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Abstract

Observation forward operators for many remotely-sensed data used in the assimilation for nu-
merical weather prediction have a “footprint” of horizontal extent sufficiently large to warrant
a better representation than the simple “point-like” representation currently applied. This is
especially true of Global Positioning System radio occultation data and limb sounders. But
even vertical passive sounders also possess horizontal footprints whose sizes can exceed the grid
spacing of typical modern weather prediction models. One approach to achieving a better han-
dling of such data is to integrate their charactistic footprint weight functions over a polynomial
fitted to the local horizontal distribution of the variable to which the measurement instrument
is sensitive, at each relevant vertical level. The viability of such an approach depends upon the
acquisition of the fitted polynomial’s coefficients in a computationally efficient way. This brief
note examines a selection of plausible choices of stencils from a regular lattice that can serve as
the source data for the extraction of the needed coefficients and attempts to provide guidance
towards optimal choices at each order of expansion based on minimizing the computational
cost.

1. Introduction

In an earlier office note (Purser 2007) we introduced efficient methods for interpolating a
point value, or the gradient of that value, from a two- or three-dimensional lattice, based on
the use of “diamond” stencils which minimized the computational cost while promoting a high
level of accuracy given the order of the accuracy required. The basic diamond stencil at a given
order of accuracy consists of exactly as many points as there are Taylor expansion coefficients
needed to constuct the interpolated value to the desired order. But if the objective is to acquire
this entire set of expansion coefficients (not just the inferred interpolated value at some given
target point), then the basic diamond stencil, owing to its relatively low degree of symmetry
compared to other slightly larger stencils, is not necessarily optimal in terms of the count of
arithmetic operations needed to secure the result. Also, in order to optimize the use of the basic
diamond stencil, and its more symmetric but slightly larger modfications, for the purpose of
extracting the expansion coefficients, whatever symmetries each of the stencils possesses should
be exploited. In addition, there are some non-obvious empirical linear transformations of the
first few of the basic two-dimensional diamond stencils’ values, reflecting partial symmetries or
simply numerical coincidences, which enhance their efficiency beyond that achieved using only
their obvious bilateral symmetry.

2. diamond stencils

We shall concern ourselves only with two-dimensional stencils here. In those cases where the
(Taylor) expansion coefficients of the fitted polynomial are destined to be used in a horizontal
integration with some “footprint” function that is invariant with respect to vertical level, then
the integration weights associated with the stencil points is similarly invariant with respect to
vertical level.
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Figure 1. Construction of standard “diamond” stencil (b) from a logical triangular stencil (a) of the same
number of points

Figure 1 illustrates the construction of the basic diamond stencil and its logical equivalence
to the triangular stencil. Associated with each of the triangular stencil points (and therefore,
with each of the diamond stencil points) is a particular term of fitted polynomial. For example,
the point with x and y coordinate labels i and j, where 0 ≤ i, 0 ≤ j and i + j ≤ m for the
polynomial degree m is associated with the term in the polynomial with powers of x and y,
xiyj, in the sense explained as follows. In order to fit the polynomial to the given triangular
stencil values we can run down the outer diagonal (i + j = m) of coefficients and evaluate each
one of them unambiguously, using only the rectangle of stencil data for which the indices are
i′, j′, with i′ ≤ i and j′ ≤ j. This i, j coefficient is obtained simply as the cartesian product of
the degree-i derivative in x and the degree-j derivative in y, within this sub-rectangle of the
larger stencil. Then we discard the i, j stencil member and subtract this diagnosed xiyj term
from all the remaining stencil members. Continuing in this way until all the outer-diagonal
stencil members have been used up, we continue the same process for the diminished triangular
stencil, systematically exhausting its outer diagonal of elements i, j for which i + j = m − 1, and
so on. This procedure does not depend on the coordinates xi being uniform, or even monotonic
in x; just as long as they are distinct. Similarly for the yj coordinates of the stencil points. So
the procedure will formally work with the approximately diamond-shaped stencil of Fig. 1(b),
where the labels of the lines of the stencil alternate according to:

xi =











i/2 : i even

−(i + 1)/2 : i odd
(2.1)

and similarly for yi. Also, this step-by-step exhaustive procedure for estimating the Taylor
coefficients will still work even if the original stencil’s i and j bounds do not form a tidy
diagonal pattern, provided the maximum j at each i is a nonincreasing function of the i, and
vice-versa, and the lines in the stencil display no gaps. Thus, the logical stencil shown in Fig.
2(a) is also valid for evaluating the corresponding stencil of Taylor coefficients, but the stencil
in Fig. 2(b) is not (nonmonotonicity of its boundary, and gaps).

These considerations restrict the ways we are permitted to augment the basic diamond
stencils if we want to obtain modifications that possess additional symmetries. The only sym-
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(a) (b)

Figure 2. (a) A logical stencil arrangement from which it is possible to apply the sequential procedure to extract
Taylor coefficients without ambiguity. (b) A non-monotonic stencil for which the sequential procedure will not

work.

(a) (b) (c)

Figure 3. Standard diamond interpolation stencils, but rotated to place the axis of bilateral symmetry parallel
to the x-coordinate direction. (a) 2nd-order stencil od six points; (b) 3rd-order stencil of 10 points; (c) 4th-order

stencil of 15 points.

metry possessed by the basic diamond stencils is the bilateral symmetry they all share. In the
example shown in Fig. 1(b), this symmetry’s axis is the 45-degree diagonal through the origin.
It convenient to rotate the cartesian coordinate system, (x, y), to make this the x-axis. The
stencils (a), (b), (c) depicted in Fig. 3 are the standard diamond stencils capable of providing
Taylor series of orders m = 2, 3 and 4 respectively.

(a) Examples of efficient schemes for the standard diamond stencils

In the orientation of Fig. 3 we can take the stencil locations to have coordinates that are
pairs of integers that sum to an even value. From the six sampled values Pi,j for the 2nd
order stencil of Fig. 3(a) we can form symmetric and antisymmetric off-axis combinations by
additions and subtractions:

P+
−1,1 = P−1,1 + P−1,−1,

P+
1,1 = P1,1 + P1,−1,

P−

−1,1 = P−1,1 − P−1,−1,

P−

1,1 = P1,1 − P1,−1.

A further set of adding and subtracting transformations of the symmetric (including on-axis)
quantities to:

P
+
0,0 = P0,0,

P
+
1,0 = −P0,0 + P1,0,

P
+
0,1 = P+

−1,1 + P+
1,1,

P
+
1,1 = −P+

−1,1 + P+
1,1, (2.2)
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and the antisymmetric quantities to:

P
−

0,1 = P−

−1,1 + P−

1,1,

P
−

1,1 = −P−

−1,1 + P−

1,1, (2.3)

enables the complete set of six Taylor expansion coefficients up to second degree to be obtained
very economically:

C0,0 = P
+
0,0 ≡ P0,0, (2.4a)

C1,0 =
1

4
P

+
1,1, (2.4b)

C2,0 =
1

2
P

+
1,0 − C1,0, (2.4c)

C0,2 = −C2,0 − 2P
+
0,0 +

1

2
P

+
0,1, (2.4d)

C0,1 =
1

4
P

−

0,1, (2.4e)

C1,1 =
1

4
P

−

1,1. (2.4f)

Here, Ci,j represents the approximated derivative at the origin,

Ci,j =
∂i+jP

∂xi∂yj
, (2.5)

(zeroth derivative meaning the value itself, of course). Note that this sequence of arithmetic
operations is significantly more efficient than the more straight-forward alternative of deriving
the six Taylor coefficients from the six stencil values via a matrix-vector multiply.

In examples of higher order Taylor series evaluations, it is helpful to use matrices to express
some of the the necessary linear transformations of an efficient sequence, but in these cases we
expect the matrices to be significantly sparse. For one example, the 3rd-order stencil of Fig.
3(b) can be converted into its off-axis symmetric (P+) and antisymmetric (P−) combinations
and the Taylor coefficient estimates with positive and negative symmetry obtained directly from
them according to the pair of matrix equations:
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












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




















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


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










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1,1
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0,2
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2,2






























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



, (2.6)

4



and
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


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






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. (2.7)

A crude estimate of the computational cost involved in acquiring these Taylor coefficients comes
from summing the number of “multiply” operations involved (i.e., we ignore sums and differ-
ences). Thus the nominal cost for the 3rd-order Taylor coefficients by this scheme amounts to
34 units by this measure. To obtain a very modest gain that reduces this measure to just 30
units, an alternative calculation involving the linear combinations:

P
+
0,0 = P0,0, (2.8a)

P
+
1,0 = −P0,0 + P2,0, (2.8b)

P
+
0,1 = P+

−1,1 + P+
1,1, (2.8c)

P
+
1,1 = −P+

−1,1 + P+
1,1, (2.8d)

P
+
0,2 = P+

0,2, (2.8e)

P
+
1,2 = −P+

0,2 + P+
2,2, (2.8f)

and:

P
−

0,1 = P−

−1,1 + P−

1,1, (2.9a)

P
−

1,1 = −P−

−1,1 + P−

1,1, (2.9b)

P
−

0,2 = P−

0,2, (2.9c)

P
−

1,2 = −P−

0,2 + P−

2,2, (2.9d)

can be used to construct the same coefficient vectors:
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













































, (2.10)
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. (2.11)

For another example, the 4th order diamond stencil of Fig. 3(c) can be converted into its off-
axis symmetric (P+) and antisymmetric (P−) combinations as before, by sums and differences,
and these can be further manipulated to form the intermediate vectors with components:

P
+
0,0 = P0,0, (2.12a)

P
+
1,0 = −P2,0 + P2,0, (2.12b)

P
+
2,0 = P−2,0 − 6P0,0 + 5P2,0, (2.12c)

P
+
0,1 = 5P+

−1,1 + 10P+
1,1 + P+

3,1, (2.12d)

P
+
1,1 = −P+

−1,1 + P+
1,1, (2.12e)

P
+
2,1 = −3P+

−1,1 + 2P+
1,1 + P+

3,1, (2.12f)

P
+
0,2 = P+

−2,2 − 2P+
0,2 + 5P+

2,2, (2.12g)

P
+
1,2 = −P+

−2,2 + P+
2,2, (2.12h)

P
+
2,2 = −P+

−2,2 − 2P+
0,2 + 3P+

2,2, (2.12i)

P
−

0,1 = P−

−1,1 + P−

1,1, (2.13a)

P
−

1,1 = −P−

−1,1 + P−

1,1, (2.13b)

P
−

2,1 = P−

−1,1 − 2P−

1,1 + 3P−

3,1, (2.13c)

P
−

0,2 = P−

−2,2 + P−

2,2, (2.13d)

P
−

1,2 = −P−

−2.2 + P−

2,2, (2.13e)

P
−

2,2 = P−

−2,2 − 2P−

0,2 + P−

2,2, (2.13f)

and the final pair of transformations are, again, most easily written in sparse matrix terms. For
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the symmetric terms we find:
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and for the antisymmetric terms we find:
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2 0 0 1

4 0 − 3
16

0 −
1
2 −

1
8 0 1

8
1
16













































































P
−

0,1

P
−

1,1

P
−

2,1

P
−

0,2

P
−

1,2

P
−

2,2







































. (2.15)

In this case, the cost of preparing the intermediate vectors P
+

and P
−

should be included
since 13 nontrivial multiplies are involved in this step, Combining these with the 43 nonzero
elements of the matrices in (2.14) and (2.15) we set a nomimal measure of cost as 56 units for
this 4th-order scheme.

The combinations used to obtain the P
±

were, in the 3rd and 4th-order cases, chosen
empirically, but to examine schemes of higher order we would need a more systematic approach
to generalizing this kind of pre-conditioning step. The sizes of the stencils of the higher order
schemes for the standard diamond and for various symmetrized (but unrotated) versions of these
stencils (described in the next section) are listed in Table 2, together with the sizes of the square
stencils obtained simply by taking the cartesian products of one-dimensinal centered stencils.
We shall not delve into details for the higher order schemes since, for the standard diamond
stencils, the results remain inferior in computational economy to the competing symmetrized-
stencils we consider in the next section. Suffice it to say that the best general preconditioning
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Figure 4. Schematic definition of the 17 “sectors” into which we divide the points of a symmetrized stencil.
Sector “c” is the central point by itself (if it belongs to the stencil0; sectors “e”, “ne”, “n”, “nw”, “w”, “sw” “s”
and “se” are the degenerate sectors comprising the radial lines indicated; sectors “ese”, “nne”, “nnw”, “wnw”,
“wsw”, “ssw”, “sse” are the interleaved true sectors spanning the designated 45 degree wedges, excluding their

bounding angles.

 1  2  3

 4 5

 6

 7

 8 9

1011

1213

14 15

16

17

18 19

20 21

(a)

 1  2  3

 4 5

 6

 7

 8

 9

101112

13 14

15

16

17

18

(b)

 1  2  3

 4 5

 6

 7

 8 9

10 11

12

13

(c)

 1 2

 3 4

 5 6

 7  8

 9 10

11 12

(d)

Figure 5. Unrotated diamond interpolation stencils augmented to gain higher degrees of symmetry under re-
flection. (a) Type “T” of 4th-order; (b) Type “U” of 4th-order; (c) Type “V” of 3rd-order; (d) Type “W” of

3rd-order

strategy we have found has been, as in the 3rd-order case, to apply to each x-line and to each
y-line of the given stencil, a transformation from the values along the lines to the first few
finite derivatives along the lines, computed to the highest order that the length of each line
allows, and centered at the intended coordinate origin for the final Taylor series. When this
is done the nominal computational costs, estimated exactly as before, are the values listed in
the column “S” of the Table 3. The other entries in this table refer to the costs for the various
symmetrized augmentations of the diamond stencil, or to the logically simplest, but often most
costly scheme, the Cartesian product scheme, all of which we describe next.
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TABLE 1. Action of the operators, F , G, and H, on the
subvectors, arranged by directional sectors, of the full
stencil vector P . The suffices of the subvectors indicate

the sector by its associated compass direction.

Result F G H

P
′

c
P c P c P c

P
′

e
P e P e + P w P e + P n

P
′

ene
P ene + P ese P ene + P wnw P ene + P nne

P
′

ne
P ne + P se P ne + P nw P ne

P
′

nne
P nne + P sse P nne + P nnw P ene − P nne

P
′

n
P n + P s P n P e − P n

P
′

nnw
P nnw + P ssw P nne − P nnw P ese + P nnw

P
′

nw
P nw + P sw P ne − P nw P se + P nw

P
′

wnw
P wnw + P wsw P ene − P wnw P sse + P wnw

P
′

w
P w P e − P w P s + P w

P
′

wsw
P wnw − P wsw P ese − P wsw P ssw + P wsw

P
′

sw
P nw − P sw P se − P sw P sw

P
′

ssw
P nnw − P ssw P sse − P ssw P ssw − P wsw

P
′

s
P n − P s P s P s − P w

P
′

sse
P nne − P sse P sse + P ssw P sse − P wnw

P
′

se
P ne − P se P se + P sw P se − P nw

P
′

ese
P ene − P ese P ese + P wsw P ese − P nnw

3. Symmetrized stencil schemes

For the symmetrized stencils, it is convenient to organize their sampled values, and the
Taylor coefficients that correspond with their locations, into subvectors associated with the
distinct sectors around the center of symmetry. The first, sector “c” denotes the central point
itself (if it belongs to the stencil). The 16 sectors that follow it are indexed according to compass
directions starting for with “e” (east) and incrementing in the counterclockwise direction, “e”,
“ene”, “ne”, “nne”, etc., as illustrated in Fig. 4. The sectors alternate between sets of points
that lie along radial lines (“e”, “ne” etc.) and true geometrical sectors (“ene”, “nne”, etc)
of points that lie strictly between those radial lines. Various symmetric and antisymmetric
combinations of the stencil values can be computed by operations of addition and subtraction,
summarized in Table 1 and denoted the linear operators: F (reflection symmetry/antisymmetry
about the east-west axis); G (reflection symmetry/antsymmetry about the north-south axis);
H (reflection symmetry/antisymmetry about the line ne—sw). We shall assume that, within
a radial line sector (such as “e”) the points are listed in order of increasing radius; within a
true sector (such as “ene”) we assume the points are listed in rows parallel to the neighboring
cardinal direction, with the rows listed in order of distance from the associated cartesian axis.
The application of the symmetrizing operators, F , G and H serves to simplify the remaining
linear operator step, M , between stencil values and their implied polynomial-fitted Taylor
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coefficients by rendering M effectively block diagonal and hence, relatively sparse. The benefits
of the H operator are only obtained when it is applied immediately before and after M itself,
and as HT at its second application. The blocks will be denoted according to the range of
contiguous sectors they interact with and, for the schemes that we shall refer to as type “T”,
“V” and “W”, they generically comprise the six blocks: M [c:ne], M [nne:n], M [nnw:w], M [wsw:sw],
M [ssw], M [s:ese]. For the less symmetric family of schemes we shall refer to as “U”, only four
blocks suffice: M [c:nne], M [nnw:w], M [wsw:ssw], M [sse:ese]. When the stencil values are denoted
by the column vector P and the expansion coefficients by vector C, the sequence of operators
for these symmetrized stencils of the types we shall refer to as “T”, “V” and “W” is

C = H
T
MHGFP , (3.1)

while, for the semi-symmetrized stencil of type “U” we shall use instead the simpler sequence:

C = MGFP . (3.2)

In each case, the computational work is dominated by multiplications and summations asso-
ciated with the nonvanishing elements of the diagonal blocks of M , and, as before, we shall
continue to take the liberty of ignoring the cost of the sparse sums and differences, such as those
associated with the operators F , G and H . We provide a definition of the blocks of M for the
simplest members of these new families of schemes below; higher order versions are relatively
easily obtained from the algebraic definitions we have provided by the obvious generalizations.
In these symmetrized schemes, where the stencil is larger than is formally needed to derive
only coefficients of total degree m, the vectors C of expansion coefficients is correspondingly
larger and therefore contains arguably superfluous terms, xiyj, with i + j > m. The selection
of these additional terms is strictly in accordance with the unique identification we established
in section 2 between a stencil point with alternating line labels i (for xi) and j for yj and the
coefficient of the polynomial term in xiyj. Note, however, that the coordinate origin needs
sometimes to be displaced by a half grid unit in order to collocate the new coordinate origin
(for the Taylor series) with the center of symmetry of the symmetrized stencil. The pattern
will be made clearer by consideration of the example stencils to follow.

(a) Type T schemes, exemplified by T4

This stencil has 21 points and defines the expansion coefficients according to the M blocks:

M
(T4)
[c:ne] =



























1 0 0 0 0

−
5
2

2
3 −

1
24 0 0

6 −2 1
2 0 0

−12 7 −1 1
2 −4

6 −
19
6

1
6 −

1
12

5
3



























, (3.3a)
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M
(T4)
[nne:n] =













−
1
2 1 −1

0 2
3 −

1
24

0 −2 1
2













, (3.3b)

M
(T4)
[nnw:w] =



























−
1
4 1 0 −

3
2 0

1
48 −

5
12

1
24

19
24 −

1
12

0 1
2 −

1
4 −1 1

2

0 0 0 −
1
3

1
24

0 0 0 1
2 −1

4



























, (3.3c)

M
(T4)
[wsw:sw] =







1
8 −

1
2

−
1
24

5
12






, (3.3d)

M
(T4)
[ssw] =

[

1

8

]

, (3.3e)

M
(T4)
[s:ese] =



























−
1
3

1
24 0 0 0

1
2 −

1
4 0 0 0

−1 1
2 −

1
4

1
2 0

19
24 − 1

12
1
24

5
12

1
48

−
3
2 0 0 1 −

1
4



























. (3.3f)

The vector of coefficients is partitioned according to the scheme:

C = [C0,0, C2,0, C4,0, C4,2, C2,2 C2,4, C0,2, C0,4 C1,4, C1,2, C3,2, C1,0, C3,0 C3,1, C1,1

C1,3 C0,1, C0,3, C2,3, C2,1, C4,1]. (3.4)

We note that elements of this vector include terms of total degree 5 and even 6.
The generalizations of this scheme’s stencil to those of higher even orders is simply done

by adding points all around no more than one grid unit away for each two-units increment of
the formal order. The stencil sizes and the nominal computational costs of these even-order
schemes are listed in columns “T” of the tables 2 and 3 respectively.

(b) Type U schemes, exemplified by U4
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This stencil has 18 points and defines the expansion coefficients according to the M blocks:

M
(U4)
[c:nne] =

































75
128 −

25
256

3
256 0 0 0

−
17
24

13
16 −

5
48 0 0 0

1 −
3
2

1
2 0 0 0

1 −1 0 1
2 −

1
2 0

−
11
8

1
8 0 −

1
16

35
48 −

1
24

3 0 0 0 −2 1
2

































, (3.5a)

M
(U4)
[nnw:w] =

































−
35
24 −

1
12

1
24

11
4 −

1
12 0

4 −1 0 −6 0 0

3 0 −1 −6 2 0

0 0 0 −
75
64

25
384 −

3
640

0 0 0 17
4 −

13
8

1
8

0 0 0 −10 5 −1

































, (3.5b)

M
(U4)
[wsw:ssw] =













1
2 −

3
2 0

− 1
48

35
48 − 1

12

0 −1 1
2













, (3.5c)

M
(U4)
[sse:ese] =













−
35
96

1
24

1
32

1
2 −

1
4 0

1
4 0 −

1
4













. (3.5d)

The vector of coefficients is partitioned according to the scheme:

C = [C0,0, C2,0, C4,0, C2,2, C0,2, C0,4 C1,2, C1,4, C3,2, C1,0, C3,0, C5,0

C3,1, C1,1, C1,3 C0,1, C0,3, C2,1]. (3.6)

Again, the generalizations to other even-ordered schemes is done in the obvious manner.
The stencil sizes (Table 2) and computational costs (Table 3) are listed under the column
heading “U”.

(c) Type V schemes, exemplified by V3
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This stencil has 13 points and defines the expansion coefficients according to the M blocks:

M
(V 3)
[c:ne] =



















1 0 0 0

−
5
2

2
3 −

1
24 0

6 −2 1
2 0

4 −2 0 1



















, (3.7a)

M
(V 3)
[nne:n] =







2
3 −

1
24

−2 1
2






, (3.7b)

M
(V 3)
[nnw:w] =













−
1
4

1
2 0

0 −
1
3

1
24

0 1
2 −

1
4













, (3.7c)

M
(V 3)
[wsw:sw] =

[

1
4

]

, (3.7d)

M
(V 3)
[s:ese] =













−
1
3

1
24 0

1
2 −

1
4 0

1
2 0 −1

4













. (3.7e)

The vector of coefficients is partitioned according to the scheme:

C = [C0,0, C2,0, C4,0, C2,2 C0,2, C0,4 C1,2, C1,0, C3,0 C1,1 C0,1, C0,3, C2,1]. (3.8)

These schemes generalize only to odd-order schemes and, as before, are obtained incremen-
tally by adding to the existing stencil only new points that are no more than a single grid unit
away all around. The sizes and costs of these schemes are given in the table 2 and 3 columns
headed “V”

(d) Type W schemes, exemplified by W3

This stencil has 12 points and defines the expansion coefficients according to the M blocks:

M
(W3)
[c:ne] =







1
8 −

1
4

−
1
32

5
16






, (3.9a)

M
(W3)
[nne:n] =

[

1
8

]

, (3.9b)

M
(W3)
[nnw:w] =













−
1
4

1
4 0,

1
32 − 5

16
1
96 ,

0 3
4 −

1
4













, (3.9c)
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M
(W3)
[wsw:sw] =







1
2 −3,

−
1
24

5
4






, (3.9d)

M
(W3)
[ssw] =

[

1
2

]

, (3.9e)

M
(W3)
[s:ese] =













−
1
4

3
4 0,

1
96 −

5
16

1
32 ,

0 1
4 −

1
4













. (3.9f)

The vector of coefficients is partitioned according to the scheme:

C = [C2,0, C0,0 C0,2 C1,2, C1,0, C3,0 C3,1, C1,1 C1,3 C0,3, C0,1, C2,1]. (3.10)

Stencil sizes of the odd-order generalizations are given in Table 2 and computational costs
are listed in Table 3 under the heading “W”.

(e) Non-collocating interpolations

In all the symmetrized diamond stencil schemes, types “T”, “U”, “V” and “W” the co-
efficient vectors contain a few coefficients associated with a polynomial term of total degree
exceeding the nominal order m for that scheme. Obviously, there is a computational advantage
to be gained by discarding, i.e., not calculating, those superfluous coefficients. The computa-
tional saving for doing this can be considerable, especially as the order m becomes large, as we
see in the columns of Table 3 that are marked with an asterisk. However, there is downside
to doing this, which is that the reconstructed polynomial values are no longer collocated with
sampled values at the stencil points. This may prove disadvantageous in many applications
since collocating provides a valuable degree of effective control over the way the interpolating
polynomial can vary within the span of the stencil in practice.

(f) Cartesian product schemes

In many ways the simplest array from which to extract high-order interpolating Taylor
coefficients is a sub-square of the grid. With m + 1 points in both cartesian directions, all
partial derivatives, Ci,j with i ≤ m and with j ≤ m and without further restriction, can be
evaluated in the obvious sequence of two steps, x followed by y. But it is still worth invoking
the symmetry reflection symmetries in x and y when doing this. The costs for evaluating all
(m + 1)2 available coefficients is given in Table 3 under column “C”; if we discard the superfluous
terms of total degree exceeding m in the second step, we reduce the costs considerably to those
shown under the heading “C*”.

(g) Remarks

It might be supposed that other configurations that would seem to qualify as symmetrized
diamond stencils with fewer stencil points (for a given order m) could also compete with those
we have designated “T” and “U” (even m schemes) or “V” and “W” (odd m schemes) but a
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TABLE 2. Stencil sizes for the standard
“diamond” scheme (S), its symmetrized vari-
ants of type T, U (even degrees only),
V and W (odd degrees only), and the
cartesian-product stencil (C) up to degree

m = 16.

m S T U V W C

2 6 9

3 10 13 12 16

4 15 21 18 25

5 21 25 24 36

6 28 37 32 49

7 36 41 40 64

8 45 57 50 81

9 55 61 60 100

10 66 81 72 121

11 78 85 84 144

12 91 109 98 169

13 105 113 112 196

14 120 141 128 225

15 136 145 144 256

16 153 177 162 289

closer examination reveals such schemes to be, like the stencil of Fig. 2(b), in violation of the
gap-free monotonicity rules we discussed in section 2. The trends in the behavior of the valid
symmetrized schemes as m increases and their comparison with the cartesian scheme “C” and
the standard (unsymmetrized) diamond scheme, “S”, can be seen more easily in graphical form.
The data of Table 3 are therefore plotted as graphs using a log-log scale in Figs. 6–9. Here it
is clear to see that the standard schemes “S”, while at least competitive with the symmetrized
collocating schemes compared in Figs. 6 and 8 at the very lowest odd and even orders, cannot
be justified at higher orders m, and escpecially not when the requirement for collocation is
relaxed (Figs. 7 and 9). As the order m increases, the “T” and the “V” configurations emerge
as the most efficients schemes of even and odd order respectively, although there are indications
that, somewhat beyond the largest orders m we have been able to investigate here, the cartesian
product schemes “C” might eventually enjoy computational superiority.

4. discussion

When it is necessary to extract from a grid the horizontal coefficients of an approximating
polynomial in an efficient manner we find that, especially as the intended order increases, it is
advantageous to exploit whatever symmetries the sampling stencil provides. The smallest and
most compact stencils are the standard “diamond” stencils (Purser 2007) so, when the Taylor
coefficients are needed at many vertical levels but at the same horizontal target location, there
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TABLE 3. Nominal evaluation costs, as measured by matrix occupancy, for the various stencils
of Table 1. These are the standard “diamond” scheme (S), its symmetrized variants of type T, U
(even degrees only), V and W (odd degrees only), and the cartesian-product stencil (C) up to
degree m = 16. For the schemes with asterisks, the superfluous Taylor series terms of total
degree exceeding m are not evaluated, reducing the effective count on matrix occupancy and

hence the estimated cost.

m S T T* U U* V V* W W* C C*

3 30 27 19 24 21 64 52

4 56 61 39 56 46 100 74

5 183 82 67 88 80 216 171

6 292 177 127 164 144 294 219

7 467 206 179 232 217 512 400

8 658 404 313 390 355 648 484

9 990 441 399 512 485 1000 775

10 1346 805 654 802 746 1210 905

11 1864 850 786 988 946 1728 1332

12 2374 1446 1217 1484 1400 2028 1518

13 3190 1499 1409 1734 1670 2744 2107

14 4008 2418 2086 2535 2415 3150 2359

15 5146 2479 2354 2841 2751 4096 3136

16 6210 3795 3337 4328 4129 4624 3464

is no more efficient strategy than to base the extraction on the appropriate linear relationship
between the coefficients and the sampled points of the diamond stencil at each level, since the
set of weights in the formula are the same at each level. In addition to exploiting the bilateral
reflection symmetry of the diamond stencils, there is a further advantage to be obtained, at
the higher orders of expansion at least) from applying linear transformations associated with
successive line-differential operators along the available lines of the stencil parallel and per-
pendicular to the symmetry axis. When a high-order Taylor expansion is needed on a single
horizontal surface, the computational cost of evaluating the coefficients is significantly reduced
by augmenting the diamond stencils in ways that add additional symmetries. For the coeffi-
cients of a collocation polynomial the optimal symmetrization may differ from the one that is
optimal when the higher-than-nominal degree coefficients are discarded. For even orders, the
symmetrization schemes of type U are better than those of type T up about 10th order when
all terms are retained, but the T schemes are better at all orders when the higher degree terms
are discarded from the computation (so that the implied polynomial no longer exactly fits the
sample values). For the odd-order schemes, only the collocating scheme W3 beats the corre-
sponding V scheme; in all other cases, whether the superfluous higher order terms are discarded
or not, the V schemes are better than the corresponding W schemes. Another possible stencil
at each order is the cartesian product “square” stencil of (m + 1)2 points, but this has been
shown to be inefficient until very high orders of accuracy are demanded.
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Figure 6. Computational costs approximated by the number of “multiply” operations needed to compure the
Taylor coefficients accommodated by the odd-order stencils of types “S” (black), “V” (green); “W” (red) and

the cartesian product stencil, “C” (blue) at orders m up to 15.

Purser, R. J. 2007 Diamond interpolation: a class of accurate compact-stencil grid inter-
polation methods. NOAA/NCEP Office Note 454, 13 pp.
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Figure 7. Like Fig. 6 but discarding temrs of total degree greater than m
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Figure 8. Like Fig. 6 but comparing even-order schemes “S” (black), “T” (green), “U” (red) and “C” (blue)
for orders m up to 16.

19



4 6 8 10 12 14 16

10
0

10
1

Degree of expansion

10
0

10
1

Evaluation costs for Taylor series of even degree
Diamond stencils compared with symmetrized stencils
but without computing the unwanted terms of excessive total degree

10
1

10
2

10
3

10
4

C
os

t, 
m

ea
su

re
d 

by
 m

at
rix

 o
cc

up
an

cy

10
1

10
2

10
3

10
4

Figure 9. Like Fig. 8 but discarding all the superfluous terms of total degree exceeding the nominal degree m
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