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8. Appendix A:  Distribution of observations of temperature at all standard levels in the world ocean

for the annual compositing period
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Preface

This atlas continues and extends an earlier work entitled Climatological Atlas of the World Ocean (Levitus, 1982). This
earlier work has proven to be of great utility to the international oceanographic, climate research, and operational
communities. In particular, the objectively analyzed fields of temperature and temperature have been used in a variety of
ways. These include use as boundary and/or initial conditions in numerical ocean circulation models, for verification of
numerical simulations of the ocean, as a form of "sea truth" for satellite measurements such as altimetric observations of sea
surface height, and for planning oceanographic expeditions. We have expanded this earlier work to include chemical
parameters such as phosphate, nitrate, and silicate because: 1) our belief that a comprehensive set of objectively analyzed
parameter fields describing the state of the ocean, based on ali existing oceanographic data, should be available as a matter
of course to the intemational research community and 2) the immediate, compelling need for such analyses to study the role
of biogeochemical cycles in determining how the earth's climate system works. For example, it is well known that the
ameunt of carbon dioxide in the earth’s atmosphere is expected to double during the next century. Regardless of one's
scientific and/or political view of a possible "enhanced greenhouse warming" due to the increase of carbon dioxide, it is a
necessity that the international scientific community have access to the most complete historical oceanographic data bases
to study this problem, as well as other scientific and environmental problems.

The production of global analyses of cceanographic data is a major undertaking. Such work bensfits from the input of manv
individuals and organizations. We have tried to structure the data sets and analyses that constitute this atlas in such a way
as to encourage feedback from experts around the world whe have kmowledge that can improve future atlases. The
production of works like this atlas series is becoming easier because of advances in computer hardware and software. These
include: 1) the development of relatively inexpensive but powerful workstations that can be dedicated to data processing and
analysis and 2) the development of high resolution printers and interactive graphics software that minimize the need for
expensive, time consuming manual drafting and photographic processing. Because of the substantial increase in the historical
oceanographic data bases expected over the next several years, the Ocean Climate Laboratory plans to update and expand
this atlas series on a relatively frequent basis that will be determined by the accession of significant amounts of new data.
We plan to publish volumes that focus on derived quantities, higher resolution analyses, and additional parameters such as
chlorophyll, primary production, and planktcn taxa and biomass.

The objective analyses in this atlas, and data on which they are based, are being made available internationally without
restriction on various magnetic media as well as CD-ROMs. This is to insure the widest possible distribution.

In each acknowledgement section of this atlas series we have expressed cur view that such series is only pessible through
international cooperation of scientists, data managers, and scientific administrators throughout the international community.
I would also like to thank my co-authors, colleagues, and staff from the Ocean Climate Laboratory of NODC for their
dedication to the project leading to publication of this atlas series. Their integrity and thoroughness have made possible this
multi-volume atlas series. Oceanography is a field of increasing specialization, and it is my belief that the development of
national and international oceanographic data archives is best performed by scientists who are actively working with the
historical data. Margarita Conkright and Timothy Boyer receive my particular thanks.

Sydney Levitus

Director, Ocean Climate Laboratory
National Oceanocgraphic Data Center
‘Washington, D.C.

March, 1994
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WORLD OCEAN ATLAS 1994, VOLUME 4: Temperature

Sydney Levitus and Timothy Boyer
National Oceanographic Data Center
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ABSTRACT

This atlas contains maps of in sift temperature at selected standard levels of the world ocean on a one-degree grid,

Maps for all-data annual and seasonal compositing perieds are presented. The fields used to generate these maps were
computed by objective analysis of historical data. Data distribution maps are presented for various compositing periods
including monthly distributions. Basin zonal averages and basin volume averages are computed from these objectively

analyzed fields and presented in the form of figures and tables.

1. INTRODUCTION

The format of this atlas, as well as some of the text,
follow Levitus (1982). This atlas is an analysis of all
historical temperature data available from the National
Oceanographic Data Center (NODC), Washington, D.C,,
plus data gathered as a result of two data management
projects: the NODC Oceanographic Data Archasology and
Rescue (NODAR) project and the Intergovernmental
Oceanographic Commission (I0C) Global Oceanographic
Data Archasology and Rescue (GODAR) project. Data
used here have been analyzed in a consistent, objective
manner on a one-degree latitude-longitude grid at standard
oceanographic analysis levels between the swrface and
ocean bottom or to a maximum depth of 5500m. The
procedures used are similar, but not identical to, the
analyses presented by Levitus (1982). Annual, seasonal,
and monthly analyses have been computed for in sii
temperature. For brevity of text we shall refer to in situ
temperature as temperature. The present analyses and
statistical information are primarily intended for use in the
study of the role of the world ocean as part of the earth's
climate system. A major difference between this atlas
and the work by Levitus (1982) is that the earlier work
presented maps of potential temperature and the present
work presents maps of in situ temperature.

Objective analyses shown in this atlas are hmited by the
nature of the data base (non-synoptic, scaftered in
space)and characteristics of the objective analysis
techniques, and the erid used. These limitations and

characteristics will be discussed below.

Since the publication by Levitus (1982), substantial
amounts of additional historical data are now available.
However, even with these additional data, we ars still
hampered in a number of ways by a lack of data. Because
of the lack of data, we are forced to examine the annual
cycle by compositing all data regardless of the vear of
observation. In some areas, quality control is made
difficult by the limited number of data. Data may exist in
an area for only one season, thus precluding any
Tepresentative annual analysis. In some areas there may be
a reasonable spatial distribution of data points on which to
base an analysis, but there may be only a few (perhaps
only one) datum in each one-degree square.

2. DATA AND DATA DISTRIBUTTON

Data sources and guality control procedures are described
below. Because quality confrol procedures are 30
important, a technical report has been prepared fully
describing these procedures (Bover and Levitus, 1994).

2.1 Data sources

The Station Data and 8/ CTD used in this project were



obtained from the National Oceanographic Data Center
(NODC), Washington, D.C. and represent all the data
available in the Oceanographic Station Data (SD) file and
S/CTD file as of the first quarter of 1993 (NODC, 1993),
plus data gathered as a result of the NODAR and GODAR
projects (Levitus er af,, 1994a) that have not yet been
archived in the NODC digital archives. In addition, the
collection of international oceanographic profiles that
comprise the Hydrographic Atlas of the Southemn Ocean
developed by Olbers ef ¢/, (1992) at the Alfred Wegener
Institute for Polar and Marine Research were included.
S/CTD that are received at NODC at coarse vertical
resolution are often placed in the Station Data file. We
have transferred these data to the S/CTD file. Expendible
bathythermograph  (XBT) data and Mechanical
Bathythermograph (MBT) data digitized at "selected”
standard levels and then sent to NODC are placed in the
NODC SBT (Special Bathythermograph Temperature) file.
We have put these data into the XBT and MBT files as
appropriate. The MBT instrument is no longer used, or is
infrequently used in many countries, having been
superseded by the XBT. The work by Ceouper and LaFond
{1970} describes the MBT instrument and some of its
history.  Similarly, Digital Bathythermograph (DBT)
profiles have been placed in separate files.

Figures 1-3 and Table 1 show the global distributions of
temperature measurements as a function of time at selected
depths, Shown in Figure 3 are the number of observed
data points that occur in the depth range centered around
each standard level. The depth range for the sea surface
1s 0-5 m. At all other standard levels, the depth range is
defined as the region between the midpoints of the
standard level being considered and the adjacent standard
levels above and below. Appendix A shows the
geographic  distribution of  historical temperature
observations as a function of depth. Appendix F shows the
distribution of historical fernperature observations as a
function of depth for individual seasons. Appendix I shows
the distribution of historical temperature observations as a
function of depth for individual months.

One must understand our terms "standard level data" and
"observed level data" to understand the various data
distribution and summary figures and tables we present in
this atlas. We refer to the actual measured value of an
oceanographic parameter is situ as an "observation,” and
to the depth at which such a measurement was made as
"abserved level depth." We may refer to such data as
"observed level data." Before the advent of oceanographic
instrumentation that measure at high frequencies in the
vertical, oceanographers often attempted fo make
measurements at selected "standard levels" in the water

column, Sverdrup et al. (1942) presented the suggestions
ofthe International Association of Physical Oceanography
(TAPSOQ) as to which depths oceanographic measurements
should be made or interpolated to for analysis. Different
nations or institutions have "supersets" of standard level
cbservation (e.g. NODC, 1993). For many purposes,
including here, observed level data are interpolated to
standard observation levels, if they do not occur exactly at
a standard observation level. In contrast to Levitus (1982),
we have used counts of "observed level values" wherever
possible when summarizing the historical data used in this
atlas. The distinction may seem tinor, but in fact the
criteria used to determine whether observed level data are
suitable for use in interpolating to standard levels are not
trivial. For example, one does not wish to use an
observed level value at 5000 m depth to determine an
interpolated standard level value at 20 m depth. Section
3.1 discusses this further.

2.2 Data quality control

Quality control of the data is a major task whose difficulty
is directly related to fack of data (in some areas) upon
which to base statistical checks. Consequently certain
empirical criteria were applied, and as part of the last
processing step, subjective judgment was used. Individual
data, and 1n some cases entire profiles or cruises, have
been flagged because these data produced features that
were judged to be non-representative or in error. As part
of our work, we will make available both observed level
profiles as well as standard level profiles with various
quality control flags applied. Our knowledge of the
variability of the world ocean now includes a greater
appreciation and understanding of the ubiquity of eddies,
rings, and lenses in some parts of the world ocean as well
as interannual and interdecadal variability of water mass
properties. Therefore, we have simply flagged data, not
eliminated them. Thus individual investigators can make
their own decision regarding the representativeness or
correctriess of the data. Investigators studying the
distribution of features such as eddies will be interested in
those data that we may regard as unrepresentative for our
purpose here.

2.2a Duplicate elimination

Because data are received from many sources, all data
files were checked for the presence of exact replicates.
Approximately 20,000 Station Data profiles in the NODC
Station Data File were found to be exact replicates of
other profiles in this file. All but one profile from each



set of replicate profiles were eliminated as the first step of
our processing. All data sets used that were not part of
the NODC Station Data file were checked for duplicates
against the NODC Station Data file,

2.2b Range checking

Range checking was performed on all data as a first error
check to eliminate the relatively few data that seemed to
be grossly in error. Range checks were prepared for
individual regions of the world ocean in contrast to
Levitus' (1982) use of one range check for the entire world
ocean for each parameter. Future work will include ranges
for different basins by individual seasons. Bover and
Levitus (1994) detail the quality control procedures and
include tables showing the ranges we selected for each
basin

2.2¢ Staristical checks

Statistical checks were performed to eliminate outliers as
follows. All data for each parameter (irrespective of
seasons), at each standard level, were averaged by
five-degree squares to produce a record of the number of
observations, mean, and standard deviation in each square.
Statistics were computed for the annual and each seasonal
compositing period. The statistics included data from the
SD, CTD, MBT, DBT, and XBT files merged together.

Below 50 m depth, a three-standard-deviation criterion was
used to flag data and eliminate individual observations
from further use in cur objective analyses. Above 50 m
depth, a five-standard-deviation criterion was used in five-
degree squares that contained any land area. In selected
five degrees squares that came close to land areas, a four
standard-deviation check was used. In all other squares a
three-standard-deviation criterion was used with the
following exceptions. For those data that occurred at or
deeper than the standard level depth in the one-degree
square in which the profile was observed, a four standard
deviation criteria was used. For those data in a one-degree
square that were measured at a depth deeper than the depth
of any adjacent one-degree square, a four-standard-
deviation check was used.

The reason for the weaker criterion in coastal and
near-coastal regions is the exceptionally large variability in
the coastal five-degree square statistics for some
parameters. Frequency distributions of some parameters in
some coastal tegions are observed to be skewed or
bimodal. Thus to avoid eliminating possibly good data in
highty wvariable environments, the standard deviation

criteria were weakened.

The total number of temperature measurements in each
cast, as well as the total number of observations exceeding
the criterion, were recorded. If more than two observations
in a cast were found to exceed the standard deviation
criterion, then the entire cast was eliminated. This check
was imposed after tests indicated that surface data from
particular casts {(which upon inspection appeared to be
erroneous) were being eliminated but deeper data were not.
Other situations were found where erroneous data from the
deeper portion of a cast were eliminated, while
near-surface data from the same cast were not eliminated
because of larger natural variability in surface layers. One
reason for this was the decrease of the number of
observations with depth and the resulting change in sample
statistics. The standard-deviation check was appliad twice
to the data set for each compositing period. Individual
flags were set for each period.

In summary, first the five-degree square statistics were
computed, and the elimination procedure described above
was used to provide a preliminary data set. Next, new
five-degree-square statistics were computed from this
preliminary data set and used with the same statistical
check to produce a new, "clean" data set. The reason for
applying the statistical check twice was to eliminate, in the
first round, any grossly erroneous or non-representative
data from the data set that would artificially increase the
variances. The second check then should be more
effective in eliminating smaller, but probably still
erroneQus or non-representative, observations.

2.2d Subjective elimination of data

The data were averaged by one-degree squares for input to
the objective analysis program. After initial objective
analyses were computed, the input set of one-degree means
still contained suspicious data contributing to unrealistic
distributions, yielding intense bull's-eyes or gradients.
Examination of these features indicated that some of them
were due to particular oceanographic cruises. In such
cases data from an entire cruise were eliminated from
further use by setting a flag on each profile from the
cruise.

2,2e Representativeness of the data
Another quality control issue is data representativeness.

The general paucity of data forces ug to composite all
historical data to produce "climatological” fields. In a



given one-degree square, there may be data from a month
or season of one particular year, while in the same or a
nearby square there may be data from an entirely different
vear. If there is large interannual variability in a region
where scattered sampling in time has occurred, then one
can expect the analysis to rteflect this. Because the
observations are scattered non-randomly with respect to
time, except for a few limited areas, the results cannot, in
astrict sense, be considered a true long-term climatological
average.

We present smoothed analyses of historical means, based
(in certain areas} on relatively few observations. We
believe, however, that useful information about the oceans
can be gained through our procedures and that the
large-scale features are representative of the real ocean.
We believe that, if a hypothetical global synoptic set of
ocean data (temperature, salinity, or oxygen) existed, and
one were to smooth this data to the same degree as we
have smoothed the historical means overall, the large-scale
features would be similar to our results. Some differences
would certainly occur because of interannual to decadal-
scale variability. As more data are added to the historical
archives, we will be able to evaluate this variability on
basin and gyre scales following the studies of Levitus
{198%a,b.c; 1990) and Levitus et al. {1994b).

To clarify discussions of the amount of available data,
quality control techniques, and representativeness of the
data, the reader should examine in detail the maps showing
the distribution of data (Appendices A, F, and I}. These
maps are provided to give the reader a quick, simple way
of examining the historical data distributions. Basically, the
data diminish in number with increasing depth and latitude.
In the upper ocean, the all-data annual mean distributions
are quite good for defining large-scale features, but for the
seasonal periods, the data base for some regions is
inadequate. With respect to the deep ocean, in some areas
the distribution of observations may be adequate for some
diagnostic computations but inadequate for other purposes.
Obviously if an isolated deep basin or some region of the
deep ocean has only one observation, then no horizontal
gradient computations are meaningful. However useful
information is provided by the observation in the
computation of other quantities {(e.g., a volumetric mean
OVET a major ocean basin).

2.2f Static stability check
Each Station Data and CTD cast was checked for static

stability as defined by Hesselberg and Sverdrup (1914).
Neumann and Pierson (1966, p. 139) 1eview this

definition. The computation is a "local” cne in the sense
that adiabatic displacements between adjacent temperature
measurements in the vertical are considered rather than
displacements to the sea surface. Lynn and Reid (1968)
discuss the reasons for use of the local stability
computation. The procedure for computation follows that
used by Lynn and Reid (1968) and is given by

E = limit p, dp/dz
dz—0

in which p,= 1.02 ¢ cm”. As noted by Lynn and Reid, the
term "is the individual density gradient defined by vertical
displacement of a water parcel (as opposed to the
geometric density gradient). For discrete samples the
density difference (8p) between two samples is taken after
one is adiabatically displaced to the depth of the other".
For the results at any standard level (k), the computation
was performed by displacing parcels at the next deeper
standard level (k+1) to level k. Instabilities have been
reported over large areas of the tropical oceans. Levitus
(1982) described the density inversions reported by
Schubert {1935) from the results of the Meteor Expedition.
It appears that the inversions reported are so large that
they should not be comsidered real. Another report
describing density inversions is that of Spilhaus et al
{1950) who reported inversions along the U.S. eastern
continental shelf. They reported inversions that could not
be explained in terms of measurement or sampling errors.
They presented evidence that indicates that the inversions
might be due to tidal currents.

The actuai procedure for using stability checks to eliminate
sets of data points was as follows. To a depth of 30m,
inversions in excess of 3x107°¢ cm™* were eliminated, and
below this depth down to the 400 m level, inversions in
excess of 2x 10°g em” were eliminated. Below 400 m any
inversion was eliminated. To eliminate an inversion both
temperature and temperature were flagged and eliminated
from further use at both standard levels involved in the
computasion. In the actual processing a count was kept of
the number of inversions in each cast. If a cast had two or
more unacceptable inversions, as defined above, then the
entire cast was eliminated from further use.

2.2g XBT drop rate errar correction
Ll
Recently 1t has been demonstrated that XBT temperature

profiles made using T4, To, and T7 probes exhibit a
systematic error with depth that is associated with. an



inadequate drop rate equation for these instruments (Banes
and Sessions, 1984; Hanawa and Yoritaka, 1987; Wright
and Szabados, 1989; Singer, 1990; Hallock and Teague,
1992). The error in depth has a magnitude that equals
approximately five percent of the actual depth. XBT
struments only measure temperaturs and time directly.
The depth of an instrument is estimated from a
manufacturer supplied drop rate equation using the time
elapsed after the probe enters the water. T4, T6, and T7
XBT probes in fact, fall faster than the manufacture's
specification.

A task team of the International Global Ocean Services
System (IGOSS) of the Intergovernmental Oceanographic
Commission (IOC) on "Quality Control for Automated
Systems” is addressing the problem of how the
international community should treat XBT data (I0C,
1992a ; IOC, 1992b). One of their recommendations is
that IGOSS continue using the existing drop-rate
equations, untif international agreement is reached on a
solution. [t has been recommended that data centers
continue to receive and distribute XBT data that are
uncorrected for the systematic error. Following this
philesophy we have made no correction to the depths of
the observed level XBT profiles. Thus investigators, if
they desire, can make whatever correction they desire to
the observed level profiles we are providing since we have
not corrected these profiles for this error. However, in
order to merge XBT data with other types of temperature
measurements, and in order to produce climatologies and
other analyses, by necessity we have corrected the drop-
rate error in XBT profiles, as part of the process of
interpolating to standard levels {the drop rate correction
was applied to the observed level data before interpolation
to standard levels). All T4, T6, T7 XBT profiles that we
have used in generating products at standard levels, or
made available as part of our standard level profile
data sets, have been corrected for the drop-rate error.
T5 XBT profiles were not corrected because depth
estimates using the manufacturer's eguation for this
instrument type were found to be within the limit stated by
the manufacturer (Boyd and Linzell, 1992). However a
small systematic bias might be occuring with these
instruments also. The correction (Szabades, personal
communication) we have used for the T4, T6, T7 probes
nas not yet been designated as the "official" correction, but
it is clear that it is quite close the results from any
correction algorithm that will be so defined. If in fact,
users wish to use another procedure, but still use the
XBT data set we have compiled, they can do so by
applying their correction procedure to our observed
level XBT profile data set, which has not been
corrected for the drop rate error.

The corrected depth, Z_ (meters), is determined using the
following formula,

2.=6.472 - 0.00216¢*

in which "t", the elapsed time since the instrument entered
the ocean, is determined from

t = 1498.14 - ( 2244447.430 - 462.963z, )
in which

zZ, = originally calculated depth.

2.2h MBT corrections

We corrected approximately 14,000 MBT profiles for
systematic offsets. These offsets were determined by
Roger Bauer (personal communication). The offsets
corrections were made to the NODC MBT data that are in
the U.S. Navy MOOD file several years ago, but to date
have not been comected in the NODC MBT file.

2.2i Data archiving inconsistencies

As noted above, comimon processing procedures at NODC,
Washington has resulted in measurements made by
different instrument types being placed in the sams file.
(e.g. CTD prefiles placed in the SD file). Another
inconsistency we have noted involves data in the Russian
MBT data in the MBTZ file (Boyer and Levitus, 1994).
The date of observation of several thousand of these
profiles is pre-1940 which predate the invention of the
MBT. It appears that this particular MBT file contains
data made with reversing thermometers, since we are
unaware of any other technology available during the pre-
1949 period.

3. DATA PROCESSING PROCEDURES

3.1 Vertical interpolation to standard levels

Vertical interpolation of observed level data to standard
levels followed procedures in UNESCQ (1991}, These
procedures are in part based on the work of Reiniger and
Ross (19€8). Four observed level values surrounding the
standard level values were used, two values from above
the standard level and two values below the standard level.



Paired parabolas were generated via Lagrangian
mterpolation. A reference curve was fitted to the four data
points and used to define unacceptable interpolations
caused by "overshooting" in the interpolation. When a
spuricus extremum could not be eliminated using this
technique, linear interpolation was used. When there were
too few data points above or below the standard level to
apply the Reiniger and Ross technigue, we used a three-
point Lagrangian interpolation. If three points were not
available (either two above and one below or vice-versa),
we used linear interpolation. In the event that an
observation occurred exactly at the depth of a standard
level, then a direct substitution was made. Table 2
provides the range of acceptable distances for which
observed level data could be used for interpolation to a
standard level. The criteria were a function of depth. The
criteria for the "outside" points were the same as used by
NODC in their three-point Lagrangian interpolation and
by Levitus (1982}, The criteria for the "inner" points was
much more restrictive and resulted in fewer standard level
data values compared to the NODC and Levitus (1982)
criteria. Future criteria might depend on the geographic
location of the profile as well as the time of year.

The data summaries m Table 1 and all other such counts
represent the observed level data. These are counts of
observed level data that occur within a depth interval
around each standard level This differs from the
statistics presented by Levitus (1982) who presented counts
of interpolated standard level data.

3.2 Methods of analysis
3.2a Overview

An objective analysis scheme of the type described by
Barnes (1973) was used to produce the fields shown in this
atlas. This scheme had its origins in the wotk of
Cressman (1959) and Barnes (1564). The Bames (1973)
scheme requires only one "correction” to the first guess
field at each grid point in comparison to the successive
correction method of Cressman and Bames (1964). For
completeness we derive the weight function and response
function per Barnes (1964) and then per Barnes (1973).

Inputs to the analysis scheme were observed one-degree
square means of data at standard levels (for whatever
pericd and parameter being analyzed), and a first-guess
value for each square. For instance, one-degree square
means for our annual analysis were computed using all

available data regardless of date of observation. For July,
we used all historical July data regardiess of year of

G

observation.

Analysis was the same for all standard depth levels. Each
one-degree square value was defined as being
representative of its square. The 360x180 gridpoints are
located at the intersection of half-degree lines of latitude
and longitude. An influence radius was then specified. At
those grid points where there was an observed mean value,
the difference between the mean and the first-guess field
was computed. Next, a correction to the first-guess value
at all gridpoints was computed as a distance-weighted
mean of all gridpoint difference values that lie within the
area around the gridpoint defined by the influence radius.
Mathematically, the correction factor derived by Barnes
(1964) 1s given by the expression

Cu = 2::1 FV‘SQS
Z::l W,

(1)

in which

Cy; = the correction factor at gridpoint coordinates
(i.,})

(i,j) = coordinates of a gridpoint in the east-west
and north-south directions, respectively

n = the number of observations that fall within
the area around the point i,j defined by the
influence radius

Q. = the difference between the observed mean

and the first guess at the S point in the
influence area

W, = exp (-Er*RY) forr <R

W, =0forr>R

r = distance of the observation from the gridpoint
R = influence radius

E =4

The derivation of the weight function, W, will be
presented in the following section. At each gridpoint we
computed an analyzed value G;; as the sum of the first



guess, F,; , and the correction C;; . The expression for this
is

B (2}

If there were no data points within the area defined by the
influence radius, then the correction was zero, the
first-guess field was left unchanged, and the analyzed
value was simply the first-guess value. This correction
procedure was applied at all gridpoints to produce an
analyzed field. The resulting field was first smoothed with
a median filter (Tukey, 1974, Rabiner et al. 1975) and
then smoothed with a five-point smoother of the type
described by Shuman (1957).

The analysis scheme is based on the work of several
researchers analyzing meteorological data. Bergthorsson
and Doos (1955) computed corrections to a first-guess
field using various techniques: one assumed that the
difference between a first-guess value and an analyzed
value at a gridpoint was the same as the difference
etween an observation and a first-guess value at a nearby
observing station. All the observed differences in an area
surrounding the gridpoint were then averaged and added to
the gridpoint first guess value to produce an analyzed
value. Cressman (1959) applied a distance-related weight
function to each observation used in the correction in order
to give more weight to observations that occur closest to
the gridpoint. In addition, Cressman introduced the method
of performing several iterations of the analysis scheme
using the analysis produced in each iteration as the
first-guess field for the next iteration. He also suggested
starting the analysis with a relatively large influence radius
and decreasing it with successive iterations so as to
analyze smaller scale phenomena with each pass.

Sasaki (1960) introduced a weight function that was
specifically related to the density of observations, and
Bames (1964, 1973) extended the work of Sasaki. The
weight function of Barnes (1973) has been used here. The
derivation of the weight function we used which we
present for completeness, follows the work of Bames
(1973).

The objective analysis scheme we used is in common use
by the meso scale meteorclogical community. Several
studies of objective analysis techniques have been made.
Achtemeier (1987) examined the "concept of varying
influence radii for a successive corrections objective
analysis scheme." Seaman {1983) compared the "objective
analysis accuracies of statistical interpolation and
successive correction schemes." Smith and Leslie (1984)
performed an "error determination of a successive

correction type objective analysis scheme." Smith er /.
(1986) made "a comparison of errors in objectively
analyzed fields for umiform and non-uniform station
distribution."”

3.2b Derivation of Barnes' (1964) weight function

The principle upon which Barnes' (1964) weight function
is derived is that "the two-dimensional distribution of an
atmospheric variable can be represented by the summation
of an infinite number of independent harmonic waves, that
1s, by a Fourier integral representation”. If f(x,y) is the
variable, then in polar coordinates (r,8), a smoothed or
filtered function g(x,y) can be defined:

cv i i e .
8 = 5 7 [ nftesrcoso, y+rsing)

in which 1 is the radial distance from a gridpoint whose
coordinates are {(x,y). The weight function is defined as

1 = exp (-r’74K) (4)

which resembles the Gaussian distribution. The shape of
the weight function is determined by the value of K, which
depends on the distribution of data. The determination of
K follows. The weight function has the property that

1 penpe | 72 5
St o B S {5)
2740 fon 4K]

This property is desirable because in the continuous case
(3) the application of the weight function to the
distribution f(x,y; will not change the mean of the
distribution. However, in the discrete case (1), we only
sum the contributions to within the distance R. This
introduces an error in the evaluation of the filtered
function, because the condition given by (5) does not
apply. The error cah be pre-determined and set to a
reasonably small value in the following manner. If one
carries out the integration in (5) with respect to 6, the



remaining integral can be rewritten as
fﬂnd/ﬁ . [ Al (6)
0 2x) " Je"ag) T

Defining the second integral as ¢ yields

fRexp(rz]d{rz] =1-¢ (7)
0 4K) \4K

in which

£ = exp(-RY4K) .

Levitus (1982) chose £ = 0.02, which implies with respect
to (6) the representation of 98 percent of the influence of
any data around the gridpoint in the area defined by the
influence radius, R. In terms of the weight function used
in the evaluation of (1) this choice leads to a value of E=4
since

E=RY4K = -In ¢
The choice of € and the specification of R determine the
shape of the weight function.
Barnes (1964) proposed using this scheme in an iterative
fashion similar to Cressman (1959). Levitus (1982) used

a four iteration scheme with a variable influence radius for
gach pass.

3.2¢c Derivation of Barnes' (1964) response function

It is desirable to know the response of a data set to the
interpolation procedure applied to it. Following Barnes
(1964) we let

fix)= A sin(ax) (8)

in which a = 2n/A with & being the wavelength of a
particular Fourier component, and substitute this function
into equation (3) along with the expression for 7 in
equation (4). Then

g(x) = D (A sin(ax)) = D f(x) (9)
in which
D = exp (-T'R¥417)

D is the response function for one application of the
analysis. The phase of each Fourier component is not
changed by the interpolation procedure. The results of an
analysis pass are used as the first guess for the next
analysis pass in an iterative fashion. The responge function
after N iterations as derived by Barnes (1964) is

gu(x) = f(x)D X (1-D) ** (10)

Equation (10} differs trivially from that given by Barmnes.
The difference is due to the fact that cur first-guess field
was defined as a zonal average, annual mean, or seasonal
mean, whereas Bammes used the first application of the
analysis as a first puess. Bames (1964) also showed that
applying the analysis scheme in an iterative fashion will
result in convergence of the analyzed field to the observed
data field. However, it is not desirable to approach the
observed data too closely, because at least seven or eight
gridpoints are needed to represent a Fourler component.

The response function given in (10) is useful in two ways:
it is informative to know what Fourier components make
up the analyses, and the computer programs used in
generating the analyses can be checked for correctness by
comparison with (10},

3.2d Derivation of Barnes' (1973) weight function

Barnes (1973) showed how a nearly equivalent analysis
(with respect to the response function) could be performed
with just one iteration, assuming a first guess field is
provided. We use this one-pass scheme in our present
analyses. Derivation of the weight function for this
scheme 1s provided (below) after the derivation of the
response function in the following section. Following
Bames (1973), equation (9) can be rewritten as

Zax,y)= Dy f (x.). (11)



The subscript nought denotes the first pass through the
data with weight function

o= exp (-r'/dK,) (12
Using the results of the initial analysis as a first guess for
the second iteration through the data, we add the residual
field of the second pass analysis to the first guess
provided by the first iteration. We write this as

gY)= g (y) + [ flxy) - gy D, (13)

where D, is the response resulting from application of the
weight function

1, = exp (-r¥dk,); k=vk, andvy>0 (14)
. =exp (-a%k,) = exp (-a’yk)=D, . (18
Substituting (15) and (11) into (13) yields
g(xy)= LY, (1 + D™ - D) (16)
The new response function is
D'=D, (1 + D, -DN 17

The value k.= v k, is chosen to produce a desired
response function. In our analyses a value of k; = 0.8 was
used. This choice leads to the response function given in
Table 3.

There are several advantages of a one-pass interpolation
analysis. The saving of computer time is an obvious
advantage. A more important advantage is that statistical
analysis of the analyzed fields becomes much simpler.

3.2e Choice of response function

The distribution of observations (see appendices) at
different depths and for the different averaging periods, not
regular in space or by season. At one extreme, regions
exist in which every one-degree square contains data and
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no interpolation needs to be performed. At the other
extreme are regions in which few data exist. Thus with
variable data spacing the average separation distance
between gridpoints containing data is a function of
geographical position and averaging period. However, if
we computed and used a different average separation
distance for each paramefer at each depth and each
averaging period. we would be generating analyses in
which the wavelengths of observed phenomena might
differ from one depth level to another and from one season
to another. We chose instead to use a fixed influence
radius of 555 km which allows us to analyze each
parameter at every depth and season in exactly the same
way.

Inspection of (1) shows that the difference between the
analyzed field and the first guess at any gridpeint is
propertional to the sum of the weighted differences
between the observed mean and first-guess at all gridpoints
containing data within the influence area.

The reason for using the five-point smoother and the
median smoother is that our data are not evenly distributed
in space. As the analysis moves from regions containing
data to regions devoid of data, small-scale discontinuities
may develop. The five-point and median smoothers are
used to eliminate these discontinuities. The five-point
smoother does not affect the phase of the waves in the
data.

At gridpoints where no observed data points fall within the
influence area, one could expand the influence radius until
some minimum number of data points were found. We did
not use this procedure, because it implies an analysis with
different maximum length scales in different regions, and
we wish to minimize such differences.

The response function for the analyses presented in this
atlas is given in Table 3. The response function represents
the smoothing inherent in the objective analysis describad
above plus the effects of one application of the five-point
smoother and one application of a five-point median
smoother.

3.2f First guess field determination

There are gaps in the data coverage and, in some parts of
the world ocean, there exist adjacent basins whose water
mass properties are individuaily nearly homogeneous but
have distinct basin-to basin differences. Spurious features
can be created when an influence area extends over two
basins of this nature. Our choice of first-guess field



attempts to minimize the creation of these features. To
provide a first guess field for the annual analysis at any
standard level, we first zonally averaged the observed data
in each one-degree latitude belt by individual ocean basins.
In the work of Levitus (1982), the Mediterranean and Red
Seas were treated as individual basins and the Venezuela
Basin and the Sulu Sea were treated as individual basins
below their sill depths. The Norwegian Sea and Arctic
Ocean were treated geparately below the sill depth of the
Greenland-Iceland-Shetland ridge. In the present work,
additional basins have also been defined.

To avoid the problem of the influence region extending
across land or sills to adjacent basins, the objective
analysis program uses basin "identifiers” to avoid the use
of data from adjacent basins. Table 4 lists these basins
and the depth at which no exchange of information
between basins is allowed during the objective analysis of
data, 1.e., "depths of mutual exclusion." Some regions are
nearly, but not completely, isolated topographicaily.
Because some of these nearly isolated basins have water
mass properties that are different from surrounding basins,
we have chosen to treat these as isolated basins as well,
Not all such basins have been identified because of the
complicated structure of the sea floor.

The zonal average computed for every one-degree belt in
every individual ocean basin was used as the first guess
for all one-degree squares in the belt. The reason for
computing a separate first guess in each individual basin
can be explained with the aid of equations (1) and (2). We
have at any grid point (i,j) an analyzed value as defined by

L Q)
Yo 7

G,=F (18)

NS

For simplicity, we discuss the case in which only one
observed data point falls within the influence area. The
coordinates of this point will be denoted by i'j' on our
grid. If we let OB, denote the observed one-degree square
mean at this point then (18) becomes

G, = F,; + (OB - FG; ;) (19)

Thus for this case the difference between the analyzed
point and the first guess at point (i,j) is assumed to equal
the first-puess at the point (i'j". If the observed mean at a
gridpoint 1s equal to the first-guess at that gridpoint, then

the correction 18 zero, and this pridpoint will affect no

other gridpoint. For situations where we have adjacent
basins with individually nearly homogeneous properties
(those not identified in Table 4), then defining a separate
first-guess field for each basin means that the observed
means in each basin are closer to their first-guess field
than if this separation of basins had not been performed.
Thus when the influence area extends across basins the
corrections are relatively small.

Iteration provided first guess fields for seasonal and
monthly analyses.  Annual analyses were used as
first-guess fields for each of the four seasonal analyses.
For temperature, a new annual analysis was computed as
the mean of the four seasonal analyses, and then used as
the first guess in a reanalysis of seasonal temperature data.
This procedure produces slightly smoother annual means.
More importantly we recognize that fairly large data-void
regions exist, in some cases to such an extent that a
seasonal or monthly analysis in these regions is not
meaningful. We are inferested in computing inteeral
quantities such as temperature storage that are deviations
from annual means. Geographic distribution of
observations for the all-data annual periods (see
appendices) 1s excellent for upper layers of the ocean. By
using an all-data annual mean, first-guess field regions
where data exists for only one season or month will show
no contribution to the annual cycle. By contrast, if we
used a zonal average for each season or month, then, in
those latitudes where gaps exist, the first-guess field would
be heavily biased by the few data points that exist. If these
were anomalous data in some way, an entire basin wide
belt might be affected.

One advantage of producing "global" fields for a particular
compaositing period (even though some regions are data
void) is that such analyses can be modified by
investigators for use in modelling studies. For example,
England (1992) noted that the temperature distribution
produced by Levitus (1982) for the Antarctic is too low
(due to a lack of winter data for the Southern Hemisphere)
to allow for the formation of Antarctic Intermediate Water
in an ocean general circulation model. By increasing the
temperatuze of the "observed" field the model was able to
produce this water mass.

3.3 Choice of objective analysis procedures

Optimum interpolation (Gandin, 1963) has been used by
some investigators to objectively analyze oceanographic
data. We recognize the power of this technique but have
not used it to produce analyzed fields. As described by
Gandin (1963), optimum 1nterpolation is used to analvze



synoptic data using statistics based on historical data. In
particular, second-order statistics such as correlation
functions are used to estimate the distribution of first order
parameters such as means. We attempt to map most fields
in this atias based on relatively sparse data sets. By
necessity we must composite all data regardless of year of
observation, to have enough data to produce a global,
hemispheric, or regional analysis for a particular menth,
season, or even yearly. Because of the paucity of data, we
prefer not to use an analysis scheme that is based on
second order statistics. In addition, ag Gandin has also
noted, there are two limiting cases associated with
optimum interpolation.  The first is when a data
distribution is dense. In this case the choice of
interpolation scheme makes little difference. The second
case is when data are sparse. In this case an analyses
scheme based on second order statistics is of questionable
value. For additional information on objective analysis
procedures, see Thiebaux and Pedder (1987) and Daley
(1991).

3.4 Choice of spatial grid

We use the one-degree grid of Levitus (1982) which is
based on the ocean topography defined by Smith er al,
(1966) as our spatial grid. We desire to build a set of
climatological analyses that are identical in all respects for
all parameters including relatively data sparse parameters
:uch as nutrients. This provides investigators with a
consistent set of analyses to work with, As more data are
received at NODC/WDC-A, we will be able to produce
higher resolution climatologies for certain parameters.

4. RESULTS

+.} Annual mean temperature parameters at standard
levels

4.1a Explanation of standard level figures

All figures showing standard level analyses in this atlas
series use similar symbols for displaying information.
Continents are indicated as solid - black areas. Ocean
areas shallower than the standard depth level being
displayed are gray. Negative regions are dot stippled.
Gridpoints for which there were less than three one-
degree-square values available to"correct the first guess are
indicated by an X, Dashed lines represent non-standard
contours. "H" and "L" indicate locations of the absolute
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maximum and minimum of the entire field. All figures
were computer drafted. Ag a result some contours are not
labelled. For clarity we use dark lines for every fourth or
fifth contour in the standard level fields.

4.1b Standard level analyses

Global distributions of annual mean temperaturs at
standard analysis levels are presented in Appendix B.
Seasonal analyses are presented in Appendix G. Seasonal
mean minus annual mean difference fields of these
parameters are presented in Appendix H.

4.2 Basin zonal averages

Basin zonal averages were computed using the definition
of basins as shown in Fig. 4. Appendix C shows basin
zonal averages of temperature.

4.3 Basin mean profiles and volume means

Area-weighted basin means of temperature parameters
have been computed for the world ocean for each of the
major ocean basin and for the northern and southern
hemisphere portions of these basins and are presented as
a function of depth in Appendices D. These means and
associated standard errors are also presented in tabular
formm in the same appendices. The area and volume of
each standard level over which the means are computed is
given in Appendix E. The percentage contribution that
each standard level contributes to the volume of each basin
1s given, as well as the number of independent points used
in the standard error computation. Basin volume-weighted
means and the total volume in each basin are also
presented in Appendix E. Of course one can construct and
display the basin-wide averages in a number of ways to
serve various purposes. The tabulations allow users to
oraph the information and perform computations in any
desired format.

The formula for defining an area weighted mean of some
parameter X over the N ocean one-degree squares in a
particular region or basin is

Ef::‘l Xr: ‘An
A

X, - (20)

in which X, represents the value of the parameter at the n*



one-degree square of the region, and A, represents the
area of the n™ one-degree square in the region.
Computation of volume means uses formula (20) with the
volume V, replacing the area element A . The volume of
a one-degree square box at any particular standard level is
defined as follows. Excluding the sea surface and deepest
standard level occurring at any one-degree square water
column, the depth range Az,, through which a volume is
computed for any standard level (denoted by k), is given
as

A7y = 0.5 (24 - 244] 21)
in which z,,, 18 the depth of the first standard level deeper
than standard level k, and z., 1s the depth of the first
standard level shallower than standard level k. The
volume of the sea surface standard level is taken over the
0-5 m depth interval. The depth range through which a
velume is computed for the deepest standard level is given
as

Az = 0.5 [2 - Za] - (22)

The standard error (S.E.) of each basin mean is computed
as follows. The area-weighted root-mean-square deviation
of all gridpoint values is computed (denoted as o). The
total area of the standard level within the basin is
computed and divided by the area defined by the influence
radius of the objective analysis. This area is given as TR
in which R=555 km. The quotient yields a value, N,
which 15 used as the number of independent points in
estimating the standard error as

S.E. = c/(N)"

5. SUMMARY

In the preceding sections we have described the results of
a project to objectively analyze all historical temperature
data archived at the National QOceanographic Data Center,
Washington, D.C., plus additional data gathered as a result
of the NODC and TOC data archaeclogy and rescue
projects, that have not yet been incorporated into the
NODC archive.

One advantage of the analysis techniques used in this atlas
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is that we know the amount of smoothing by objective
analyses as given by the response function in Table 3. We
believe this to be an important parameter in constructing
and describing a climatology of any geophysical
parameter. Particularly when computing anomalies from a
standard climatology, it is important that the synoptic
field be smoothed to the same extent as the climatology,
to prevent generation of spurious anomalies simply through
differences in smoothing. A second reason is that purely
diagnostic computations require a minimum of seven or
eight gridpoints to represent any Fourier component with
accuracy. Higher order derivatives will require more
smoothing.

We have attempted to create objectively analyzed fields

and data sets that can be used as a "black box." We
emphasize that some quality confrol procedures used are
subjective. For those users who wish to make their own
choices, all the data used in our analyses are available both
at standard depth levels as well as observed depth levels.
The results presented in this atlas show some features that
are suspect and may be due to nonrepresentative or
incorrect data that were not eliminated by the quality
control techniques used. Although we have attempted to
eliminate as many of these features as possible some
obviously remain. Some may eventually turn out not to be
artifacts but rather to represent real features, as yet
undescribed.

6. FUTURE WORK

The acquisition of additional temperature data will allow
for a more detailed description of the seasonal and
monthly cycles. Our analyses will be updated when
justified by additional observations.
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Table 1. Distribution with depth of the number of one-degree squares
of ocean (Ocean ODSQS), the total number (N) of temperature

observations; and the number of one-degree squares (ODSQS)
containing temperature observations.

Standard  Depth Ocean N ODSQS
Level {m) ODSQS
1 0 42164 4452831 38317
2 10 42054 4148520 38140
3 20 41936 4124917 38094
4 30 41809 4056038 37972
5 50 41244 3719050 37528
6 75 40945 3428160 37029
7 100 40327 3206213 36675
8 125 40169 2858652 36203
9 150 39858 2449631 35728
10 200 39255 2105493 34988
11 250 39058 1895540 34013
12 300 38623 1374142 32118
13 400 38272 1195367 31186
14 500 37849 504427 27826
15 600 37579 297917 24266
16 700 37352 247245 23444
17 800 37059 132663 19169
18 900 36879 199621 22219
19 1000 36493 165355 20913
20 1100 36315 126628 18846
21 1200 36057 80202 16620
22 1300 35862 76588 15723
23 1400 35716 65545 14299
24 1500 35405 46633 12953
25 1750 34914 20517 8708
26 2000 33856 62650 14635
K 2500 32077 34107 11950
28 3000 29188 25505 10144
29 3500 25089 19775 8208
30 4000 19718 14785 6252
31 4500 12856 9683 4222
32 5000 6883 5659 2401

33 5500 1847 2981 1087
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Table 2. Acceptable distances for "inside" and "outside" values
used in the Reiniger-Ross scheme for interpolating
observed level data to standard levels

Standard | Standard | Acceptable | Acceptable
Levels Depths | distances for | distances for
inside values | outside values

1 0 5 200 ]

2 10 50 200

3 20 50 200

4 30 50 200

5 50 50 200

6 75 50 200

7 100 50 200

8 125 50 200

9 150 50 200

10 200 50 200

11 250 100 200
T2 300 100 200 |

I 400 100 200
14 500 100 400 ’

15 600 100 400
16 700 100 400 |

17 800 100 400

18 900 200 400

19 1000 200 400

20 1100 200 400

21 1200 200 400

22 1300 200 1000

23 1400 200 1000

24 1500 200 1000

i3] 1750 200 1000

26 2000 1000 1000

27 2500 1000 1000

28 3000 1000 1000

29 3500 1000 1000
30 4000 1000 1000 ‘
31 4500 1000 1000 |
32 5000 1000 1000 I
B 33 5500 ‘ 1000 1000 }(




Table 3. Response function of the objective analysis
scheme as a function of wavelength.

LWavelength' Response Function

360AX 0.999
180AX 0.997
120AX 0.994
90AX 0.989
72AX 0.983
60AX 0.976
45AX 0.957

40AX 0.946 W
36AX 0.934

30AX 0.907 |
24AX 0.857
20AX 0.801
18AX 0.759
15AX 0.671
12AX 0.532
10AX 0.397
9AX 0.315
8AX 0.226
6AX 0.05%
5AX 0.019

40X 2.23x10°
3AX 1.90x10*
| aax 5.30x10” }

* For AX = 111 km
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Table 4. Basin identifiers and depths of "mutual exclusion" used in this study

F Basin Depth (m) Basin Depth (m)

| Atlantic Ocean S Pacific Ocean --- ,
Indian Ocean Mediterranean Sea
Baltic Sea 0 Black Sea 0

| Red Sea 0 Persian Gulf 0
Hudson Bay 0 Southern Ocean
Axctic Ocean (Bering) 0 Sea of Japan 125

| Kara Sea 200 Sulu Sea 500
Arctic Ocean (Atlantic) 600 Baffin Bay 700
East Mediterranean 1000 West Mediterranean 1000
Sea of Oshkotsk 1300 Banda Sea 1400

| Caribbean Sea 1400 | Andaman Basin 2000
North Caribbean 2000 Gulf of Mexico 2000

| Beaufort Sea 3000 South China Sea 3000
Barent Sea 3000 Celebes Sea 3000
Aleutian Basin 3000 Fiji Basin 3500
North American Basin 3500 West European Basin 3500
Southeast Indian Basin 3500 Coral Sea 3500
East Indian Ocean 3500 Central Indian Ocean 3500
Southwest Atlantic 3500 | East South Atlantic 3500

| Southeast Pacific 3500 Guatemala Basin 3500

1 East Caroline Basin 4000 Marianas Basin 4000

| Phillipine Sea 4000 | Arabian Sea 4000
Chile Basin 4000 Somali Basin 4000 |
Mascarine Basin 4500 Guinea Basin 4500 ‘
Croset Basin 4500 Brazil Basin 4500 ‘

Hiﬁugentine Basin 4500 Tasman Sea 4500 |

*Basins marked with a dash can interact with each other except certain areas such
as the Isthmus of Panama
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Figure 2a: Time series of the total number of temperature observations
(SD,CTD,XBT,MBT,DBT) as a function of year and season A)
at the sea surface, B) at 1000 Meters, and C) at 2000 Meters
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Figure 2b: Time series of the number of Station Data temperature
cbservations as a function of year and season A) at the
sea surface, B) at 1000 Meters, and C) at 2000 Meters
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Figure 2c: Time Series of the number of MBT temperature
observations as a function of year and season A) at the
sea surface, B) at 125 Meters, and C) at 250 Meters
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Figure 2d: Time series of the number of CTD temperature
observations as a function of year and season A) at the
sea surface, B) at 1000 Meters, and C) at 2000 Meters
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Figure 2e: Time series of the number of XBT temperature
cbservations as a function of year and season A) at the
sea surface, B) at 400 Meters, and C) at 700 Meters
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Figure 2f: Time series of the number of DBT temperature
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Fig. A1 Annual distribution of temperature obsarvations at the surface

30E BOE wWE 120E 150E 180 150 120W BOW W 30W GM E
[ 1

0E 0E 20 {208 150E 180 150W 120w GOW B 30w GH I0E
i " PR T FER B L s 2 . " "

30E BOE 0 120E 150E 180 5O 120W S B ku ] GM XE

Fig. A3 Annual distribution of temperature observations at 50 m depth
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Fig. A4  Annual distributicn of temperature cbservations at 75 m depth
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Fig. A5  Annual distribution of temperature observations at 100 m depth
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Fig. A6 Annual distribution of temperature observations at 125 m depth




ar

E s0E GCE 1208 150E 180 50w 120w oW & kg GH WRE

30E 80E 80E 120E 180€ 180 150% 120W oW B 3w GM WE
1 =k a

Fig. AB  Annual distribution of temperature observations at 250 m depth
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Fig. A9  Annual distribution of temperature observations at 400 m depth
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Fig. A10  Annual distribution of temperature observations at 500 m depth
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Fig. A1 Annual distribution of temperature observations at 700 m depth
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Fig. A12  Annual distribution of temperature observations at §00 m depth
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Fig. A13  Annual distribution of temperature observations at 1000 m depth
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Fig. A16  Annual distribution of temperature cbservations at 1500 m depth
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Fig. A17  Annual distribution of temperature observations at 1750 m depth
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Fig. A18  Annual distribution of temperature observaticns at 2000 m depth
42




-

306 B0E 0E 120E 150E 180 150w 1200 oW BOW aw aM NE
AL/ IR AE | A 1 i

120E 150E

Fig. A19  Annual distribution of temperature observations at 2500 m depth
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Fig. A20  Annual distribution of temperature observations at 3000 m depth
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Fig. A21  Annual distribution of temperature observations at 4000 m depth
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Fig. F1  Winter (Jan.-Mar.) distribution of temperature observations at the surface
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Fig. F2  Winter (Jan.-Mar.) distribution of temperature observations at 50 m depth
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Fig. F3  Winter (Jan.-Mar,) distribution of temperature observations at 100 m depth
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Fig. F4  Winter (Jan.-Mar.) distribution of temperature observations at 150 m depth
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Fig. F5 Winter {Jan.-Mar.) distribution of temperature chservations at 250 m depth
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Fig. F6  Winter (Jan.-Mar.) distribution of temperature observations at 400 m depth
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Fig. F7  Spring (Apr.-Jun.) distribution of temperature cbservations at the surface
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Fig. F&  Spring (Apr.-Jun.) distribution of temperature observations at 50 m depth
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Fig. FS  Spring (Apr.-Jun,) distribution of temperature observations at 100 m depth
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Fig. F10  Spiing (Apr.-dun.) distribution of temperature observations at 150 m depth
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Fig. F11  Spring {Apr.-Jun.) distribution of temperature observations at 250 m depth
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Fig. F12  Spring (Apr.-dun.) distribution of temperature observations at 400 m depth
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Fig. F13 Summer {Jul.-Sep.) distribution of temperature observations at the surface
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Fig. F14  Summer (Jul.-Sep.) distribution of temperature observations at 50 m depth
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Fig. F156  Summer (Jul.-Sep.) distribution of temperature cbservations at 100 m depth
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Fig. F16 Summer {(Jul.-Sep.) distribution of temperature ¢bservations at 150 m depth
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Fig. F17  Summer {(Jul.-Sep.) distribution of temperature observations at 250 m depth
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Fig. F18 Summer (Jul.-Sep.) distribution of temperature observations at 400 m depth
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Fig. F19 Fall (Oct.-Dec,) distribution of temperature observations at the surface
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Fig. F20  Fall (Qct.-Dec.) distribution of temperaiure observations at 50 m depth
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Fig. F21  Fall (Oct.-Dec.} distribution of temperature observations at 100 m depth
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Fig. F22 Fall (Oct.-Dec.) distribution of temperature observations at 150 m depth
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Fig. F23 Fall {Oct.-Dec.) distribution of temperature chservations at 250 m depth
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Fig. F24  Fall {Oct.-Dec.) distribution of temperature observations at 400 m depth
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Fig. G1  Winter {Jan.-Mar.} mean temperature (°C) at the surface
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Fig. G2  Winter (Jan.-Mar,) mean temperature (°C) at 50 m depth
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Fig. G3  Winter (Jan.-Mar.) mean temperature (°C) at 75 m depth
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Fig. G4 Winter (Jan.-Mar.) mean temperature (°C) at 100 m depth
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Fig. GZ  Winter (Jan.-Mar.) mean temperature (°C) at 125 m depth
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Fig. G6 Winter {Jan.-Mar,) mean temperature (°C) at 150 m depih
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Fig. G7  Spring (Apr.-Jun.) mean temperature {°C) at the surface

0E 120E 150E 180 150 120w
f A

A0E 60E B0E 120E . 1506 : . 150W . SO . oW ‘90\1\' : (e]] f XE
Minimum Value -2.76 Maximum Valus 29.46 Contour Interval 2.00
Fig. G8 Spring (Apr.-Jun.) mean temperature (°C) at 50 m depth
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Fig. G9  Spring {Apr.-Jun.) mean temperature {°C) at 75 m depth
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Fig. G10  Spring (Apr.-Jun.) mean temperatura (°C} at 100 m depth
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Fig. G11  Spring (Apr.-Jun.} mean temperature (°C} at 125 m depth
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Fig. G12 Spring (Apr.-Jun.) mean temperature {°C) at 150 m depth
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Fig. G13  Summer (Jul.-Sep.) mean temperature (°C) at the surface
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Fig. G14 Summer (Jul.-Sep.) mean temperature (°C) at 50 m depth
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Fig. G15 Summer (Jul.-Sep.) mean temperature (°C) at 75 m depth
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Fig. Gi6  Summer {Jul.-Sep.} mean temperature (°C) at 100 m depth
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Fig. G17 Summer (Jul.-Sep.) mean temperature (°C) at 125 m depth
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Fig. G18 Summer (Jul.-Sep.) mean temperature (°C) at 150 m depth
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Fig. G19 Fall (Oct.-Dec.) mean temperature {*C) at the surface
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Fig. G20  Fall {Oct.-Dec.) mean temperature {*C) at 50 m depth
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Fig. G21 Fall (Oct.-Dec.) mean temperature (°C) at 75 m depth
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Fig. G22 Fall (Oct.-Dec.) mean temperature (°C) at 10G m depth
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Fig. G23 Fall (Oct.-Dec.) mean temperature (°C) at 125 m depth
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Fig. G24 Fall (Oct.-Dec.) mean temperature (°C) at 150 m depth
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Fig. H1  Winter (Jan.-Mar.) minus annual mean temperature (°C) at the surface
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Fig. H2  Winter (Jan.-Mar.} minus annual mean temperature (°C) at 50 m depth
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Fig. H3  Winter {Jan.-Mar.) minus annual mean temperature (°C) at 75 m depth
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Fig. H4  Winter (Jan.-Mar.) minus annual mean temperature (°C} at 100 m depth
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Fig. H8  Winter (Jan.-Mar.) minus annuai mean temperature (°C) at 125 m depth
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Fig. HG  Winter (Jan.-Mar.) minus annual mean femperature {°C} at 150 m depth
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Fig. H7  Spring (Apr.-Jun.) minus annual mean temperature (°C) at tha surface
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Fig. H8  Spring {Apr.-Jun.) minus annual mean teémperature (°C) at 50 m depth
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Fig. H9  Spring (Apr.-Jun.) minus annual mean temperature (°C) at 75 m depth
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Fig. H10  Spring {Apr.-Jun.) minus annual mean temperature (°C) at 100 m depth
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Fig. H11  Spring {Apr.-Jun.} minus annual mean temperature (*C) at 125 m depth
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Fig. H12  Spring {(Apr.-Jun.) minus annual mean temperature {°C) at 150 m dept
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Fig. H13  Summer {(Jul.-Sep.) minus annual mean temperature (°C) at the surface
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© Fig.H14 Summer {Jul.-Sep.} minus annual mean temperature (°C) at 50 rn depth
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Fig. H15  Summer (Jul.-Sep.) minus annual mean temperature (°C) at 75 m depth
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Fig. Hi68  Summer (Jul.-Sep.) minus annual mean temperature (°C) at 100 m depth
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Fig. H17  Summer (Jul.-Sep.) minus annual mean temperature (°C) at 125 m depth
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Fig. HI18  Summer (Jul.-Sep.) minus annual mean temperature (*C) at 150 m depth
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Fig. H12 Fall (Oct.-Dec.) minus annual mean temperafure (°C) at the surface
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Fig. H20 Fall (Oct.-Dec.) minus annual mean temperature (°C)at 50 m depth
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Fig. H21 Fall (Oct-Dec.) minus annual mean temperature (°C) at 75 m depth
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Fig. H22  Fall {Oct.-Dec.) minus annual mean temperature (°C) at 100 m depth
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Fig. H23  Fall (Oct.-Dec.) minus annual mean temperature (°C) at 125 m depth
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Fig. H24  Fall (Oct.-Dec.) minus annual mean temperature (°C} at 150 m depth
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Fig. 11 January distribution of temperature observations at the surface
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Fig. 13 January distribution of temperature observations a! 250 m depth
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Fig. 14 February distribution of temperature observations at the surface
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Fig. 16 February distribution of temperature observations at 250 m depth
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Fig. 17 March distribution of temperature observations at the surface
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Fig. 18 March distribution of temperature observations at 125 m depth
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Fig. 19 March distribution of temperature observations at 250 m depth
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Fig. 110 April distribution of temperature cbservations at the surface
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Fig. 111 April distribution of temperature observations at 125 m depth
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Fig. 112 April distribution of temperature observations at 250 m depth
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Fig. 113 May distribution of temperature observations at the sutrface
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Fig. 114 May distribution of temperature observations at 125 m depth
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Fig. 115 May distribution of temperature observations at 250 m depth
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-Fig. 116 June distribution of temperature observations at the surface
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Fig. 117 June distribution of temperature observations at 125 m depth
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Fig. 18 June distribution of temperature observations at 250 m depth
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Fig. 119 July distribution of temperature observations at the surface
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Fig. 120 July distribution of temperature cbservations at 125 m depth
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Fig. [21 July distribution of temperature observations at 250 m depth
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Fig. 122 August distribution of temperature observations at the surface
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Fig. 123 August distribution of temperature observations at 125 m depth
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Fig. 124 August distribution of temperature observations at 250 m depth
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Fig. 125 September distribution of temperature observations at the surface
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Fig. |26 September distribution of temperature observations at 125 m depth
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Fig. 127 September distribution ¢f temperature observations at 250 m depth
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Fig. 128 October distribution of temperature ocbservations at the surface
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Fig. 128 October distribution of temperature observations at 125 m depth
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Fig. 130 October distribution of temperature observations at 250 m depth
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Fig. 131 November distribution of temperature observations at the surface
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Fig. 132 November distribution of temperature observations at 125 m depth
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Fig. 133 November distribution of temperature observations at 250 m depth
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Fig. 134 December distribution of temperature observations at the surface
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Fig. I35 December distribution of temperature observations at 125 m depth
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Fig. 136 December distribution of temperature observations at 250 m depth
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NOAA SCIENTIFIC AND TECHNICA]. PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of
Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic
impact of natural and technological changes in the environment and to monitor and predict the state of the
solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical informa-

tion in the following kinds of publications:

PROFESSIONAL PAPERS - Important definitive
research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS - Reports
prepared by contractors or grantees under NOAA
sponsorship.

ATLAS - Presentation of analyzed data generally
in the form of maps showing distribution of rain-
fall, chemical and physical conditions of oceans
and atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS - Re-
ports containing data, observations, instructions,
etc. A partial listing includes data serials; predic-
tion and outlook periodicals; technical manuals,
training papers, planning reports, and information
serials; and miscellaneous technical publications.

TECHNICAL REPORTS - Journal quality with
extensive details, mathematical developments, or
data listings.

TECHNICAL MEMORANDUMS - Reports of
preliminary, partial, or negative research or tech-
nology results, interim instructions, and the like.

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Environmental Satellite, Data, and Information Service
Washington, D.C. 20233
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