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4.1. SUMMARY 
In this chapter data on several dynamic 
oceanographic variables, including water column 
stratification, sea surface temperature (SST), 
surface chlorophyll, surface turbidity, and near-
surface zooplankton biomass are compiled for 
the New York study area (Figure 1.2). Data are 
gridded to a common 30 arc-second resolution 
and long-term average (climatological) ocean 
conditions are mapped by season (spring [Mar-
May], summer [Jun-Aug], fall [Sep-Nov], winter 
[Dec-Feb]).These datasets are intended to 
quantify spatial variation in long-term average 
patterns of physical and biological oceanographic 
variables. 

4.2. BACKGROUND
The hydrography of the study area is characterized by a strong seasonal cycle, considerable freshwater runoff, 
and interactions among three distinct large-scale water masses. These water masses produce strong spatial 
and temporal heterogeneity in both biological and physical parameters, and define biogeographic regions that 
are often clearly delimited by temperature and/or salinity fronts, although the exact position of these fronts 
shifts seasonally and inter-annually. Over the shelf, water is relatively cold and fresh, and comes from the 
Labrador Current via a continuous equatorward coastal current system (Chapman and Beardsley, 1989). The 
northward-flowing warm equatorial waters of the Gulf Stream pass farther offshore. Between these two and 
over the slope lies a water mass, commonly called Slope Water, which is a mixture of shelf water and the Gulf 
Stream.

The frontal boundary between shelf and slope masses is highly dynamic and changes due to wind forcing, 
gravitational flow, and large scale alterations in atmospheric circulation patterns such as those associated with 
the North Atlantic Oscillation (NAO) (Pershing et al., 2001). Changes in the relative position of these water 
masses not only affect physical parameters, such as water temperature, but also species distributions. For 
instance an infamous 1882 tilefish kill offshore of New Jersey has been attributed to colder-than-usual water 
temperatures and a low NAO index (Marsh et al., 1999). 

Productivity on the shelf is generally nitrogen-limited and therefore is greatest wherever inorganic nitrogen-
containing nutrients are supplied, typically by processes such as runoff from rivers and estuaries, turbulent 
mixing in warm core rings, wind-driven upwelling intrusions of slope water, and intense tidal mixing at shoals. 
Frontal boundaries and stratification between water masses inhibit mixing, but strong winds, upwelling, and 
eddies can provide sufficient energy to promote mixing and introduce nutrients. Upwelling occurs south of 
Long Island during periods of southwesterly winds and during the passage of storms (Walsh et al., 1978). 
Warm core rings resulting from Gulf Stream meanders occur, but are less frequent than at George’s Bank 
(Ingham et al., 1982). 

The shelf’s water column stratifies in the spring and summer from warming and freshwater inputs. Stratification 
isolates warm, well-mixed surface water from cold deeper water and deprives the upper (euphotic) zone of 
nutrients. During stratification, primary productivity is highest nearshore where periodic coastal upwelling and 
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Image 4.1. The ocean is a dynamic environment. Photo credit: Edward 
Moran
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nutrients via diffusive fluxes. In late summer, stratification breaks down due to storms and surface cooling. 
By winter the entire water column over the shelf is well-mixed and a sharp frontal zone separates cold, fresh 
nearshore water from warmer, more-saline slope water. 

4.3. METHODS 
In this section, data sources are identified and methods used to interpolate data onto a consistent sampling 
grid are described. All datasets are co-registered on the same 30 arc-second sampling grid used in Chapters 
3 and 6 and clipped to the same study area spatial extent (Figure 1.2). Since sea surface temperature 
(SST), stratification, chlorophyll, turbidity, and zooplankton biomass are time-varying environmental variables 
dominated by seasonal variability, long-term average (climatological) ocean conditions were mapped by 
season (spring [Mar-May], summer [Jun-Aug], fall [Sep-Nov], winter [Dec-Feb]).

Data processing was carried out using ArcGIS 9.3.1 with the Spatial Analyst extension (Environmental Systems 
Research Group [ESRI], Redlands, CA), Geostatistical Analyst extension (ESRI), XTools Pro 6.2.1 for ArcGIS 
9.x (Data East LLC, Novosibirsk, Russia), and Hawth’s Tools for ArcGIS 9.x (Beyer, 2004). 

Water Column Stratification
Seasonal climatologies of water column stratification were obtained from The Nature Conservancy (TNC) 
and are described in TNC’s Northwest Atlantic Marine Ecoregional Assessment (NAMERA) Phase I Report 
(Greene et al., 2010; Shumway et al., 2010). Stratification estimates were originally provided to TNC by Dr. 
Grant Law and subsequently provided to us with permission from the original author (Law, 2011). Briefly, 
three-dimensional ocean temperature and salinity data were interpolated from a database of conductivity-
temperature-depth (CTD) casts, using the OAX5 optimal-analysis algorithm (Hendry and He, 1996). CTD 
casts came from a compilation of Hydrobase (described in Curry, 1996), NOAA National Marine Fisheries 
Service databases (described in Mountain, 2003), Fisheries and Ocean Canada databases (described in 
Gregory, 2004), and South-Atlantic Bight oceanographic data (described in Blanton et al., 2003) (for details 
see Shumway, 2010 and Law, 2011). Stratification was calculated by subtracting the optimally interpolated 
seawater density (measured in kg•m-3) at 50 meters from the surface seawater density, then averaged to create 
a 1980 – 2007 climatology (Shumway, 2010). Note that by this definition, stratification is usually negative, 
corresponding to less dense warmer and/or fresher water occurring on top of more dense colder and/or more 
saline water. More negative values indicate greater stratification. 

The stratification climatology was provided on a 5 arc-minute grid and bi-linearly resampled to the 30 arc-
second model grid. We did not explicitly characterize the accuracy of this dataset, but previous accuracy 
assessments of hydrographic data interpolation in this region suggest relative error on the order of 50% (Taylor 
and Mountain, 2003). Given this level of uncertainty, and that the original resolution of this dataset is coarser 
than any of the predictors used in this analysis (spacing between sample points typically 1-10 km or further), 
this layer should be used with caution for planning scales finer than ~10 km and for any application requiring 
precise knowledge of stratification at any particular time and place. Better resolution and accuracy might be 
obtained from more recent data-assimilating numerical ocean models. An improved high-resolution gridded 
stratification climatology should be a priority for this region.

Stratification in the study area was greatest in the spring and summer (Figure 4.1). In these months, stratification 
was higher over a broad area of the shelf, decreasing towards the shelf edge and eastwards to Nantucket 
shoals. In fall, stratification is greatest in the middle of the shelf, with more mixing along shore and to the east 
and west of the study area. In winter stratification is low compared to other seasons. Relative to the seasonal 
mean, it is higher nearshore, especially near the Hudson River and east of Long Island Sound. 

Sea Surface Temperature (SST)
Seasonal climatologies of sea surface temperature (SST) were obtained by averaging monthly composites 
from the National Aeronautics and Space Administration (NASA) Pathfinder 1.1 km Advanced Very High 
Resolution Radiometer (AVHRR) SST archive for the Northwest Atlantic region, 1985-2001 (Wolfteich, 2011), 
maintained at the University of Rhode Island (URI) and available publicly via OpenDAP (Cornillion et al., 



61

4 
- O

ce
an

og
ra

ph
ic

 S
et

tin
g

Figure 4.1: Seasonal stratification climatology maps for spring (upper left), summer (upper right), fall (lower left) and winter 
(lower right). Data courtesy of G. Law (Oregon Health Sciences University), J. Greene (The Nature Conservancy), NOAA Fish-
eries, Fisheries and Oceans Canada, Woods Hole Oceanographic Institution (Hydrobase), and B. Blanton (University of North 
Carolina-Chapel Hill).
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2003) at the following URL: http://satdat1.gso.uri.edu/opendap/Pathfinder/Northwest_Atlantic/1km/declouded/
contents.html. Radiometry data from AVHRR instruments mounted on NOAA satellites was processed using 
the Pathfinder Algorithm (Casey et al., 2010). Details of the algorithm and processing are provided at the 
following URL: http://satdat1.gso.uri.edu/opendap/Pathfinder/Pathfinder1km/pathfinder_1km.html

Data were bi-linearly resampled to the 30 arc-second model grid. Given the quality flags that were applied, 
accuracy of the satellite SST estimates is expected to be approximately ±1o Celsius (about 5% for the range 
of temperatures in our region) although this can degrade close to land (Casey and Cornillion, 1999). The 
long time period of averaging resulted in gap-free coverage over the study area except in pixels immediately 
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and varied seasonally, with considerable warming of nearshore areas from spring to summer (Figure 4.2). 
Climatological SST differed little between summer and fall.

Surface Chlorophyll and Turbidity
As a proxy for surface primary productivity, seasonal climatologies of chlorophyll a concentration for the period 1998-
2006 were extracted from high-resolution (~1.1 km) SeaWiFS satellite data processed using standard NASA ocean 
biology processing group (OBPG) reprocessing 5.1 algorithms (Franz and Thomas, 2005). Similarly, as a proxy 
for sea surface turbidity, seasonal climatologies of normalized Lw-670nm for the period 1998-2006 were extracted 
from the same imagery. All SeaWiFS processing was done by the NOAA Coastal Oceanographic Assessment 
Status and Trends (COAST) Branch (NOAA/NOS/NCCOS/CCMA/COAST, Silver Spring, MD), following previously 
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Figure 4.2: Seasonal sea surface temperature climatology maps for spring (upper left), summer (upper right), fall (lower left) and 
winter (lower right). Data courtesy of C. Wolfriech (University of Rhode Island).
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(Gonzalez and Woods, 1992). Accuracy statistics of ocean color imagery have been reviewed extensively (Franz 
et al., 2007); under ideal conditions SeaWiFS error tolerances are <5% for water-leaving radiances and <35% for 
chlorophyll a;however, errors can be substantially higher in coastal waters (Franz et al., 2007). The long time period 
of averaging resulted in gap-free coverage over the study area except in pixels adjacent to land.

Chlorophyll a concentrations changed by seasons, but showed similar broad-scale spatial patterns (Figure 4.3). 
Concentrations were highest in the summer and lowest in the winter. In all months, concentrations were highest 
neashore and in Long Island Sound and low over most of the shelf and offshore of the continental shelf break. 
Turbidity showed a similar spatial pattern, but was highest in the spring (Figure 4.4).
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Figure 4.3: Seasonal chlorophyll a climatology maps for spring (upper left), summer (upper right), fall (lower left) and winter 
(lower right). Data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite, processed by D. Pirhalla and V. Ran-
sibrahmanakul (NOAA/NOS/NCCOS/CCMA/COAST). Raw SeaWiFS imagery provided by NASA under research/educational 
agreement with GeoEye, Inc.



Near-surface Zooplankton Biomass
Point estimates of zooplankton biomass (mean displacement volume per volume of water strained) were 
obtained from the NOAA National Marine Fisheries Service’s (NMFS) Copepod database. The all-taxa 
zooplankton global compilation was used, available at: http://www.st.nmfs.noaa.gov/plankton/atlas/data_src/
copepod-2010__4000000-compilation.txt.

In the study region, we found 3,122 records of zooplankton biomass from 1966-2001. These were grouped 
by season and processed using ordinary kriging (with locally quadratic detrending) to produce a gridded 
seasonal climatology at the required resolution. We pooled observations over time to estimate the long-term 
climatological spatial mean. Ordinary kriging was used because the data exhibited approximately stationary 

Figure 4.4: Seasonal turbidity climatology maps for spring (upper left), summer (upper right), fall (lower left) and winter (lower 
right). Water-leaving radiance values are normalized to reflect the fraction of incident light reflected, and thus are dimensionless 
numbers between 0 and 1. Data courtesy of D. Pirhalla and V. Ransibrahmanakul (NOAA/NOS/NCCOS/CCMA/COAST), imag-
ery was provided by NASA under a research/educational agreement with GeoEye, Inc.
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kriging was found to perform better than inverse-distance weighting (IDW) based on leave-one-out cross-
validation. Predictions were not made where the variogram model explained <2.5% of the total variance (i.e., 
areas far from data points). Relative cross-validation RMSE was 27% averaged across all seasons (spring 
35%, summer 20%, fall 24%, winter 27%). Geostatistical analyses were carried out using Geostatistical Analyst 
for ArcGIS 9.3 (ESRI).

Zooplankton biomass was greatest in the fall, with patches of relatively high biomass south of Long Island and 
outside of the study area offshore of New Jersey (Figure 4.5). In the spring, summer and winter zooplankton 
biomass was heterogeneously distributed and showed different spatial patterns. 

Figure 4.5: Seasonal zooplankton climatology maps for spring (upper left), summer (upper right), fall (lower left) and winter 
(lower right). Data courtesy of the NOAA National Marine Fisheries Service Copepod database.
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