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1) Introduction

This report summarizes the results of surveys of two proposed sites
for a Florida Ocean Thermal Energy Conversion (FOTEC) plant near Key
West.- Both sites are located in the Straits of Florida as seen on the
locator map in figure 14 in section 3 on data. OTEC plants extract
energy and/or fresh water from the vertical temperature gradient between
the warm surface water and the cold water below the thermocline in the
ocean. While the source of energy in the form of solar heating of the
oceans surface waters is virtually inexhaustible and free of charge,
very large heat exchangers and structures are required for acceptable
efficiencies of operation. - Careful environmental and engineering
studies are required to insure long life and low maintenance of these
large capital investments, Of particular interest to<ﬁhe design
engineers are the thermal resources upon which the plant feeds and the
current induced‘forces the structure must withstand., These issues are
both addressed in this report.

Three sources of information are used to focus on the temperature
and current structure at these sites. The first source of information
is historical data collected on past cruises by various investigators
and institutions. These data were collected over larger space and time
scales and thus expand our knowledge. Dr. Thomas iee of the University
of Miami (RSMAS) functioned as a consultant to this project to.examine

the historical data which might be applicable to these sites.

Second, direct measurements made in the course of this contract of
temperature and current structure. These data were collected on the R/V

Bellows during the period from February 15, 1983 to February 27, 1983,
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Capt. Gene Olson and Marine Technician Albert Rodriguez of Florida
Institute of Oceanography (FIO) at the University of South Florida were
particularly helpful in anchoring the ship in 700-800 meter water depths
and careful data acquisition respectively. Marine Technician .Mark
Graham and Graduate Student Jiann-Gwo Jiing at the University of Miami
(RSMAS) both worked effectively preparing the profiler plus acquiring
data and analyzing and plotting the data respectively. The final
source of information was reﬁotely sensed surface temperature p?ovided
by NOAA Miami SFSS. These data give some idea about the context in
which the in-situ data were fecorded.

Owing to limitations in time and funding, the data and
interpretation presented here will not be sufficient for final
engineering analysis. However these da;a will be required for
feasibility studies and for the design of a definitive study. Clearly,
data gathered during weather windows in a two week period during the
winter of one year will not define current and temperature variability
in great enough detail. Since none have ventured into the edge of the
Gulf Stream-to record data at the peak of a winter storm much less a
hurricane, we have little direct evidence of current magnitudes and wave
induced forces to be expected at the proposed sites under extremg storm
conditions. Qe cahihéwevervrec&mmeﬁd‘methods of.acquiring such data

using new radar and acoustic remote sensing techniques which allow the

estimation of both wave and current conditions.
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2) Background on the Florida Current

The Florida Current is a highly variable, dynamic current system
flowing through the Florida Straits from the Yucatan Channel to Cape
Hatteras, The mean downstream flow is in approximate geostrophic
balance with cross-stream pressure gradients over a largé portion of the
current structure {Wust, 1924). However, within the cyclonic shear zone
ageostrophic conditions <can prevail (Brooks and Niiler, 1977).
RicHardson, Schmitz and Niiler (1969) measured the velocity structure
and volume transport of the Florida Current with 7 dropsonde sections
between the Florida Keys and Cape Fear (Figs. 1 and 2). Downstream
velocities were strongly sheared in the vertical and horizontal with a
baroclinic jet located in the western side of the Straits. Volume

transport were northward and increased from a minimum of 29.6 x ].06m3s-1

off the Florida Keys near Marathon, FL., to a maximum of 53.0 x 106m3s"1
off Cape Fear. The Marathon section (section I of Fig. 2) was located
very near the proposed FOTEC sites and will serve as useful data for
comparison with site specific measurements. This average downstream
velocity section was derived from 9 dropsonde transects between June 13
~ July 4, 1966. The averaging tends to smooth out the velocity
structure, making the upper layer high speed core of 140 cm s-l broader
than what actually occurred on any single transect.

| Between May 3 and June 8, 1972 Brooks and Niiler (1975) made 16
dropsonde and CTD transects across the Florida Current along the 81%4' W
meridian between Key West and Matanzas, Cuba. This section is located

approximately 60 km upstream of the proposed FOTEC sites.

Ensemble-averaged profiles of the downstream velocity (u), cross-stream
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velocity (v), temperature and salinity from Station 9 of these
transects, is shown in Fig. 3. Station 9 was located at approximately
the same isobaths as the proposed FOTEC sites. , These data show the
large variability of currents at this site. Current speeds ranged from
about 20 to 170 cm s-1 in the upper layer during the one month
experiment. However, temperature variations were much smaller. Surface
temperature ranged from about 25°C to 28°C and near bottom temperatures
were nearly comnstant at about SOC, giving . é vertical temperature
difference from the surface to 800 m of 20 to 23°C. The mean downstream
velocity field is shown in Fig. 4., The magnitude and pattern of the
eastward flow is similar to the Richardson et al., (1969) section at
Marathon (Fig. 2, se;tiop I). However, off Key West a westward mean
flow of 20 cm s-1 was observed on the northern side of the straits.
This counterflow was found on 13 out of the 16 transects with current
speeds Teaching 80 cm s“1 toward the west. Similar features have been
observed all aloﬁg the western boundary of the Florida Current between
Miami and Cape Hatteras and have been described as northward traveling
cold cyclonic eddies (Lee, 1975; Lee aﬂa Mayer, 1977; Lee, Atkinson and
Legeckis, 1981; Lee and Atkinson, 1983). These eddies form 1in
conjunction with offshore meanders of the Florida Current on a weékly
time scale and their pagsage by a prospective FOTEC plant would produce
a current reversal and upwelling of cold deeper Florida Current water.
Chew (1974) observed an offshore meander of tﬂe Florida Current in the
vicinity of the proposed FOTEC sites (Fig. 5). Strong upwglling is
indicated north of the offshore meander by the upliftéd isotherms (Figs,

5 and 6). The domed isotherms and topography of the 15°c surface are
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Fig. S.

Depth (m) contour of the 15C surface with drogue tracks
superposed, August 1971 (from Chew, 1974).
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both indicative of the presence of a cold cyclonic eddy north of the

offshore meander.

Niiler and Richardson (1973) have estimated the mean transport off
Miami at 32.0 x 106m3s-1 with emergetic fluctuations occurring on
seasonal, 2-15 day and tidal time scales. Their data were reported as
transport time series and shown in Fig. 7. They concluded that there
was little energy between the 15 day and seasonal periods. The total

fluctuation bound was about 19 x 10611135-1 with a maximum of 38.2 x

106m35-l in summer and a minimum of 19.0 x 106m33-1 in winter. Seasonal

357t and accounted for about

variations were on the order of +3 x 106m s
43% of the observed variability. Fluctuations within the 2-15 day
éeriod band also had amplitudes of +3 to 4 x 106m3s-1 and appear to
produce 40 to 50% of the total v#riance. Tidal fluctuations occurred
with both diurnal and semi-diurnal periods, again with amplitudes of +3

to 4 x 106m35-1 and accounted for 10-20% of the variability (Schmitz and

Richardson, 1968; Brooks, 1979).

Low~frequency Variability

(a) Current Profiling Results

Fluctuations of the Florida Current in the 2-15 day period range
wefe observed by Pillsbﬁry (1891) and later by Parr (1937). Schmitz and "
Richardson kl968) reported east-west meanders of the Florida Current
occurring on a one-week scale with amplitudes of about 5 km. D¥ing
(1975) analyzed 2 weeks of current profiles sampled from 4 ships
anchored off Miami apd noted a barotropic current meander with a 4 to 6

day time scale (Fig. 8). Comparison of the ship measured transport data
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with transport estimated from the electrical potential on a submarine
cable off Jupiter, FL., indicated that the several day "meander" was
produced by a wave traveling to the morth at 47 cm s-l and wave length
of 200 km. DWing described 2 cases for meanders: deep southward flow
appeared to occur over the Miami Terrace during an offshore meander
(current axis displaced to the east) and deep northward flow occurred
over the Terrace during an onshore meaﬁder stage (axis displaced to the
west). In general it appeared that flow variations on the cyclonic
shear side of the axis wére ;bout 180° out of phase with the
anticyclonic side.

More recently Brooks (1979) found similar results from detailed
dropsonde transects of the Florida Current off Miami over an 83 day
period in the summer of 1974 (Fig. 9). Transport fluctuations with
periods of 2-14 days were highly coherent and in phase at stations in
the cyclonic shear region as were stations in the anticyclonic region,
but the two regions were about 180° out of phase, Brooks also found
fluctuations in the total transport that were visually coherent and in
phase with the variations on the anticyclonic side. During the
experiment the current axis mééndered a total distance of approximately
24 km, An offshore (onshore) meander was associated with a transport
increase (decrease)' on. the eastern side of the current, a transport
decrease (increase) on the western side and an increase (decrease) of
total trénsport.

(b) Moored Current Meter Stations
Current records from an array of near bottom current meters (Fig.

10) spanning the Florida Straits at the same location and time as the
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Brooks dropsonde measurements showed energetic fluctuations of the
downstream component with well-defined spectral peaks at periods of 9 to
12 days that were coherent across the entire Florida Straits (Dling,
Mooers and Lee, 1977). The downstream coherence scale of these
fluctuations was estimated at 55 km from a current meter array along the
continental slope (Lee, Brooks and DWing, 1977).

Current spectra from the Florida Straits gemerally show a decrease
of energy toward the very low frequencies (DWing et al., 1977) which
appears to be typical of continental shelves (Niiler, 1976) and in
contrast to spectra from the deep ocean (e.g., from side D; Thompson,
1971). The most energetic motioms in the Florida Current appear to
occur with periods of 8 to 12 days, with smaller but still ;ignificant
fluctuations occurring at periods of 4 to 5 and 2 to 3 days (Dliing et
al., 1977; Mooers and Brooks, 1977; Brooks, 1979).

(¢) Interpretation of Low-frequency Fluctuations

In the open ocean subinertial motions are largely governed by
planetary Rossby wave., Along continental margins and in Straits
topographic Rossby waves or continental shelf waves (CSW's) can occur
which have a higher-frequency cut-off than do open ocean Rossby waves.
Brooks (1975) investigated stable barotropic CSW's in the Florida
Strait; usiné a ;ealistic bottom profile withba 5aroclinié, horizontally
sheared steady current. The lowest mode wave properties appeared to
agree with observations reasonably well, i.e., periods of410-12 days,
wave length of 200 km and southward propagation of 20 cm s-l. Schott
and DUing (1976) found that a barotropic CSW with similar wave

properties produced the best fit to current observations from an
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along-axis array of lower layer moorings. Approximately 70% of the
observed variance could be attributed to the barotropic mode. Similar
results were found by Mooers and Brooks (1977) and DUing (1975).
Continental shelf wave theory predicts a 180° cross-stream phase
difference between currents on the shallow Miami Terrace and the deep
region of the Florida Straits, which was observed by Dling et al.,
(1977) and Brooks (1979). In the presence of the horizontally sheared
Florida Current northward propagating CSW's are also possible (Brooks,
1975; Niiler and Mysak, 1971). The most probably generating mechanism
for CSW's is usually attributed to Ekman suction due to wind stress curl
over the Straits (Brooks, 1975; Schott and DHing, 1976; DlUing et al.,
1977). Significgnt'coherencg washfpund”by Dﬁing‘et al., (}977) between
tﬁe downstream flow and wind stress curl in the 10 to 13 day period
band, with the curl being nearly in quadrature with the downstream
current.

Niiler and Mysak (1971) found that un;table barotropic waves could
exist in the Florida Current in the vicinity of the Blake- Plateau.
These waves propagated northward at a period of about 10 days and wave
lengths of 150 to 200 km. Schott and Diing (1976) reported that
rescalipg the Niiler apd'Mysgk dispersiop relatiPn for topography and
cur-renf: conditions iﬂ £he Florida St}'aits indicated only stable waves
with lengths of 100 km for the 10 day period.

(d) Observations of Eddies

On the western side of the Florida Straits, Lee (1975) and Lee and

Mayer (1977) have observed cyclonic, cold-core eddies embedded in the

Florida Current front. The eddies occur during periods of offshore



Page 9

meanders and have horizontal dimensions equivalent to the meander (10's
of kms). They propagate to the mnorth at the same phase speed as the
meander (30 to 70 cm s-l) and appear to grow as the meander develops.

They occur on the average of about 1 per week and have life spans of

about 1 to 3 weeks. Satellite I.R. images (Legickis, 1975; Stumpf and
Rao, 1975) suggest that the eddies evolve from growing Florida Current
meanders. Similar eddies have been observed along the Loop Current
cyclonic front in the Gulf of Mexico (Maul, 1977) and north of the
Florida Straits (lLee et al., 1981; Lee and Atkinson, 1983). Evidence
for the occurrence of these features in the vicinity of the proposed
FOTEC plant is given in Figs. 4, 5 and 6.
(e) Speculation Concerning Generation of the Low-frequency Fluctuations
Lf the apparent meteorological influences are more than
coincidental, then the Florida Current may be viewed as one large system
where disturbances generated by the winds in the band of 2 to 15 day
period can propagate either morth or south a}ong the Straits because of
the sheared current. Wave speeds in the upper layer range from 30 to 70
cm s-1 to the morth and wave lengths are 100 to 200 km. The most
energetic waves occur in the 8 to 12 day period band. Downstream
velocities seem to be coherent in the lower layer across the entire
Florida Straits im this period baﬁd and downstream cohereuce scales are
about 50 to 100 km, Offshore meanders are associated with the formation
of cyclohic, cold-core frontal eddies, deep flow reversals, decreased
transports on the cyclonic side of the current, increased transport on
the anticyclonic side, and increased total transport. Onshore meanders

are accompanied by increased northward transport in the cyclonic zome,
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decreased transport in the anticyclonic zome and decreased total
transport. Growing meanders of this type appear to derive their energy
from the potential energy of the mean Florida Current then convert the.
energy back to the mean state through transfer of perturbation kinetic
energy, with no substantial net energy conversion on the cross-sectional
average. This internal energy readjustment appears to Be more active
within the cyclonic shear zone and couyld be connected to a baroclinic
instability process. Fluctuations. of this type have a significant
impact on fluxes of mass, heat and momentum through the Florida Straits

and to the adjacent water masses.

Tidal Variability

Current and tramsport fluctuations in the tidal/inmertial period
band account for approximately 10 to 20% of the observed total
variability (Schmitz and Richardson, 1968; Kielman and Dling, 1974;
Mooers and Brooks, 1977; Brooks, 1979). Both diurnal (Kl, 01) and

semi-diurnal (M SZ) periods occur and produce transport fluctuations

22
with amplitudes of +3 to 4 x 106m3s_1. Smith, Zetler.and Broida (1969)
and Zetler and Hansen (1970) hypothesized that since tidal sea level
variations in the Florida Straits were primarily. semi-diurnal then the
observed diurnal component of the flow is produced by a standing wave
with a node near Miami., -Amplitudes of the.K1 and 01 components of
downstream currents or transport were found to be greater than or equal

to the M, component (Schmitz and Richardson, 1968; Smith et al., 1969;

2
Kielman and DUing, 1974; Brooks, 1979). Energy spectra of downstream

(v) and cross-stream (u) velocity components from the lower layer over
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the Miami Terrace clearly show larger variance for the diurnal
fluctuations (Fig. 11, from Kielman and Diing, 1974). The 0,
constituent was largest for the v component and Kl was greatest u tidal
constituent. The downstream component accounted for about 25% of the
total variance and 6% for the cross-stream component. The harmonic

0 M, and S, computed from

constants (amplitude and phase for K R )

1?
surface current speed records {Smith et al., 1969) were found to agree
well with those computed for lower layer currents by Kielman and Dling,
indicating a strong barotropic structure to the tides. Spectra of the
"detailed" velocity components, i.e., after subtracting the tidal
components determined by harmonic analysis (Fig. 1l1) show a considerable
reduction (by almost an order of magnitude) in the dovnstream component
both at diurnal-inertial and semi-diurnal periods. Brooks (1979) used a
Munk/Cartwright technique to remove the tidal signal from station
transport data and found little effect. However, the small changes at
each station accumulated to produce a large effect on the total
trangport through the section. Brooks reported that the semi-diurnal
and diurnal tides accounted for about 207 of the total variance. The
diurnal component produced most of the tidal variance over the Miami
Terrace and near the Bahama Bank and the semi-diurnal component had a
larger effect in the‘inﬁerior of the Current. The phase of the diurnal
component was relatively constant between Miami and the Bahamas, again
indicating a standing wave with a node mear Miami.

Mooers and Brooks (1977) analyzed thermistor arrays and tide gauge
records from sides of the Florida Current. They found appreciable

diurnal and semi-diurnal internal tidal emergy that was as large as the
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surface tides. The diurnal internal tide was dominant. Near-inertial
motions were apparent at depths at the effective inertial frequency
which varied as a function of horizontal shear (20 hours near Miami and
35 hours nearvBimini). They found that low-frequency fluctuations can
modulate all near-inertial motioms including diurnal and semi-diurnal
internal tides causing time-varying amplitudes. The modulation time
scale was monthly and longer for the diurnal internal tides and
fortnightly and longer for the semi-diurmal internal tides. Mooers and
Brooks also foundvthat the cross-channel phase of the diurmal and
semi-diurnal internal tides indicated that internal seiches could exist

in the Florida Straits at these periods.

Loog Current

Circulation in the eastern Gulf of Mexico is dominated by the Loop
Current, the portion of the Gulf Stream which connects the Yucatan
Current to the Florida Current (Cochrane, 1972; Nowlin and Hubertz,
1972). 1Its water originates im the North Atlantic Equatorial Zone and
is transported to the area via the Caribbean Sea and the Straits of
Yucatan. After penetrating the Gulf, the current pattern arcs
anticyclonically (clockwise) to the east and southeast, forming a
current "Loop" which subsequently exits through the Florida Straits.
The western and eastern boundaries of the Loop are fixed by topography
of the basin (eastern Gulf)(Cochrane, 1972).

In the Loop, interior flow is also anticyclonic. The flow pattern
is elongated along an axis parallel to the shelf regions on either side

and centered over the deep basin (Cochrane, 1972). Some portion of the
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southern Loop flow may exit back through the Straits of Yucatan rather
than the Florida Straits (Nowlin, 1971). This portion varies, depending
upon the degree of arc¢ in the Loop pattern, or as a lower layer return
flow (Maul, 1977).

The Loop Current influences flow to a depth of greater than 1000 m
(Nowlin, 1971). As would be expected, current velocities decrease with
increasing depth from a maximum of about 100 cm s-l at the surface,

Numerous estimates of transport in the Loop Current have been made
38-1

using various techniques. An average value of 30 x 106m has been

determined by Nowlin and Hubertz (1972), Nowlin and McLellan (1969),
Schmitz and Richardson (1968), and Morrison and Nowlin (1977), although
their reference levels are not necessarily directly. analogous, Values
for inflow and outflow of 22.3 and 21.4 x 1()6m3$-1 were determined by
Molinari and Yager (1977) and Brooks and Niiler (1975), respectively.

Studies of the Loop Current have shown that it is a highly
variable, complex system. A comparison of the extent of the northward
intrusion of the Loop as observed by different investigators indicates
that the spatial extremes of 1) direct flow from the Yucatan Straits to
the Florida Straits and 2) intrusion of the Loop as far north as 28.5°
are both relatively common.

Leipper (1967,‘1970) proposed an annual cycle of growth and decay
of the Loop Current, beginning with the formation of a small Loop near
Cuba in January-February and subsequent growth into the Gulf through
August., He termed the sequence the "spring intrusion”, The decay phase

follows with a general weakening of the -Loop and splitting of the flow,

either in detached eddies, current rings, or extension to the west.
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Maul, 1977). '
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Maul (1977) studied the annual cycle of the Loop Current between
August, 1972 and September, 1973, and concluded that, although the
pattern is cyclic, year-to-year variability is significant and that the
"intrusion” (Leipper, 1970) is not necessarily a spring phenomenon.
Fig. 12 shows the path lines of the 22°C isotherm determined in his
work. They demonstrate a maximum intrusion to 28%5'N in August, 1973
and a minimum to-24°15'N in December, 1972. As the Loop penetrated
deeper into the Gulf, it also moved further to the west (Maul, 1977).

Growth of the Loop in the Gulf is believed to result from an excess
of inflow through the Yucatan Straits over outflow through Florida
Straits (Leipper, 1967; Maul, 1977). Maul (1977) calculated that a net
flow increase of 4 x 106m3si1 was required to induce growtﬁi The flow
increase through the Yucatan area may be associated with seasonal
increase in transport of the Florida Current.

The detachment of large, anticyclonic eddies from the Loop Current
is well documented {(Nowlin, Hubertz and uReid, 1968; Leipper, 1970;
Leipper, Cochrane and Hewitt, 1972; Morrison and Nowlin, 1977; Cochrane,
1972). These features éxhibif a range of surface current speeds up to a
maximum comparable to that observed within the main lLoop Current (about
100 cm s-l). The formation of these eddies is believed to occur om an
average of once per'year,-norhally followingithe intrusion of ﬁhe Léop
north into the Gulf, Hurlburt and Thompson (1982) used numerical model

experiments to show that the quasi-annual eddy shedding period could be
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of interior Florida is classified as wet subtropical because the impact

of the warm Florida Current is less significant. The mean annual air

temperature near the Straits is 23.9°C, with July~August  the hottestv
months {average high of 29.2°C) and December-January the coldest

(average low of 15.8°¢).

An upper air trough centered over south Florida gives rise to a
rainy season during the months of June and September. The wet season
abates somewhat in July and August because the trough moves west out
over the Gulf of Mexico during that period. It returns by September,
The entire rainy season may span May through November. January and
February are the driest months. AQerage annual rainfall is
approximately 160 cm.

South Florida lies at the northern end of the trade wind belt
(easterlies) throughout most of the year. Resultant summer winds are
commonly out of the southeast. In the winter, the easterly trades are
interrupted by the transient occurrence of cold fronts on time scales of
about one week (Fernandez-Partagas and Mooers, 1976). During a cold
front, winds cycle in a clockwise direction and intensify to 10 m s“1 or
more. Diurnal variations of the trade winds are common, especially in

summer; winds often become light and variable at nightfall.

Hurricanes

Tropical cyclones occasionally affect the Florida Straits region.

4

Similar to Pacific typhoons, Atlantic hurricanes occur seasonally,
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generally between Jume and November. Most hurricanes originate as a
tropical disturbance in the equatorial Atlantic, attaining hurricane
strength in the Atlantic Caribbean or Gulf of Mexico.

South Florida coasts are affected by hurricanes more often than any
other equal-sized area of the United States (see Gentry, 1974). Based
on data for the past 100 years, the probability that hurricames with
winds greater than 119 kph will hit the Miami-Ft. Lauderdale coastline
is 15% per year; the probability of a great hurricane (>201 kph) is 7%
per year. September and October are the most active months, 627% of all
hurricanes occurring then. The south Florida area has averaged about
one hurricane every two years for the period since 1885.

Hurricane winds are capable of producing extremely large.waves. As
an example, a 15.24 m, 10 second period wave was recorded at 27001'N,

79°51'W (off Hollywood, FL.) in 317 m of water during Hurricane Betsey

in 1965.
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3) Current and Temperature Profile Data

A total of 28 profiles of temperature, current speed and direction
were recorded during three anchor stations I, II and III which each last
approximately 24 hours(see locator map Fig. 14), From the historical
data (see section 2) it is well known that considerable current
variability exists at the diurnal and semidiurnal tidal periods. By
recording over a 24 hour period we can estimate the slowly varying mean
current profile and its standard deviation. The times of each profile
and wind data are shown in figure 15.

Current profiles were recorded using a FB~II1 profiling hull with an
Aanderaa current meter as described by DUing amnd Johnson (1972). The
R/V Bellows was first anchored at each proposed OTEC site iﬁ 700 to 800
meters of water respectively using a scope of about 2 to 1 with a large
Danforth type anchor, 100 feet of 3/4" chain and 1/2 trawl wire deployed
over a bow roller. Once Loran C fixes showed a steady position, the
hydro wire was lowered over the "A frame" on the starboard side with a
500 pound weight to minimize wire angle. This Qeight was then lowered
to within 10 to 30 meters of the bottom, Finally the profiler was
attached to the wire by means of its roller and permitted to free fall
down the hydro wire until it encountered the bottom stop. Ballasting
and horizontal trim of . the pfofiler was checked in a tank a£ RSMAS and
monitored using the Precision Depth Recorder (PDR). When the PDR trace
confirmed that the profiler had arrived at the bottom, the hydro wire
was winched in until the profiler was once again at the surface. A line
secured the profiler at the surface while the weight was lowered to the

bottom ready for the next profile to begin. Figure 16 from DUing and
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2. INSTRUMENT AND METHODS

Principle. Figure 1 shows the principle of the profiling method. The profiler (Fig. 2) consists of a
welf-contained Aanderaa current meter (AANDERAA, 1964; DanL, 1969) attached to a cylindrical hull.
The density of the instrument package is slightly greater than that of the surrounding water. The
Savonius rotor extends out from the bottom side of the cylindrical hull when it is in its horizontal
working position. The entire package is attached by a roller to a taut wire suspanded beneath the
anchored ship and allowed to descend slowly through the entire water column,

AANDERAA RECORDER: T,S.p.V
PVC HOUSING
GLASS SPHERES FOR FLOTATION

TRIM BAR s
ROLLER O
©

00086

J:c"

Fig. 1. Principle of current profiling method used in the Florida Current.

Figure 16: Principle of current profiling method used
in the Florida Current (from Duing and
Johnson, 1972).



Page 20

a) Mean Current Profiles

The mean current profiles for the three anchor stations as seen in
figures I-M, II-M, III-M are remarkably similar to each other in the
upper 100 meters. Here velocities were about 75 cm per sec toward the
East with a Northerly component of 10-15 cm s-l. At 100 meters there
was a distinct break in the velocity which coincided with a break in the
temperature profile from a relic mixed layer structure with modest
stratification to the top of a strong thermocline. Below 100 meters
both velocity components decreased toward smaller velocities being about
a half of the surface amplitude at 200 meters with a more gradual
decrease toward + 5 cm s“l near the bottom.

b) Standard Deviations from the Mean Velocity Profiles

The standard deviations of the individual profiles from the one day
average profiles as seen in figures I-SD, I1I-SD, III-SD show their
largest values near the surface, Typical values near the surface are 15
cm sn1 while values below 200 meters are order 5 cm s-l. The extreme
value occurred at Station 2 at the surface of about 40 cm s-1 as a
reversal of the vélocity deviation near the end of the record with peak
velocities over 150 cm s_l. These strong short lived velocities may
represent a transient response of the surface layers to westerly wind
forcing.

c¢)  Mean Temperature Profiles

Mean temperature profiles are also seen in Fig. I-M, II-M, and
ITI-M., Near bottom temperatures stayed in a narrow range near 7°C while
near surface temperatures varied in a range of 23 iloc,. Most of the

o v
near surface temperatures were nearer 24 C so that a mean temperature
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difference on all three anchor stations was near 17°C. February is
usually near the minimum temperature for the year so this should
represent a worst case. In the upper 100 meters there is some evidence
of step structure in the mean temperature profiles while below this
depth a smooth monitonically decreasing temperature is seen. Although
in winter there may be a local subsurface temperature maximum stabilized
by correspondingly higher tropical salinities. Individual profiles show
numerous local inversions of this type on the 10-50 meter vertical
scale., However, no such inversions were observed in the mean profiler,

3.4) Standard Deviations about the Mean Temperature Profiles

‘As expected the largest standard deviations from the mean
temperature profiles occurred where the vertical temperature gradient
was largest. For the lower portions of the profile the standard
deviations were less than a tenth of a degree C, However, near the

surface typical values increased to .5°C with extreme values of 1,5°C.
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& -%wd) Mean Current Profiles

The mean current profiles for the three anchor stations as seen in
figures I-M, II-M, III-M are remarkably similar to each other in the
upper 100 meters., Here velocities were about 75 cm per sec toward the
East with a Northerly component of 10-15 cm s-l. At 100 meters there
was a distinct break in the velocity wﬁich coincided with a break in the
temperature profilé from a. relic mixed layer structure with modes?
stratification to the top of a strong thermocline, :Beiow 100 metet;
both velocity components decreased toward smaller velocities being about
a half of the surface amplitude at 200 meters with a more gradual

e

decrease toward + 5 cm s™! near the bottom,

L i%%) Standard Deviations from the Mean Velocity Profiles

=

%) Mean Temperature Profiles

The standard deviations of the individual profiles from the one day
average profiles as seen in figures I-SD, II-SD, III-SD show their
largest values near the surface, Typical values near the surface are 15
em s 1 while values below 200 meters are order 5 cm s-l. jThe extreme
value occurred at Statlon 2 at the surface of about 40 ;m s-l as 5
reversal of the veiocity deviation near the end of thelrecérd with peak
velocities over iSO'ém's-Fg-'Tﬂesé stfong short iivea veiéciiies.mayu
represent a transient response of the surface layers to wésterly wind

forcing.

—_

Mean temperature profiles are also seen in Fig. I-M, II-M, and

III-M. Near bottom temperatures stayed in a narrow range near 7°C while
°

near surface temperatures varied in a raunge of 23 +1 C. Most of the

[s] .
near surface temperatures were nearer 24 C so that a mean temperature
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4)  Temperature Section Data

Before or after each profile anchor station, a temperature section
was recorded which passed through the approximate location of the anchor
station as. seen in Fig. 17 and were roughly normal to the bathymetric
contours. These sections give some idea about context in which the
anchor station was occupied and make it possible to relate the anchor
station data to both historic data and. remotely sensed surface
temperature data.

The temperature data were observed using Expendable.
Bathythermograph (XBT) probes (T-5) manufactured by Sippican Corporation
in Marion, Massachusetts, The XBT is a temperature profiling system
which senses temperature with a thermistor and relates the nearly
constant fall velocity of a weighted streamlined housing to depth as
described by Williams (1973). Unlike hydrographic stations the ship can
continue moving as the XBT unspoois wire from both ends in much the same

way that line is released from a fisherman's spinning reel, The XBT

data were finally recorded on a pressure sensitive constant speed strip

chart to display a temperature profile., XBT recorded temperatures are
accurate to about i,OSOC and depths +20 meters.

The temperature data from each XBT drop was plotted at 1%
intervals ét the.approériate”geogréphic spacing to form each section.
The sloping piecewise linear line at the bottom depths observed at each
XBT station by PDR. Inflection points indicate each XBT location and
the number below denotes the statiomn location and order as seen on Figs.
18, 19, and 20.

Hydrographic data were also gathered at both ends of each section
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Figure 18:
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Section I shows contours of XBT temperature
data in degrees C. Locations of XBT drops
X1, X2, X3 and X4 are shown together with
anchor station I at A.
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Section II shows contours of XBT
temperature data in degrees C. Loca-
tions of XBT drops X5, X6, X7 and X8
are shown together with anchor station
II at A.
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Figure 20: Section III shows contours of XBT temperature

data in degrees C. Locations of XBT drops
X10, X11, X12, X13 and X14 are shown together
with anchor station II1 at A.
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using Niskin bottles with reversing thermometers., However the great
difference in depth between in the inshore and offshore ends of the
section, the complexity of the intervening temperature structure and the
low vertical resolution made geostrophic calculations unreliable. | These

data are given in Table I and will not be discussed further.



~
o
[Cd

DESIRED 1 2 THERMOMETRIC WIRE WIRE DEPTH BY
DEPTH P P i DEPTH OUT ANGLE WIRE ANGLE SALINITY
Cast #1 24° 13.67 82° 01.52 2/18/83 0245 (CMT)

5 22.12 22.11 5 5° 5 36.2626
100 19.10 19.10 100 50 95 -

350 13.29 13.19 14.15  87(?) 350 50 345  36.2641
500 - - - - 500 5° 495  35.0188
Cast #2 23° 53.74 81° 59.68 2/19/83 0810 (GMT)

5 23.38 23.38 5 18° 5 36,2537
250 15.62 15.62 19.69 315 250 18° 238  36.0353
500 10.01 10.01 19.15 801 500 18° 475  35.1946
650 7.84 7.84 12.76 400 650 18° 620  34.9506

1000 5.46 5.43 12.75 582 1000 18° 950  34.9813
Cast #3 24° 16.89 81° 13.72 2/23/83 0843 (GMT)

5 23.61 23.60 5 15° 5 36.1620

50 21.99 21.99 50 15° 48 36.2773

100 18.13 18.12 100 15° 9  36.2591

200 14.92 200 15° 192 35.9218

250 21.89 21.91(?) 250 15° 240  35.5925
Cast #4 24° 02.74 81° 06.66 2/23/83 1230 (GMT)

5 23.91 23.91 5 40° L 36.2637
200 15.44 15.44 17.65 180 200 40° 153 36.0187
500 9.95 9.94 13.66 220 500 40° 383 35.0672
750 7.06 7.05 16.86 765 750 40° 575  34.9391
950 4.97 4.96 18.51 1122 950 40° 728 34.9255

Cast #5 -23° 53.52 81° 57.35 2/26/83 0700 (GMT)

5 24.69 24.63 5 28° L 36.0451
250 16.20 16.21 17.99 142 250 28° 212 36.1255
500 9.98 10.30 13.94 295 500 28° 425 35,2626
750 8.48 - 13.18 413 750 28° 662  34.9326

1000 6.71 6.73 - 1000 28° 850  34.8806
1250 6.72 6.71 13.26 544 1250 28° 1109  34.9138
Cast #6 24° 13.83 82° 02.37 2/26/83 OL15 (CMT)

5 22.45 22.45 5 8° 5 35.9772
200 21.33 13.53 15.18 135 200 8° 197  35.7386
300 - 12.05 14.21 190 300 8° 296 35.3639
400 - 10.63 12.97 206 450 8° 44k 35.0505
550 7.52 7.52 12.47 411 550 8° 542 34.4433

Table I: Hydrographic Data
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5) Satellite Sea Surface Temperature Data

Thirty-nine maps of sea surface temperature were provided by NOAA
Miami Satellite Field Service Station spanning the period 3 January 1983
to 30 March 1983. During this time of year a strong temperature
contrast exists between the cooler inshore waters and the warmer waters
of the Gulf Stream offshore. During the late spring, summer and early
fall the temperature contrast  becomes too small for easy
interpretations.

As with all satellite IR data, intervening clouds and moisture
interfere with accurate interpretation so that composite charts are
drafted which include a large number of individual images spanning
several days or even a week or more. This technique relies on the
assumption that the position of the edge of the stream varies slowly.
However the historical data in section 2 is rich in energetic motion
with 4 to 10 day periods. Further questions persist about how
representative surface temperatures are of the underlying temperature
structure.

Even with the above drawbacks these data givé a good general idea
of the variability to be expected in the location of the Gulf Stream
within the Straits of Florida. Clearly one can see large variations in
edge position from Qery'near the keys to two thirds of the way to Cuba.

Also evident are spin-off eddies as described in section 2 above.
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5) Satellite Sea Surface Temperature Data

Thirty-nine maps of sea surface tempe;rature were provided by NOAA
Miami Satellite Field Service Station spanning the period 3 January 1983
to 30 March 1983. During this time of year a strong temperature
contrast exists between the cooler inshore waters and the warmer waters
of the Gulf Stream offshore. During the late spring, summer and early
fall the temperature c¢ontrast becomes too small for easy
interpretations, |

As with all satellite IR data, intervening clouds and moisture
interfere with accurate intérpretation so that composite charts are
drafted which inclpde a large number of individual images spanning
several days or even a week or more. This technique relies on the
assumption that the position of the edge of the stream varies slowly,
However the historical data in section 2 is rich in energetic motion
with 4 to 10 day periods. Further questions persist about how
representative surface temperatures are of the underlying temperature
structure,

Even with the above drawbacks these data give a good general idea
of the variability to be expected in the location of the Gulf Stream
within the Straits of Florida. Clearly one can see large variations in
edge position from very near the Eeys to two thirds of the way to Cuba.

Also evident are spin-off eddies as described in section 2 above.
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6) Discussion of FOTEC Data

From the historical data we expect that there will be variance in
the current and temperature on three time scales., Annual cycle time
scale variability would require several to ten years of data to resolve.
Qur much shorter time series of profiles will not resolve these
questions although the STACS data from the Palm Beach area will give us
a good idea of the variability to expect. Also we can extract a part of
the signal from satellite IR which can give us estimates of the position
of the Gulf Stream edge and surface temperature which could be used with
a current model. At present however our best estimates come from the
historical data which suggests a transport variation of about +3 X
1.06m35-1 which account for about 457 of the current variané;, Long term
current observations are the only method of accurately estimating these
effects at the proposed FOTEC sites. Since the deep water temperatures-
are quite stable over the long term surface temperatures derived from
satellite data are quite satisfactory to estimate the thermal resource.
For this purpose the data would need to be worked up on an image by
image basis taking into rejecting cloud contaminated data.

The second band of variability is the 2-10 day period fluctuatioms.
These periods are known to be associated with the meanders of the Gulf
Stream and include‘the dynamiés of shelf waves and spin off eddies. Had
this work been funded on the originally proposed schedule we would have
been aBle to observe two to ten cycles in these pericd bands by
alternating between stations barring an interpretation by hurricane.
However late funding forced a winter experiment which was repeatedly

interrupted by cold fronts. From the satellite data on 19, 21, and 24
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January 1983 we can see that the Gulf Stream edge is south of both
stations explaining the relatively moderate currents. On the 19th of
January there is an indication of a warm water intrusion from the east
at the easternmost station given by cross-section 1 which is confirmed
from the in-situ temperature data. These data most likely are explained

by the presence of a spin off eddy.
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7) Conclusions and Recommendations

From the data above we have a good idea of the variability to be
expected at the two possible FOTEC sites near Key West. By comparison
of our mean profiles of temperature and velocity with those in Figure 3
we can clearly see that the currents we observed were far from the
maximum or minimum currents to be expected at this site although our
mean values are close to the longer term mean. The remotely sensed
temperature data also shows that during our observation period that the
Gulf Stream axis lies consistently south of our anchor stations, The
temperature section data also shows the edge of the stream farther south
than our anchor statioms. However, the remotely sensed temperature
suggests that during other periods that the stream lies farther north at
times brushing against the Florida keys. Both remote and in-situ
temperature data shows the clear presence of spin-off eddies near the
FOTEC sites as we would expect from the historical data in Figure 5 and
6.

All of our historical data and the data recorded in this program
fall short of the level of coverage required for a thorough engineering
study required for the cost effective design of such a costly project as
an OTEC plant. What is needed for the surface temperature and
temperature gradient information can be extracted from a satellite
remote sensing program which concentrates on measuring temperature at
the proposed sites and rejects those images which contain significant
cloud cover. The current data needed for the design process will be
more difficult to obtain. The current meter group at RSMAS can maintain

current meter moorings in this region for & month deployments. Our past
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experience tells us that at least one year of data is needed to define
the seasomal cycle, However a mooring extending all t%e way to the
surface is not practical for these lengths of time. We must settle for
current data up to 150 meters from the surface which will often omit the
strongest currents. One possible solution to the near surface current
problem would be the use of a CODAR (Coastal Ocean Dynamics Radar) which
relies upon remote land based radar transmitters and on site computer
analysis to interpret the scattered returns in terms of surface
currents. Such a system is now in use in the STACS experiment off Palm
Beach on an experimental basis. Since the worst case currents are
likely under storm conditions a remote sensing current system may be the
only practical solution. Another approach which might work is to use an
acoustic Doppler curremt profiler to measure thg currents remotely from
bottom mounted acoustic transducers. These systems like the current
meters are restricted from measuring thg upper 10% of the water column
but do give much better spatial resolution than a typical current meter
mooring. These acoustic systems are still in the experimental phase of
their development but do offer potential savings compared to‘moorings.
Because a potentially vulnerable mooring does not exist, these systems
may be more reliable in the long run permitting longer term or even
permanent installations with cables to shore for power and signal

transmission.
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