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ABSTRACT

This report deals with the development and application of a model useful

for describing and comparing frequency data. The model is a truncated Poisson

Probability density function with the zero-class unknown or censored. The

development of the model is outlined and certain final derivations are expli-

citly presented. A numerical example is provided to clarify computation.

The model was fitted to data resulting from the seafood consumption

survey carried out by the National Purchase Diary IncJ/ during the period

1973-74. The analysis resulted in a descriptive model of consumption fre-

quencies by the American public on various fish species.

1/ Mention of commercial firms does not imply endorsement by the National
Marine Fisheries Service, NOAA.
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I NTRO DUCT ION

It is of value to the fishing industry to understand the public's fish

consumption pattern as related to frequency and quantity. The basic interest

is in the marketability of various fishery products. Accordingly, issues

such as economic feasibility, nutritional contribution, and safety of 'seafood

need to be considered. As a step towards this, this report describes the

consumption frequencies of various fish species by adopting a probabilistic

model.

In this report, the basic system being modeled and the data requirements

are described. The theoretical development of the model is outlined and

certain final formulations are presented. A numerical example is provided

to clarify computation. The model is applied to the data resulting from a

seafood consumption survey of the American public. The data under considera-

tion consist of the monthly consumption frequencies of individuals on various

fish species. The model allows the consumption frequencies of each species

to be described by a fitted probabilistic distribution. A table of the es-

timated parameters and their confidence limits of the distributions are pro-

vided for the various fish species being considered. The computer program

written to perform the calculations is listed in the Appendix. Finally, the

fitted models and the observed data are compared, and considerations for im-

proving model accuracy are discussed.

Often, when the objective is to assess the frequency occurrence of events,

it is difficult to discriminate between subsamples of the population in which

no events occurred during the.observational period and subsamples in which

events could not have occurred. For example, a general population may be

classified into two subpopulations: those who consume shrimp, and those who

do not consume shrimp. It is possible for some shrimp-eaters not to consume



shrimp while under observation. Therefore, if available data from the survey

consist only of frequencies of consumption and not whether the individuals

eat shrimp or not, the division between the two subpopulations becomes un-

clear. We can assume that those who have consumption frequencies other than

zero to be shrimp-eaters, but it would not be possible to identify among those

who have zero consumption frequency which of the two subpopulations they be-

long to.

The truncated Poisson model allows one to estimate the shrimp and non-

shrimp eating proportions among the group with zero consumption frequency.

The model assumes that the consumption frequency of the shrimp-eater subpopu-

lation follows a Poisson distribution. For a review of the basic character-

istics of the Poisson distribution, readers may wish to consult an elementary

text on probability theory such as Ross (1976). ,

Since the shrimp-eaters, who had zero consumption frequency, are indistin-

qUishable from non-eaters, the total number of shrimp-eaters within the sam-

ple is unknown. In other words, the zero-class of the eater subsample is

unknown or missing. When certain values of a probability distribution are

missing, we say that that distribution is truncated. Consequently, the model

we are discussing here is a zero-class-truncated Poisson model, or truncated

Poisson in short.

The truncated Poisson model can be fitted to the shrimp-eater subsample

which has non-zero consumption frequencies. Then, the fitted truncated Pois-

son model may be extended to include the zero-class, therefore, allowing one

to estimate the actual size of the zero-class. From this estimation, we may

evaluate the shrimp and non-shrimp eating proportions among the group with

zero consumption frequency. Further, we may estimate the shrimp and non-

shrimp eating proportions among the total general population.
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MODEL

The chief body of theory used here is developed primarily in Blumenthal

et al. (1978). The major theoretical results cogent to this report are ex-

plicitly presented here.

The probability density function of the Poisson random variable Y with

parameter x is given by

Prob.(Y=y) = e-
Y!

y = 0,1,2,..., and X > 0 (1)

The truncated Poisson random variable X with parameter X and the zero-

class censored is given by

Prob.(X=x) = (e
X_1)_1. Xx

x = 1,2,3,..., and X > 0 (2)
X!

Given n independent identically distributed random sample X1IX2IX3--

xn from the truncated Poisson population as described by Statement (2), let no

be the size of zero-class, and N be the total sample size (i.e., N = no + n).

The maximum likelihood estimator (M.L.E.) of X, x, can be computed by

the following equation:

e- nn Xi (3)

Let us define the following: Q = e_X and P = 1 - Q. Then, the M.L.E. no

of the size of zero-class can be calculated by

no =nQ P (4)

The M.L.E. of the total sample size is then simply given by

^ = -no + n. (5)

Using the central limit theorem, the (1-a)100% approximate asymptotic

confidence interval (C.I.) for N is computed as



-a/2*(NQ / (P - ^Q))_'2 < N < N + Z1-./2*('Q P Q (6)

where Zl-,/2 is the 100x(l-a/2) percentile of the standard normal variate.

The (1-a)100% approximate asymptotic C.I. for no i^s^then

1-2
1--2n - Zl-a/2'(^Q / (P - ^Q)) < no < n + 4i-at2' (NIQ / (P XQ) ) . (7)

Using the fact that the statement

no = ne
I - e_X

_X
(8)

is asymptotically true as the sample size increases, let us allow substitu-

tion for no be made in Statement (7) with Statement (8). This can enable

the determination of the approximate asymptotic C.I.'s for X.

IIf besides the xi s. i = 1,2,3,...,n, we observed k zeroes as a result

of taking samples from the general population, we may estimate the propor-

tion of observations which are members of the population of interest, C.

The M.L.E. of C, E, is computed by

C + n (9)

Finally, the (1-(x)100% approximate C.I. for C is given by

6_Z1-,,/2(NQ/(P-XQ) 21 (k+n)- < C < 1N+Z 1-ct/2(NQ/(P-XQ) ) 21 (k+n) (10)

NUMERICAL EXAMPLE

Suppose that k + n 90 independent observations are collected from the

general population. Further suppose that the resulting sample have the fol-

lowing frequency distribution:

N - Zi
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En2aLenc Number Oberved

0 40

1 20

2

3

5

24

4

1

9 1

Using Statement (3), we have

- e- 20 + 24 x 2 + 4 x 3 + 5 + 9
50

Using the Newton-Raphson method, x is computed to be 1.43. The Newton-

Raphson procedure is an iterative technique for solving complicated equations.

Readers may refer to Appendix A of Lee (1980) for detailed explications.

Using Statements (4) and (5), we have

^ = 50 e- 1.43
-,5- + 50 = 65.73 .

I - e - I . 1+

From Statement (6), the 95% C.I. for N is computed to be

53.71 < N < 77.74 .

The 95% C.I. for X can be approximated using Statements (7) and (8), and

the Newton-Raphson method. It is computed to be

1.03 < X < 2.67 .

The proportion of the 90 observations being members of the population

of interest (i e. , members belonging to the complete Poisson sample) is es-

timated to be 65.73 / 90 = 0.73 using Statement (9). The 95% C.I. can be



evaluated by way of Statement (10) to be

0.60 < C < 0.86 .

The Appendix provides a listing of the program written to accomplish the

above computations. The program is implemented on a desktop computer with a

BASIC interpreter.

APPLICATION

The truncated Poisson model was fitted to consumption frequencies of

various species of fish. The data are results of the seafood consumption

survey undertaken by the National Purchase Diary Inc. during 1973-74. The

survey included 25,947 subjects, whose monthly fish consumption rates were

recorded.

Table 1 gives the computed M.L.E. estimates and the 95% confidence in-

tervals for X and C of consumption frequencies of various species of fish.

The computations were performed by the BASIC computer program listed in the

Appendix.

Since X is the theoretical average (average frequency) of the Poisson

distribution, high X value would correspond to high consumption frequency

by the subpopulation of eaters. Since C is defined as the fraction of the

population who are eaters, high C value would correspond to high popularity.

Thus, the combination of X and C can be indicative of the general popula-

tion's consumption frequency rates. Tuna, for example, has the highest es-

timates of both X and C among all the species considered, with x 2.6 and

C = 0.7. Of course, tuna is a very popular seafood. The two estimated

parameters of tuna indicate that 70% of the general U.S. population are tuna-

eaters, and, of these tuna-eaters, the average consumption frequency is 2.6

times per month.
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As a step towards ascertaining the applicability of the model, one may

compare values of the actual data with those fitted by the model. Figures

1 through 7 give comparisons between model and data for seven of the popular

species, respectively, clam, flounder, marine perch, pollock, salmon, shrimp,

and tuna.

The square symbols connected by the dotted lines represent the actual

observations. The data being considered are those with consumption frequen-

cies of one or above. Each square symbol gives the fraction of the obser-

vations which belong to its corresponding frequency. For example, from

Figure 1, of all the observations with monthly clam consumption frequencies

of one or above, approximately 60% have the frequency of one.

The diamond shape symbols connected by the dash lines represent the

estimated probabilities of the fitted truncated Poisson models. The 95% C.I.

of each of these estimates are represented by vertical line segments through

thd point estimates.

Although the actual data and the fitted estimates tend to follow similar

trends, there are some consistent disparities. The fitted models tend to

overestimate the probabilities of consumption frequencies of two and three

times per month.

DISCUSSION

The truncated Poisson model as applied to seafood consumption data has

resulted generally in reasonably good fits except for some small but consis-

tent disparities. Because the differences between the model and the data are

consistent, it is quite possible that there exists a remedy which would im-

prove the model's accuracy when applied to consumption frequencies of all

fish species. As such, other truncated models such as the binomial model
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proposed by Blumenthal and Dahiya (1981) may be systematicallyconsidered.

Although the truncated Poisson model has slightly fallen short of

providing us a perfect description of seafood consumption frequencies, there

is a good theoretical justification for adopting it. The Poisson density

arises when the variable of interest is the number of times an event occurs

during a specified period of time (Ross, 1976). Clearly, seafood consumption

frequency could follow the Poisson distribution on this basis.

There can be many reasons for the slight but consistent discrepancies

between the data and the model. It could be due to the diversity of the popu-

lation being studied. The truncated Poisson model assumes that the general

population is made up of two subpopulations: a 1-C fraction having zero fre-

quency with probability of one, and a C fraction being distributed according

to a Poisson density. However, the actual population is likely made up of

several subpopulations following the Poisson distribution with different X

values, in addition to the subpopulation of non-eaters. In other words, the

actual eater subpopulation may follow a mixture of Poisson distributions.

Additional research according to this hypothesis may be conducted with good

possibility of fruitful results.

Meanwhile, the model may be further applied to subpopulations stratified

according to combinations of demographic variables. As such, comparisons and

trends among subpopulations may be inferred. Other consumption surveys taken

at different periods may also be studied to allow assessment of temporal

trends.

Because it is probabilistic, the truncated Poisson model is valuable

analytically. It can help resolve questions which are probabilistic in na-

ture. For example, the probability that a shrimp-eater will eat shrimp two

or more times within the period of a month can be estimated.
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Further, the potentially applicable scope of the truncated Poisson model

is not restricted to seafood consumption. For example, it can be extended to

depict catch rates of fish per boat-trip when quarries were specific but not

recorded. Blumenthal et al. (1978) gave an example of the model's application

to occurrences of disease in communities when the exposure possibilities to

causes are unknown.

Since the truncated Poisson model is a relatively new development as

compared to other statistical methodologies such as analysis of variance,

applied researchers in general are not yet familiar with the model's usage.

Because of the potential applicable scope and analytical value of the model,

however, its popularity should increase.
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Table 1. The maximum likelihood estimates and the 95% approximate
confidence intervals of the parameters A and C for the
various fish species.

X C

SPECIES M.L.E. 95X C.I. M.L.E. 95X C.I.

Abalone 0.86 0.00,1.70
Anchovy O.S6 0.00,1.OS
Bass 1.20 1.09,1.34
Bluefish 0.70 0.00,0.92
Bluegills 1.47 1.2S,1.80
Bonito 1.91 I.S7,2.SS
Buffoloffsh 2.27 1.71,4.66
Buttarfish 0.69 0.00,1.79
Corp 1.13 0.83,1.91
Catfish,freshwater 1.31 1.19,1.45
Catfish,marine 1.04 0.76,1.73
Clam 1.16 1.09,1.24
Cod 1.39 1.30,1.St
Crob,king 0.68 0.00,1.00
Crob,other 0.89 0.81,0.98
Croppie 1.37 1.15,1.71
Croaker 1.14 0.86,1.80
Dolphin O.S4 0.00,2.00
Drum O.S4 0.00,1.17
Flounder 1.22 1.16,1.29
Grouper 1.05 0.77,1.76
Haddock 1.07 0.99,1.17
Hake 1.26 1.10,1.48
Halibut 0.83 0.73,0.97
Herring 1.32 1.22,1.44
Kingfich 1.17 0.78,3.06
Lobster,norLhern 0.49 O.OO,O.S8
Lobster,spiny O.S6 0.00,0.71
Mackerel,jack 2.09 1.2S, a
MackQrel,othQr 1.48 1.33,1.67
Mullet 1.47 I.IS,2.14
OyalGr 1.07 O.SS,1.18
Perch,freshwater 1.38 1.17,1.69
Perch,marine 1.38 1.31,1.47
Pike 1.61 1.41,1.89
Pollock 1.85 1.73,2.00
Pompano 0.19 0.00, a
Rockfish 0.72 0.00,1.24
Sablefish 1.40 0.70, a
Salmon 1.29 1.22,1.37
Scallop= 0.40 0.00,0.50
Scup O.So 0.00,1.18
Shark 0.61 0.00, a
Shrimp 1.2S 1.20,1.30
Smelt 1.43 1.24,1.72
Snapper 0.66 0.00,0.79
Snook 0.61 0.00, a
Spot 1.49 1.16,2.21
Squid and Octopus 1.03 0.71,2.09
Sunfish 1.79 1.34,3.14
Swordfish 0.05 0.00, 0
Tilefish 0.18 0.00, a
Trout,freshwotQr- 1.11 1.01,1.23
Trout,mor1na 0.87 0.71,1.13
Tuna 2.60 2.55,2.66
Whitefish 1.14 1.00,1.32
Finfish,other 0.88 0.81,0.96
ShQllflsh,oLhQr 0.48 0.00,1.17
Unzpaclfiad 1.37 1.31,1.43

0.0034 0.0024,0.0044
0.0067 0.0044,0.0090
0.0453 0.0428,0.0477
0.0182 0.0153,0.0211
0.0132 0.0121,0.0142
0.0066 0.0061,0.0071
0.0026 0.0023,0.0028
0.0030 0.0018,0.0042
0.0036 0.0029,0.0044
0.0463 0.0441,0.0485
0.0041 0.0032,0.OOSO
0.12S6 0.1213,0.1300
O.O7G9 0.0733,0.0786
0.0102 0.0079,0.0124
0.0762 0.0716,0.0807
0.0118 0.0108,0.0129
0.0044 0.0036,0.0052
0.0031 0.0016,0.0048
O.OOS4 0.0032,0.0075
0.1804 0.1756,0.IBS2
0.0040 0.0032,0.0049
0.0842 0.0803,0.0880
0.0210 0.0194,0.0226
0.0391 0.03S6,0.0426
0.0667 0.0631,0.0663
0.0018 0.0013,0.0024
0.067S O.OS91,0.0768
0.0310 0.0261,0.0359
0.0006 0.0004,0.0007
0.0306 0.0291,0.0322
0.0049 0.0042,0.OOSS
0.0725 0.0690,0.0761
0.0138 0.0126,0.0149
0.1294 0.1260,0.1329
0.0188 0.0178,0.0199
0.0669 0.06S2,0.0686
0.0022 0.0000,0.0062
0.0057 0.0041,0.0073
0.0004 0.0002,0.0005
0.1296 0.1258,0.1334
0.0612 O.OS12,0.0711
O.OOS4 0.0031,0.0077
0.0003 0.0000,0.0007
0.3141 0.3080,0.3203
0.0164 O.OIS3,0.0176
0.0388 0.0342,0.0434
0.0010 0.0002,0.0018
0.004S 0.0039,0.OOSI
0.0027 0.0020,0.0034
0.0028 0.0024,0.0031
0.0334 0.0000,0.0980
0.0026 0.0000,0.0079
O.OSSO O.OS2l,O.OS8O
0.0147 0.0126,0.0167
0.6999 0.6966,0.7031
0.0278 0.02S8,0.0299
0.0988 0.093S,0.1040
O.OOSS 0.0030,0.0079
0.2S48 0.2499,0.2597

s - Infinity
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Figure 1. Comparisons between the observed data (square symbols) and the
fitted truncated Poisson model (diamond shape symbols) with 95%
C.I. on monthly non-zero clam consumption frequencies.
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fitted truncated Poisson model (diamond shape symbols) with 95%
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Figure 4. Comparisons between the observed data (square symbols) and the
fitted truncated Poisson model (diamond shape symbols) with 95%
C.I. on monthly non-zero pollock consumption frequencies.

H
-1
H
in

0
Ix
0-



17

% 1.

.4 W

%

% N

% %

% %

Lj L:

1 2 3 4 5 6 7

CONSUMPTION FREQUENCY OF SALMON

Figure 5. Comparisons between the observed data (square symbols) and the
fitted truncated Poisson model (diamond shape symbols) with 95%
C.I. on monthly non-zero salmon consumption frequencies.
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Figure 6. Comparisons between the observed data (square symbols) and the
fitted truncated Poisson model (diamond shape symbols) with 95%
C.I. on monthly non-zero shrimp consumption frequencies.
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C.I. on monthly non-zero tuna consumption frequencies.
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APPENDIX

The computer listing of a program used for modeling with the truncated

Poisson density is provided in the following pages. The program was written

and implemented on a desktop computer with a BASIC interpreter. The input

includes the number of observations at each frequency. The output includes

the maximum likelihood estimates and the 95% approximate confidence intervals

for the Poisson parameter X, the zero-class sample size no, the total sample

size N, and the Poisson population fraction of observations C.
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100 REM AUTHOR:LYSANDER NG. AFFILIATION:NMFS-CHARLESTON. DATE:5/84
110 REM THIS PROGRAM IS WRITTEN TO MODEL FREQUENCY DATA.
120 REM THE MODEL ASSUMES THAT THE RANDOM VARIABLE FOLLOWS A POISSON
130 REM DISTRIBUTION WITH THE ZERO-CLASS CENSORED, THAT IS, A TRUNCATED
140 REM POISSON.
150 REM INPUT TO THE PROGRAM IS THE NUMBER OF SAMPLES AT EACH FREQUENCY.
160 REM OUTPUT IS THE MAXIMUM LIKELIHOOD ESTIMATES OF LAMBDA., SIZE OF
170 REM ZERO-CLASS, SIZE OF COMPLETE SAMPLE.
180 REM THE 95% ASYMPTOTIC CONFIDENCE LIMITS FOR THESE PARAMETERS ARE
190 REM ALSO PROVIDED.
200 REM IF THE ZERO-CLASS PLUS ADDITIONAL SAMPLE WHICH IS NOT MEMBER OF
210 REM THE POPULATION IS KNOWN, THEN THE MLE OF PROBABILITY OF BEING
220 REM A MEMBER OF THE POPULATION IS PROVIDED AS WELL AS THE 95% C.I.
230 INIT
240 DIM X(200)
250 N=O
260 W=O
270 L=O
280 PRINT OBEGIN TO ENTER THE NUMBER OF SAMPLES AT EACH FREQUENCY.0
290 PRINT ODISCONTINUE ENTRY BY ENTER -I."
300 N=N+l
310 PRINT "THE NUMBER OF SAMPLES WITH FREQUENCY OF "A" IS
320 INPUT X(N)
330 IF X(N)=-l THEN 370
340 L=L+X(N)*N
350 W=W+X(N)
360 GO TO 300
370 N9=N-1
380 N=W
390 PRINT "ENTER THE SAMPLE NUMBER OF SUM OF ZERO-CLASS AND'-
400 PRINT " COMPLEMENTAL POPULATION.'
410 PRINT "IF NOTHING IS KNOWN OF THE ZERO-CLASS, ENTER 0."
420 INPUT N7
430 PRINT "ENTER TITLE OF RUN.0
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440 INPUT A$
450 PRINT "ENTER OUTPUT DEVICE CODE. I FOR PLOTTER. 32 FOR SCREEN.'
460 INPUT 0
470 REM THE FOLLOWING LINES GIVE THE MLE OF LAMBDA BY WAY OF THE
480 REM NEWTON-RAPHSON ITERATIVE METHOD.
490 Ll=L/N
500 L=Ll
510 Q=EXP(-L)
520 L2=Ll*(I-Q)-L
530 IF L2=>-l.0E-5 AND L2<=I.OE-5 THEN 570
540 L=Ll*((L+I)*Q-I)/(LI*0-1)
550 GO TO 510
560 REM THE FOLLOWING LINES GIVE THE MLE OF ZERO-CLASS
570 Q=EXP(-L)
580 P=1-0
590 NO=N*Q/P
600 REM THE FOLLOWING LINE GIVES THE MLE OF TOTAL SAMPLE SIZE
610 NI=NO+N
620 REM UPPER AND LOWER LIMITS OF ASYMPTOTIC 95% CONFIDENCE INTERVAL
630 REM OF TOTAL SAMPLE SIZE.
640 N2=1.96*SQR(NI*Q/(P-L*Q))
650 N3=NI-N2
660 N4=NI+N2
670 REM UPPER AND LOWER 95% C.I. LIMITS OF ZERO-CLASS
680 NS=NO-N2
690 N6=NO+N2
700 REM UPPER AND LOWER 95% C.I. LIMITS OF LAMBDA
710 L3=NS/N
720 L4=N6/N
730 L5=0.5
740 L7=LS/(I-L5)-L3
750 IF L7=>-l.0E-5 AND L7<=l.0E-5 THEN 780
760 LS=L3*(1-2*LS)+L SA2*(I+L3)
770 GO TO 740
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780 L6=0. 5
790 L7=L6/(I-L6)-L4
800 IF L7=>-I.OE-5 AND L7<=I.OE-5 THEN 830
810 L6=L4*(1-2*L6)+L6 A2*(I+L4)
820 GO TO 790
830 LS=-LOG(LS)
840 L6=-LOG(L6)
850 IF N7=0 THEN 930
860 REM MLE OF PROBABILITY OF BEING MEMBER OF POPULATION
870 N7=N7+N
880 Cl=Nl/N7
890 REM 95% C.I. OF THE PROBABILITY
900 C2=N3/N7
910 C3=N4/N7
920 REM OUTPUT
930 PRINT @0:11 11

940 PRINT @0:0
950 PRINT @O:A$
960 PRINT @0:11 a
970 IF 0=1 THEN 990
980 PAGE
990 PRINT @O:OMLE FOR LAMBDA IS ";L
1000 PRINT @0:"95% C.I. FOR LAMBDA IS C "JL6-11., JUS-11 )11

1010 PRINT @0: : 0
1020 PRINT @0: MLE FOR ZERO-CLASS SIZE IS "INO
1030 PRINT @O:p95X C.I. FOR ZERO-CLASS SIZE IS u)-NS)-"., ")N6)"
1040 PRINT @0:11 11

1050 PRINT @O:OMLE FOR TOTAL SAMPLE SIZE IS A
1060 PRINT @0:"95% C.I. FOR TOTAL SAMPLE SIZE IS ( "IN3;', 'IN4;'
1070 PRINT

@0: ' 111080 IF N7=0 THEN 1110
1090 PRINT @O:"MLE FOR PROB. OF MEMBERSHIP IS ";Cl
1100 PRINT @,0:'95% C.I. FOR PROB. OF MEMBERSHIP IS ( ".-C2.-", '.-C3.-"
1110 END
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