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EXHAUSTIVE SEARCH FOR THE BEST CYCLIC (20, 8) CODE

L. R, Espeland and M. Nesenbergs

An exhaustive computer search for the best, simply

implemented, cyclic (20, 8) codes was carried out, and
the procedures and results are reported here. Some forty

almost equally good (20, 8) codes are identified, but, alas,

none of them appear to be better than the familiar (15, 5)

Bose -Chaudhuri-Hocquenghena code.

1. INTRODUCTION

In the fall of 1969 development was initiated for an efficient

medium speed digital transmission scheme using error correcting

coding for low power VHF Ionospheric Scatter commiinications in

polar regions. Presently, the design and implementation of the one-

way error correcting system is nearing completion. The heart of the

scheme is an interleaved nearly orthogonal (15, 5) BCH (for Bose-

Chaudhuri-Hocquenghem) code of minimum distance 7 (Peterson, 1961)

with a generating polynomial

/ X
5 3

g(x) = X +X +X+1 .

The decoder is a classical minimum distance (or codebook, or, under

certain normal assumptions, a maxinnum likelihood, or optimum)

decoder, that outputs the nearest valid codeword.

A number of issues regarding the optimality of the (15, 5) choice

were raised because sonne convolutional, or other non-block code,

might be better. This is a valid point still being investigated. First,

the one -third rate of the code appears a little low. On the other hand,

a rate of one -half is likely to be too high to combat the typically bursty

and unpredictable errors on a VHF scatter channel. Second, the number

of information symbols, k = 5, is not ideally suited for the manipulation

of standard codewords of either 7 or 8 bits. Third, the hardware --size,



speed, and cost --should be as practical as possible. An alphabet size
Q

of 2 = 256 and a block size of n = 20 look reasonable.

To satisfy items one through three, we have sought and found

"the best" (20, 8) block code generated by a simple cyclic generator of

eight registers.

This report relates how a computer search was carried

out and which of the (20, 8) codes are the best. To manipulate and

compare different codes, a number of tools were used. The most impor'

tant ones were connplete codeword distance distributions for all

7
2 = 128 codes and word error probability bounds for these codes.

Finally, the performance of the best cyclic (20, 8) code is compared to

that of the (15, 5) BCH code.

2. CODEWORD DISTANCE DISTRIBUTION

In this section we explain the distance (or weight) distribution

data computed in our search for an attractive (20, 8) code. The com-

puted material pertains to a small and quite specific family of (20, 8)

codes. We consider only those linear cyclic codes that are easily

encoded (e.g. , with the feedback device shown in fig. 1).

It is seen from figure 1 that such a (20, 8) code is fully deter-

mined by the feedback connections (A A . . . , A ) from the encoder
7 D 1

registers; A. = denotes no connection, and A. = 1 denotes a connection
J J

from the j -th register to the exclusive - OR gate. There are a total of

7
2 = 128 distinct feedback combinations, including all seven O's and all

seven I's. Distinct feedback patterns do not however necessarily imply

codes with different distance distributions. For each given code with a

generator [A.], there is a conjugate generator [A . ], j = 1, 2, . . . , 7.

The conjugate encoder has the reverse order of feedback leads. More-

over, some conjugate generators are the same as the original generators,
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Clearly, this happens when A. = A . for all j, i.e. , when
J o-J

4
while (A , A A A ) are arbitrary; thus, there are 2 =16 invariant

conjugates, including all O's and all I's. The remaining [A.] encoders

must have distinct conjugates. There are exactly i{128 - 16) = 56 such

"encoder and conjugate encoder" pairs. Observe that any code can be

viewed as running forward or backward in time. Whatever the code is,

a reversal must leave the weight distribution invariant. Yet the code

generator, as for our (20, 8) code, must then become the above conjugate,

We conclude that there can be no more than 16 + 56 = 72 codes with dis-

tinct distance distributions. Among them is the code generated by repe-

tition of the eight information bits. This is the trivial "no connection"

A = A = . . . = A = case, which we prefer to ignore from now on.

There remain 71 codes that are of interest. The distance distributions

of all these 71 cases have been computed, and are tabulated (together

with other entities) in table 1. See appendix A for background material

and details of the computed data.

Consider a particular (20, 8) code among the eligible 71. The
o

code consists of 2 = 256 distinct codewords w , m = 0, 1, . . . , 255.

Let d denote the Hamming distance between two codewords w andmn ° m
w . We seek the distribution of f d ] (m, n = 0, 1, .... 255) for the
n ( mn-*

code at hand, and for the other seventy (20, 8) codes.

As is well known (Peterson, 1961), the distance distribution of a

linear code is the same as the one for the subset pertaining to a par-

ticular reference word, vis, , f d ] for any m . In particular, one
^ "^o^ o



Table 1. Word Error Probability and Code Distance Structure

CODFtPF-- 3.16-001 1.00-001 3.16-002 1.00-002 1.00-003 1.00-004

647 3.76+001 4.94-001 7.33-003 1.55-004 1.23-007 1.20-010

1 713 MD OF 6 NCW 6 28 39 36 36 36 39 28 6 I 1 )

711 3.76+001 4.94-001 7.43-003 1.62-004 1.33-007 1.30-010

2 447 MD OF 5 NCW 1 6 19 39 52 42 32 24 19 16 5

677 3.75+001 4.86-001 7.42-003 1.68-004 1.43-007 1.40-010

3 773 MD OF 6 NCW 7 32 27 32 58 32 27 32 7(1)

611 3.75+001 4.89-001 7.52-003 1.69-004 1.43-007 1.40-010

4 443 MD OF 5 NCW 4 5 20 35 40 46 40 35 20 5 4(1)

703H* 3.76+001 4.91-001 7.57-003 1.70-004 1.43-007 1.40-010

5 607 MD OF 6 NCW 7 25 34 44 42 38 36 12 7 9 1

747H* 3.76+001 4.92-001 7.60-003 1.70-004 1.43-007 1.40-010
6 717 MD OF 6 NCW 7 24 35 46 40 38 36 10 9 10

737 3.76+001 4.98-001 7.71-003 1.72-004 1.43-007 1.40-010
7 767 MD OF 6 NCW 7 28 35 36 42 36 35 28 7 (1)

543E* 3.76+001 4.99-001 7.72-003 1.72-004 1.43-007 1.40-010

8 615 MO OF 6 NCW 7 20 39 54 36 30 3? 18 1' 6

557 3.77+001 5.05-001 7.81-003 1.73-004 1.43-007 1.40-010

9 755 MD OF 6 NCW 7 19 41 52 38 34 22 20 19 3

641 3.76+001 5.11-001 8.04-003 1.76-004 1.44-007 1.40-010

10 413 MD OF 5 NCW 2 6 18 47 44 20 44 47 18 6 2 11)

545E* 3.76+001 4.96-001 7.77-003 1.78-004 1.53-007 1.50-010

11 515 MD OF 5 NCW 1 7 22 33 44 52 38 20 19 13 4 2

477B 3.76+001 4.90-001 7.66-003 1.77-004 1.53-007 1.50-010

12 771 MD )F 5 NCW 1 7 24 30 42 54 40 24 13 11 8 1

573C 3.76+001 5.06-001 8.07-003 1.83-004 1.53-007 1.50-010

13 675 MD OF 5 NCW 5 5 11 45 62 22 18 50 29 5 3

661B 3.76+001 4.92-001 7.86-003 1.86-004 1.62-007 1.60-010

14 433 MD OF 6 NCW 8 25 28 46 54 32 26 18 10 7 1

511 3.75+001 4.94-001 7.94-003 1.87-004 1.63-007 1.60-010

15 445 MD OF 5 NCW 6 5 14 35 44 46 44 35 14 5 6(1)

475 3.76+001 5.03-001 8.13-003 1.89-004 1.63-007 1.60-010

16 571 MD OF 5 NCW 2 7 22 35 40 42 40 35 22 7 2 (1)

435E* 3.82+001 5.48-001 8.99-003 2.05-004 1.74-007 1.70-010

17 561 MD OF 5 NCW 1 8 13 49 42 40 42 22 21 8 9

625 3.76+001 4.99-001 8.35-003 2.04-004 1.82-007 1.80-010

18 523 MD OF 5 NCW 6 6 1 3 32 44 52 50 28 6 6 9 3

473 3.76+001 5.05-001 8.45-003 2.06-004 1.82-007 1.80-010
19 671 MD OF 6 NCW 9 28 27 36 54 36 27 28 9 (1)

705 3.77+001 5.08-001 8.51-003 2.06-004 1.83-007 1.80-010

20 507 MD OF 6 NCW 9 24 30 44 50 36 24 20 13 4 1

563 3.76+001 5.18-001 8.79-003 2.10-004 1.83-007 1.80-010

21 635 MD OF 5 NCW 2 8 18 39 44 32 44 39 18 8 2 (1)

623 3.72+001 5.21-001 8.81-003 2.10-004 1.83-007 1.80-010

22 623 MD OF 6 NCW 9 20 38 44 38 44 28 20 9

741 3.76+001 5.07-001 8.67-003 2.15-004 1.92-007 1.90-010

23 417 MD OF 5 NCW 3 8 19 30 39 52 50 28 13 4 3 5 1

631 3.76+001 5.08-001 8,67-003 2.15-004 1.92-007 1.90-010
24 463 MD OF 5 NCW 1 9 19 30 50 50 38 24 13 13 7 1



Table 1 Con't.

CODEfPE — 3.16-001 1.00-001 3.16-002 1.00 -002 1.00 -003 1.00-004

25
551E*
455 MD OF

3.76+001
5 NCW 1

5.12-001
9 29 28

8.80-003
32 48 40

2.16
34

-004
23

1.93
7 3

-007
1

1.90-010

26
467
731 MD OF

3.76+001
5 NCW 1

5.19-001
9 21 35

8.95-003
42 38 42

2.18
35

-004
21

1.93-
9 1

-007
( 1 )

1.90-010

27
547
715 MD OF

3.75+001
5 NCW 6

5.01-001
7 14 27

8.69-003
44 58 44

2.21
27

-004
14

2.02-
7 6

-007
( 11

2.00-010

28
527
725 MD )F

3,76+001
5 NCW 2

5.21-001
9 18 35

9.16-003
44 38 44

2.27
35

-004
18

2.03-
9 2

-007
(1)

2.00-010

29
533
665 MD OF

3.77+001
6 NCW 10

5.32-001
20 39 44

9.40-003
28 44 39

2.30
20

-004
10

2.03-
( 1)

-007 2.00-010

30
517
745 MD OF

3.76+001
5 NCW 1

5.23-001
10 21 31

9.33-003
42 44 42

2.35
31

-004

21

2.12-
10 1

-007
( 1 )

2.10-010

31
6430
613 MD OF

3.76+001
5 NCW 2

5.07-001
10 18 22

9.10-003
52 60 36

2.38-
24

-004
10

2.22-
10 10

-007

1

2.20-010

32
701
407 MD OF

3.76+001
5 NCW 4

5.18-001
10 16 23

9.68-003
44 60 44

2.58
23

-004
16

2.42-
10 4

-007
(1)

2.40-010

33
457
751 MD OF

3.77+001
6 NCW 12

5.39-001
20 31 44

1.02-002
40 44 31

2.64
20

-004
12

2.42-
(1 1

-007 2.40-010

34
531
465 MD OF

3.77+001
5 NCW 2

5.34-001
12 18 24

1.03-002
50 50 34

2.79
30

-004
20

2.62-
10 4

-007

1

2.60-010

35
437
761 MD OF

3.77+001
6 NCW 13

5.43-001
20 27 44

1.05-002
46 44 27

2.81-
20

-004
13

2.62-
(1)

-007 2.60-010

36
541
415 MD OF

3.77+001
6 NCW 13

5.43-001
20 27 44

1.05-002
46 44 27

2.81-
20

-004

13

2.62-
(1 )

-007 2.60-010

37
633
663 MD OF

3.76+001
5 NCW 5

5.36-001
11 9 27

1.05-002
50 50 50

2.88-
27

-004
9

2.72-
11 5

-007

(1 )

2.70-010

38
567E
735 MD OF

3.77+001
5 NCW 5

5.51-001
12 23 23

1.12-002
28 46 48

3.09-
40

-004

23

2.92-
6 1

-007 2.90-010

39
727C
727 MD OF

3.80+001
6 NCW 15

5.98-001
36 29 32

1.22-002
34 32 34

3.27-
16

-004

15

3.03-
12

-007 3.00-010

40
453F
651 MD OF

3.83+001
6 NCW 16

6.14-001
20 37 28

1.28-002
36 44 34

3.46-
36

-004
4

3.23--007 3.20-010

41
667
733 MD )F

3.77+001
5 NCW 6

5.64-001
14 20 17

1.23-002
32 52 44

3.53-
38

-004
26

3.41-
6

-007 3.40-010

42
575
575 MD OF

3.72+001
5 NCW 6

5.50-001
15 8 13

1.23-002
50 55 56

3.66-
42

-004
2

3.60-
1

-007 3.60-010
6 1

43
645
513 MD OF

3.77+001
5 NCW 6

5.60-001
15 8 13

1.24-002
60 66 24

3.66-
18

-004

30

3.60-
15

-007 3.60-010

44
471/i

471 MD OF
3.81+001

6 NCW 18

6.20-001
30 25 44

1.36-002
36 24 30

3.81-
20

-004
18

3.62-
10

-007 3.60-010

45
605
503 MD OF

3.75+001
4 NCW 1

5.11-001
6 2 14

1.21-002
38 44 44

7.22-
44

-004
38

6.09-
14 2

006
6

6.01-008
1 (1)

46
637D
763 MD OF

3.77+001
4 NCW 1

5.28-001
4 5 12

1.30-002
35 52 46

7.59-
44

-004

31

6.13-
8 5

-006

8

6.01-008
4

47
461
431 MD OF

3.75+001
4 NCW 1

5.19-001
5 5 17

1.30-002
26 42 62

7.65-
42

-004
26

6.14-
17 5

-006

5

6.01-008
1 (1)

48
627
723 MD OF

3.76+001
4 NCW 1

5.43-001
2 7 18

1.37-002
34 44 42

7.79-
44

-004

34

6.15-
18 7

-006

2

6.02-008
1 (1)



Table 1 Con't.

CODEpE— 3.16-001 1.00-001 3.16-002 1.00 -002 1.00--003 1.00-004

657 3.77+001 5.52-001 1.41-002 7.91 -004 6.16--006 6.02-008
49 753 Mn OF 4 NCW 1 5 6 21 35 34 36 42 43 25 6 1

617 3.76+001 5.48-001 1.41-002 7.97 -004 6.17--006 6.02-008
5n 743 MD OF 4 NCW 1 4 7 12 34 48 42 48 34 12 7 4 1 (1)

537F* 3.77+001 5.70-001 1.60-002 8.76 -004 6.26--006 6.03-008
51 765 MD OF 4 NCW 1 7 10 11 21 48 54 40 33 17 8 5

653 3.76+001 5.48-001 1.82-002 1.34 -003 1.21--005 1.20-007
52 653 MD OF 4 NCW 2 8 3 8 25 48 66 48 25 8 3 8 2 (1)

535 3.76+001 5.55-001 1.82-002 1.34 -003 1.21--005 1.20-007
53 565 MD OF 4 NCW 2 3 5 19 25 42 62 42 25 19 5 3 2 (1)

577 3.76+001 5.57-001 1.84-002 1.35 -003 1.21--005 1.20-007
54 775 Mn OF 4 NCW 2 4 5 16 25 44 62 44 25 16 5 4 2 (1)

673 3.84+001 7.71-001 2.81-002 1.68 -003 1.25--005 1.20-007
55 673 MD OF 4 NCW 2 16 16 12 25 28 36 44 28 20 20 8

621 3.77+001 5.85-001 2.28-002 1.88 -003 1.81--005 1.80-007
56 423 MD OF 4 NCW 3 2 3 18 32 44 50 44 32 18 3 2 3 (1)

721 3.84+001 7.28-001 2.77-002 2.03 -003 1.82--005 1.80-007
57 427 MD JF 4 NCW 3 6 8 26 44 32 28 32 19 26 20 6 5

707 3.87+001 8.74-001 3.96-002 2.87 -003 2.45--005 2.40-007
58 707 MD OF 3 NCW 4 2 4 22 28 13 28 52 28 13 28 22 4 2 4

(1)
757 3.76+001 6.13-001 3.21-002 3.02 -003 3.00--005 3.00-007

59 757 MD OF 4 NCW 5 4 20 10 40 96 40 10 20 4 5 (1)

553 3.78+001 6.57-001 3.31-002 3.03 -003 3.00--005 3.00-007
60 655 MD OF 4 NCW 5 2 16 34 48 44 48 34 16 2 5 (1)

451 3.78+001 6.64-001 3.39-002 3.06--003 3.00- 005 3.00-007
61 451 MD OF 4 NCW 5 4 16 26 48 56 48 26 16 4 5 (1)

601 3.78+001 6.98-001 3.60-002 3.14--003 3.01-005 3.00-007
62 403 MD OF 3 NCW 2 4 6 5 14 23 30 48 56 44 20 3

555 3.81+001 7.53-001 3.87-002 3.25 -003 3.02--005 3.00-007
63 555 MD OF 4 NCW 5 4 12 12 10 48 72 48 10 12 12 4 5 ( 1 )

501 3.79+001 7.71-001 4.41-002 3.84 -003 3.62-005 3.60-007
64 405 MD OF 4 NCW 6 12 8 4 9 36 60 60 40 16 4

441 3.80+001 8.07-001 4.87-002 4.38--003 4.22--005 4.20-007
65 411 MD OF 4 NCW 7 6 8 8 19 44 36 56 53 14 4

521 3.84+001 8.70-001 5.03-002 4.42--003 4.22-005 4.20-007
66 425 MD OF 3 NCW 2 6 12 7 8 21 42 58 42 21 8 7 12 6 2

( 1 )

505 3.87+001 9.54-001 5.71-002 5.04--003 4.82-005 4.80-007
67 505 MD OF 3 NCW 4 6 8 10 16 25 36 44 36 25 16 10 8 6 4

(1)
421 3.89+001 1.04+000 6.23-002 5.24--003 4.84-005 4.80-007

68 421 MD OF 3 NCW 8 4 24 24 6 32 48 24 20 32 24 8 1

525 4.92+001 1.65+000 1.22-001 1.19--002 1.20- 004 1.20-006
69 525 MD OF 4 NCW 20 110 100 n 25

777 4.01+001 1.52+000 1.28-001 1.26--002 1.26- 004 1.26-006
70 777 MD )F 4 NCW 21 14 1 35 70 21 7 42 35 2 7

603 3.81+001 9.31-001 9.28-002 2.21--002 2.02--003 2.00-004
71 603 MD OF 2 NCW 1 6 6 15 2 27 50 40 50 27 2 15 6

itive binary polynomial

6 1 1

*indicates prim
**indicates one codeword at distance 20



is justified to pick m = 0, with w the all zero codeword. We let
o o

d = d and compute the 255 values d for all n = 1, 2, .... 255 non-
n o n n
zero codewords.

For each code, we finally define the "distance distribution" as

a set of twenty numbers M{i)(i = l, ...,20), where M(i) is the number of

codewords with d = i. While we do refer to appendix B for more details,
n

it is clear that S M(i) = 255.
i

For each code, define a nfiininfiunn distance, MD or d , as the
o

smallest i> for which M(i) > holds. Clearly, the nainiraum distance

and the distance distribution must play a role in a search for nmore

effective codes (see second lines, table 1). How this connes to pass is

the subject of the next section.

3. WORD ERROR PROBABILITY

The word error probability, P , is a standard performance cri-

terion of a given code under specified conditions (Peterson, 1961;

Gallager, 1968). As is always the case, a number of simplifying assump-

tions are needed to render the present P computing task tractable.

We assume that:

(a) The digital commiinications medium is a memoryless

binary synnmetric channel (BSC) with bit error (or

transition) probability p .

(b) The binary message source is completely random.,

i.e., any source statistic is memoryless, symmetric,

and mutually independent.

(c) The decoder performs a minimum distance decoding.

A decoding error occurs, whenever the received

word is at least as far from the transmitted codeword

as from any other codeword.



Under these assumptions and subject to complete knowledge

of codeword distance distribution M(i), an exact computation of word

error probability P still represents a cumbersome task. In figure 2

we plot M{i), i = 1, 2, . . . for (15, 5) BCH and selected (20, 8) codes.

In appendix B we present and prove two upper bounds on P : "the

union bound" P and the "minimum distance bound" Q . Three
e e

features of the bounds are quite apparent:

(a) For p near one-half (i. e. , 10 <p ^ i) the minimum

distance bound, Q , is the best of the two. At least
e

Q ^ 1.
e

(b) The present union bound P is a sharpened version

of previously used union bounds.

(c) For p values of greatest practical interest (i.e.,
^

-1 - -
^ p < ^ 10 ) one always has Q > P = P ,

e e e e

The union bound P therefore is pertinent to our code evaluation,
e

Since it is a sharp bound, we use it in place of actual word error proba-

bility P to assess performance of different codes (see similar argu-

ments by Peterson (1961) and Wozencraft and Jacobs (1967)).

We hav.e computed P 's (viz., P and Q ) for all 71 structurally

distinct cyclic (20, 8) codes, as well as for the (15, 5) code that is being imple

mented for the VHF Scatter Channel. The bit error probability values

_i
_i _3- _2 _3 _4

p = 10 , 10 , 10 ^, 10 ,10 , and 10 were used in the connputation

(see app. A and B for details). The bulk results are presented in

table 1 with pertinent mininaum distance and distance distribution

information.

As an example of code perfornnance comparison, consider the

-2 -4
column p = 10 in table 1. Code 1 has p = 1. 55(10 ), code 2 has

P = 1.62(10" ), and finally code 71 has P =2.21(10" ). One observes

that the codes have been numbered in an order of monotonically
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decreasing performance (viz., increasing P ). The main reason

for different P values for (20, 8) codes is, by and large, not the

entire distance distribution M(i), but rather the minimum distance

properties. Note, that code 1 has MD = 6 and M(6) = 6, while code 71

has MD = 2 and M(2) = 1.

Figure 3 shows P versus p characteristics for selected (20, 8)

codes, namely, those numbered 1, 42, 51, 67, and 71. It is clear that

the best of these (20, 8) codes is code 1, although there are some forty

other codes (2 through 42 ) that are almost as good as code 1.

4. COMPARISON OF (15, 5) and (20, 8) CODES

In this section we compare the performance characteristics of

(15, 5) BCH code with the best (20, 8) code, code 1 of table 1. As is

typically the case, the P characteristics depend strongly on one's

point of view towards pertinent system's parameters. We present two

distinct comparison cases, where different parameters are kept invari-

ant, and where different trade -off s result.

"4. 1 Case of Identical Baud (Keying) Speed

To compare different coding schemes, let the modems be the

same and p be independent of the code. First note that the transmis-

sion rates (i.e., the data throughputs) are not the same for the two codes,

R(20, 8) _ 8/20 _ 6

R(15, 5)
" 5/15 " 5

The (20, 8) code has a 20% speed superiority over the (15, 5) code, but

this supremacy does not extend to error correcting ability.

Word error probabilities P have been computed for the (15, 5)

BCH code and lor the (20, 8) no. 1 code. The results are presented in

figure 4 and in table 2. We now have an option: to compare the

11



Figure 3. Word error probability oharaoteristios for selected
(20y 8) codes.
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Table 2. Minimum Distance Values and Selected Cases for Comparison

Minimum Distance Values

MIN.IPE-^ 3.16-01 1.00-01 3,16-02 1.00-02
DIST.*

2 1.00^-00 8.78-01 4.74-01 1.82-01

[20»8] { 3»4 9.95-01 6.08-01 1.31-01 1.69-02

5»6 9.75-01 3»23-Cl 2.41-02 1.00-03

[15»5]
I

7 7.51-01 1.40-01 9.72-02 4.22-02

Selected Cases for Comparison

CODEfPE-^3. 16-01 1.00-01 3.16-02 1.00-02 1.00-03 1.00-04

^e = ^(15, 5)'Pe>

65 5.59+00 1.16-01 1.43-03 1.53-05 1.57-09 1.57-13
1 53 MD OF 7 NCW 15 15 (1)

5 5

g^"" 8'^(20, 8)^^e^

647 6.09-01 2.02-01 4.58-03 9,67-05 7.72-08 7.52-11
2 713 MD OF 6 NCW 6 28 39 36 36 36 39 28 6

^ _ „ ,_l/5 6/5
^-^(20,8)^^ Pe )

9.56-01 2.74-01 1.72-01 9.46-02
647 2.73+01 1.47-01 1.11-03 1.30-05 2.91-09 7.24-13

3 713 MD OF 6 NCW 6 28 39 36 36 36 39 28 6

14



P of (15, 5) with P of (20, 8) or with 5/8 P of the same (20, 8) code,
e —

e

—

e

The issue depends on the choice of data block size to be used as a

"standard word. " Choices of 5, 8, or 5 X 8 = 40 appear plausible.

Regardless of one's preference, the (15, 5) code shows a substantial

performance advantage over the best of the (20, 8) codes, hence over all

cyclic (20, 8) codes.

4. 2 Case of Same Transmission Rate

If transmission rates are set equal, baud speeds must differ by

the earlier factor of 6/5. Let us assume a specific modem, noncoherent

frequency shift keying (NCFSK). The bit error probability is an expo-

nential function of the signal power-to-noise power density ratio times

the baud time (Lawton, 1958; Wozencraft and Jacobs, 1967). It follows

that, if p is the bit error probability for (15, 5) code, (2p ) must
e e

play the corresponding role for bit error rate in a (20, 8) code. Pre-

vious formulas now enable the computation of word error probabilities

P .

e

The computer results for constant transmission rate are pre-

sented in table 2 and figure 5. Again, the best (20, 8) code (no. 1) is

compared with the (15, 5) BCH code, and the results are rauch more

even.

-2
At p = 5(10 ) the two systems are indistinguishable. For
-2 ®

p > 5(10 ) the (15, 5) code shows a slight advantage, while for
®

_2
p < 5(10 ) the (20,8) no. 1 code does better. One expects, that for

very small p the asymptotic exponential nature of all modems (non-

fading channelsl ) would guarantee a considerable superiority for the

(20, 8) no. 1 code.

15
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5. CONCLUSIONS

The goal of this study was to find the best cyclic, simply genera-

ted (20, 8) block codes and to compare their performance with the well

known (15, 5) BCH code. A search and performance scrutiny was carried out,

and the results were disappointing. The very best (20, 8) code (no. 1

in table 1 with shift register generator 647 or 713, as shown in fig. 1)

simply does not outperform the (15, 5) code. In the case (4.1) of identi-

cal baud speeds, the (20, 8) is worse. In the case (4.2) of identical data

rates the two codes appear evenly matched, and the (20, 8) requires 5/6

less bandwidth.
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APPENDIX A
Detailed Results - Computation and Tables

A cyclic code may be generated using a linear feedback shift

register circuit (Peterson, 1961). The feedback is formed by an

"exclusive OR" (sum modulo 2) gate of certain register stage outputs.

These outputs are represented as the nonvanishing terms in a generator

polynomial

8 7 1
g(x) = X + A X + . . . + A X + 1

.

(A-l)

This equation yields a nine -bit representation for the feedback connec-
8

tions in the generator circuit. The first and last (x and 1) coefficients

are always unity. The binary number that represents the coefficients

has nine digits, or three digits of octal notation (Peterson, 1961). If

one reverses the order of the connections, then a new code results;

110 100 111 = 647

HI 001 Oil = 713 .

This symmetry yields the same distance structure for both codes;

therefore, the number of structurally distinct codes (excluding all

7
zeros) is about half of the total, i.e., ^2 ) = 64. A detailed count

reveals 71 distinct cases.

The sinnulation of a shift register was done on a CDC 6400 com-
o

puter. For each code one can easily generate the 2 -1 nonzero combina-

tions of the eight information bits and corresponding codewords and the

subsequent count of ones in the words relative to the base codeword of all

zeros. The count M(i), of codewords at distance i from the all zero

word is given in the second line for each code in table 1. For example

1 713 MD OF 6 NOW 6 28 39 36 36 36 39 28 6 (1),

where (1) stands for one codeword of weight 20, states that code 647 and

19



713 has a miinimum distance word of 6, and that the number of codewords

at distance 6 is 6, at distance 7 is 28, at distance 8 is 39, etc. Some of

the code numbers are followed by a letter that has the identical repre-

sentation, as in Peterson (1961). The asterisk indicates codes that

represent primitive binary polynomials (A-1).

The first line for each code of table 1 gives the codeword proba-

bility of error (see app, B):

f.= f„„„.^,.-,,«-fflf\.(^I
k=

(A-2)

where Q-
i+i

and

j=l2

(A-3)

is computed for each of six discrete values of p listed at the top of
e

each page of table 1.

The union bound nature in (A-2) leads to excessively large P

for p aroiindlO" or larger. Another familiar upper bound, the mini-
e

mum distance bound, is used (see app, B):

-1

Q = 1
e I (^K

n=

(1-Pe)
N -n (A-4)

20



This leads to the same expression Q for certain pairs of mini

-

e

mum distance values d , For example, = [B] = 3 and therefore d = 4
o o

and d = 5 have identical Q values. The least of the two bounds
o e

(P and Q ) is clearly the best and should be used,
e e

In table 2 we find the first entries are the Q (A -4) bounds that
e

are based on minimum distance properties of the code. Note that the

last row applies to the (15, 5) BCH code only. Later entries in the table

show additional word error probability connputations presented in the

style of table 1 except the entry no, 3 whose first line is the Q bound
e

for this selected case, *
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APPENDIX B
Upper Bounds on Word Error Probability

The word error probability P is rather tedious to compute for

most codes; however, P may be easily bounded in a number of dif-
e

ferent ways.

In this appendix we derive two upper bounds on P that are valid
e

for the binary symmetric channel (BSC), and call them P and Q .

e e

These bounds are functions of the binary error probability in the BSC.

One is advised to use the least of the two bounds.

P ^ min
f
P , Q ^ . (B-l)

e V e e /

The newer "union bound" P and the familiar "minimum distance
e

bound" Q are given next:
e

The Union Bound

N m iM.m N-0
, p^ ^

= V M(i)p5'(i-pJ ^P^=
)^

M(i)p-(l-p^) -I ^id ^l-p^'
i=l k =

e

(B-2)

^ki

min(i, [Tj+k)
/ i^

' \

J = liJ

where

p = BSC error probability,

N = code word or block length,

M(i) = number of neighbors a distance i away from a given code word,

[x]= integer part of ^(x + 1).

23



The Minimtirn Distance Bound

- 1d
oi NA n,, .N-n

Qe = ^ -

I VnJPe ^^'^J ' (B-3)

where

n= o

d - mininnum distance between code words,
o

Proof of the Union Bound

Consider a code (i. e. , a finite set of code words)

w , w,, . . . , w, , - all of length N. Assume that the distance structure
o 1 M *

of this block code is known, and let these known distances be

d = d(w , w ), m = 1, . . . , M . (B-4)mom
In this way we also know the neighbor counts that are exactly a distance

i from w . Denote this count of i -neighbors by M(i), 1 ^ i ^ N.

M
M(i)= y 6i^d '

^^-^^

m= 1

where 6. .is the Kronecker delta symibol, and
1. J

N
M(i) = M . (B-6)

I
i =1

As is customary, let w be the N bit error word, and let e be
e

the number of errors (number of ones) in w . Clearly, ^ e ^ N with
e

the smaller e values much more likely in practice.

If a word w is sent, then w + w is received. Decoding errors
o o e

will occur whenever for some m(na = 1, . . . , M) w is as close or closerm
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to w + w than w is. We denote the probability of this o to m error
o e o

event bv P . If a set of e errors contributes toward altering wem o

into w , then each binary error must fall into one of two categories,m
Take an error that occurs in a bit where w and w agree. Clearly,

o m
this error must move w one unit away from w . We denote the num-

o rn

ber of such (moving away) errors by e(*-m). An error in a digit where

w and w differ must bring w one step toward w . We denote the
o m o m

number of errors in this second category (moving together) by e(—^m).

Immediately

e(— m) + e(— m) = (B-7)

a fact that is useful in bounding Pem

P ^ Prd(w + w , w ) ^ d(w + w , w )em
I o em o e o

^ P d + e(*-m) - e(-* m) ^ em

^ P 2e(— m) s dm (B-8)

^ P e(— m) ^

N
y P[e = n]. P[e(— m) s [dH

I

e = n] .

n =
m

Both probabilities in the sum (B-8) are well known for BSC;

thus, the P[ e = n] term is a mere binomial.

N-ior 1 N ]
n ,,

iN-n
^Le = n] = [^) p (1 - p ) (B-9)
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while the P[ . . . |
e = n] term can be interpreted as a random population

problenn (Feller, I960). Let a population of N elements consist of

d red and N - d black elements. A group of n elements is chosen atmm
randonn. We seek the probability that exactly j elements turn out to be

red and n-j black. The well known answer is given by the hypergeometric

distribution:

(:-)(:»
P[e(^m) =

j |e = n] = ^-i-^;^^i^^^^L^
. (B-10)

A substitution of (B-9) and (B-10) into (B-8) yields a bound on

P ,em

It remains to take into account all code words m = 1, . . . , M.

The overall word error probability P must surely be upper bounded

by the "union bound" (Feller, I960, calls it the Boole's Inequality):

M

I
m = 1

(B-12)

N
^ V M(i) P

/ em
i = l

d =i

A substitution of (B-11) into (B-12) plus a few housekeeping tasks,

such as dubbing a combinational coefficient A and naming the

entire right side P finally yields (B-2).

p ^ V p
e /. em

26



Proof of the Minimum Distance Bound

Equation (B-3) is well known and obvious; therefore the following

is given only for sake of completeness.

Define the minimum distance d of a linear block code as
o

d = min dm
1 ^ m ^ M

(B-13)

and a quantity

Q = P[ 2e ^ d ]
e o

(B-14)

Then for any e,

1 = P[ 2e < d ] + P[2e ^ d ]
o o

^ 1 - P + Q
e e

and, necessarily, P ^ Q ; while
e e

(3-15)

Q = 1 - P[e < (d ]

e
I

ol
{B.16)

can be expressed with the aid of (B-9).

Note

The "union bound" (B-2) becomes poor whenever the underlying

events have large intersections in common. In our case, this is guaran-

teed to occur for large p , say for lO"-*- ^ p ^ i. In such cases, P
e e 2 e

may even exceed unity --an altogether deplorable situation. But, then

is the time to use the "nainimuna distance bound"(B-3), which is &.lways

less than one.

In the other extreme, when p is negligibly snnall < p << 1,

P < Q and the "union bound" is the tightest of these two upper bounds.
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