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Beaked whales are among the most diverse yet least 
understood groups of marine mammals. A diverse set of 
mostly anthropogenic threats necessitates improvement 
in our ability to assess population status for this cryptic 
group. The Southwest Fisheries Science Center conduct-
ed six ship line-transect cetacean abundance surveys in 
the California Current between 1991 and 2008.  Sight-
ings from these surveys were used to estimate abun-
dance and model population trends of beaked whales.  
They also compiled records of beaked whale stranding 
events (3 genera, at least 8 species) on adjacent beaches 
from 1900 to 2012, to help assess population status in 
the northern part of the California Current. Researchers 
discovered strong evidence for declining beaked whale 
abundance in the study area.  Cuvier’s beaked whale 
(Ziphius cavirostris) had an average rate of decline of 
2.9% per year and Mesoplodon spp. (pooled across spe-
cies) had an average rate of decline of 7.0% per year. 
There was no evidence of abundance trend for Baird’s 
beaked whale (Berardius bairdii). Stranding data were 
consistent with the survey results. Causes of apparent 
declines are unknown. Direct impacts of fisheries (by-
catch) can be ruled out, but impacts of anthropogenic 
sound (e.g., naval active sonar) and ecosystem change 
are plausible hypotheses that merit investigation.

Beaked Whale

PLoS ONE 

Analysis shows strong evidence of decline abun-
dance trends for beaked whales (Cuvier’s beaked 
whale and Mesoplodon spp.) in the California Cur-
rent from 1993 – 2008

Drivers of these apparent declines are unknown. 
Fisheries impacts can probably be ruled out. Im-
pacts from anthropogenic noise and ecosystem 
change are plausible explanations, but additional 
research is required to evaluate these hypotheses.

Results may have implications for status determi-
nation (e.g., strategic, depleted) of beaked whales 
under the MMPA.

Moore JE, Barlow JP (NOAA/SWFSC)

Declining abundance of beaked whales 
(family Ziphiidae) in the California Current 
large marine ecosystem.
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Once hunted to the brink of extinction, humpback 
whales in the North Atlantic have recently been increas-
ing in numbers. However, uncertain information on 
past abundance makes it difficult to assess the extent of 
the recovery in this species. While estimates of pre-ex-
ploitation abundance based upon catch data suggest 
the population might be approaching pre-whaling num-
bers, genetic diversity estimates based on mitochondrial 
DNA suggest they are still only a fraction of their past 
abundance levels. The difference between the two es-
timates could be accounted for by inaccuracies in the 
catch record, by uncertainties surrounding the genetic 
estimate, or by differences in the estimates timescales. 
The authors report an estimate of long-term population 
size based on nuclear gene diversity, increasing reliabil-
ity of their estimate by increasing sampling across the 
geographic range and by analyzing more locations within 
the genome.  They report an estimate of long-term pop-
ulation size in the North Atlantic humpback of ~112,000 
individuals (2–3x higher than estimates based upon 
catch data). The remaining discrepancy between genetic 
and catch-record values highlights a need for continued 
evaluation of whale population growth and shifts over 
time, and continued caution about changing the conser-
vation status of this population.

North American Humpback Whale

On-line December 2012

Controversy surrounds estimates of 
humpback whale populations “before 
whaling.”  The first genetic estimates had 
a large degree of uncertainty that was 
perhaps not well accounted for in the 
initial papers. 

Considerable uncertainty remains; how-
ever this paper represents a fair and 
honest attempt to capture that uncer-
tainty and include it in their estimate of 
long-term population size. 

Kristen Ruegg, Howard C. Rosenbaum, Eric C. Anderson (NOAA/
SWFSC), Marcia Engel, Anna Rothschild, Scott C. Baker, and Ste-
phen R. Palumbi

Conservation Genetics

Long-term population size of the North 
Atlantic humpback whale within the 
context of worldwide population. 
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Oil from the Deepwater Horizon blowout reached 
the bottom of the Gulf of Mexico. Sediment cores 
were collected during Response cruises in fall 
2010 to measure potential impacts on macrofau-
na and meiofauna – the two main soft-bottom 
benthic invertebrate groups. Changes in abun-
dance and diversity of these fauna extend to 3 
km from the wellhead in all directions covering 
an area about 24 km2 (and up to 17 km towards 
the southwest and 8.5 km towards the northeast, 
covering an area 167 km2). Benthic effects were 
correlated to total petroleum hydrocarbon, and 
distance to the wellhead; but not distance to hy-
drocarbon seeps. Recovery rates in the deep sea 
are likely to be slow, on the order of decades or 
longer.

The bottom biological communities sur-
rounding the Deepwater Horizon oil spill 
were measurably damaged radiating out 
from the wellhead and along a plume 
toward the southeast. 

Damage assessments for benthic im-
pacts due to Deepwater Horizon must 
take into account recovery periods that 
may span decadal time frames.

Damaged communities were not the 
result of natural seeps.

Paul A. Montagna, Jeffrey G. Baguley, Cynthia Cooksey, Ian Hart-
well, Larry J. Hyde, Jeffrey L. Hyland, Richard D. Kalke, Laura M. 
Kracker, Michael Reuscher, and Adelaide C.E. Rhodes

Science

Deep-sea Benthic Footprint of the 
Deepwater Horizon Blowout

http://www.darrp.noaa.gov/northeast/vieques/restore.html
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This work examined atrazine fate and trans-
port from a farm field adjacent to the Jobos Bay 
National Estuarine Research Reserve. Results 
showed that residues may move to estuary in 
shallow groundwater seepage and surface runoff. 
The predominant pathway appeared to be surface 
runoff. Atrazine concentration close to ecologi-
cal effects thresholds was detected in one near- 
shore estuary water sample due to runoff during 
a tropical storm. After subsequent runoff events, 
atrazine and its two dealkylated degrades (DIA 
and DEA) were near or below detection limits in 
estuary samples. Contributing factors were runoff 
timing relative to atrazine application and rapid 
atrazine soil dissipation (DT50=1-3 days). Results 
indicated that adapted degradation conditions 
had developed. To improve weed management, 
atrazine replacement with other herbicide(s) is 
recommended. If active ingredient(s) selected 
have greater soil persistence runoff risks may be 
increased

Under certain conditions, atrazine concen-
tration close to ecological effects thresh-
olds was detected in the waters of Jobos 
Bay National Estuarine Research Reserve.

The atrazine was shown to enter these es-
tuaries through surface runoff from adja-
cent agricultural land.

Management officials should consider the 
type of herbicide and the timing of its ap-
plication to agricultural systems in coastal 
watersheds that drain directly into ecolog-
ically sensitive marine systems.

Thomas L. Potter, David D. Bosch, Angel Dieppa (OCRM-NERR), 
David R. Whitall (NOS-NCCOS), Timothy C. Strickland

Marine Pollution Bulletin

Atrazine fate and transport within the 
coastal zone in southeastern Puerto Rico. 
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Dogfish Shark

 Early 2013 in print

Stock synthesis (SS) is a statistical age-structured pop-
ulation modeling framework that has been applied in a 
wide variety of fish assessments globally. The framework 
is highly scalable from data-weak situations where it op-
erates as an age-structured production model, to com-
plex situations where it can flexibly incorporate multiple 
data sources and account for biological and environmen-
tal processes. SS implements compensatory population 
dynamics through use of a function relating mean re-
cruitment to spawner reproductive output. This function 
enhances the ability of SS to operate in data-weak sit-
uations and enables it to estimate fishery management 
quantities such as fishing rates that would provide for 
maximum sustainable yield and to employ these rates in 
forecasts of potential yield and future stock status. Com-
plex model configurations such as multiple areas and 
multiple growth morphs are possible, tag-recapture data 
can be used to aid estimation of movement rates among 
areas, and most parameters can change over time in 
response to environmental and ecosystem factors. SS 
is coded using Auto-Differentiation Model Builder, so 
inherits its powerful capability to efficiently estimate 
hundreds of parameters using either maximum likeli-
hood or Bayesian inference. Output processing, princi-
pally through a package developed in R, enables rapid 
model diagnosis. Details of the underlying population 
dynamics and the statistical framework used within SS 
are provided. 

Stock Synthesis supports assessment for a growing 
number of fish stocks, with 35 stocks in the US and 27 
in non-US settings through 2011. Highly publicized 
controversies over assessment results highlight the 
importance of putting sufficient effort into building 
the best tools possible to take advantage of the great 
wealth of fishery and survey data being collected today.

Novel applications of Stock Synthesis are described 
for diverse species, such as tuna and dogfish shark, 
and may be used to investigate climate effects on fish 
productivity, and demonstrate its capability to work 
in data-poor situations and to estimate uncertainty in 
assessment results.

Richard D. Methot Jr. (NOAA NMFS), Chantell R. Wetzel (UW)

Fisheries Research*

Stock synthesis: a biological and statistical 
framework for fish stock assessment and 
fishery management

*�The December 2012 issue is devoted to articles about fishery stock assessment modeling using the Stock Synthesis software developed 
by NOAA researcher Dr. Richard Methot. Other articles by NOAA scientists are included in this issue.

PDF: See attached.
ATTACHMENT
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established. Three-axis stabilized platforms, however, 
pose unique challenges even when comparisons are 
being performed between multiple telescopes measur-
ing the same energy ranges aboard the same satellite. 
This algorithm identifies time intervals when different 
telescopes are measuring particles with the same pitch 
angles. These measurements are used to compute scale 
factors which can be multiplied by the pre-launch geo-
metric factor to correct any changes. The approach is 
first tested using measurements from GOES-13 MAGED 
particle detectors over a 5-month time period in 2010. 
We find statistically significant variations which are 
generally on the order of 5% or less. These results do not 
appear to be dependent on Poisson statistics nor upon 
whether a dead time correction was performed. When 
applied to data from a 5-month interval in 2011, one 
telescope shows a 10% shift from the 2010 scale factors. 
This technique has potential for operational use to help 
maintain relative calibration between multiple tele-
scopes aboard a single satellite. It should also be exten-
sible to inter-calibration between multiple satellites.

We describe an algorithm for intracalibration of 
measurements from plasma or energetic parti-
cle detectors on a three-axis stabilized platform. 
Modeling and forecasting of Earth’s radiation belt 
environment requires data from particle instru-
ments, and these data depend on measurements 
which have an inherent calibration uncertainty. 
Pre-launch calibration is typically performed, but 
on-orbit changes in the instrument often necessi-
tate adjustment of calibration parameters to mit-
igate the effect of these changes on the measure-
ments. On-orbit calibration practices for particle 
detectors aboard spin-stabilized spacecraft are well 

William Rowland (NOAA/NESDIS/NGDC/STP), Robert Weigel 
(George Mason University, School of Physics, Astronomy, and 
Computational Sciences)

Space Weather

Intracalibration of particle detectors on 
a three-axis stabilized geostationary 
platform
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Identifying the main drivers of the twentieth-cen-
tury multidecadal variability in the Atlantic 
Ocean is crucial for predicting how the Atlantic 
will evolve in the coming decades and the result-
ing broad impacts on weather and precipitation 
patterns around the globe. Another recently 
published paper suggested that aerosols are a 
prime driver of twentieth-century North Atlantic 
climate variability, based on simulations using 
the HadGEM2-ES (UK Met Office Hadley Centre 
Earth System Model). In this paper, GFDL au-
thors and colleagues show that there are major 
discrepancies between the HadGEM2-ES simula-
tions and observations in the North Atlantic up-
per ocean heat content, in the spatial pattern of 
multidecadal SST changes within and outside the 
North Atlantic, and in the subpolar North Atlantic 
sea surface salinity. These discrepancies may be 
strongly influenced by, and indeed in large part 
caused by, aerosol effects.

The authors show that the aerosol ef-
fects simulated in HadGEM2-ES cannot 
account for the observed anti-correla-
tion between detrended multidecadal 
surface and subsurface temperature 
variations in the tropical North Atlantic. 

These discrepancies cast considerable 
doubt on the claim that aerosol forcing 
drives the bulk of this multidecadal vari-
ability.

Rong Zhang, Thomas L. Delworth, Rowan Sutton, Dan Hodson, 
Keith Dixon, Isaac Held, Yochanan Kushnir, John Marshall, Yi Ming, 
Rym Msadek, Jon Robson, Tony Rosati, MingFang Ting, Gabriel 
Vecchi

Journal Atmospheric Sciences

Have Aerosols Caused the Observed 
Atlantic Multidecadal Variability?
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This document is a social and economic assessment of 
commercial fisheries landings originating from Stellwa-
gen Bank National Marine Sanctuary (SBNMS). The first 
step is the analysis of total socioeconomic value is to 
establish the baseline relationships between the local/
regional economies and the use of SBNMS. The primary 
data source for the analysis is mandatory Fishing Vessel 
Trip Reports (VTR). VTR data are routinely used in anal-
yses of spatial distribution of fishing effort and catches 
in fishery management plans. The data were analyzed 
to document and typify the spatial distribution, land-
ings value (ex-vessel, dockside sales paid to fishermen) 
and volume, and species composition representative of 
commercial fisheries in the sanctuary. Ex-vessel or land-
ings value is the price paid to the fishermen upon direct 
sale of the fish landed. In the final step in the analysis 
we take the estimates of direct impacts and extend the 
analysis to the total economic and social impacts. For 
the economic impacts, we address the market economic 
impacts (e.g. ex vessel revenues from commercial fish-
eries and associated impacts on sales/output, income 
and employment of the local/regional economies of the 
study area. This final analysis utilizes NMFS Northeast 
Fisheries Science Center’s Northeast Region Commercial 
Fishing Input-Output Model (NERIOM) to estimate total 
economic impacts.

This analysis establishes the baseline 
socioeconomic value and importance of 
commercial fishing in Stellwagen Bank 
National Marine Sanctuary that can be 
used in future policy proposals for the 
region.

Rod Ehler

Commercial Fishing in the Stellwagen 
Bank National Marine Sanctuary: Total 
Economic Value Baseline Assessment
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This research is part of the Socioeconomic Research & 
Monitoring Program for NOAA’s Office of National Ma-
rine Sanctuaries. In 2010, a baseline study on the knowl-
edge, attitudes and perceptions of Gray’s Reef National 
Marine Sanctuary’s (GRNMS) management strategies 
and regulations of users and non-users of GRNMS was 
initiated. Mail surveys of both users and non-users were 
designed in 2010 and implemented in 2011 for versions 
1 for users and versions 1 and 2 for non-users. Version 2 
for users was implemented in 2012. The study provides 
baselines on users’ and non-users’ knowledge, attitudes 
and perceptions of GRNMS management strategies and 
regulations, but also provides information on Socioeco-
nomic/demographic profiles, activity participation and 
use in coastal & ocean waters off the Georgia coast both 
inside and outside GRNMS, sources of information on 
GRNMS used and the trust of sources used, familiarity 
with GRNMS rules and regulations, and attitudes about 
selected management strategies for coastal & ocean 
resources both inside and outside GRNMS.

The information provided will assist 
management of GRNMS and education 
and outreach staff in better understand-
ing who their users are, what they care 
about, and how to improve communi-
cation with both users and non-users of 
Gray’s Reef National Marine Sanctuary.

Dr. Vernon R. Leeworthy

Technical Appendix: Knowledge, Attitudes 
and Perceptions of Management Strategies 
and Regulations of the Gray’s Reef National 
Marine Sanctuary by Users and Non-users of 
the Sanctuary, Version 2, Marine Sanctuaries 
Conservation Series ONMS-13-xx.

continued 
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4) Multi-species Fishery Management: Non-users were 
more supportive of this approach to fishery management 
than users. But neither group had a majority supporting 
this approach.

A majority of non-users were neutral (52.86%) and a 
plurality (38.63%) of users either had no support at all or 
were somewhat against this approach. More than 39% 
of non-users either strongly or somewhat supported this 
approach, while 34% of users either strongly or some-
what supported this approach.

5) Ecosystem-based Approach to Management of Coast-
al and Ocean Resources: Again, non-users were more 
supportive of this approach than users. About 60% of 
non-users either strongly or somewhat supported this 
approach, while only about 20% of users either strongly 
or somewhat supported this approach. A majority of us-
ers (54.55%) either had no support at all or were some-
what against this approach.

Support for Selected Management Strategies for Coastal 
& Ocean Resources off the Coast of Georgia Inside versus 
Outside GRNMS:

1) Use of Marine Zoning: Non-users were much more 
supportive of the use of marine zoning in the ocean 
and coastal areas off the coast of Georgia than users. 
Non-users overwhelmingly supported the approach with 
about 76% responding yes, while users were overwhelm-
ingly against with more than 60% responding no.

2) Use of Marine Reserves (no-take areas): Non-users 
were much more supportive of the use of marine re-
serves both outside and inside GRNMS than users. About 
82% of non-users either strongly or somewhat sup-
ported marine reserves outside GRNMS and about 81% 
either strongly or somewhat supported marine reserves 
inside GRNMS. In stark contrast, 78.57% of users either 
had no support at all or were somewhat against marine 
reserves both outside and inside of GRNMS.

3) Research Only Areas: As with all zoning strategies, 
non-users were much more supportive of the use of 
research only areas both outside and inside GRNMS than 
users. More than 80% of non-users either strongly or 
somewhat supported both the use of research only areas 
outside and inside GRNMS. Again in stark contrast, more 
than 78% of users either had no support at all or were 
somewhat against the use of research only areas both 
outside and inside GRNMS.
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To be posted on the web in early to mid-
January 2013

Although Freshwater Diversions typically move some 
amount of sediments, the Panel was asked to evaluate the 
responses of marsh vegetation and soils to the effects of 
low salinity, high nutrient water in isolation. This informa-
tion is not only important to assessing the effectiveness 
of existing and planned Freshwater Diversions that have 
intended consequences of promoting marsh sustenance 
and restoration by nourishing vegetative growth, but to 
informing model predictions of the influence of river water 
flux in all diversion types.

Agreement could not be reached on whether Freshwater 
Diversions would be beneficial or detrimental to marsh res-
toration over long term – too few representative systems 
have been studied, ecologically relevant designs are lack-
ing, and measurements of some key indices of vegetation 
and soil responses are rare. Existing Freshwater Diversions 
have not been effective at restoring marshes – any benefits 
are compromised by hurricanes and other extreme events 
(prolonged flooding);  Major amounts of sediment need to 
be moved for significant marsh restoration to occur. Sci-
ence is needed on assessing how much sediment is effec-
tive for each case.

Good news is that most of the planned diversions in the LA 
Master Plan are Sediment Diversions, but question remains 
– is enough sediment being moved in each case?

Adaptive Management is key and LA CPRA has intentions 
for Adaptive Management as an important framework for 
moving forward with LA Master Plan – LA’s feet need to be 
held to fire to ensure this is a priority.

The draft Position Paper has raised the state 
of Louisiana’s awareness that Freshwater 
Diversions are not an effective approach for 
maintaining or restoring wetlands, and as a 
result, plans for the few Freshwater Diver-
sions included in the Master Plan are being 
reconsidered. This is particularly important at 
this time when significant decisions are about 
to be made regarding diversion projects in 
Louisiana from BP settlement funding.

Statistical analyses to support guidelines for 
marine avian sampling: final report.

Teal, J.M., R. Best, J. Caffrey, C.S. Hopkinson, K.L. McKee, J.T. 
Morris, S. Newman and B. Orem. Edited by A.J. Lewitus, M. 
Croom, T. Davidson, D.M. Kidwell, B.A. Kleiss, J.W. Pahl, and 
C.M. Swarzenski.

Mississippi River Freshwater Diversions in 
Southern Louisiana: Effects on Wetlands 
Vegetation, Soils, and Elevation
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A practical approach is described to estimate the 
amount of sampling effort required to have suf-
ficient statistical power to identify species-spe-
cific “hotspots” and “coldspots” of marine bird 
abundance and occurrence in an offshore envi-
ronment divided into discrete spatial units (e.g., 
lease blocks), where “hotspots” and “coldspots” 
are defined relative to a reference (e.g., regional) 
mean abundance and/or occurrence probability 
for each species of interest. For example, a loca-
tion with average abundance or occurrence that is 
three times larger the mean (3x effect size) could 
be defined as a “hotspot,” and a location that is 
three times smaller than the mean (1/3x effect 
size) as a “coldspot.” The choice of the effect size 
used to define hot and coldspots will generally 
depend on a combination of ecological and regu-
latory considerations. A method is also developed 
for testing the statistical significance of possible 
hotspots and coldspots. Both methods are illus-
trated with historical seabird survey data from 
the USGS Avian Compendium Database.

We have developed and illustrated a simple, gen-
eral method for defining species-specific hotspots 
and coldspots of occurrence and abundance in 
marine birds, and for assessing the significance 
and statistical power to detect these hot and cold-
spots. Given information about a species’ regional 
occurrence and abundance patterns, this method 
can serve as the basis for general guidelines for the 
design of robust surveys to detect departures from 
regional average patterns of abundance and occur-
rence.

Taken together, the results of this study represent a 
methodology for a) using existing marine bird sur-
vey data to assess the state of knowledge about rel-
ative hotspots and coldspots of marine bird abun-
dance and occurrence in offshore areas, b) planning 
future marine bird surveys in offshore areas to 
leverage existing data, and maximize probability of 
detecting any hotspots/coldspots of abundance/oc-
currence probability that may exist in discrete spa-
tial planning blocks, and c) distributing sampling 
effort in time to ensure adequate representation of 
environmental and ecological variance.

Brian P. Kinlan, Elise F. Zipkin, Allan F. O’Connell, and Christo-
pher Caldow

NOAA NOS NCCOS Technical 
Memorandum 158 and DOI OCS Study 
BOEM 2012-101
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a b s t r a c t

Stock synthesis (SS) is a statistical age-structured population modeling framework that has been applied
in a wide variety of fish assessments globally. The framework is highly scalable from data-weak sit-
uations where it operates as an age-structured production model, to complex situations where it can
flexibly incorporate multiple data sources and account for biological and environmental processes. SS
implements compensatory population dynamics through use of a function relating mean recruitment
to spawner reproductive output. This function enhances the ability of SS to operate in data-weak situa-
tions and enables it to estimate fishery management quantities such as fishing rates that would provide
for maximum sustainable yield and to employ these rates in forecasts of potential yield and future
stock status. Complex model configurations such as multiple areas and multiple growth morphs are
possible, tag-recapture data can be used to aid estimation of movement rates among areas, and most
parameters can change over time in response to environmental and ecosystem factors. SS is coded using
Auto-Differentiation Model Builder, so inherits its powerful capability to efficiently estimate hundreds
of parameters using either maximum likelihood or Bayesian inference. Output processing, principally
through a package developed in R, enables rapid model diagnosis. Details of the underlying population
dynamics and the statistical framework used within SS are provided.

Published by Elsevier B.V.

1. Introduction

Fishery stock assessment models are demographic analyses
designed to determine the effects of fishing on fish populations
and to evaluate the potential consequences of alternative harvest
policies. The conceptual framework for these analyses is provided
by simple models of the demographic processes birth, natural and
fishing death, growth, maturation, and movement. However, it is
rare that sufficient information on all these processes is available
over the time period during which a fishery has affected the stock
in question. The history of fish stock assessment models was dom-
inated in early years by two, quite different approaches to this
problem. One branch of investigation used a time series of an
indicator of stock abundance, typically based on the standardized
catch rate in the fishery as a proxy for stock abundance, and the
time series of fish catch to calibrate a simple two-parameter pro-
duction model (e.g. Schaefer, 1954) that could provide inference
about current and target fish stock abundance and the maximum
sustainable yield. The other approach, cohort analysis or virtual
population analysis (VPA), depended on a time series of detailed

∗ Corresponding author. Tel.: +1 206 860 3365; fax: +1 206 860 3394.
E-mail address: richard.methot@noaa.gov (R.D. Methot Jr.).

fishery catch-at-age data to reconstruct the virtual abundance of
each annual cohort that had been fished (Pope, 1972; Laurec and
Shepherd, 1983). This virtual population analysis approach works
best when fishing mortality rates have been higher than natural
mortality rates, but only reconstructs the historical abundance and
fishing mortality rates. Population productivity is then estimated
by fitting a functional relationship between the expected value of
annual recruitment and spawning stock abundance.

Over the past 20 years, there has been development of a third
approach to the fishery analysis problem. Integrated analysis (IA)
(Maunder and Punt, in this volume) takes a more inclusive approach
to modeling the population dynamics and utilizing a wide range of
available data. A definitive beginning for IA is the landmark paper
by Fournier and Archibald (1982). The stock synthesis (SS) imple-
mentation of IA began during the early 1980s (Methot, 1986, 1989)
following Fournier’s pioneering work and adopted many of the
characteristics of his approach.

Why “stock synthesis”? The term synthesis is used in the con-
text of development of a new product that is more than an amalgam
of its disparate parts. In fish stock assessments, different kinds of
data can provide complementary information about the stock of
fish, but one source may not be sufficient in itself to provide a com-
plete picture of the stock’s abundance and the impact of fishing on
the stock. SS inherently blends the population estimation paradigm

0165-7836/$ – see front matter. Published by Elsevier B.V.
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of virtual population analysis with the population productivity
paradigm of biomass dynamics models. The population dynamics
sub-model of SS is quite comparable to the population dynamics
found in most statistical catch-at-age models. However, the obser-
vation sub-model of SS is highly developed to use a wide range of
available types of data to calibrate the model. The observations that
can be included in SS include: fishery CPUE or effort; survey abun-
dance; discards; length-, age- and weight-composition data; and
tag-recapture data. Technical details are provided in Appendix A to
update Methot (2000). The estimation of target fishing mortality
rates and application of these rates in forecasts of potential fishery
yield and stock status have been developed extensively in SS. SS
evolved as much from an ecological perspective as from a statis-
tical perspective. Thus, it includes capability to use time series of
environmental and ecosystem factors to influence the population
dynamics and observation processes over time.

SS has evolved and grown to meet the needs of the fishery stock
assessment community over the past near 30 years. 35 stocks in
the US, 10 tuna/billfish in three oceans, four European stocks, and
12 Australian stocks have been assessed using this approach by
2012 (Appendix B). Major milestones in this history are recapped
in this paper and the current set of SS features is described. Updates
to the technical description will be made available on the web to
document the evolving features of SS.

2. History

The stock synthesis assessment approach has progressed
through three major stages of development since its beginning 30
years ago. These stages include an initial development for northern
anchovy, Engraulis mordax, in which the basic concept was estab-
lished, re-development as a generalized model focused on west
coast groundfish, and a third stage in which the computer code
was translated to ADMB (Fournier et al., 2011) to take advantage of
the power of automatic differentiation.

2.1. Anchovy synthesis

The original model for northern anchovy (Methot, 1986, 1989)
melded several diverse data sources. Age-composition data were
available from the fishery, but fishing mortality rates were low and
aging imprecision was a factor, so virtual population analysis could
not be used. An egg and larval survey provided a time series of
relative spawning biomass, but surveys were triennial during much
of the time period, thus hampering a production model approach.
A new Egg Production Method had been developed (Lo et al., 1992)
to provide a fully calibrated, direct measure of spawning biomass,
but only a few estimates by this method had been conducted by the
early 1980s. The anchovy synthesis model integrated these diverse
data types into an age-structured history of the anchovy stock off
California.

The anchovy SS model incorporated several factors related to the
biology of this fish. A latitudinal gradient in age composition and
fluctuating ocean conditions that shifted this gradient north-south
exposed a varying component of the stock to the relatively station-
ary fishery. Time-varying fishery selectivity was incorporated in
the model to deal with this phenomenon. Second, biological stud-
ies demonstrated a temperature dependence on anchovy maturity
(Parrish et al., 1986). Thus, inclusion of environmental effects
(ocean temperature) on biological factors (age-specific maturity) in
the model helped to explain the dip and then rapid resurgence of
the larval index during the early 1970s. Third, anchovy are a forage
fish and a known predator, Pacific mackerel Scomber japonicus, was
changing rapidly in abundance. Thus, time-varying natural mortal-
ity as a function of an external ecosystem driver, the abundance

of Pacific mackerel, was a feature of the model. These concepts
of time-varying factors linked to environmental and/or ecosystem
factors have remained in SS ever since. Unfortunately, situations in
which there has been sufficient information to invoke these fea-
tures have been rare.

A bit of history is worth noting at this point. The anchovy SS was
built at the dawn of the personal computer era. It was written in
FORTRAN for hand-built computers termed the “LaJolla Standard”
running the CP/M operating system with 8-in. floppy disks as the
storage medium. Overnight model runs were normal and the code
was laced with line printer statements so that something could
be retrieved after various failures. In hindsight, as computers have
become orders of magnitude faster, the complexity of our mod-
eling approaches have kept pace so that weekend long Markov
Chain Monte Carlo (MCMC) runs now represent the frontier of our
patience for waiting for model results.

2.2. Moving to groundfish

The second stage of SS evolution began in 1988 as NOAA’s
Alaska Fisheries Science Center sought improvement to the mod-
eling framework for west coast groundfish, particularly sablefish
(Anoplopoma fimbria) and Pacific hake (whiting) (Merluccius pro-
ductus).

The principle challenge for sablefish was to find a way to take
advantage of the new, but growing, time series of fishery and sur-
vey size-composition data. Aging data were scarce and fraught
with aging imprecision and bias. The modeling concept devel-
oped to deal with this situation treated all composition data as
a proxy for the actual, true age-composition of the fishery catch
or a survey. A matrix in the model transformed the estimate of
true age-composition into an expected value for the composition
as measured. The transformation matrix could be a simple 1:1 rela-
tionship if the fish aging was asserted to be perfect, could be an
age matrix that included aging imprecision and/or bias, or could
be a matrix that transformed the age-composition into a length-
composition estimate using the growth curve (Methot, 1990). Also,
sablefish were caught with fishing gear that was size-selective for
larger sablefish, but older sablefish were known to diffuse into
deeper water out of the range of most fisheries, so the sablefish
SS model incorporated both size- and age-selectivity that could be
applied simultaneously. Finally, use of the size-composition data
required a growth curve, but external estimates of the growth
curve would have been biased by the inability to account for size-
selectivity and aging imprecision. Thus, the sablefish SS model
included the ability to estimate growth parameters while account-
ing for the influence of size-selectivity and aging imprecision. Data
that enabled estimation of growth parameters included modes in
the size-composition data and observed mean size-at-age data.

The situation for Pacific hake was quite different than for sable-
fish. Here there were complete age-composition data from the
fisheries and surveys extending nearly 20 years and a history of
modeling using VPA. The interest was in exploration of alternative
modeling approaches, especially approaches that could address the
strong inter-annual shifts in stock abundance between the US and
Canada in response to el nino – la nina ocean conditions. An SS
model was constructed using only age-selectivity in the fishery pro-
cess. Its innovation was in allowing for multiple stock areas with
annually varying proportion of the stock in each area (Methot and
Dorn, 1995).

Since the inception of the sablefish and hake SS models in 1988
and 1989, their use expanded beyond sablefish and hake to most
Pacific coast groundfish by the late 1990s. As this usage grew, ADMB
was being used by numerous researchers to create other statisti-
cal catch-at-age models. The SS models were coded in FORTRAN
and used numerical derivatives to obtain the gradient information
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needed to iteratively search for the best set of model parameters.
The analytically calculated derivatives available through ADMB
offered faster and better model performance.

2.3. Reborn in ADMB

The SS transition to ADMB provided an opportunity to merge
the features of the FORTRAN-coded models for sablefish and hake
into a fully generalized framework. SS then inherited the powerful
features of ADMB for rapid model convergence and variance esti-
mation through inverse Hessian or Bayesian MCMC approaches.
This model, termed SS2, began to be used for west coast ground-
fish assessments in 2005. Evolution of SS2 was rapid and a major
re-work of some internal structures in 2009 led to the awkward
renaming as SS3.

A note on SS nomenclature and distribution is worth includ-
ing here. Today, the model executable code is labeled SS3, but the
model framework itself is generically referred to as SS. Upgrade
versions are tracked with a specific nomenclature. In 2012, SS is
at V3.24f where the 3.2 refers to a major model update involving
mandatory changes to input files, the “.x4” refers to the addition of
some specific feature usable in particular circumstances, and the “f”
keeps track of minor tweaks and fixes. The history of model updates
is distributed with SS as an annotated, filterable list, and the spe-
cific version information and compile date are output at the top of
all SS output files.

3. Overview of features

The detailed features and formulas found in SS are described in
Appendix A. The sections below provide a brief overview of major
features of SS: stock-structure, spawner–recruitment, life history
and biology, selectivity, fishing mortality, observation sub-model,
fishery management targets and forecasting, variance estimation,
and output processing.

3.1. Stock structure

The total population can be divided among one to many bio-
logical entities, and the numbers-at-age of each entity are tracked
over time. Some of these can have unique biology (gender, growth
and natural mortality) and some can have a unique season of birth
within a year. The total of all entities born within a year is referred
to as a year-class or cohort. Each of the biologically or birth season-
delineated entities will be referred to as a morph. Each morph can
be divided into males and females with gender-specific growth and
natural mortality rates. In addition, each morph can be sub-divided
into slow-, medium- and fast-growing entities termed platoons
(Goodyear, 1997). The phenomenon of platoons within a morph
is not observable. However, the logic of their existence is as bio-
logically simple as the concept that a fish that is near the upper
end of the size-at-age distribution one year will be within that
upper distribution during the following year. Expected values for
all observations are based on summation over all platoons and
morphs, except male and female data can be kept disaggregated.

To the extent that size-selective fisheries are implemented,
each slow-, medium- and fast-growing platoon will have unique
age-specific mortality and survivorship (Taylor and Methot, in
this volume). The age-specific mortality on a platoon is calculated
according to the average selectivity-at-age, which is the dot prod-
uct of selectivity-at-size and the normal distribution of size-at-age
for that platoon. Thus, there can be differential survival between
morphs with different growth rates and between platoons within
a morph.

In a multiple area model configuration, each entity can be dis-
tributed across multiple areas at birth and move between areas

according to the unique age-specific movement rates of their
morph. The model parameters that control the proportion of the
total number of births to each morph and subsequent movement
rates are potentially estimable with sufficient data and, like all
parameters in SS, can be defined to change over time. If the morph
feature is being used with platoons, then the platoons move iden-
tically to their parent morph. Size- and age-specific mortality is
applied within each area to each entity occurring in that area.

In practice, most SS configurations have just two morphs, one for
females and one for males, and only one platoon per morph. More
complex situations can be created to more closely match biologi-
cal reality. For example, a model with two morphs, three areas and
four seasons could have one morph recruit in area 1 and the other
morph recruit in area 2, then both morphs migrate seasonally into
area 3 and then back to their natal area in a later season. Models
with five areas have been created for bigeye tuna Thunnus obesus
(Aires-da-Silva and Maunder, 2012). Another morph-related con-
cept is hermaphroditism. Just as fish of a given platoon can move
between areas at the end of each time step, the hermaphroditic
function allows an estimable fraction of the females to transfer into
the corresponding male platoon at the end of the time step.

3.2. Spawner–recruitment

The spawner–recruitment function defines the linkage between
the reproductive potential (total fecundity) of females and the
expected total number of age zero animals. In a single gender
model, all fish are implicitly female; there is no division into males
and females and only total abundance is modeled and reported.
Male mature biomass is included in the calculation of reproduc-
tive potential in a two-gender model only when hermaphrodicity is
accounted for. The Beverton–Holt spawner–recruitment function is
most commonly used and other available functions include Ricker,
hockey stick and a three-parameter survivorship-based function
(Taylor et al., in this volume). In a multi-area model, the stock’s
reproductive potential is summed over all areas to create a global
spawner–recruitment relationship. All female morphs and pla-
toons contribute to the global reproductive potential which will
create the next global recruitment of a cohort, which is then dis-
tributed among the platoons and morphs. There is no heritability to
carry the surviving proportions among platoons and morphs into
the next generation.

The output of the spawner–recruitment function is the expected
mean number of age-0 animals, not the median number. When
lognormal recruitment deviations are applied, they are added to
a downward bias adjustment from the logarithm of this expected
mean recruitment to account for the expected difference due to
the variability among the estimated recruitments (Appendix A,
Eq. (A.1.7)) (Methot and Taylor, 2011). The magnitude of this bias
adjustment offset can change during the time series being analyzed.
In maximum likelihood estimation, it should approach zero in data-
poor historical eras with insufficient data to estimate the time
sequence of recruitment deviations. The offset should approach the
maximum only where there are sufficient data to estimate the time
sequence of recruitment deviations with high precision. Because
the population’s biomass is dependent on the mean recruitment,
not the median recruitment, this offset approach assures that the
expected biomass will not change as a consequence of having
more data from which to estimate the true recruitment deviations
(Methot and Taylor, 2011; Stewart et al., in this volume). In MCMC
estimation, the bias adjustment is set to 1.0 for all years because the
estimation procedure will integrate over the full lognormal range
of potential recruitments.

The duration of the life stage between spawning and recruit-
ment to the population is not explicitly modeled, so the age 0
animals instantly exist as early as the start of the time step in which
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spawning occurs. The cohort begins to experience age-specific nat-
ural and fishing mortality and to grow according to the defined
growth function at this time. In a multi-season model, the total
number of age 0 animals can be distributed among seasons start-
ing with the season in which spawning occurs and ending with
the last season before the next spawning event. Thus, some of the
age 0 animals have their age 0 event delayed until the start of a
subsequent season. These later-born morphs are identified by their
birth season. Even if these later-born morphs have the same growth
parameters as early-born morphs, their delayed age zero event will
cause them to be smaller at calendar age than the earlier-born
morphs. However, for the purposes of age determination, all fish
born in a calendar year are considered to have the same integer
age and to graduate to the next integer age on January 1 of the fol-
lowing year. Care must be taken when assembling data for input
to SS to assure that the manner in which integer ages are assigned
by otolith readers matches this convention in the modeling of age
progression.

3.3. Life history/biology

Fish body weight is needed to convert the modeled numbers-at-
age into quantities such as total catch biomass or a biomass-based
abundance index. SS provides an approach for inputting empirical
body weight-at-age observations, but typical applications gener-
ate estimated body weight-at-age from biological processes in the
model. The empirical body weight-at-age approach is common in
statistical catch-at-age models and appropriate when there is high
precision in these data. However, if these data are not of high pre-
cision, the variance in these empirical body weights-at-age should
contribute to variance in model estimates. SS provides the capa-
bility to calculate body weight-at-age from a length-at-age growth
function for each morph, which itself is based on estimable param-
eters, a body weight-at-length function, and size-selectivity of the
fishery to which that body weight-at-age pertains. This capability
was critical for the first SS models for Pacific coast sablefish where
age data were uncertain. In this approach, SS calculates a different
body weight-at-age for the retained fish versus the discarded fish
of each fishery for which a size-based retention function is applied.
SS calculates mean body weight at true age for use in population
dynamics. Mean body weight (or length)-at-age data can be input
to SS for model calibration and will inform the estimation of growth
parameters while taking into account effect of size selectivity and
aging imprecision. Differences in body weight data between fleets
will influence estimation of size selectivity for these fleets. Differ-
ences in body weight data between retained and discarded fish will
influence estimation of the size-retention function. The full integra-
tion of growth estimation, size selectivity and retention estimation,
and aging imprecision is a major strength of SS.

Body growth in length is calculated according to a growth func-
tion, typically the von Bertalanffy. When the model configuration
incorporates time-varying growth, the current year’s parameters
are applied to the current size-at-age of each biological entity to
calculate its growth increment toward the current asymptotic size
for that morph. Thus, growth is according to morph and fish can-
not shrink even if the asymptotic size becomes reduced below their
current size, although in the hermaphroditic model configuration
the gender change causes an immediate switch from female size-
at-age to male size-at-age so care must be taken in the setup of the
growth curves. Another model feature allows for cohort-specific
growth rates (but not cohort-specific asymptotic size) which could
be relevant if there is density-dependent growth according to rela-
tive cohort abundance. Fish of each morph can be distributed across
areas in a multi-area model. The growth characteristics are asso-
ciated with the morph, not with the area in which they reside.
However, it is reasonable to create a configuration where each

area has its own predominant morph that then has some degree
of movement to other areas. Expected values for data, such as
the overall size composition of a fleet’s catch in an area, take into
account the combined catch across all morphs.

SS follows Schnute (1981) re-parameterization of the von Berta-
lanffy growth curve to redefine the growth parameters in terms of
size at two reference ages. Below the lower reference age, where
there presumably is little information about the actual size-at-age
trajectory, SS simply applies a linear trend to grow the fish from a
small size at the age zero event until they reach the lower reference
age of the growth curve. More flexibility in the trajectory of growth
can be achieved by using the three parameter Richards growth
function, or even more by invoking age-specific growth rates for
each of several younger ages.

Age-specific natural mortality, maturity, and fecundity can
follow various functional forms or be input empirically (Appendix
A). All of these are defined as model parameters, but only natural
mortality can be treated as estimable because there is currently no
capability to include maturity-at-size or fecundity data in a manner
that would allow internal estimation of functions related to these
processes.

3.4. Selectivity

SS provides a range of options for calculating the age-, size- and
gender-selectivity of each fishing fleet and survey. SS distinguishes
fishing fleets from surveys by specifying that catch is input for fish-
ing fleets, thus the fleet’s catch affects the population, whereas a
survey is for observation only and does not affect the population
dynamics. Most options define a fishery’s or survey’s selectivity by a
smooth parametric function, rather than an age-by-age approach.
In common with growth, this approach was implemented in the
early model for sablefish where size-composition data were sparse
and age-composition data nearly non-existent. The sablefish situa-
tion also required the capability for a fleet’s selectivity to have age-,
size-, and gender-dependency. Size selectivity against small sable-
fish was logical as they recruited to the longline and pot gear, and
declining age selectivity was logical as older sablefish diffused into
deep water away from the fishing grounds.

SS includes over a dozen size- and age-based selectivity func-
tions as defined in Appendix A, Section 5.6. These range from
simple logistic, to double logistic and double normal, and typi-
cally have 2–8 free parameters. The simpler the parametric form
for the selectivity, the more the assessment result is constrained
by that parametric structure. Similarly, when assessment configu-
rations assert that fishery selectivity is unchanging over time, this
is a strong assertion that the fishing fleet is a good sample of the
population’s size/age composition as filtered by that time-invariant
selectivity. Sampson and Scott (2012) provide a sound rationale for
doubting time-invariant fishery selectivity. Taylor and Methot (in
this volume) show how time-varying selectivity can be invoked in
SS to more fully explore a plausible range of model outcomes. For
example, selectivity could be near asymptotic during early years
when older/larger fish were more abundant, then transition to a
more dome-shaped pattern as fishing reduces the abundance of
older/larger fish and thus reduces the fraction of the fishing effort
deployed in habitats where older/larger fish typically are found.
A variety of options are available to allow selectivity (and other)
model parameters to change over time. This can be according to
user-specified blocks of years, random deviations in selectivity over
a range of years, random walk changes over a range of years, a time
trend based on a cumulative normal distribution, and as a function
of an auxiliary time series, termed an “environmental index”. These
options are portrayed visually in Fig. 1.

Non-parametric age-selectivity can be used when the maxi-
mum age is relatively low and there are reasonably good age data.
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Fig. 1. Stock synthesis includes five options for allowing parameters to have time-varying values. Shown here are options for annual deviations (a), time blocks (b), annual
random walk deviations (c), and Gaussian trend (d). Not shown is the fifth option which links the values for the parameters of the selection function to an environmental
time series.

However, the flexibility of size selectivity is not so easily mapped by
a natural granularity (large number of length classes implies many
additional parameters) to the data. Even more serious an issue
would be the very large number of parameters needed for time-
varying non-parametric selectivity. The approach of Butterworth
et al. (2003) to apply a selectivity surface smoothed in the age and
time dimension works well when there are few fleets and reason-
ably complete data. However, parametric forms are necessary when
there are many fleets and sparse data.

A cubic spine selectivity function (Fournier et al., 1998) achieves
a reasonable compromise between non-parametric and paramet-
ric selectivity. SS can create starting values for the parameters of
spline selectivity functions de novo from the characteristics of the
data by aggregating each fleet’s or survey’s size- (or age-) compo-
sition data over all years, distributing the user-specified number of
cubic spline knots across that cumulative probability distribution
and creating parameter starting values. This capability emphasizes
that SS is both a population dynamics model and a software system
to implement that model.

3.5. Fishing mortality

SS was designed around an approach that relies on the absolute
level of catch being known well enough to allow the model to calcu-
late the level of fishing intensity needed to obtain that level of catch
conditioned on the model’s current estimate of age-specific popu-
lation abundance and age-specific selectivity. Because the model
first calculates catch-at-age in numbers for each fleet, it is straight-
forward to calculate the total catch for each fleet in terms of both
numbers and weight and to provide the capability to use either as
the metric in which a fleet’s catch is entered into SS. Importantly,
this also allows the forecast catch targets for each fleet to be in

either numbers or weight. This is valuable for recreational fishery
data which typically is available in numbers caught.

SS does not rely upon fishing mortality rate being estimated
as catchability multiplied by fishing effort. Instead, seasonal,
fleet-specific fishing intensity is directly estimated to match the
observed catch. However, fishing effort and catchability can be
brought into the calculations when data on fishery effort or catch
per unit effort, CPUE, are provided for parameter estimation pur-
poses. Here, the expected value for CPUE is estimated catchability
multiplied by available biomass, and the expected value for fishing
effort is 1/catchability multiplied by fishing intensity.

SS provides three approaches for the calculation of apical F for
each fleet in each time step and area. These are Pope’s approxima-
tion, which calculates the harvest rate needed to remove the catch
at the midpoint of a season, continuous instantaneous F, with each F
as a model parameter, and a hybrid approach (Appendix A, Section
1.10) which calculates continuous instantaneous F values through
a differentiable iterative approach. The Pope and hybrid approach
treat the harvest rates or F values as coefficients to be tuned within
each model iteration to maintain the match between observed and
expected catch, whereas the parameter-based F approach requires
ADMB to estimate these F values as model parameters (after getting
starting values using the hybrid approach in early model phases
then converting over to the parameter approach in final stages).
The use of the parameter approach to define fishing intensity means
that the model will be able to account for uncertainty in the catch
data and even allow for missing catch data if there is alternative
information such as an effort time series.

A brief comparison of the performance of these three fishing
mortality approaches in a simple catch-at-age model with 30 years
of catch is informative (Table 1). The overall negative log likeli-
hood and ending biomass are very similar between methods and
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Table 1
Comparison among three approaches for calculating the level of fishing intensity in
each time step of the model.

Pope’s Parameters Hybrid

Number of iterations 458 846 469
−log likelihood 1327.64 1327.68 1327.68
End year biomass 6017.2 5797.9 5798.1
Standard error of end year biomass 1331.5 1294.0 1293.9

the small difference for Pope’s method is due to selectivity acting
slightly different when used as a mid-year harvest versus contin-
uous harvest (Branch, 2009). The similarity of the standard error
for estimated spawning biomass (as determined by the inverse
Hessian) is very reassuring, especially given that the parameter
approach uses 30 parameters mapped to 30 F values, whereas
Pope’s and the hybrid method do this using internal coefficients.
Although the parameter approach was slower (more iterations)
in this example, model convergence can be slow for Pope’s and
the hybrid method in high F situations and the ‘F as param-
eter approach’ is able to creep up on the final solution more
quickly.

The term “fishing intensity” is used because the annual instan-
taneous rate of fishing mortality, F, across all fleets is not easily
describable by a simple scalar, as it would be in a simple model
with only a single fishery and with knife-edged selectivity to this
fishery. In SS, there can be many fleets operating simultaneously,
some in different geographic zones, and each with selectivity that
could vary with age, size and gender. Thus, F has multiple dimen-
sions. Three options are provided in SS for portraying the overall
intensity of fishing: exploitation fraction, equilibrium reproductive
output per recruit, and annual numbers weighted F over a range of
ages. Exploitation fraction is simply the total annual catch divided
by the total abundance above a specified age, with biomass- and
numbers-based options provided. The equilibrium-based quantity
is the spawner potential ratio (SPR) (Goodyear, 1993) calculated as
the equilibrium level of spawning biomass-per-recruit (SPR) that
would occur with the current year’s level of fishing intensity rela-
tive to the unfished level of spawning biomass-per-recruit. This is
reported as 1-SPR to create a metric that increases as fishing inten-
sity increases. All seasonal, geographic, and selectivity issues are
integrated into the calculation by focusing on the effect of fishing
intensity on spawning biomass. The total F approaches the prob-
lem differently. Here the total annual fishing mortality for each
age group (summed over all regions and calculated on a January
to January basis) is calculated by:

Fa,t = ln(Na+1,t+1) − ln(Na,t) − Ma

where Na,t is population numbers-at-age, and Ma is natural mortal-
ity rate at age.

SS provides the capability to calculate this F statistic for a single
age, or over a range of ages. The 1-SPR and total F statistics provide
complementary information on the intensity of fishing; one on the
cumulative impact of fishing on the entire stock and the other on
the fraction of fish removed for key ages.

3.6. Expected values for data

Integrated analysis models seek to implement the goodness-of-
fit calculations using data that are as lightly processed as possible
(Maunder and Punt, in this volume). Some other models, particu-
larly VPA, require a complete catch-at-age and body weight-at-age
time series. In some cases these data are created by slicing size-
composition data into bins representing the size range believed
to represent an age of fish (Kell and Ortiz, 2011). In other cases,
missing catch-at-age data are imputed through some interpolation

protocol. Unfortunately, the variance associated with these proce-
dures is not calculated and propagated into the assessment results.
The impetus to create catch-at-age data sets has been so pervasive
for some stocks in European waters that the details of the histor-
ical gap-filling have been lost and it may not be possible to apply
a model such as SS to less processed data for these stocks (ICES,
2012).

There is no expectation in SS that data are in the form of catches-
at-age, nor that data need to be available for all years of the analysis.
Instead, SS takes the data in a lightly processed form and calcu-
lates an expected value while taking the various processes that
are believed to have influenced the creation of each datum into
account. For example, when mean body length-at-age data are
input to SS, calculation of the expected value for these data takes
into account: the estimated population size-at-age, size-selectivity
of the fleet from which the sample was taken, aging imprecision
which tends to blur information between adjacent ages of fish, and
the estimated recruitment time series.

A powerful feature of SS is its ability to calculate expected values
for a wide diversity of data types. Similar capability is found in the
CASAL assessment program (Bull et al., 2005). The basic approach
is as follows. In each time step, SS tracks the numbers-at-age for
each entity by area. SS also tracks the mean and distribution of
size-at-age for each entity through time. The vector of numbers-
at-age then scales the distribution of size-at-age to create a matrix
of numbers-at-size and -at-age for each morph in each area in each
time step. Age/size/gender selectivity is then used to create a matrix
of selected numbers at size/age for each fishery or survey fleet with
data from that area/time. This matrix forms the basis for calcula-
tion of expected values for any data type. For each morph, the male
and female matrices enable calculation of expected values that are
either for combined genders, single genders, or joint genders with
preservation of the sex ratio information. For a survey index, the
entire selected matrix is simply summed to create the expected
value to which catchability is then applied. The size-retention vec-
tor is applied to the matrix before calculating the expected values
for either the retained or discarded components of the catch if
the data are specific to retained versus discarded catch. The aging
error matrix is applied before accumulating the expected values
into the bins of observed ages if the data are ages. Thus, quantities
such as the mean size-at-age of discarded fish can be calculated
after accounting for aging imprecision. The various forms in which
length, age, weight and abundance data can be represented in SS is
outlined in Table 2. A more detailed technical description is found
in Appendix A.

An example from the assessment for pink shrimp (Fartantepe-
naeus duorarum) in the Gulf of Mexico1 illustrates the approach
of fitting data in their native units. Previously, Nichols (1986) had
assessed shrimp using a monthly cohort analysis. However, catch-
at-month age data are not collected, in fact shrimp cannot be aged
using conventional methods. The only composition data were the
seven weight categories in which shrimp are sold to the processors.
Nichols used a simulation model of shrimp growth and mortality to
generate expected proportions at size and then used these propor-
tions to slice the monthly weight composition data into monthly
catch numbers-at-age, which were then analyzed using an un-
tuned VPA. SS uses essentially the same process, but in reverse.
Within SS, the simulation of recruitment, growth, selectivity and
mortality using the parameter estimates leads to an estimate of
catch numbers at monthly age. The application of the distribution
of size-at-age from the growth curve results in catch numbers-at-
length for each month. The generalized size frequency feature of

1 Hart. Richard. 2012. Unpublished report. Stock Assessment of Pink Shrimp (Far-
fantepenaeus duorarum) in the Gulf of Mexico.
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Table 2
The data types that can be included in SS.

Type Units Description

Catch Biomass or numbers For each fishing fleet. Initial catch calculation is numbers-at-age for each fleet, then
can be aggregated to biomass or numbers. If F is estimated as parameters, then lower
precision can be assigned to each catch value. Catch can be size-partitioned into
retained and discarded portions, with F tuned to match the retained catch amount

Fleet or survey index Biomass, numbers, effort Is aggregated across ages/sizes according to specified or estimated selectivity, so
age-specific index is feasible; catchability can be estimated as scaling constant or as a
parameter, which can be time-varying or density-dependent; If units are effort, then
expected value is F/q

Discard Fraction, biomass or numbers Created by applying a discard/retention logistic function to the total catch
Mean weight Body weight A simple measure of the mean size of fish in the catch (e.g. total weight/total numbers)
Length composition Proportion From each/any fleet/survey; combined gender, each gender, or split to preserve sex

ratio; from total catch or discard portion or retained portion. Small constant can be
added and tails can be compressed

Age composition Proportion As with length composition. Also, can be interpreted after applying aging error to
expected values. Can be for entire length range, or for specified subset of length range
(age-at-length approach)

Generalized size composition Proportion As with length composition, but with generalized bins which can be in terms of body
length or weight, and accumulated in terms of numbers or biomass in each bin

Mean size-at-age Body length or body weight The expected values for these data take into account growth, size-selectivity, aging
imprecision

Tag-recapture Number of tags released and
recaptured

Releases are for a specified age in a specified area at a specified time. Recaptures are
from a particular fleet (which can only fish in one area) at a particular time

Morph composition Proportion In a set-up with multiple growth types (morphs), the proportion of each morph
observed (e.g. by otolith micro-constituents) by a fleet/survey can be input

Environmental index Time series index Can be input as a “survey” (above) if used as data about recruitment deviations, or can
be used as an input driver of a functional parameter relationship

SS then accumulates the catch weight at length into the bins of
the catch weight categories to calculate an expected value for the
observed catch weight categories. Variance in estimated recruit-
ment, growth and mortality is based upon the goodness of fit to
the actual weight composition data. SS is not misled into acting as
if monthly catch-at-age data actually exist. The observation sub-
model in SS is configured to create expected values for the data,
rather than forcing the data to be manipulated to match the struc-
ture of the model. This preserves the variance characteristics of the
data and allows for estimation of the variance of the processes that
created the data.

3.7. Fishery management targets and forecasts

SS calculates fishing intensity levels that would satisfy several
common fishery management conventions. It does this using a
dynamic pool approach (Mace and Sissenwine, 1993) that first cal-
culates the equilibrium level of SPR and yield per recruit (YPR)
that would occur if fishing according to a trial level of fishing
intensity, then uses this SPR and the unfished level, SPR0, to cal-
culate the absolute level of recruitment, spawning biomass, and
yield that would occur if fishing intensity were maintained at
this rate. SS then iteratively calculates the level of fishing inten-
sity that would match each of three conditions: (1) SPR – a
user-specified target level of SPR relative to SPR0, (2) Btarget – a
user-specified target level of equilibrium spawning biomass rel-
ative to the unfished level, and (3) MSY – the level of fishing
intensity that would maximize yield. The latter two conditions
take the spawner–recruitment relationship into account. These
calculations utilize all the multi-fleet, multi-area, multi-season,
size- and age-selectivity, complexity in the estimation model, so
produces results that are entirely consistent with the assessment
result.

SS, in common with many integrated analysis stock assessment
models, is basically a simulation of a stock’s age-structured popula-
tion dynamics. This enables SS to utilize a selected fishing mortality
approach (e.g. harvest policy) to extend into a forecast of the future
age-structured stock abundance and yield that would occur while
fishing according to that harvest policy (Maunder et al., 2006). SS

allows the user to specify that forecasting use either the SPR-based
fishing rate, the Btarget rate, the MSY rate, or a multiple of the recent
average rate when conducting the forecast.

The sequencing within SS calls the fishing mortality target rou-
tine and then the forecast routine in two circumstances. First,
the routines are not called until convergence occurs and ADMB
enters into the variance estimation phase when SS is operating in
ADMB’s estimation phase. Second, the routines are called during
the MCMC evaluation phase so that the equilibrium and forecast
results become part of the output for each selected set of parame-
ters. This means that all aspects of parameter uncertainty calculated
using the inverse Hessian method in the maximum likelihood esti-
mation, and using the Markov Chain Monte Carlo approach are
propagated into the variance of derived quantities, such as the fish-
ing mortality intensity that would produce MSY, and forecasts of
stock abundance and future yield that would occur while fishing
according to the chosen level of fishing intensity.

Fishery management in the United States has strongly embraced
an approach that utilizes catch quotas (termed annual catch limits),
and expects that the annual catch limit be set according to a pro-
tocol that acknowledges scientific and management uncertainty.
A technical approach has been developed to forecast future catch
levels that would have a specified probability of allowing catch
to exceed the overfishing catch limits (OFL) (Prager and Shertzer,
2010; Shertzer et al., 2010). They calculate an annual acceptable
biological catch (ABC) that takes into account scientific uncertainty
in the estimate of OFL and an annual catch target (ACT) that fur-
ther accounts for management uncertainty in controlling catch
to the ABC, such that there is a pre-specified probability, P*, that
attempting to catch that target would in fact result in the fish-
ing mortality rate exceeding the overfishing rate. The flow of an
ADMB estimation program does not allow for iteratively searching
for target catch levels that would satisfy this probability condition
because the uncertainty is not known until the program completes.
However, SS takes a multiple pass approach (Appendix, Table A.2)
that obtains a nearly comparable result.

The multiple passes in the forecast are needed to mimic the
actual sequence of assessment to management action to catch over
a multi-year period. The first pass calculates the OFL based on
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catching the OFL each year, so presents the absolute maximum
upper limit to catches. The second pass forecasts a catch based
on a harvest policy, then applies catch caps and allocations, then
updates the F’s to match these catches. In the third pass, stochastic
recruitment and catch implementation error are implemented and
the F that would be needed to catch the adjusted catch amount
previously calculated in the second pass determined. With this
approach, SS is able to produce estimates of the probability that F
would exceed the overfishing F, Flim. In effect, it is the complement
of the P* approach. The P* approach calculates the future stream
of annual catches that would have a specified annual probability of
F > Flim, while SS calculates the expected time series of probabilities
that the F resulting from a designated harvest policy would exceed
a specified level.

3.8. Penalized log likelihood

Some data are principally influential in estimating the growth of
individuals, others in estimating trends in population abundance,
others in the level of fishing mortality, and others in fluctuations
in recruitment to the stock. The interactions among these various
population and observational factors can be investigated and their
combined contribution to the variance in assessment results cal-
culated by including all data in a common framework and using
a single overall weighted penalized log-likelihood. Calculation of
the log-likelihood for each datum requires an observation error
specification to scale all deviations in equal terms.

The error distribution that is typically used for abundance data
is the lognormal, although the normal and Student’s t-distributions
are also available. The Student’s t-distribution, with a user-specified
low number of degrees of freedom, provides a tool to reduce the
influence of outliers (Chen et al., 2000).

The multinomial is used for composition data because it inher-
ently assigns more emphasis on fitting data for the composition
bins that have higher expected proportions. The multinomial uses
the assigned sample size to scale the variance of each bin in a com-
position vector. This sample size is typically in the range of 50–200
individuals, which is much lower than the actual number of individ-
uals measured because of correlation within the sampling process
(Crone and Sampson, 1998). SS allows for a constant to be added to
each element of the observed and estimated composition vectors,
thus providing increased robustness when data are noisy. SS also
allows for the tails of each vector to be accumulated until there is
a user-specified proportion in the terminal element of the vector.
This tail compression feature causes the model to not make like-
lihood calculations from a large number of vector elements in the
long tail, each of which is near zero, highly auto-correlated, and
with low precision. Instead, the accumulated tail will have a higher
proportion and thus will get more influence in model fitting. The
tail compression feature should be used judiciously when data are
sparse because an excessive degree of bin accumulation could occur
for composition vectors that are based on just a few fish. A model
output based on the multinomial distribution is the “effective sam-
ple size” (McAllister and Ianelli, 1997). This value represents the
size of the random sample needed, on average, to achieve a fit that
is as good as the variance in the model’s fit to the composition
vector.

The contribution of each datum to the overall log-likelihood
function in SS is inherently weighted by the measurement vari-
ance of that datum. The user has options to increase or decrease the
variances of the input data or, equivalently, the imposed weight-
ing on their contribution to the likelihood function because these
variances are rarely known exactly and because extra process error
often must be dealt with as measurement error. For abundance
data, SS allows for estimation of a parameter for each abundance
time series to adjust the standard error of all its observations such

that the root mean squared error of the model fit to that abundance
time series is similar to the averaged assigned standard error of
each observation. For composition data, input sample sizes should
be adjusted to be at approximately the same level as the estimated
effective sample sizes to achieve good variance estimates. Tools for
iterative adjustment of these sample sizes are provided, but, follow-
ing Maunder (2011), it may be possible to use the effective sample
size calculation in a revised objective function to allow for internal
estimation of a parameter representing a sample size adjustment
factor.

The objective function in SS contains penalties on parameters
and process deviations that are analogous to Bayesian priors, as is
common in integrated analysis models (Maunder and Punt, in this
volume). These penalties are based on the assumed prior variances
for the parameters, and can either be designed to be informa-
tive, or be broadly uninformative. Uninformative priors serve to
stabilize model performance when data are uninformative about
some of the parameters. Examples of informative priors include
those for each annual deviation in recruitment being penalized
according to the assumed or estimated variability among all recruit-
ment deviations, those for the parameters determining the random
walks in a parameter changing over time, and those for parame-
ters such as natural mortality. These penalties are interpreted as
priors when the MCMC algorithm is used to sample parameters
vectors.

Correct relative weighting among likelihood components is cru-
cial to attain good model performance and good estimates of the
variances of the model results. The model result is a complex
weighting of the information in the data and the penalties (Methot
and Taylor, 2011). For example, when multiple CPUE time series are
used as indicators of stock abundance, the final result is a weighted
average of all their trends. If a particular fleet’s CPUE trend does
not match those for the other fleets, its contribution to the overall
result is not diminished unless the model is configured to allow for
estimation of an extra observation, or process, variance parameter
to account for the needed degree of downweighting. It is situation-
dependent whether the adjustment should be made on the basis of
extra observation variance, which makes the poor fit more likely, or
on the basis of extra process variance, which creates a phantom pro-
cess to bring the ill-fitting data into better conformance with other
information in the model. However, the result may not stabilize at
an intermediate solution when strongly contradictory information
are included in an assessment. Instead, alternative local minima in
the likelihood surface may be created and the estimation procedure
could be trapped in a local minima and fail to identify the global
minima. Patterns in residuals should be scrutinized for evidence
that the model configuration has insufficient flexibility to reduce
this pattern to white noise consistent with the variance of the data
source.

3.9. Variance estimation

SS employs several ways to represent uncertainty in the results.
ADMB uses the quadratic curvature of the multi-dimensional
log-likelihood surface around the maximum likelihood set of
parameters to calculate a variance-covariance matrix (Fournier
et al., 2011), then uses a Taylor series approximation to propagate
this measure of parameter uncertainty to the derived quantities.
In SS, the derived quantities include the time series of spawning
biomass, recruitment, fishing mortality index, stock depletion, and
various reference points such as maximum sustainable yield. The
time series of derived quantities extend into the forecast era, pro-
viding a continuous sequence of estimated derived quantities and
their variances. SS can operate in Monte Carlo Markov Chain mode
to provide a Bayesian description of the uncertainty associated with
the parameters and derived quantities. It is possible to automate a



Please cite this article in press as: Methot Jr., R.D., Wetzel, C.R., Stock synthesis: A biological and statistical framework for fish stock assessment
and fishery management. Fish. Res. (2012), http://dx.doi.org/10.1016/j.fishres.2012.10.012

ARTICLE IN PRESSG Model

FISH-3547; No. of Pages 14

R.D. Methot Jr., C.R. Wetzel / Fisheries Research xxx (2012) xxx–xxx 9

sequence of SS runs across a range of fixed values for one or several
parameters to generate a likelihood profile or matrix of results.

SS also contains a data generation routine that can provide
parametric bootstrap data sets to assist in investigation of model
performance and variance estimation (e.g. Piner et al., 2011). The
original data are not re-sampled. Instead a new data set is cre-
ated with the same variance properties that were assumed when
analyzing the original data. For each datum, the form and scale of
the sampling distribution assigned to that datum (i.e. the distri-
butional assumption of the likelihood function) are used to create
a random observation given the expected value for that observa-
tion. For example, a multinomial sample of 89 fish would be drawn
from the estimated length-composition of a sample that had been
given an input sample size of 89. Importantly, the observations in
each of these new data sets will not contain any patterns in their
residuals, except by chance. Consequently, any autocorrelation or
unlikely pattern in the residuals of the original data relative to the
model fit will not be propagated into the bootstrap data sets. It
is therefore important to ensure that the assigned variance of the
input data are approximately the same as the variability between
the observed and expected values before creating bootstrap data
sets. These bootstrap data sets contain measurement error only
and do not randomize any of the process (e.g. annual fluctuations
in recruitment or time-varying selectivity) error that may be a fea-
ture of the particular model setup being analyzed. Some researchers
(e.g. Lee et al., 2011) have used this parametric bootstrap data gen-
eration process combined with additional code to allow for process
error in processes such as recruitment or selectivity.

It is possible to obtain additional information about the robust-
ness of the model’s fit to the original data using this bootstrap
approach,. When there is pattern in the residuals to the original
fit, the model will be in a tension between trying to reduce those
residuals while being restrained from doing so by the fit to all the
other data in the model and the model structure itself. This tension
does not exist among randomly generated observations and the
parameter estimates will then tend to drift away from the values
obtained when fitting the original data and to a new set of val-
ues consistent with the independently distributed data. Following
this logic, Lee et al. (2011) and Piner et al. (2011) investigated the
robustness with which natural mortality rate could be estimated
by SS. Methot and Taylor (2011) used this approach to investi-
gate model performance with regard to estimation of recruitment
deviations.

Variance results from parametric, MCMC, and bootstrapping
will be quite similar when the normal approximation is good
and the residuals in the original model fit are sufficiently random
(Figs. 2 and 3). Stewart et al. (in this volume) provides an extensive
comparison of these approaches to variance estimation.

3.10. Output processing

SS, and all models that deal with complex and voluminous
data, needed auxiliary tools to visualize model outputs and quickly
produce report-ready tables and figures. This done in SS by pro-
viding some output in text tables delimited by keywords and
some in list format that provides a filterable/sortable database.
This approach allows for parsing by different systems. One is the
SS graphical interface developed by Alan Seaver and found in the
NMFS Assessment Toolbox (NOAA Toolbox, 2011). A second is an
Excel spreadsheet distributed with SS. Third is an R-based mod-
ule, termed r4ss (Taylor et al., 2011). All three work by searching
for keywords, then parsing a table or list of values adjacent to
that keyword. This approach provides high flexibility with minimal
programming. Users are able to quickly examine results for prob-
lematic residual patterns then proceed to produce report quality
graphics using these data display tools. While the Toolbox and R

modules have successfully co-evolved with SS, future versions of
SS could make the interaction between the input, execution and
output modules more intuitive and efficient.

4. Discussion

Sixty-one stocks worldwide have been assessed using SS
to date (Appendix B), and exploratory applications for many
others are underway. This success is due to the flexible scal-
ability to a variety of data and life history situations; to the
improved efficiency and communication achieved by use of a
consistent, standardization approach; and to the continual evo-
lution to meet the needs of the international fishery assessment
community.

4.1. Scalable to data availability

The ability of SS to flexibly and simultaneously deal with many
types of data is a powerful aspect of the framework. SS is essen-
tially completely scalable between statistical catch-at-age analysis
on one extreme, and age-structured, biomass dynamics models
and catch curve analysis on the other extreme. SS can estimate
the selectivity characteristics of each well-sampled fishing fleet
and the time sequence of recruitment to the stock, just like other
statistical catch-at-age models when highly informative catch-at-
age are available. SS can still estimate selectivity and recruitment,
although with less precision, with more reliance on priors and with
less signal being detected when composition data are sparse or
represented only by length composition. SS can use a fishery selec-
tivity asserted by the user, and collapse the estimated catch-at-age
into an expected value for the overall catch and CPUE, thus behav-
ing exactly like an age-structured production model when there is
only a bulk indicator of the trend in stock abundance, for exam-
ple the catch per unit effort (CPUE) of a fishing fleet. If all that
exists is a time series of total catch and expert judgment on the
degree of stock depletion over time, as in the depletion-based stock
reduction analysis (Dick and MacCall, 2011), then SS can use this
depletion estimate as a “survey” of spawning biomass at the end
of the time series relative to the spawning biomass before fish-
ing started (Cope, 2012). If the only datum was an estimate of the
size composition of the catch at one point in time, SS could gener-
ate an expected value for that observation while estimating growth
parameters and mortality to essentially conduct a catch curve anal-
ysis. However, SS could also directly take any information about
selectivity and could analyze multiple such observations scattered
over the history of the fishery into account, unlike a simple catch
curve analysis.

The scalability of SS is facilitated by its definition of annual
recruitment as a deviation from the expected recruitment given the
spawner–recruitment relationship. All recruitments in a time series
can be estimated because the deviations are penalized according to
the assumed degree of variability among the recruitments. Thus, SS
is essentially a stochastic stock reduction analysis (Walters et al.,
2006). Given this approach, data-poor applications end up with
near-zero maximum likelihood estimates of all the recruitment
deviations, so all the productivity information is just in the two
or three parameters of the spawner–recruitment curve. However,
the recruitment deviations contribute to the variance to the final
result and can take on non-zero posterior values when informa-
tive data are included in the assessment. SS partitions the assumed
total variability in recruitment into a component that is among the
recruitment deviations and a component that is the residual vari-
ance of each recruitment deviation (Methot and Taylor, 2011). This
feature allows SS to span data-poor and data-rich eras within a sin-
gle analysis. Thus, SS is scalable to the range of data quality within
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Fig. 2. Bivariate comparison of the estimated growth parameters maximum length (L∞) and k (a). Ellipses represent multivariate normal confidence regions calculated
around the maximum likelihood best estimate. The points are drawn from a converged MCMC chain. Two parameters, natural mortality and asymptotic recruitment, for
which the normal approximation does not represent the tails well (b).

the time series being analyzed, as well as between applications with
different data availability.

The value in using a complete model such as SS to analyze
data-weak situations is that it is not necessary to switch model-
ing approaches as more types of data become available. Further,
it forces attention on each aspect of the biologically structured
population (natural mortality, growth, reproduction, selectivity,
etc.) rather than collapsing these processes into a two-parameter
black box as in biomass dynamics models. An informative sit-
uation was investigated during the 2012 review of assessment
models for various flatfishes (ICES, 2012). The assessment had
previously been conducted using ASPIC (Prager, 1994), which
provides a biomass dynamics approach, with no process error,
for analyzing time series of catch and indexes of stock abun-
dance. Alternate assessment models being considered included SS
and a biomass dynamics model with process error. SS was used
to demonstrate how the biomass dynamics model with uncon-
strained process error could drift into a high productivity, high
process error scenario that fit the abundance index too well. With
SS, this phenomenon could be replicated, and then controlled

for by using sufficient length-composition data to stabilize the
result to a better compromise between process and measurement
error.

4.2. Model complexity

The complexity of integrated analysis models and their abil-
ity to simultaneously analyze several diverse types of data means
that investigation and control of their performance is challeng-
ing. Without informative data, unconstrained model complexity
will always lead to highly uncertain results. Simpler models fit to
good data can outperform more complex models. However, sim-
ple data do not necessarily imply good data nor does a simple
model necessarily imply an accurate model of the relevant pro-
cesses. Good data must accurately represent the state variable (fish
abundance) with good fidelity, and the contrast in these data over
time must be sufficient to provide information on the dynam-
ics of the system. If data that meet these criteria are available,
which is rare, a model that is just complex enough to represent
the main dynamic processes should be able to track these data and

Fig. 3. The MCMC distribution of relative depletion from the 2006 Pacific whiting assessment (Helser et al., 2006) is a nearly exact match for the parametric estimate of
variance in this quantity (a). The right panel (b) shows good comparison between the normal error in this quantity and the results of 75 bootstrap runs. Dark vertical line is
the median of the bootstrap estimates.
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provide reasonable inference about the population. However, dif-
ficulties in measuring fish abundance mean that the time series of
abundance indices commonly available for stock assessments are
typically contaminated by other processes (dome-shaped selectiv-
ity, time-varying selectivity, density-dependent catchability, etc.),
and the ecosystem processes affecting fish populations are more
complex than a two-parameter parabola. More complex models
are needed to take a structured approach to investigate and then
account for the many factors that have created patterns in the
available data. SS provides this biologically structured approach in
the form of size-selectivity, aging imprecision, retention functions,
flexible approaches to time-varying parameters, and other factors
designed to extract information on fish stocks from a diversity of
data types.

SS and all integrated analysis models must be configured
to achieve a good balance between data and model complex-
ity. Results are based on the weighted influence of all the data
included in the model. The model does not ignore data that do
not fit well. It tries to fit each datum in accord with the mea-
surement error associated with that data type, and it uses all
free parameters to attempt to improve the goodness of fit. When
the data contain patterns that are more complex than can be
produced by the model, it will see this complexity as observa-
tion deviations from its too simple structure. It will then tend
to inflate its estimate of the observation error associated with
these data to resolve the lack of fit, and/or it will use other, inap-
propriate, parameters to attempt to fit the data. For example,
consider a model that is presented with complete catch-at-age
data that comes from a fishery with a trend in selectivity over
time, but the model is not configured to allow for time-varying
selectivity. Two things will happen: the time series of estimated
recruitments will be biased by trying to mimic time-varying selec-
tivity, and there may be an inflated variance estimate for the
age-composition data because recruitment trends cannot fully cap-
ture time-varying selectivity. On the other hand, attempting to
estimate unconstrained time-varying fishery selectivity in a sit-
uation with weak or no age-/size-composition data will result
in broad confidence intervals, if model convergence can even be
attained in this over-parameterized situation. Model complexity
must be appropriate given the available data. One way to accom-
plish this is to allow the model to have substantial flexibility,
mostly as time-varying process error in various parameters, but
to also include informative priors on the extent of variation to
stabilize estimation when data are not informative. Specification
of these informative priors is one of the greatest challenges for
good practices in the application of complex fishery assessment
models.

Evaluation of the appropriate degree of model complexity is not
easy. For example, what are the implications of allowing for dome-
shaped selection patterns that change over time, ignoring aging
imprecision, or allowing the model to estimate natural mortality
rates? Each of these, and many other, questions can be investigated
by using one model to generate data with known characteris-
tics from a simulated population, and another model to attempt
to estimate that population using the generated data. Ideally, the
data generating system and the estimation model would be imple-
mented independently to help assure a robust test of the issues
being investigated. He et al. (2011) and Helu et al. (2000) used such
an approach to investigate the ability of SS to estimate selectivity.
However, consistency between the data generation and estimation
models can help ensure that performance is due to the ability of the
estimation model to extract information from the data and not due
to subtle differences between the generation and the estimation
models when the issues are mostly about the ability of the estima-
tion model to derive information from particular types of data or
to operate in situations with limited data contrast. The parametric

bootstrap feature in SS provides a tool to generate the needed data
sets.

4.3. Linkage to the ecosystem and the environment

An important feature of SS is its ability to serve as a bridge to
environmental and ecosystem investigations. The earliest applica-
tion of SS (Methot, 1986) included the influence of a predator on
natural mortality as well as a temperature-effect on maturation,
which led to a time-varying linkage between the adult stock and
the expected larval abundance survey. Predators can be included
in SS because they effectively operate as an additional fishing fleet.
If the predator’s total annual consumption is known, then this is
the catch. If the predator abundance time series is known, then this
serves as an index of the predator’s “effort”. If the ages or sizes of
the prey are available from stomach samples, then this serves as
the size-/age-composition of the predator’s catch. Livingston and
Methot (1998) took such an approach in investigating the role of
several predators on walleye pollock Theragra chalcogramma off
Alaska.

The time series of annual fluctuations in recruitment is one of the
key outputs from assessment models and the possibility of includ-
ing environmental covariates in assessment models has attracted
much attention in the literature (Maunder and Watters, 2003;
Haltuch and Punt, 2011). Where sufficient age- or size-composition
data exist, age-structured models such as SS are able to estimate
the time series of recruitment empirically. However, estimation
of recruitment fluctuations degrade when data quality is poor, as
occurs during historical periods and certainly as one extends into
the forecast period (Maunder et al., 2006; Methot and Taylor, 2011).
In some cases, environmental correlates of recruitment have been
surmised and these environmental factors, such as ocean temper-
ature or ocean winds, are often available further back in time than
age-structured fishery data, and are available with only short time
lag up to present. Environmental correlates of recruitment fluctu-
ations can be included in SS in two ways (Schirripa et al., 2009). In
one approach, the environmental time series drives the expected
recruitment deviation through an estimated link parameter. Most
parameters in SS can have such an environmentally driven link. In
the other approach, the environmental information is treated as
data relevant to the expected magnitude of the recruitment devi-
ation, rather than a causal factor for the deviation. This approach
is more robust when there are missing values in the environmen-
tal time series. Brandon et al. (2007) used such an approach in a
model of the gray whale Eschrichtius robustus population off the
west coast of North America. Conceptually and algebraically, this
is tantamount to asserting that measuring ocean temperature (or
some other relevant environmental factor) is equivalent to con-
ducting a survey of the survival rate of pre-recruit juveniles. In both
cases, the information is interpreted to be an index, with measure-
ment error, of the actual recruitment. With small modification, SS
could evolve to include this “environment as data” approach for
more model processes that exhibit change over time.

4.4. Benefits of standardized models

A comprehensive modeling framework such as SS enhances
communication, efficiency, and education in the fishery assessment
community (Methot, 2009). Communication is enhanced by cre-
ating a familiarity among users, reviewers, and clients regarding
terminology and approach. Reviewers who are already familiar
with SS can quickly focus on key issues for the assessment being
reviewed, rather than spend time learning the features of a novel
assessment model. Imagine an assessment workshop with three
assessments each with a different modeling system and each with
discards treated in a different manner. Communication chaos will
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ensue and detract from the effectiveness of the workshop. Stan-
dardized models also enhance communication and efficiency by
stimulating development of a mature set of tools, such as the out-
put processing package r4ss. These standardized approaches and
products will reduce the time it takes to produce an assessment
report.

Students and stock assessment training can also be beneficiar-
ies of standardized assessment approaches. Numerous students at
School of Aquatic and Fishery Sciences, University of Washington,
Seattle, WA (e.g. Wetzel and Punt, 2011; Garrison et al., 2011) and
elsewhere have honed their programming and population dynam-
ics skills by developing simulation models to test the performance
of SS in various situations, as well as to be involved in stock assess-
ments that use SS (Stewart et al., 2011).

The challenge for the fishery assessment, research and educa-
tion community is to find the right balance between assessment
model standardization, which enhances communication and effi-
ciency, and assessment model development, which provides for
highly focused investigation and enhances research opportunities
and education. Achieving the benefits of both standardization and
innovation will require more discipline from the community to use
only a core set of models to produce assessment results and to
refrain from conducting research as part of assessments designed to
inform management. The solution also needs to encourage research
into better assessment approaches and more complete testing of
model performance to achieve a set of good practices for appli-
cation of the standard models. The third step would be creation
of a pathway by which the results of the research will periodi-
cally be reviewed and integrated into the standardized models. A
suite of standardized models are commonly employed in climate
and oceanographic settings. It seems advisable for the fish assess-
ment community to move in this direction to achieve improved
throughput and communication.

4.5. Future evolution of SS

The features of SS have never been static for long and continue
to evolve in response to the needs and ideas of the fishery assess-
ment community. All features are contained within one ADMB file
with approximately 20,000 lines of code; there has been no splin-
tering into divergent pathways to meet individual needs. While it
might seem that this large internal structure containing numer-
ous arrays dimensioned at runtime would result in slow execution,
in fact the speed of execution depends principally on the com-
plexity of the user-defined set-up and the amount of the data. A
simple age-structured production model will run to completion
in a few seconds, while a multi-area model containing rich size-
composition data from numerous fleets will take several seconds
for each iteration of the estimation procedure and many hours to
converge. Undoubtedly, customized models for a particular assess-
ment will execute faster than SS on the same problem, but the
overhead to attain full flexibility is small.

A recap of some of the features introduced into SS in 2011 illus-
trates the pace of evolution.

• a new survival-based spawner–recruitment relationship was
used for dogfish Squalus suckleyi (Taylor et al., in this volume);

• the degree of depletion of the spawning stock can now be used
(Cope, 2012) in the same manner as in Depletion-Corrected Stock
Reduction Analysis (Dick and MacCall, 2011);

• a cubic spline selectivity function was introduced to allow more
flexibility and potentially produce multi-modal patterns of size-
selectivity. This feature was used during the 2011 assessment of
west coast sablefish Anoplopoma fimbria (Stewart et al., 2011).

• age-specific growth coefficients were introduced to allow eval-
uation of unexpected patterns in mean size-at-age, as observed

in some tuna species, and comparison to results explainable by
size-selectivity alone;

• the capability to create an aging matrix from estimable model
parameters was introduced in recognition of the growing inter-
est in accounting for aging imprecision and bias (Cope and Punt,
2007), and was used in the assessment of Pacific cod Gadus macro-
cephalus (Thompson et al., 2011).

Evolution will continue to occur to incorporate new research
findings. In some cases, SS itself has been the platform by which the
new concept has been investigated. For example, Piner et al. (2011)
used the parametric bootstrap feature of SS to provide an approach
for investigating robustness of model results. Methot and Taylor
(2011) used SS to investigate the relationship between data quality,
recruitment estimation, and bias in time series. These findings were
made through use of SS, but each is applicable to all integrated
analysis type models.

Many ideas are under development. Some of these are:

• alternative likelihood functions for composition data (Maunder,
2011) that would allow for estimation of the variance;

• area-specific spawner–recruitment relationships, rather than the
current global relationship;

• explicit elapsed time between spawning and recruitment to more
closely match fish life history;

• priors on derived quantities such as selectivity;
• use of environmental time series as indicators of time-varying

processes;
• internal estimation of process error for time-varying processes;
• a smoothing algorithm in the forecast so that the target catch

one year cannot change too rapidly from the previous year’s
catch, as commonly is implemented in management procedure
(Butterworth and Punt, 1999).

While addition of new features is the most common request
from SS users, another is the need for practices to use the flexible
features of SS and other integrated analysis models. Too often, a
new user starts by invoking more SS features than are supportable
by their data and by not taking a structured approach that starts
from a simple set-up and gradually adds complexity and flexibility
to investigate the phenomena that created their data. User guides
to assist in best practices are needed as SS expands to be used by
more broadly.

SS, in common with nearly all fishery assessment models, is the
product of a single researcher who started out to build an analytical
tool for a particular application. While such an approach is common
and well-suited to scientific investigations, the importance of the
results of stock assessment for government regulatory processes
would seem to justify a more concerted effort. As the ADMB-based
version of SS reaches its 10 year mark in 2012, it seems time to
pause and take stock of alternative development pathways. One is
status quo is which gradual evolution of the code is undertaken and
additional scientists slowly get engaged in more aspects of code
development. Another would be to embark on a more concerted
effort to assure that a successor model would even more completely
meet the needs of the assessment community. This effort could
involve a broadly based steering group to provide guidance for
model development, and professional programmers to turn their
ideas into well-written computer code. It would take a serious
look at the pathway from raw data to model inputs so that re-
configuration of model inputs is streamlined and not error-prone. It
would co-develop the model engine with the user interface so that
control of the model is intuitive and straightforward. The model
engine itself would need a strong flexible framework and modu-
lar implementation to ease evolution of new features. Assembling
the funding and infrastructure to implement and maintain such a
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collaborative model will not be easy. However, highly publicized
controversies over assessment results highlight the importance of
putting sufficient effort into building the best tools possible to take
advantage of the great wealth of fishery and survey data being
collected today.
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Abstract Once hunted to the brink of extinction, hump-

back whales (Megaptera novaeangliae) in the North

Atlantic have recently been increasing in numbers. How-

ever, uncertain information on past abundance makes it

difficult to assess the extent of the recovery in this species.

While estimates of pre-exploitation abundance based upon

catch data suggest the population might be approaching

pre-whaling numbers, estimates based on mtDNA genetic

diversity suggest they are still only a fraction of their past

abundance levels. The difference between the two esti-

mates could be accounted for by inaccuracies in the catch

record, by uncertainties surrounding the genetic estimate,

or by differences in the timescale to which the two esti-

mates apply. Here we report an estimate of long-term

population size based on nuclear gene diversity. We

increase the reliability of our genetic estimate by increasing

the number of loci, incorporating uncertainty in each

parameter and increasing sampling across the geographic

range. We report an estimate of long-term population size

in the North Atlantic humpback of *112,000 individuals

(95 % CI 45,000–235,000). This value is 2–3 fold higher

than estimates based upon catch data. This persistent dif-

ference between estimates parallels difficulties encountered

by population models in explaining the historical crash of

North Atlantic humpback whales. The remaining discrep-

ancy between genetic and catch-record values, and the

failure of population models, highlights a need for con-

tinued evaluation of whale population growth and shifts

over time, and continued caution about changing the con-

servation status of this population.
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Introduction

Over-exploitation has resulted in the collapse of many

marine populations (Pauly et al. 1998; Myers and Worm

2003; Estes et al. 2006). In some cases, however, national or

international protection has led to the recovery of previously

threatened or endangered species (reviewed within Scott

et al. 2005). Humpback whales (Megaptera novaengliae) in

the North Atlantic were severely depleted as a result of

intense hunting during the 19th and 20th centuries (Mitchell

and Reeves 1983; Braham 1984; Winn and Reichley 1985)

and are currently listed as ‘endangered’ or ‘vulnerable’ by

various governments and international conservation orga-

nizations (Klinowska 1991). Before the International

Whaling Commission (IWC) banned commercial whaling in

the North Atlantic in 1955, it was estimated that this popu-

lation was reduced to \1,000 individuals (Mitchell and

Reeves 1983; Katona and Beard 1990). After many decades

of legal protection, humpback whales have increased in

numbers (Stevick et al. 2003) and recent survey estimates

suggest that theymay be approaching 20,000 animals (Smith

and Pike 2009). Such increases in population size within the

North Atlantic have led the IUCN and the US to re-evaluate

their conservation status.

Assessing the recovery of previously depleted popula-

tions requires knowledge of past population sizes, but robust

estimates of past abundance can be difficult to attain. Dif-

ferent approaches to estimating pre-whaling population sizes

can lead to starkly different conclusions about the extent of

recovery in the North Atlantic humpback whale (Roman and

Palumbi 2003; Holt and Mitchell 2004; Punt et al. 2006).

Traditionally, the IWC has relied upon population dynamic

models that use a combination of information on current

abundance, catch records, rates of increase, and population

structure to estimate changes in population size through time

(Punt et al. 2006). Recent model estimates for the North

Atlantic humpback whale suggest a pre-whaling population

size of between 20,000 and 46,000 individuals, depending

upon the catch data used (Punt et al. 2006). Given current

abundance estimates of *17,700 individuals (Smith and

Pike 2009), population model-based estimates suggest that

humpbacks in the North Atlantic are approaching the lower

boundary of their pre-whaling numbers. Alternatively,

genetic-based estimates of pre-whaling abundance use the

relationship between genetic diversity (h) and effective

population size (Ne) (h = 4Mel, where l is the average

mutation rate) to estimate the long-term population size of

North Atlantic Humpback whales (Roman and Palumbi

2003). Genetic estimates calculated using mitochondrial

DNA (mtDNA) control region sequence, suggest a pre-

whaling abundance of 150,000–240,000 depending upon the

mutation rate employed (Roman and Palumbi 2003; Alter

and Palumbi 2009). These genetic estimates suggest that

there were substantially more whales prior to whaling than

previously believed.

The discrepancy between estimates of pre-whaling

abundance based upon catch records and estimates based

upon genetic variability has been the subject of vigorous

debate (Lubick 2003; Holt and Mitchell 2004; Clapham

et al. 2005). Some argue that unavoidable uncertainties in

the catch record may have led to underestimates in the

number of whales removed from the North Atlantic due to

whaling (Palumbi and Roman 2007). However, a recent

review and re-reading of whaling records revealed only

slight increases in the numbers of North Atlantic humpback

whales estimated to be killed as result of whaling (from

29,000 to 30,852 total catches) (IWC 2002, 2003; Smith

and Reeves 2010). Others argue that genetic estimates of

long-term abundance may be inaccurate as a result of

reliance on a single locus, uncertainty surrounding muta-

tion rates and generation times, the potential influence of

incomplete sampling, and the evolutionary time-scale to

which a genetic estimate applies (Lubick 2003; Holt and

Mitchell 2004; Clapham et al. 2005). While recent esti-

mates of long-term population size in gray and minke

whales have reduced some of these uncertainties through a

variety of methodological improvements (Alter et al. 2007;

Alter and Palumbi 2009; Ruegg et al. 2010), humpback

whales are particularly challenging because of their com-

plex oceanic and worldwide population structure (Baker

et al. 1993; Palsboll et al. 1995; Rosenbaum et al. 2009).

Population structure may affect estimates of long-term

effective population size (Ne) in a variety of ways

depending upon the extent of isolation between popula-

tions. Theoretical models suggest meta-population Ne and

sub-population Ne converge as migration between sub-

populations increases (Hudson 1991; Waples 2010). It has

also been shown that even low migration rates between

sub-populations can cause an estimate of long-term Ne that

is based upon samples from one sub-population to

approximate the long-term Ne of the whole meta-popula-

tion population (Hudson 1991). Thus, if there is migration

between sub-populations, then the absence of samples from

one sub-population should have very little effect on an

estimate of long-term Ne for the whole meta-population

because the two values will be equivalent. Alternatively, if

there is no migration between populations and one uses

samples from an isolated sub-population, then an estimate

of long-term Ne for the meta-population will be down-

wardly biased. Thus, in order to identify the impact of

population structure on Ne it is important to also measure

levels of population structure.
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Presently, humpback whales are divided into three

oceanic populations, the North Atlantic, the North Pacific

and the Southern Hemisphere, based on genetic and tag-

ging data suggesting limited migration between ocean

basins (Mackintosh 1965; Baker et al. 1993). Previous

analysis of worldwide population structure based upon

mtDNA suggests that humpback whales from the North

Atlantic are most strongly differentiated from those in the

North Pacific and less strongly differentiated from those in

the Southern Hemisphere (Table 2, Baker et al. 1993).

Strong divergence between North Atlantic and North

Pacific humpback whales is thought to result from the fact

that sea ice has likely blocked the main northern migratory

corridor between the two groups since the Sangamonian

Interglacial period (*140,000 years ago). As a result,

genetic diversity within the North Atlantic is unlikely to be

strongly influenced by past migration from the North

Pacific. Thus, while we will test the assumption that gene

flow with the North Pacific does not influence Ne in the

North Atlantic, the main focus of our analysis will be on

populations from the North Atlantic and the Southern

Hemisphere.

Humpback whales within the North Atlantic and

Southern Hemisphere exhibit varying degrees of within-

ocean sub-population structure resulting from complex

patterns of breeding, feeding, and migration specific to

each ocean region (Fig. 1). North Atlantic humpback

whales show site fidelity to several discrete feeding areas

extending from the Gulf of Maine to the Barents Sea off the

northern coast of Norway, but individuals from all known

feeding areas congregate on a common breeding area in the

West Indies (Katona and Beard 1990; Smith et al. 1999;

Stevick et al. 1999). Despite overlap on the West Indies

breeding grounds, significant population structure between

eastern and western North Atlantic feeding aggregations

have been identified using mtDNA (Kst * 0.04) (Palsboll

et al. 1995) and nuclear loci (Fst * 0.036) (Valsecchi

et al. 1997).

Patterns of migratory connectivity in the Southern

Hemisphere are less well understood, but recent evidence

based upon mtDNA suggests low, but significant sub-

population structure between Southwestern Atlantic,

Southeastern Atlantic, and Southwestern Indian Ocean

groups (Breeding Stocks A, B, and C respectively; Fst

range 0.0029–0.0166) with the Northern Indian Ocean

(stock X) falling out as strongly differentiated from all

other groups (Fst range from 0.0797 to 0.1473) (Rosen-

baum et al. 2009). In this study, we will use multiple

Fig. 1 Approximate breeding and feeding distributions of the North

Atlantic humpack whale and 3 stocks of the Southern Hemisphere

humpback whale (as described in Rosenbaum et al. 2009; Johnson

and Wolman 1984). Arrows represent hypothesized migratory path-

ways. Sampling location names are followed by the number of

samples in parentheses
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nuclear loci and increased sampling from within each

ocean basin to gain a better perspective on the impact of

population structure on long-term population size in the

North Atlantic.

We calculate the long-term population size of the North

Atlantic humpback whale within the context of the

worldwide population structure. We focus on an in-depth

analysis of the North Atlantic and the Southern Hemi-

sphere, with particular focus on the South Atlantic, because

previous data indicate that these two populations are the

most likely to have exchanged migrants during a time

period that may impact an estimate of effective population

size. We identify strongly differentiated populations within

and between the North Atlantic and Southern Hemisphere

using nine nuclear loci and a multi-locus genetic clustering

method. We then estimate long-term population size of the

North Atlantic humpback whale, while accounting for the

possibility of migration with other strongly differentiated

groups. Our new estimate of long-term population size in

the North Atlantic is compared with previous genetic

(mtDNA) and catch-based estimates in order to highlight

remaining uncertainties in estimates of pre-whaling abun-

dance and discuss important areas for future research.

Methods

Sample collection and sequencing

Genetic samples representing 173 individuals were col-

lected from humpback whales across the Southern Hemi-

sphere (South Atlantic and Indian Oceans) and the North

Atlantic Ocean (for regional sample sizes see Fig. 1).

Biopsy samples from living whales were collected with

appropriate national permits using protocols approved by

the American Museum of Natural History and the Oregon

State University’s Animal Care and Use Committees.

Samples were preserved in 70 % ethanol or salt saturated

20 % dimethyl sulfoxide solution (DMSO) and later stored

at -20 �C until processed. Total genomic DNA was

extracted using a standard phenol/chloroform extraction

method or using a DNAeasy tissue kit (Quiagen).

Nine nuclear loci were amplified and sequenced using

standard PCR and sequencing protocols (Saiki et al. 1988;

Palumbi 1995) and published primers (Lyons et al. 1997)

(Table 1; doi:10.5061/dryad.bj506). Individuals were

sequenced in both directions for 8 of 9 loci and sequences

were trimmed so that only the highest quality sequenceswere

included in the consensus.We found that the inclusion of the

reverse direction for RHO lowered the overall sequence

quality. Thus, in order to avoid the possibility of artificially

inflating our estimate of genetic diversity by including low

quality sequence in our analysis, we restricted our analysis of

RHO to the 186 bp forward direction sequence. All variable

sites for the 9 lociwere checked by eye usingSequencher ver.

4.8 (Gene Codes Corporation). SNPs were verified through

visual confirmation in forward and reverse sequences and/or

in multiple individuals. SNPs that only occurred in one

individual, could not be verified with reverse complement

sequences, or could not be called with confidence were

removed from the analysis. In order to ensure that our dataset

did not contain replicate samples, we confirmed that no

individual had the same sequence across all loci. Despite

multiple attempts, not all individuals sequenced successfully

for every locus, resulting in variation in the final sample sizes

for each locus (NA mean 42, range 27–56; SH mean 101,

range 80–117).

PHASE 2.1 (Stephens et al. 2001) was used to reconstruct

gametic phase, defined as the original allele combination that

an individual received from each of its parents, using a burn

in of 10,000 iterations and a run length of 10,000 iterations.

Using Arlequin ver. 3.0 (Excoffier et al. 2005) we found no

significant linkage disequilibrium among loci after correct-

ing for multiple comparisons. To determine if our sequences

were evolving in a manner consistent with equilibrium and

neutrality, Tajima (1989) and Fu (1997) tests were pre-

formed using DnaSP (Rozas et al. 2003). In neutrally

evolving sequences, both values will be approximately equal

to zero, while balancing selection or population expansion

will result in values that are significantly greater or less than

zero, respectively. We also used DnaSP to calculate the

minimum number of recombination events in the sample

(Hudson and Kaplan 1985) and found that 3 of 9 loci showed

evidence of recombination. As a result, in loci with evidence

for recombination, coalescent simulations (n = 1,000)

incorporating the per gene recombination parameter

(R) were used to generate 95 % confidence intervals (CI) for

both Tajima’s D and Fu’s Fs statistics.

Testing for population structure

An analysis of population structure was performed to

investigate whether or not the major divisions within and

between the North Atlantic and the Southern Hemisphere

humpback whales remained with increased sampling in

both regions. In order to properly account for migration

that may impact our estimate of genetic variation (theta, h)
for the North Atlantic humpback whale, we test 3 popu-

lation structure scenarios: (1) populations with no migra-

tion over recent evolutionary history (i.e. 4 Ne generations),

(2) genetically distinct populations connected by very

limited migration, and (3) sub-populations that may be

biologically meaningful, but are exchanging migrants at a

high enough rate that they cannot be distinguished using

multi-locus clustering methods. To estimate long-term

population size, sub-populations (scenario 3) were lumped
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into respective population categories (scenario 2) and

populations with no possibility of migration with the North

Atlantic over recent evolutionary history were considered

separately (scenario 1).

Pairwise Fst within and between ocean basins at each

locus as well as across all loci were calculated using the

program Arlequin ver. 3.0 (Excoffier et al. 2005). A null

distribution of Fst was generated through 1,000 permutations

of the haplotypes between populations and the p value rep-

resents the proportion of permutations leading to an Fst

larger than or equal to the observed value. To assess the

potential for within and between ocean basin population

structure within a multi-locus framework, we used the pro-

gram Structure ver. 2.2 (Pritchard et al. 2000). Preliminary

runs indicated that the power for assigning individuals to

clusters dropped off significantly when individuals had

missing data for more than 2 of the 9 loci. Therefore, indi-

viduals with missing data for more then 2 loci were removed

from themulti-locus analysis in order to ensure that therewas

sufficient statistical power for assignment of all individuals

to clusters. Structure requires unlinked markers, so the

maximum a posteriori haplotypes from PHASE at each locus

were recoded as alleles. We performed 3 independent runs at

each K value (K = 1–5) using a burn-in period of 100,000

iterations and a run length of 500,000. The structure analysis

was run using the admixture model with correlated allele

frequencies with and without the location prior.

The location prior is intended to use location informa-

tion to help identify more subtle population structure,

without detecting structure that is not present (Hubisz et al.

2009) and we implement it here in an attempt to identify a

signature of population structure in our data that may

influence our subsequent estimate of q. Locations included

the Gulf of Maine (GOM), Dominican Republic (DR),

Gabon (GA), Brazil (BR) and Madagascar (BA) (Fig. 1, SI

Table 1). Individuals from NF were grouped within the

GOM location due to low sample size from NF, geographic

proximity between NF and GOM and the lack of significant

Fst values between NF and GOM (see ‘‘Results’’ section).

We determined support for the number of clusters (K) by

plotting the average ln [P(X|K)] of each model as a func-

tion of K and using the ad hoc DK statistic proposed by

Evanno et al. (2005).

Estimating h

Using our knowledge of population structure, we employed

genetic models (Kuhner 2006) that estimate long-term Ne

while explicitly accounting for the possibility of migration

between populations deemed distinct according to multi-

Table 1 Summary statistics for 9 introns sequenced in North Atlantic and Southern Hemisphere humpback whales

Intron Seq. length Ocean basin N NS NH Rm p Tajima’s D Fu’s Fs

ACT 886 NA 27 3 7 2 0.0016 2.224 -0.801

SH 90 5 10 2 0.0015 1.089 -1.706

CAT 500 NA 40 1 2 0 0.0010 1.691 2.138

SH 96 4 6 1 0.0012 -0.190 -1.390

FGG 941 NA 51 1 2 0 0.0004 0.070 1.300

SH 116 5 6 0 0.0006 -0.589 -1.490

ESD 598 NA 38 5 6 1 0.0025 1.041 0.656

SH 107 6 11 2 0.0017 -0.037 -3.873

GBA 298 NA 56 1 2 0 0.0002 -0.809 -1.146

SH 117 2 3 0 0.0004 -0.841 -1.662

LAC 560 NA 31 1 2 0 0.0009 1.563 1.943

SH 81 2 3 0 0.0008 0.231 0.555

PLP 810 NA 29 1 2 0 0.0004 0.579 1.088

SH 107 3 4 0 0.0005 -0.296 -0.468

PTH 267 NA 55 2 3 0 0.0014 -0.006 0.128

SH 112 2 3 0 0.0013 0.067 0.348

RHO 186 NA 56 3 5 1 0.0037 0.381 -0.495

SH 80 3 6 2 0.0054 1.440 -0.008

N number of individuals, Ns number of polymorphic sites, NH number of distinct haplotypes as determined by PHASE, ver. 2.1 (Stephens et al.

2001), Rm minimum number of recombination events, p nucleotide diversity (Nei 1987)

* Numbers in bold refers to a significant deviation from neutral expectation before a bonferroni correction for multiple comparison

(p\ 0.05), as determined by coalescent simulations of the null distribution using DNAsp (Rozas et al. 2003)
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locus clustering methods. We use LAMARC ver. 2.1.3 to

simultaneously estimate h while incorporating recombina-

tion and migration between ocean regions into the model. In

contrast to summary statistic estimates of h (hs, hp, etc.),
LAMARC accounts for uncertainty in the data by integrating

over the space of possible genealogies using a Markov chain

Monte Carlo (MCMC) procedure. In order to account for

uncertainty in the data resulting from unknown gametic

phase and to accommodate inter-locus variation in mutation

rate, we followed the methods described in Ruegg et al.

(2010). In short, to account for unknown gametic phase,

LAMARC was run on 15 realizations from PHASE’s pos-

terior distribution for each of 9 introns. In addition, as rec-

ommended by the LAMARC manual, we subsampled our

data to restrict the input size for each LAMARC run to 20

sequences from each major population. Thus, for each of the

15 realizations from PHASE’s posterior, LAMARCwas run

on a different subsample of 10 randomly chosen individuals

from each population. The final result from these 15 LAM-

ARC runswas obtained by catenating the summaries from all

the runs following the recommendations in the LAMARC

manual for ‘‘poor man’s parallelization.’’ (Initially we

attempted 3 random subsamples from each phasing—45

total LAMARC runs—but this exceeded the memory

available to LAMARC). To accommodate interlocus varia-

tion in mutation rate, we implemented the gamma model for

mutation rate variation within a Bayesian framework using

an extension of the LAMARC package known of as GUF-

BUL (Gamma Updating for Bayesians Using LAMARC;

Ruegg et al. 2010).

Our main objective was to estimate h in the North

Atlantic while accounting for the possibility of migration

with the Southern Hemisphere. To this end we used a

2-population migration model in LAMARC on the full

dataset that included nine loci (Table 1). The fact that ice

has blocked the main northern migratory corridor between

the North Pacific and the North Atlantic since the Sang-

amonian Interglacial period (*140,000 years ago) makes

gene flow between the two populations unlikely. However,

to further investigate the possibility that genetic diversity in

the North Atlantic is influenced by migration with the

North Pacific, we ran a LAMARC analysis using a

3-population migration matrix on 6 of the nine loci for

which we had sequence data. h values generated using the

3-population model were compared to values calculated

using the 2-population model for each of the 6 loci.

Calculating census population size from h

The conversion ofh into effective population size (Ne) is based

upon the relationship h = 4Nel where l is the average

mutation rate. To calculate an average l for North Atlantic

Humpback whales, and to estimate uncertainty surrounding

our estimate, we followed the methods described in Ruegg

et al. (2010). In short, we sampled with replacement from

among 9 previously published individual locus mutation rates

for humpback whales; 1 of the individual locus mutation rates

(PLP) was fromAlter et al. (2007), while the remaining 8were

taken fromaBayesian analysis of baleenwhale phylogeny and

fossil history (Jackson et al. 2009). For each re-sampled locus,

a sample mutation rate was drawn from the posterior distri-

bution of the estimated mutation rate or, for PLP, uniformly

from the 95 % confidence intervals on the mutation rate. This

was repeated 9 times for each bootstrap replicate, and we

performed 100,000 bootstrap replicates. The mean l and the

variability around thatmeanwas obtained from these bootstrap

replicates. To convert l from units of mutations per base pair

per year intomutations per base pair per generation requires an

estimate of the generation length. To approximate generation

length we sampled uniformly from within a range of possible

values for NorthAtlantic humpbackwhales of between 12 and

24 years (Chittleborough 1965; Roman and Palumbi 2003;

Taylor et al. 2007).While this lower bound ongeneration time,

taken from Chittleborough’s (1965) estimate, may be low

because of age-estimate inaccuracies, it is similar to the

14.5 year estimate for modern humpback whales from Taylor

et al. (2007).Herewemaintain the12–24 year range inorder to

stay consistent with previous estimates of long-term popula-

tion size in the North Atlantic humpback whale (Roman and

Palumbi 2003), and discuss the implications of different gen-

eration times on estimates of Ne.

To convert Ne to census population size (Nc) requires an

estimate of the ratio of mature adults to the effective number

of adults (Nmature/Ne) and the proportion of juveniles in the

population. Although Nmature/Ne is difficult to calculate in

most natural populations, theory suggests this ratio approa-

ches 2 in most populations with constant size (Nunney and

Elam 1994). We based our estimate of Nmature/Ne on equa-

tion (1) in Nunney and Elam (1994): Ne = N/(2-T-1),

where T = generation length. To approximate juvenile

abundance we used catch and survey data to calculate (no. of

adults ? juveniles)/(no. adults) (Chittleborough 1965;

Roman and Palumbi 2003). To incorporate uncertainty in

juvenile abundance we sampled uniformly from within a

range of likely values for North Atlantic humpback whales.

Results

Tests for neutrality and equilibrium

Among the 9 nuclear introns, nucleotide diversity averaged

0.0014 (range 0.0002–0.0054), with an average of 5 hap-

lotypes per locus (range 2–11) and an average of 43 sam-

ples from the North Atlantic and 101 samples from the

Southern Hemisphere (Table 1). These values were similar
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to other baleen whale species for which data are available

(gray whales: range 0.0031–0.00016; Alter et al. 2007).

While Tajima’s D for ACT and Fu’s FS for ESD were

significantly different from the simulated null distribution

given p\ 0.05, neither remained significant after Bonfer-

roni correction for multiple comparison (corrected

p = 0.05/18 tests = 0.003). The results of the Tajima’s D

and Fu’s FS tests suggest the loci are evolving in a manner

consistent with neutrality and equilibrium (Table 1).

Population structure

Across the 9 loci, Fst ranged from 0 to 0.36 (SI Table 1),

with 69 % (18 of 26) of the significant pairwise Fst values

being between North Atlantic and Southern Hemisphere

populations, 31 % of the significant comparisons being

between populations in the Southern Hemisphere, and 0 %

coming from comparisons between populations in the

North Atlantic. When the North Atlantic and Southern

Hemisphere populations were grouped into two groups, the

overall Fst across all loci was 0.14. For the multi-locus

analysis of population structure, inspection of the average

log probability of the data (ln [P(X|K)]) and the ad hoc DK
statistic of Evanno et al. (2005) indicated K = 2 was the

most likely number of clusters in the data (SI Fig. 1a and

b). A plot of the average ln [P(X|K)] of each model as a

function of K showed the likelihood increased substantially

with an increase in K from 1 to 2, but increased to a lesser

extent or decreased thereafter (SI Fig. 1a). Similarly, DK
was substantially greater for a K of 2 than for any other

value of K (SI Fig. 1b). The results were the same without

using the location prior (results not shown).

Summary plots of Q, the estimated membership fraction

for each individual, for K = 2 indicated that most individ-

uals from theNorthAtlantic were assigned to cluster 1, while

most individuals from the Southern Hemisphere where

assigned to cluster 2 (Fig. 2). When the data were run with

the location prior for all five populations, the only emergent

multi-locus signal of population structure was between the

North Atlantic and Southern Hemisphere. Without the

location prior, the main signal was also between the North

Atlantic and SouthernHemisphere, but it is clear that the two

groups are connected by some migration.

Estimating genetic diversity (h)

Estimating h in LAMARC using all 9 loci and allowing for

migration between the North Atlantic and Southern Hemi-

sphere resulted in a posterior mean h for the North Atlantic of
0.00096 (95 % CI 0.00048–0.0017; Table 2). From locus to

locus, h ranged from 0.0003 to 0.0026 for the North Atlantic

(Table 2) and from 0.0004 to 0.0031 for the Southern Hemi-

sphere (SI Table 2), presumably reflecting variation among

loci in mutation rate or coalescent history. A comparison

between the two-population migration model (North Atlantic

andSouthernHemisphere) and the three-populationmigration

model (North Atlantic, Southern Hemisphere, and North

Pacific) at the 6 loci forwhichwehad sequencedata confirmed

that h in the NorthAtlanticwas not significantly influenced by
ancientmigrationwith theNorth Pacific (SI Fig. 2).While the

estimates of h from the two-population, 6 locus model (MPE

0.000843, 95 % CI 0.000519–0.003239) were slightly higher

then the estimates from the three-population, 6 locus model

(MPE 0.000747, 95 % CI 0.000495–0.004318) (SI Fig. 2), it

GOM DR BA BR             GA

North Atlantic South Atlantic 

A With Location Prior

B Without Location Prior

Fig. 2 Results of the multi-locus population structure analysis

conducted using STRUCTURE. a Despite using location information

for all five populations, the only emergent multi-locus signal of

population structure is between the North Atlantic and the Southern

Hemisphere populations of humpback whales. b Without the use of a

location prior there is a weak, but consistent multi-locus signal of

population structure between the North Atlantic and the Southern

Hemisphere humpback whales
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is clear that inter-locus variation ismuchgreater than variation

between the two models. Thus, we conclude that the 2-pop-

ulation, 9 locus model adequately captured variation in h
within the NA.

Estimate of census population size from h

Using a mutation rate of 4.40 9 10-10 (95 % CI

3.66 9 10-10–5.29 9 10-10) and a range of generation

lengths from 12 to 24 years we calculated Ne for the North

Atlantic humpback whale to be 31,900 (95 % CI

13,200–66,100). To convert Ne to Nc we estimated juvenile

abundance and variation in reproductive success. We

estimated juvenile abundance or the ratio of total popula-

tion size to total adults to be between 1.6 and 2.0 based

upon survey and catch data for humpbacks (Chittleborough

1965; Roman and Palumbi 2003). Using the ratio of Nma-

ture/Ne of 2 (Nunney and Elam 1994), we multiplied the

product of the two ratios by our estimate of effective

population size for an estimate of census population size of

112,000 individuals (Fig. 3). Bootstrap re-sampling across

the variation in mutation rate, generation lengths, the ratio

of total population size to total adults and from the pos-

terior distribution of effective size yields a 95 % CI for

census size from 45,000 to 235,000.

Discussion

To improve estimates of long-term population size in the

North Atlantic humpback whale, we have addressed rec-

ommendations for larger numbers of genetic loci, a better

perspective on the impact of population structure, greater

confidence in the mutation rate, and a greater focus on the

historical timeframe of genetic population estimates

(Clapham et al. 2005). Our new estimate of long-term

population size of *112,000 individuals (95 % CI

45,000–235,000) is less than half of the previous mtDNA-

based estimate of *240,000 (95 % CI 156,000–401,000)

(Roman and Palumbi 2003), but is very similar to a revised

population number of 150,000 (95 % CI 45,000–180,000)

based on a more accurate estimate of the mutation rate

(Alter and Palumbi 2009). However, the median of our

most recent estimates remains far higher than the highest

pre-whaling abundance estimate based upon catch data

(notional upper limit: 40,000–47,000) (Smith and Pike

2009) and the discrepancy between the estimates warrants

further discussion.

Population structure

Because genetic diversity within populations is strongly

influenced by migration between populations, estimates of

Table 2 Theta values for the North Atlantic estimated using a two

population (NA and SH) migration matrix

Marker h Min Max

ACT 0.0012 0.00024 0.00353

CAT 0.0004 0.00002 0.00223

ESD 0.0011 0.00022 0.00433

FGG 0.0003 0.00001 0.00131

GBA 0.0005 0.00000 0.00323

LAC 0.0005 0.00003 0.00235

PLP* 0.0003 0.00002 0.00150

PTH 0.0018 0.00009 0.00745

RHO 0.0026 0.00019 0.01296

Posterior mean 0.0007 0.0005 0.0043

* Located on the X chromosome
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long-term population size must account for population

structure.

We re-evaluated population structure within the hump-

back whale based upon previous work (Baker et al. 1993;

Valsecchi et al. 1997; Olavarria et al. 2007; Rosenbaum

et al. 2009) and our own multi-locus analysis. Our results

confirm that h in the North Atlantic has not been signifi-

cantly influenced by migration with the North Pacific (SI

Fig. 2), unlike recent reports for Bowhead whales (Alter

et al. 2012). Thus, our main analysis focused upon the

North Atlantic and the Southern Hemisphere. While the

locus-by-locus analysis revealed some signal of sub-pop-

ulation structure within the Southern Hemisphere (SI

Table 1), the results of our within ocean basin multi-locus

analysis indicate a lack of significant population structure

overall, even when a strong prior for the presence of

multiple sub-populations was included (Hubisz et al. 2009)

(Fig. 2a). Overall, both the analysis of the average log

probability of the data and the ad hoc DK statistic indicate

that K = 2 is the most likely number of clusters in the data

(SI Fig. 1). Consistent with previous research (Valsecchi

et al. 1997; Olavarria et al. 2007; Rosenbaum et al. 2009),

our results suggest that humpback whales within each

ocean basin consist of two distinct populations connected

by some migration.

One limitation with our study was the lack of samples

from the eastern North Atlantic where previous research

suggests the existence of a genetically distinct sub-popu-

lation (Valsecchi et al. 1997). It is possible that additional

samples from this region may have increased the number of

distinct clusters found within the North Atlantic. However,

because even small amounts of migration will cause sub-

population Ne and whole population Ne to converge (Wa-

ples 2010; Hudson 1991), the absence of samples from the

eastern North Atlantic sub-population is not likely to have

influenced our estimate of long-term Ne. If, contrary to

previous research, there is no migration between eastern

and western North Atlantic feeding groups, then including

samples from the eastern North Atlantic would increase our

estimate of long-term population size.

Mutation rates

Attaining accurate estimates of mutation rates is a chal-

lenge common to all studies that use genetics to infer past

population process (Ho et al. 2005; Emerson 2007). The

difference between the original mtDNA-based estimate of

*240,000 (Roman and Palumbi 2003), the updated

mtDNA-based estimate of *150,000 (Alter and Palumbi

2009) and our multi-locus estimate of *112,000 individ-

uals highlights the importance of mutation rates to esti-

mates of long-term population size. In their revised

estimate, Alter and Palumbi (2009) recalibrated the control

region mutation rate used in Roman and Palumbi (2003) by

implementing a cytochrome b clock. Their analysis sug-

gested that the previous mutation rate estimate was low by

about two-fold because of multiple substitutions in the

quickly evolving mtDNA control region. When the re-

calibrated control region mutation rate is employed, the

mtDNA-based estimate becomes statistically indistin-

guishable from the multi-locus estimate of long-term

population size.

Here we estimate an average mutation rate across nine

nuclear loci using a phylogenetic reconstruction of the

baleen phylogeny and fossil history (Jackson et al. 2009).

One advantage of our multi-locus nuclear estimate is that

whale nuclear DNA has far less saturation of substitutions

than the mtDNA control region, and thus is far less likely

to be subject to the same rate problems. Furthermore, our

multi-locus approach incorporates uncertainty that results

from random variation in the coalescent history of each

individual locus (Rosenberg and Nordborg 2002). To

adequately reflect the uncertainty in mutation rates in our

final estimate of long-term population size, we bootstrap

resampled across the variation in individual locus mutation

rates. Thus, the multi-locus nuclear estimate that we pres-

ent here should be a more robust approximation of the

long-term Ne than the preceding mtDNA-only estimates.

Generation length

Uncertainty surrounding generation lengths interacts with

mutation rate to determine estimates of long-term popula-

tion size. Here we use a wide estimate of generation length

for humpback whales ranging from 12 to 24 years (Chit-

tleborough 1965; Roman and Palumbi 2003; Taylor et al.

2007) in order to remain consistent with previous estimates

of long-term population size (Roman and Palumbi 2003).

However, generation time in whales remains uncertain.

Our lower bound of 12 years taken from Chittleborough

(1965) is based on female age-size estimates from baleen

condition, earplug layers and ovarian cycles. While Chit-

tleborough (1965) provides the most extensive empirical

data from which to estimate generation length in humpback

whales, his estimates suffer from questions about age

estimation (Gabriele et al. 2009; Best 2011) and whether

older animals had already been culled (both of which

would decrease estimates of generation length).

Taylor et al. (2007) estimated generation length for 58

cetacean species, including humpback whales, using

mathematical models based on age at first reproduction and

survival. They used an annual adult survival of 96 % and a

first breeding age of 6 years to estimate a current genera-

tion time of 14.5 years and a stable pre-exploitation gen-

eration time of 21.5 years. While both of these estimates

fall within our wide range on generation time, the
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similarity between the current generation time of

14.5 years and the Chittleborough (1965) estimate of

12 years further highlights how exploitation may skew age

patterns towards younger individuals. Furthermore, the

absence of empirical data makes model-based estimates

such as these especially sensitive to underlying assump-

tions. Better estimates should come from age distributions

of real, unexploited populations, but such data is not

readily available.

A longer estimate of humpback whale generation length

would decrease our estimate of long-term population size

(because the mutation rate per generation would increase).

For example, if we use the estimate of 21.5 years taken

from Taylor et al. (2007) we would decrease our estimate

of population size to *90,000, bringing it closer to catch

based estimates of pre-whaling abundance. If we use the

full range of generation times estimated through models

by Taylor et al. (2007) for Baleanopterid whales

(18–31 years), our mean estimate of long term population

size would be*81,000 whales (95 % CI 34,000–163,000).

These results highlight the sensitivity of genetic estimates

of long-term population size to estimates of generation

length. However, generation time would need to be much

longer than suggested by previous estimates (in excess of

64 years) in order to bring our genetic estimate of long-

term population size down as low as 30,000 whales (see

also Roman and Palumbi 2003). If whale generation times

were actually this long, it would have far reaching impli-

cations beyond the estimation of long-term population size.

Differences in time scales

Differences been genetic and catch-based estimates of past

population size may arise from the fact that genetic esti-

mates represent an average population size over evolu-

tionary timescales, while catch-based estimates of past

population size are calculated over more recent timescales.

Long-term estimates of population size based on genetic

data represent the weighted harmonic mean of population

size over 4Ne generations (e.g., up to 4,000 generations if

Ne = 1,000), but with greater weight on more recent time

scales (Beerli 2009). Therefore it is possible that just prior

to whaling, humpback whales were less abundant than their

long-term average population size. This explanation would

also need to be true of gray whales in the North Pacific

(Alter and Palumbi 2009) but not minke whales in the

Antarctic (Ruegg et al. 2010).

In the future, it will be important to investigate more

fully how past environmental variation may have influenced

long-term population size in whales and whether environ-

mental conditions just prior to whaling would have sup-

ported a population at, above, or below the long-term

average abundance. This information may be especially

helpful in predicting the effect of climate change on whale

populations. If, for example, whale populations were gen-

erally higher during glacial maxima and lower during gla-

cial minimum, then as the global oceans warm and ice

melts, there may be a long-term decline in whale abun-

dance. Such long-term data would be particularly useful in

assessments of current and future whale conservation status.

Comparison between catch-based and genetic-based

estimates of pre-whaling abundance

There has been substantial controversy surrounding the

difference between genetic and catch-based estimates of

pre-whaling abundance (Lubick 2003; Holt and Mitchell

2004; Clapham et al. 2005). In order to determine whether

or not inaccuracies in the catch record lead to an under-

estimate of the number of whales before whaling, Smith

and Reeves (2010) combined previously-used sources of

information with additional data from archives to fill some

gaps in our understanding of North Atlantic humpback

whale removals. The results of their reanalysis indicate a

new overall estimate of total removals that is only 6 %

higher than that used previously by the IWC Scientific

Committee (30,852, SE = 655). Thus, despite a reanalysis

on both sides, our multi-locus estimate of average long-

term population size remains higher than the pre-whaling

estimate of abundance based upon catch records.

One approach to resolving these discrepancies has been

population modeling (Baker and Clapham 2004). Here,

historical catches, current information about reproductive

rates and modern population estimates are joined together in

an analytical framework that might be able to reconcile

divergent views about past populations. However, popula-

tion modeling performed by Punt et al. (2006) for the North

Atlantic humpback shows a poor ability to explain past

population crashes and current population growth. The

problem stems from the fact that North Atlantic humpback

whale populations can grow so quickly [6–7 % per year

(Zerbini et al. 2010), that their past populations should not

have collapsed at the estimated hunting rates. For example, if

North Atlantic humpback whales had an original population

size of 30,000 animals, and a 6–7 % annual reproductive rate

at maximum sustainable yield of 64 % of the original pop-

ulation size (19,200 animals), then the population as a whole

should have sustained a hunt of 1,152 animals a year indef-

initely. Yet, data from Smith and Reeves (2010), Fig. 1 show

that there has never been a recorded catch of North Atlantic

humpback whales that is this high: there were only two

periods of time of a few years each when the total taken was

above 400 animals per year. Even though the above estimate

of sustainable yield is very crude, it demonstrates the large

discrepancy between the catch record and the reproductive

capacity of North Atlantic whale populations.
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There are several possible explanations for these dis-

crepancies between hunting and population growth. One

alternative is that the carrying capacity of the ocean to

support Atlantic humpback whales might have increased

2–3 fold during the 20th century (an assumption that has

not yet been supported by data or theory), and that the

maximum reproductive rate of humpback whales in the

19th century was extremely low (Punt et al. 2006). Alter-

natively, the models would be improved if catch rates were

about twice as high as suggested by Smith and Reeves

(2010). Given a higher rate of catch (about 43,000–69,000

over the course of the hunt instead of 29,000, (Punt et al.

2006, Table 1), the carrying capacity of humpback whales

in the North Atlantic is estimated to be about 72,000

–117,000 (Punt et al. 2006, Table 7). In general, for the

‘alternate baseline’ scenario that Punt et al. (2006) favor,

models that suggest higher original estimates fit the data

better (e.g. the negative log-likelihood values (-lnL) are

closer to zero, (Punt et al. 2006, Table 6). These factors

suggest that a larger historical number of humpback whales

in the North Atlantic would better fit the catch data, the

mathematical models and the genetic data.

The summary of these various threads of evidence is that

estimates of historical abundance ofNorthAtlantic humpback

whales fromcatch and genetic data are converging, but remain

about 2–3 fold apart. Older casual catch-based estimates of

original population size from before 1990 (10,000–20,000)

have been superseded by population models allowing for

enhanced catch rates (20,000–46,000, Punt et al. 2006). The

single locus mtDNA only genetic estimate moved from

240,000 to 150,000, after correcting for mutation rate and the

addition of multiple nuclear loci resulted in an estimate of

*112,000 (95 % CI 45,000–235,000). Further declines are

possible if whale reproductive life times are vastly higher than

currently supposed. Regardless of the generation length

employed, the lower 95 % confidence limits on multi-locus

estimates of long-term population size are nowmuch closer to

the range of the population models. Further closure of these

differences may depend on population trajectories of whales

during climate cycles, the development of population models

that correctly reflect past population trajectories, and an

enhanced view of whale generation times.
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