinicians should be to ensute SNy

in order to maintain or enhance the motor repertoire of patients. To understand why such a
approach would be beneficial, we first review mechanisms of dyskinesiall @s weeir

impact on the quality of life of patients and on the health-care system. Thalcaatic

practical bases for the SNR approach are then discussed.

Summary: Clinicians should not only consider the level of motor symptomatology when
assessing the efficacy of their treatment strategy, but also Ihi@&fatie motor repertoire

available to patients.

Keywords: LID, DID, Levodopa, Deep brain stimulation, DBS, Treatment, Quality of life,

Motor complication, Motor fluctuations, Algorithm



Background

Parkinson’s disease (PD) is a progressive neurodegenerative diseastechadsby a
predominant loss of dopaminergic neurons in the substantia nigra pars compactirid] lea
to the development of motor symptoms. Four cardinal motor symptoms are assodlated wi
PD: tremor, muscle rigidity, postural instability and akinesia/bradylari@si PD is also
associated with the development of non-motor symptoms stemming from the pathological
involvement of particular brain structures and complex neurochemical imbaJahcEsese
symptoms include psychiatric manifestations [4], rapid eye movement and etyer sl
disturbances [5, 6], mood disturbance [7, 8], bradyphrenia and cognitive deficits [9-12],
anosmia [13], fatigue, autonomic system dysfunction and pain [14]. Although both motor and
non-motor symptoms can be disabling for patients, current treatments tacypehprantly

the motor dysfunction using mainly dopaminergic therapies. Prolonged use of dopaminerg

agents can lead to drug-induced dyskinesia.

Dyskinesia may have deleterious effects on the quality of life of both patieditheir
caregivers, and create an additional strain on the health-care systemsgvieilal
approaches are taken by movement disorder specialists to delay or masiagesiy,
neurologists not specialized in the treatment of movement disorders and gerotitadpees
may find it difficult to control dyskinesia while maintaining clinicallgsificant reductions

in typical PD symptoms. In this paper, we propose a novel way to view the clinical
management of dyskinesia, which could benefit patient care. In order to comprehetigeful
complexity of the problem of dyskinesia, we first provide an overview of thertegds for

PD and how they can induce dyskinesia. We then provide a review of the impact of

dyskinesia on quality of life and health-care costs.



Discussion

How prominent is the problem of PD?

The prevalence rate of PD was estimated a few years ago to be bed@der200/100,000
population [15-19], with an incidence rate of 10 to 20/100,000 population [20, 21]. However,
the number of PD cases is increasing and will have grown from 10 million worldwide in t
late 1980s [22] to 40 million in 2020 [23] due mainly to the aging population. While most
patients with PD are diagnosed after the age of 55 (see [24, 25]), about 10% of pa&tients ar
diagnosed before the age of forty [26, 27] and characterized as ‘young-onset PD’ [2&]. Whi
most young-onset patients exhibit typical parkinsonian symptoms [28], they applesplay
slower disease progression [25] and show a tendency for increased preaatbsegerity of
motor fluctuations and dyskinesia with prolonge8i4-dihydroxyphenylalanine (L-DOPA)
therapy [22, 29-32]. Early onset of motor complications may be especialpmeia these
patients as they will live with the disease for longer periods [33] with a dimchcphedity of

life [34] and impaired social and economic productivity [34, 35].

What are the current treatments of PD?

Based on the classical model of basal ganglia movement disorders [36-38]s thie los
dopaminergic neurons associated with PD results in depletion of dopamine content into the
neostriatum. This translates into altered basal ganglia neural activity, prgduchange in

the output of the basal ganglia-thalamo-cortical pathways. The cardinal hgpoki

symptoms of PD result from a change in the activity of thalamo-corticalsitguotor

cortical areas which impairs voluntary movement [36, 39, 40]. Consequently, the primary
goal of PD treatment is to counteract the depletion of dopamine. Since dopamine causes
severe nausea, and cannot easily cross the blood brain barrier, other means raictiognte

this dopaminergic deficiency have been developed (see [41] and [42] for comprehensive



reviews of current treatment optionk brief, the current gold standard for the treatment of

PD motor symptoms is L-DOPA [24, 25, 41, 43-46] associated with a decarboxylase inhibitor
such as carbidopa [47-49]. Over the years, several compounds were developed to be used as
adjuncts to L-DOPA or as replacement therapy. Catechol-O-methylirasef(COMT)

inhibitors such as entacapone and tolcapone are used as adjuncts to L-DOPA in order to
enhance its bioavailability [26, 50, 51]. Monoamine oxidase-B (MAO-B) inhibitors, on the
other hand, are used to extend the duration of action of L-DOPA by decreasing the metaboli
degradation of dopamine in the synaptic cleft [1, 22, 29, 46, 52-55]. Another class of drugs
that can be used as an adjunct or replacement to L-DOPA is dopamine agohesysast

to dopaminergic receptors, mimicking the action of dopamine. They were initiathtas

reduce the dose of L-DOPA to control motor complications [24, 41] and may be considered
for initial monotherapy [56, 57], especially in younger patients to delay the onset of

dyskinesia.

While medications are the main therapeutic avenue for the alleviation offRiRasys,

surgical procedures can also provide symptomatic relief in some patientsvé\blageries

have been used in the treatment of motor dysfunction in PD for several decades and can be
very effective [58]. Several nuclei of the basal ganglia-thalamo-cbpiathways are targeted
using this technique, such as the thalamus [58-69], the globus pallidus internus (GPi) [70-80]
and the subthalamic nucleus (STN) [76, 81-90]. More recently, deep brain stimulation (DBS
has become an invaluable clinical management tool for medically intractatwe m

symptoms. Interestingly, DBS targets the same structures thargeéed in ablative

surgeries [91]. DBS therapy has the advantage that it is reversible and ceatdxb it it

suffers from complications and inconveniences related to prosthetic implants|[$2-98

recent years, STN and GPi DBS [95, 99-109] have become the targets of cheftectore

relief of many motor symptoms associated with PD, including marked reduction of



dyskinesia [110, 111]. Other structures were recently investigated for thiatadie of

specific symptoms [112]. For example, the pedonculopontine nucleus (PPN) [113-116] was
targeted for DBS in patients with gait and postural imbalance issues. The meatian-
parafascicular (CM/Pf) complex [117] and the zona incerta [118-121], on the other hand,
were targeted in patients with tremor, as an alternative to the wdiligiséal thalamic
ventrolateral (VL) nucleus. However, whether DBS within these alternsttivetures has an

impact on dyskinesia has yet to be assessed.

Novel and experimental treatments of motor symptoms of PD, some of which aregligtenti
disease-modifying, have also been introduced. One promising avenue is the devetdpment
novel drugs for the treatment of PD symptoms. For instance, Adenaogifredeptor

antagonists offer the potential to provide benefits that are not delivered bytraditi
dopaminergic medications and might avoid dopaminergic side effects through aoreddicti

the over-activity in the striatopallidal pathway [122]. Many of these drugsuarently in
development and are at different phases of clinical trials. Prodrugsaheaclass of

medication currently under development. They are inactive or poorly active compounds that
undergain vivo chemical or enzymatic activation that transforms them into an active drug
[123]. They have better pharmacokinetic and pharmacodynamic properties thamads,

thus having the potential of improved oral absorption, stability and passage of the blood brai
barrier. For instance, different prodrugs are under development for dopamine, m®pami
receptor agonists, better use of the endogenous transport systems of the bloodriaaasbar
well as different peptide and glutamatergic transport systems [124r&edplant

approaches for PD have been considered for several decades with equivoces suitis|
especially when compared to currently available treatments. Howevent veark has

highlighted the potential of this treatment for dopaminergic neuron replacel2ént27].

Finally, there are many potential uses for gene therapy in PD. Fopéxdt can be used to



promote the expression of agents which cannot cross the blood-brain barrier, such as
neurotrophins [128-131]. Preclinical models using neurotrophic factors provided promising
neuroprotective or neuroregenerative outcomes, but initial trials in humans havedglgn m
disappointing. Gene therapy can also be used to modify the inherent propertie®o$ neu
within specific anatomical structures. For example, gene therapy wasousedify the
phenotype of STN neurons from predominantly excitatory to predominantly inhimtory
order to restore balance within the basal ganglia-thalamo-cortical ketiid®-134]. While
these are all promising treatments for PD, much work is required with regardapytia@d

side effects prior to clinical application to larger patient groups. Relévdiné present paper,

it is mainly unknown whether these emerging therapies may delay, tnegatsan

dyskinesia.

What are the main issues with current treatments?

Long-term use of dopamimetic agents, in combination with continued dopaminergic
denervation, can generate dyskinesia. Indeed, while dyskinesia are asaiotyated with
functional alterations within the basal ganglia pathways related to prolongediexpmog-

DOPA, dopamine agonists and DBS can also cause the appearance of dyskinesia][135-138
The exact mechanism underlying dopamine agonist- or DBS-induced dyskirssgiairsdler
investigation, but it is believed to stem from maladaptive mechanisms redated

dopaminergic and glutamatergic systems (see [135] for rgviRatients receiving intra-

striatal dopaminergic neural grafts can also experience dyskinesiayigthout the presence

of exogenous dopaminergic agents (off-dyskinesia), possibly due to inapprosaeses

to dopamine release by grafted neurons [126, 139-141].

There are several different classifications or types of dyskinestaasutystonic, ballistic,

choreic and myoclonic, which can be monophasic or bi-phasic [142-145], occurring at



different times in relation to administration of dopaminergic medication. Thecooshon
dyskinesia remain the monophasic choreic type, which are involuntary movemenottirat
at peak-dose and are considered to be purposeless, non-rhythmic, abrupt, rapid, amdgular
un-sustained [143]. We have recently provided the first characterization of the emdvem
patterns of monophasic choreic dyskinesia based on quantitative measures dfoglgole-
movements which highlight their complexity, and variability in amplitude anditotater
short periods of time [146-150]. This might explain the relative difficulty of patient

control or compensate for their dyskinesia while attempting to either plarcoutex

everyday motor activities.

Several risk factors are associated with the occurrence of dyskindsaingage of onset of

PD [151-154], body weight [155, 156], disease duration [157, 158], and the level of exposure
to L-DOPA [153, 159, 160]. A necessary factor in the development of dyskinesia appears to
be the combination of dopaminergic denervation and long-term exposure to dopamine
replacement therapy that promotes changes in the receptor environmersugisdrren

altered clinical response to dopamine [161-164]. Under physiological conditions| atrthta
synaptic dopamine levels are maintained at a relatively constant levgl Thé5

dopaminergic denervation observed in PD, in association with the administratidd@PA

at intervals during the day, induces oscillations in the concentration of sanatalynaptic
dopamine levels [166, 167]. This pulsatile stimulation of dopaminergic receptor issésgoci
with functional changes within the basal ganglia [168, 169], which results in atteveal

activity in the basal ganglia, thalamus and cerebral cortex [115] with agsbiciebluntary

movements.

Several fundamental functional alterations in the synaptic environment stfidtem are

associated with development of dyskinesia. Dopaminergic denervation-induegthpptic



modifications occur at the cellular level which hinders dopamine homeostasid J16372].

In addition, morphological and functional alterations occur in serotoninergic neurons, which
may be a homeostatic attempt to counteract the dysregulation in dopamingliésgls
Changes also occur at the post-synaptic level where dopamine receptkitignftl58, 174],
signalling [157] and sensitivity [161, 175] are all altered in dyskinetic PD psitient
Furthermore, N-methyl-D-aspartate (NMDA}amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) [151, 152, 176, 177] as well as metabotropic glutamate
receptors [178-181] have been implicated in the maladaptive plasticity asdositkt

dyskinesia (see [135] for reviewwWhile the definite mechanisms behind their relative
involvement remain to be determined, these receptors are currently beingatedsas

potential targets for the management of dyskinesia.

Aside from these pre- and post-synaptic changes, other functional andratrccinges also
play a role in the pathogenesis of dyskinesia. Astrocytes modulate the exprogssscular
endothelial growth factor [182], resulting in microvascular remodelling which man be
integral part of the changes in the neural environment that lead to dyskinesiacOwigy of
adenosine A receptors may also play a role in the generation of dyskinesia [183-188]
through facilitation of the striatopallidal pathway [189]. Additionally, modifetracellular
concentrations of glutamate [190-193] as well as an altered expression of ggutama
transporter genes [191, 194, 195] have been observed in different basal ganglia structures
when dyskinesia are present. Finally, recent studies suggested that dexenénater-
hemispheric striatal mechanisms may play a significant role in theigehetyskinesia

through yet undefined mechanisms [196, 197]. Taken together, these functional alterations
point towards a complex multi-factorial mechanism behind the generation and expoéss
dyskinesia which could explain why the management of those motor complications is so

problematic.



Why is managing dyskinesia as much art as science?

Due to the complex pathophysiology of dyskinesia, there has been consideral#deatiehat
which treatment is more efficacious for best symptom management wihé&aiding motor
complications [28, 32-34, 40, 44, 47, 48, 51, 52, 198-201]. Several studies examined the
incidence of dyskinesia with different medication (see [41] for an exteresneny. Here, we
focus on possible treatment options when dyskinesia have already occurred. The prima
option for clinicians is to reduce medication dosage; however, this can lead to themesurg
of typical parkinsonian symptoms. The second option is to fragment dosage, reducing each
dose and increasing its frequency for more constant delivery as the pulskgey of L-
DOPA is, in part, responsible for the observed functional alterations within thiegaaglia.
The use of controlled-release oral medication may limit this pulsatdet¢#02]. However,

the efficacy of such controlled release drugs in treating dyskinesia &igatenal at best

and there is little evidence to suggest that they may delay the onset of dgsjdaési
Nonetheless, the concept behind controlled-release formulations, that is, a miorgocgnt
delivery of medication rather than a pulsatile increase in medication normadiywetsvith

PD medication, has spurred the development of continuous drug delivery (CDD) systems
such as mini-pump guided continuous apomorphine infusion [203], duodenal L-DOPA
infusion (Duodopa) [30, 201], and transdermal delivery of rotigotine (dopamine agonist)
through a patch [204]. Several continuous drug delivery treatments are proposed as useful i
reducing the incidence or treatment of dyskinesia [203, 205-207], but there is iestffici
evidence to characterize them as unequivocally effective [41]. For exampldyastan
animal model of PD demonstrated that continuous delivery of rotigotine did not induce
dyskinesia and functional sensitization, whereas using an oral formulatioreae mliff

intervals did [208]. On the other hand, a pilot study on duodenal infusion of L-DOPA was

shown to induce similar levels of dyskinesia as pulsatile delivery systemsyégQwnce



dyskinesia are present, switching to duodenal L-DOPA reduces the duraticskiokdia
[209]. This highlights the variability in the effectiveness of these treatofemthermore,
these approaches to dyskinesia treatment are limited due to the compliéixéyprocedure
and the difficult long-term management of patients. Indeed, the invasive natoreeobs
these treatments limits the number of potential candidates; and the potergeidre
complications requires adequate monitoring. Another option is to control dyskinesia by
reducing the L-DOPA dose and introducing dopamine agonists. Again, this option is not
without problems, including the lower efficacy of dopamine agonists in treating motor
symptoms [210-213], as well as increasing the incidence of other disablingferts sfich

as somnolence, sleep attacks, dizziness, nausea, delusions, impulse control disorders
hallucinations and confusion [214, 215]. In addition, one must keep in mind that some studies
have observed the appearance of dyskinesia with the use of dopamine agonistgiveithout

concomitant presence of L-DOPA [213].

There are currently very limited direct drug treatments for dysikirassonly two
medications were shown to be efficacious: amantadine and clozapine [41]. Amaigadine
NMDA receptor antagonist [216] that was shown to reduce significantly theatusad
severity of dyskinesia in several studies [216-218]. However, its mechanisnoaflaading
to reduction in dyskinesia has yet to be conclusively determined. Clozapine Insadfimigy
serotoninergic agonist as well as a low affinity dopamine agonist [219-221]1@iye s
demonstrated the ability of clozapine to reduce dyskinesia significantly [282f\er, the
severe side effects associated with clozapine, such as agranulo@a8sisentral nervous
system depression, seizures, dementia, and myocarditis [224], limit its lisécal practice

as it requires strict monitoring.


http://en.wikipedia.org/wiki/Agranulocytosis
http://en.wikipedia.org/wiki/CNS_depression
http://en.wikipedia.org/wiki/CNS_depression
http://en.wikipedia.org/wiki/Dementia
http://en.wikipedia.org/wiki/Myocarditis

Surgical interventions can also reduce dyskinesia in a subset of patients asNbaitndS5Pi

DBS were shown to reduce dyskinesia effectively [103, 109]. One possible mechanism
behind the reduction in dyskinesia is reduction in medication dose following surgical
treatment [225]. However, the end result is highly dependent on several factors leach as
placement, stimulation parameters and level of reduction in medications. Anotfiealsur
intervention that has demonstrated a reduction in dyskinesia is pallidotomy [73, 74, 226]. In
fact, this intervention was shown to be as effective as STN DBS for the reduction of
dyskinesia [74]. Again, the outcome of this procedure is greatly dependent on lesion extent

and location.

Future avenues for drug treatment of dyskinesia include the development of ael@ggsi
receptor antagonists [227, 228] as well as the use of metabotropic glutarepterréc

(mGIuR5) antagonists [229] and orthosteric metabotropic glutamate receptotuUR@G
agonists [230]. While these compounds are currently in different testing phasesstadies

using adenosine A receptor antagonists and mGIuR5 antagonists have demonstrated a
significant reduction in dyskinesia induction in animal models [183, 186, 231] and subgroups
of human samples [227, 229, 232]. On the other hand, orthosteric mGluR4 agonists are only

beginning to be studied for their effect on the indirect pathway of the basalagangli

Maintaining therapeutic efficacy while at the same time trying torabdyskinesia can be
difficult with all treatments for PD. Clinicians often progressivelyadtrce an intricate
combination of medications that could help re-establish neurotransmitter bafrahaeoid
motor fluctuations. Unfortunately, the unavoidable dopaminergic denervation anarecept

imbalances render this task increasingly difficult as the disease [megjres

How prominent is the problem of dyskinesia and its management?



The incidence of dyskinesia is estimated at 30% to 50% after five yearsaifrigit. -DOPA
treatment [142, 198]. As the disease progresses, the incidence can increase ta@@o to

after 10 years [65, 198, 211, 233, 234]. These figures are even higher in young-onset PD
where it is observed that almost all patients experience dyskinesiaalff six years of

treatment [22]. Once these motor fluctuations occur, increased monitoring otpétie

required. However, the lack of movement disorders specialists able to handle suckx comple
side effects of medication hinders proper monitoring of these patients. In the Uaies] S

the ratio of neurologists varies drastically between regions rangingd low of 1 and a high

of 11/100 000 population [235] with an average close to 5/100 000 population [236]. In
Canada, in 2008, the number of neurologists varied between 0 and 3/100 000 population in
different regions of a geographically vast country [237]. While most Europearriesuate
relatively well with an average of 5 neurologists per 100 000 population [236], Asiag wher
the majority of the world’s population resides and where the expected number as&Di
expected to grow several fold in upcoming years [238], is in dire need of neurolatiists

less than 1/100 000 population [236]. Of note is that these figures encompass all neyrologists
the number of movement disorders specialists, who possess the necessary tools &lyadequat
manage the symptoms of PD and motor complications associated with their titegme

much lower, and to our knowledge, has never been evaluated. Another issue facing patients
with motor fluctuations is that most movement disorders specialists aredlatddeger

cities; thus forcing patients from remote communities to travel grsi@ndies for medical
consultations and follow-ups. These issues may explain why only 45% of patientfwith P
Ontario (Canada) have access to a specialist at least once a year [238tkTdieaxccess to
trained clinicians has a negative impact on patient care since constagemanaof

medication is required to delay or negate the undesired motor fluctuations.

What would be the impact of better management of dyskinesia on quality of &f



The ability to engage and maintain social interactions is inevitably linked &ibility to
interact with the physical environment and, as such, is associated on the level of
independence of patients. In patients with PD, reduced participation in stieidiesc
appears in part related to loss of mobility and impairs quality of life [240, 241]. This
phenomenon is later exacerbated due to disease progression and complicatexzhtorelat
treatments [242, 243]. However, the actual impact of dyskinesia on quality ofdifi is
controversial. Some researchers have suggested that dyskinesia have onlyaternmogact
on quality of life of patients [198, 244-246]. One study even observed an improvement in
quality of life in PD patients with dyskinesia [244]. Another recent study denadedthat
‘Patients with PD experiencing dyskinesia are less likely to be cattabout dyskinesia
and more likely to prefer dyskinesia over parkinsonian symptoms compared to patients
without dyskinesia’ [247]. This may be explained by the patient’'s own perspectilie on t
impact of dyskinesia on his/her motor repertoire, that is, the movementscalpagatient
deems important for his/her quality of life. Of course, if dyskinesia havedenate impact
on the motor repertoire, it is likely that he/she will not consider dyskinegibbkematic.
Patients would rather be able to perform their activities than be conshictedir
parkinsonian symptoms. However, such findings must be interpreted carefullftiaflig
recent evidence showing that dyskinetic patients may suffer from arasagthat is
unawareness of deficits associated with an illness [248]. Accordingly, evey ifi® not
complain about their involuntary movements, dyskinesia may still have a dristeffect
on their motor repertoire. As such, mild dyskinesia themselves may not be pradléotat

more severe forms may reduce quality of life by impacting on the patieotst nepertoire.

In fact, other studies showed that the presence of dyskinesia is a key facternmrdeg the
quality of life of patients [249-251], especially in young patients who paatieiin the

workforce. Studies showed that the main dimensions of quality of life that areedffgc



dyskinesia are psychological, social [252, 253] and stigma [253-255]. This may beauthe res
of loss in mobility, increased falls [256], weight loss [156] and even modifications of mot
behavior in the OFF state [257]. Other studies demonstrated that the reduction inofuality

life of PD patients with dyskinesia [258-260] could also be a result of higher le\aigiety
[261-264] and depression[260], more so than in patients without dyskinesia. However, in the
study of Montekt al. [253], the only factor that had a significant impact on quality of life

was the presence of dyskinesia, not neuropsychiatric manifestations. Thasasdiat

dyskinesia can affect patient quality of life directly and also by inducingf, least

modulating the level of different neuropsychiatric disorders.

The impact of dyskinesia on the quality of life of PD patients can also be eddbyate
assessing the effectiveness of interventions aimed at controlling dsiskamequality of life.
For instance, a recent study demonstrated that PD patients had a sigmifpranement in
quality of life after 18 months of continuous intra-duodenal L-DOPA infusion [265].
Interestingly, they did not observe a significant change in ‘ON medicatiowrmot
symptomatology after treatment but did observe a significant reduction imdgi&ki As
such, the reduction in dyskinesia may have played a role in the improvement of quality of
life. Similar results were obtained in patients undergoing GPi DBS wheredhetion in
dyskinesia scores was highly correlated with the improvement in overallycpfdife [266].
While these are merely two examples of studies using quality of liferaanyror secondary
endpoints to assess the impact of different interventions, it is becoming more caorunsen t

guality of life to evaluate therapeutic effectiveness.

Another issue to consider is that dyskinesia also impact upon on the quality of lifeentgat
primary caregivers (for example, spouses). Indeed, as the diseagspesgnd patients with

PD begin dealing with a loss of independence, the quality of life of their caredso



degrades as they are more prone to social isolation, psychological problems, such as
depression, and physical issues [267-270]. This is evident through the results of McCabe
al. [271] where PD patients and caregivers only differed in physical- and psyicladiog
related quality of life. Social interaction and environmental quality of titees were not
significantly different [271]. These issues become more prominent with diseagession
when motor complications, such as dyskinesia, are apparent [272]. Importanthheenas
demonstrated that psychosocial factors such as social support arecritipalttant to the
caregivers’ quality of life [273]. As health-care systems are ovendetd and promote the
implementation of community care programs as a means of alleviating pressiie
system, the capacity of caregivers to provide support becomes essentialf [@xi4jgiver
burden is excessive, it may reduce the quality of the care patients require [23GthAg is

important to acknowledge and find ways to optimize the caregivers’ qualitgof lif

What would be the impact of better management of dyskinesia on the healtlae

system?

As the disease progresses, so does the burden on patients and the health community [83, 275].
Studies have demonstrated the immense effect of dyskinesia on the costingf Riea

patients. For instance, a European study showed that the average cost per annum for the
treatment of PD patients without dyskinesia wak,412, but it more than doubled to

€24,990 in patients with severe dyskinesia [260]. This increase in treatmentasost w

accounted for by both non-medical expenditures, such as community services and unpaid

help provided by the caregiver, and medical expenditures related to medication and
hospitalization due to more complex and expensive treatment regimens [260]. A Foelych s

also demonstrated that the presence of dyskinesia more than doubled treastseanta

increased medical visits [276]. They also observed that the severity of dyakimesased



medical costs by increasing the need for caregivers. This led them tatedtiea total annual
medical cost of dyskinesia in France to be between 588 and 812 million francs [276].
Furthermore, a recent study from the United States showed that dyskasesied in an
increase in total treatment costs by 29%, and PD-related treatmertyc@8% compared to
costs incurred by PD patients without dyskinesia [277]. This translates intaeas@of
$5,549 in the year following the first appearance of dyskinesia when comparegdiétids
without dyskinesia. The majority of this amount was related to an increasereli&€n

costs of $4,456 in patients with dyskinesia; not to costs associated with co-molRdifies [

A major problem is that these direct costs have to be added to the alreadyethbiesith-
related expenditures associated with having PD compared to healthy2¢$hdn Canada,
the annual direct costs related to PD were estimated at $202 million, which inclupiésl hos
(44%), drugs (49%) and physician consultations (7%). Indirect costs asdauithte

mortality (38%) and morbidity (62%) were estimated at $245 million, for a total of
approximately $447 million [278]. Interestingly, a great proportion of indirect costs a
related to early retirement. The direct health-care cost of PD in thed Btiates was
estimated at $10,349 per patient per year [279]. Combining these direct costgimiiess

of indirect costs, the total costs of PD in the United States may be as high asi§23 bill
annually [279]. If we consider that the number of persons 65 years of age and older is
expected to increase significantly over the upcoming years, the cosatidrPD patients is
likely to exceed $50 billion annually in the United States by 2040 [279]. In China, the
problem is even greater because of the larger number of patients. In 2004, iiwailedst
that the yearly health-care cost was about $925 per patient, which represeoitsheathean
individual annual income [280], for a total of $1.57 billion annually. The total cost correlated
significantly with disease severity and the frequency of outpatient [28@3. It is clear that

better patient management is required and one approach is to develop and implement



evidence-based practice. The question then becomes if the reduction of dyskoiésrace
and severity can modulate the costs. A recent study examined the effect{tieme$s
levodopa and time to levodopa-induced dyskinesia), cost, and quality-adjusted kféayear
two trials of dopamine agonists. They showed that rasagiline delayed the onsiinésig
by 10% and reduced costs by 18% per patient over five years [281]. Furthermemegta Fr
study estimated that each 10% of reduction in OFF periods would result in a 5%oredéicti
direct medical costs [282]. These studies demonstrate that finding apprtacbesol

either the incidence or the severity of dyskinesia and other motor fluctuationkl be

developed and implemented in order to reduce the burden on the health-care system.

What is the theory behind our proposed approach to the treatment of dyskirsg&a?

Evidence-based practice aims to apply the best available evidence feotifisci

investigations to clinical decision making. To apply evidence-based @gréatithe

management of dyskinesia, information about the influence of dyskinesia on voluntary
movements must be known so as to understand the challenges facing patients when planning
and executing movements from their motor repertoire. It is important to disaterbetween
activities of daily living and motor repertoire of patients as activities ibf ikang are

essential for minimal functional independence while the motor repertoire passes all
movements deemed important for a good quality of life for a specific padigsuch, the

motor repertoire will be personalized and will vary greatly depending on the reat&em
patients wish to perform on a regular basis. Finally, it is important to askefiser other
symptoms are concomitantly present with dyskinesia; which may in faespensible for

motor deficits.To date, several algorithms have been proposed to manage dyskinesia [283,
284]. Interestingly, these algorithms are geared towards markeldiging or eliminating

dyskinesia, without necessarily taking into account how the proposed strdtany tife



motor repertoire of patients. This is important since some patients maylratieemild
dyskinesia then undergo the process of medication change, especialkinedisgsdo not
hinder their motor repertoire. Indeed, the reduction in dyskinesia through eidtrciion in
medication dosage or a change in medication could lead to a resurgence of tyjpealrhy
hyper-kinetic parkinsonian symptoms impeding the patient’s voluntary motor behawors a
hence reduce his quality of life for that specific period. The clinician willguslgether the
reduction in dyskinesia following treatment regimen modification based om dhgsithms

is clinically satisfactory. For this, clinicians rely mostly on theperience and patient
feedback. They can also use clinical scales [285-288] to assess the ampliysldaradsia

and their impact on activities of daily living. However, current scales only pravigmeral
sense of the amplitude of dyskinesia and their impact. Most do not measure the intipact of
amplitude of dyskinesia on voluntary movements and certainly not on the entire motor
repertoire of patients. In fact, a recent review of the different stal#ise assessment of
dyskinesia found that of the eight scales used in PD, only two were recommended for use
(that is, the Abnormal Involuntary Movement Scale (AIMS), and the Rush Dyskisesle)
[288]. The AIMS assesses the amplitude of dyskinesia in each limb whereas lhe$®us
incorporates a section on the impact of dyskinesia on certain activitiedyofi\dag such as
putting on a coat. A recent scale, the PDYS-26, a patient-based questionnairs, sotrlge
on the impact of dyskinesia on activities of daily living [289]. One main issue of tteles s
is that they cannot segregate the impact of dyskinesia and cardinal symptdbngroftfe
performance of motor behaviors. Another point that requires attention is that, asednt
above, activities of daily living do not circumscribe the whole motor repertoireatee
necessary by each patient; they merely represent general taskevide pome functional
independence. For example, a patient who is an artist painter with low amplitudeedigski

may deem that his/her dyskinesia are devastating, while most daily &egtivities are



actually intact (that is, he can put on a coat, cut his food and dress himself but, he cannot
perform the fine voluntary movements required for him to paint a canvas). Then, one could
legitimately ask the following question: how does the amplitude of dyskiredata to its

impact on voluntary movements performed in daily life? The opposite could also be true. A
patient with high levels of dyskinesia may judge that his/her involuntary movennemista

an issue since they prefer to be dyskinetic rather than OFF, as proposed in pageent

[247].

We propose that the evaluation of the impact of dyskinesia be viewed as a function of a
signal-to-noise ratio (SNR). The concept of the SNR is based on the fact thassafcce
voluntary movements (the motor output) is directly correlated to the magnitude of the
intended voluntary movement (the signal) and inversely correlated with the utkgaitthe
involuntary movement (the noise) in the motor stream [290-297]. In other words, the
likelihood of success in performing voluntary movements is not only dependent on the
magnitude of the symptoms present, but also dependent on the type of movement performed
by the patients. Such an analysis would make it possible to determine the motorresper
available to patients based on the magnitude of symptoms. For instance, if a pesientspr

only with tremor, the SNR could be represented by equation 1:

[Voluntary drive for a specific movement]

= Motor output
[Tremor] P

Here, tremor would become deleterious only if the intended movement is below a threshold
that will allow tremor to be close to, or supersede, the voluntary movement in ampgtitude
could also be deleterious if the frequency of the intended movement is close to theciyeque

of that tremor [298-300]. Of course, this is an oversimplification as PD patierniseahngoit



only one motor symptom. Therefore, a more accurate representation of thebS&tRed in

PD patients would be equation 2:

[Voluntary drive for a specific movement]
[Tremor] + [Bradykinesia] + [Rigidity] + [Postural Instability]

= Motor output

Here, the noise would be the sum of all cardinal motor symptoms, regardless ofutadir ne
origin. Indeed, bradykinesia could be caused by bradyphrenia during complerdecisi
making, rather than a lack of cortical activation by thalamo-cortical pgthvinterestingly,
as the disease progresses and motor complications arise, more ‘nois&tpesaauld be

added to equation 2 such that dyskinesia could be taken into account (equation 3):

[Voluntary drive for a specific movement]
[Tremor] + [Bradykinesia] + [Rigidity] + [Postural Instability] + [Dyskinesia]

= Motor output

Success for a particular task would be predicated upon the ratio between the aropttiede
intended movement (the signal; the numerator) and the magnitude of symptomslteoise

denominator) (see Figure 1).

This relationship between voluntary and involuntary movements was demonstrated by us i
previous work [290-297]. For instance, we showed that during slow alternating movements at
the wrist, tremor was detected [295], and its amplitude was directly dedelith deficits of
accuracy [294]. During fast movement, tremor was undetected, and its amplitudeigyevi
assessed in the postural condition was unrelated to performance [294, 297]. Furtheemore, w
showed that ventro-lateral thalamotomy [59, 61, 294] had no impact on fast movements, but
increased the SNR by removing tremor, hence improving tremendously the gahunag

slow movements [294]. We also showed that in tasks where the voluntary movement was
performed with varying amplitude and velocity, the faster sections preseitielnigher

SNR, and there was a reduction in deviation from the intended trajectory of the moveme



[294, 295]. Accordingly, the amplitude of velocity of the intended movement seemed to be
important in determining the impact of involuntary movements on voluntary motor acts. This
concept relates to Fitts law [301], which proposes that two movements having the same
amplitude may possess different velocity profiles, depending on the diff{tatget size) of

the task. For example, bringing a glass of water to the mouth may have tharsafitude as
bringing a spoon full of soup, but the velocity will not be the same because of the idcrease
difficulty associated with keeping the soup in the spoon. As such, in order to propeslky asse
the complexity of a voluntary movement, both its amplitude and velocity must bénexiam

In patients where whole-body peak-dose dyskinesia were recorded simultgnatusl

voluntary movements (same tasks as above), we found that during fast hand movements,
dyskinesia were not visible [296]. Interestingly, patients with dyskinessepted with

levels of bradykinesia similar to those of PD patients without dyskinesia [29&I3&e

found no relationship between the level of dyskinesia and accuracy during slow movements
[293], indicating that dyskinesia may not have been the primary source of error during
movements that required accuracy. This strongly supports the concept that s10e’ |

limited to visible involuntary movements, but may also include other symptoms such as
rigidity or bradykinesia [291] as proposed in equations 2 and 3. In the aforementioned study
patients had little or no clinically-detectable rigidity, so bradykinesia probably the main
cause of reduction in motor performance. Taken together, this illustratesffinant types

of noise observed in PD can be independent from each other at the neurophysiological leve
but can each contribute to the performance of a given task. In another study, we désdonstra
that patients with Huntington’s disease presenting with chorea were not impairegifest

hand movements. However, they presented with large errors during slow manuagjtrackin

which correlated with the amplitude of chorea. This illustrates again that invgluntar



movements can be of no consequence when the SNR is large enough. This also indicates that

the SNR concept could be applied to pathologies other than PD.

The aforementioned data on PD fits well with issues facing cliniciansdndey reduction
in dyskinesia levels could lead to increased typical parkinsonian motor symptoms.
Accordingly, clinicians may be replacing one kind of noise with another one@hcept is

illustrated in Figure 2).

To better illustrate this theory, we present below two hypothetical sitisatnat could be

encountered in clinical practice (Figure 2).

Situation 1: the clinician reduces L-DOPA or dopamine agonist dosage and thaf leve
dyskinesia is reduced. This results in an increased motor repertoire befcngsmcreased

SNR. Dyskinesia management is effective and should be pursued.

Situation 2: the clinician reduces medication dosage and the level of dysksnesiaced,

but leads to a reduction in motor repertoire. As such, the dyskinesia portion of the noise i
reduced but is accompanied by an increase in noise associated with typicabpaakins
symptoms present when medication is lacking, such as bradykinesia oy rigate, the
treatment regimen should be modified until situation 1 is achieved. If situation 1 t@nnot
achieved, it may be that having some dyskinesia is the preferred solution sinaédhe m
repertoire is greater with dyskinesia, as discussed by our group [293, 296] an(i3Rers
Surgery may be considered as an alternative in this case because, as thahbeaeit may
control dyskinesia possibly through a reduction in medication. The aforementioneddppr
would seem logical to movement disorders specialists, but may be more difficult t
implement by less experienced clinicians treating patients withxp&riencing motor

fluctuations.



Accordingly, we propose that there is a SNR related to dyskinesia below whiekethéion

of a voluntary movement is rendered impossible (or not functionally possible). Whether this
SNR is systematic across patients or specific to each patient istbuomeder investigation

in our laboratory. We also propose that a reduction of dyskinesia amplitude through a proper
medication regimen modification will result in an increased motor repeoiy if typical
parkinsonian symptoms do not re-emerge to levels affecting significanti\NfRéd®

specific tasks.

How may this strategy be translated into clinical practice?

We propose that clinicians may be able to view treatment success as an tiptimizeach
patient’s motor repertoire, rather than simply targeting symptomatologyly-igined
movement disorders specialists probably use such an approach intuitively, but iack thie
tools to help clinicians less experienced in dealing with PD patients that should éssaddr
For instance, the presence of dyskinesia should be deemed detrimental if ttesigyifi
impacts the SNR and thus the motor repertoire of each patient. Based on therdfoneme
evidence, there is a need to develop clinical evaluation protocols that sfig@Bsass the
motor repertoire of patients. Such a tool must reflect the wide range of movegradatsed
during everyday life activities, it must incorporate a customizableogeatid be easy to
perform, as well as give clinicians the ability to follow the progressidimnvpatients and
compare the results between patients. While acknowledging that cumecdldcales for the
evaluation of dyskinesia provide invaluable information regarding their amplitwbiergoact
on some activities of daily living, they lack the specificity for evahgthe range of the
motor repertoire accessible to patients. We understand the immense dffiaskbciated
with the development of a clinical scale of this type but, using such an evaluation, the

clinician would be in a better position to determine whether the intervention vpds! hel



the patient, regardless of its effect on symptomatology. We are cuiiretiily process of
assessing the motor repertoire of patients without dyskinesia and witlewliflevels of
dyskinesia in order to develop a model of interaction between symptomatology and motor
behaviors. Once this relationship is known, the development of such a tool could be

envisioned.

Summary

The treatment of PD requires the evaluation of several motor symptorctsngfthe quality

of life of patients. The limited number of movement disorders specialists and thasing
number of patients with PD places a toll on health-care systems world-wide.éth®ne
develop and implement evidence-based medicine is urgent. In this review, we proposed a
novel way to view the clinical management of motor symptoms in PD and morecslgcif

of dyskinesia. While we acknowledge that this view requires further testing,lieechiat
systematizing the approach to the treatment of motor symptoms in PD ditblea

improvement in patient quality of life and, hopefully, a relief on our health-carensys
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Figure 1. Shown here is the theoretical relationship between the afitpde of
involuntary movements (dyskinesia) and the motor repertoire of patientsVe
hypothesize that higher amplitudes of dyskinesia will result in lowagabkig-noise ratio

(SNR; dashed line) and, therefore, a loss of motor repertoire.

Figure 2. Two examples to illustrate opposite results following drug regimen chae. In
situation 1, a change in drug regimen decreased dyskinesia amplitude whilgutteen
increased signal-to-noise ratio (SNR) (dark grey lines), and consequengiysied motor

repertoire. In situation 2, the same change in drug regimen also led to a reduction of



dyskinesia amplitude. However, there is resurgence of typical motor symassosated
with PD, thus increasing the noise, which will induce a decrease of overall Sife,de
reduction in the motor repertoire (light grey lines). Here, the patient did noitfeorefthe
reduction of dyskinesia, as his/her motor repertoire worsened. These exglogilase the

challenges faced by clinicians when managing dyskinesia. PD, Parkins@asalis
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