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SOME CLIMATOLOGICAL AND SYNOPTIC ASPECTS OF SEVERE WEATHER

DEVELOPMENT IN THE NORTHWESTERN UNITED STATES
Eric C. Evenson and Robert H. Johns
Abstract

This study examines severe convective storms (those producing either
3/4 inch diameter or greater hail, or wind gusts equal to or greater
than 50 knots, or tornadoes) occurring in that portion of the
northwestern United States extending from Washington and Oregon
through Idaho into the western portions of Montana and Wyoming.
The climatology of severe weather events in this region reveals that the
frequency of occurrence is greatest near the Continental Divide with the
frequency progressively decreasing towards the Washington and Oregon
coasts. Compared with other portions of the United States (e.g. the
Great Plains), the frequency is relatively low. However, the data reveal
that within the region, significant severe weather episodes (SSWEs) that
are particularly destructive, and/or affect relatively large areas occur
about twice a year. To aid forecasters in the anticipation of SSWEs in
the northwestern United States, composite charts displaying common

patterns and parameter values have been prepared.

I. INTRODUCTION

Severe convective storms! are not as
common over the northwestern United
States as in other parts of the country (e.g.,
the Great Plains region). However, severe
convective storms do occur in this region,
and in certain situations, can be quite
widespread and destructive. Determining
days when severe thunderstorms are a
significant threat in this region is a
challenge for operational meteorologists.
Thus, a better understanding of the
synoptic and thermodynamic conditions
that are associated with significant
episodes of severe weather in the

1 Severe convective storms are defined as those that
produce hail 3/4 of an inch in diameter or greater,
wind gusts of 50 knots or greater, or convectively
induced wind damage, and/or tornadoes.

northwestern United States is needed to
aild meteorologists in forecasting such
events. This study examines the
climatology of severe weather events
occurring in the northwestern United
States. Further, significant severe weather
events are identified, and the associated
meteorological conditions are examined to
determine common synoptic patterns and
parameter values.

II. METHODOLOGY

For this study, the northwestern United
States is defined as the following area:
Washington, Oregon, Idaho, and the
western portions of Montana and Wyoming
(Fig. 1). The eastern boundary across
Montana and Wyoming is roughly 50 to 100
miles east of the Continental Divide, and
was selected to allow for those severe



weather episodes that commence west of
the Divide but produce some reports
immediately to the east. In general, the
eastern boundary was placed near the
divide to delineate between different
convective environments. For example, the
eastern portions of Montana and Wyoming
are typically affected by higher
concentrations of low-level moisture, and
the wupslope flow lifting mechanism
(Doswell 1980) is usually more clearly
defined.

To aid in developing a severe weather
climatology for the study region, both
Storm Data and the SVRPLOT data
analysis program (Hart 1993) were utilized
to collect and analyze severe weather
events for the period from 1955 through
1993. Further, events from this dataset
were systematically examined to identify
significant severe weather episodes

(SSWEs),

For this study an SSWE is defined as any
of the following:

A) A severe weather episode where 10 or
more severe weather events occur in the
study area during a 24 hour period
beginning at 1200 UTC.

B) A severe weather episode with 5 or
more severe weather events in the study
area during a 24 hour period beginning at
1200 UTC, including at least one tornado
of F3 or greater intensity.

2 This time period was chosen since 98 percent of all
severe weather reported in the region occurred during
these months. Only 52 reports (2 percent) of severe
weather occurred during the fall and winter months

from October through February.

C) A severe weather episode in which the
Stormm Data description suggests a
widespread severe weather event had
occurred in the study area even though the
specific severe weather report criteria in
either A or B are not met (eg., a
generalized entry indicating that numerous
trees were blown down and/or large hail
had occurred or over portions of several
states),

Johns and Doswell (1992) have noted that
composite analyses are useful in identifying
basic meteorological patterns and
parameters related to the development of
severe local storms. Two types of
composite charts have been constructed for
use in this study. The parameter field
composite chart displays the composite
pattern of a single parameter field (e.g.,
700 mb temperatures) for a number of
cases. A more complex composite analysis
1s the "severe weather mean composite
chart". By using symbols, this chart
displays the mean position of multiple
meteorological features at various levels of
the atmosphere from a number of cases.
This synthesis allows one to obtain a
three-dimensional picture of the conditions
associated with severe weather
development.

IIl. CLIMATOLOGY

a. All severe weather events

During the period March-September* from
1955 through 1993 over two thousand
(2133) severe weather events were reported
in the study area (Fig. 2). During this 39
year period, there were 817 reports of
severe weather in Idaho and 766 in western
Montana. The number of reported events
is considerably less in Oregon (216
reports), western Wyoming (184 reports),
and Washington (150 reports). The low
number of reports in Wyoming can partly



be attributed to the fact that this is the
smallest subdivision of the study area.
Examination of the distribution of reports
in Fig. 2 indicates that, in general, the
frequency of severe weather decreases as
one progresses westward from the
Continental Divide to the Washington and
Oregon coasts.

Local variations in report frequency on
Fig. 2 suggests that the highest
concentrations of reports are closely
correlated with the highest density of
population (McNulty 1981). For example,
in Idaho the primary concentration is
across the southern portion of the state in
the Snake River valley (Fig. 1B). Other
concentrated areas include the Lewiston
and Coeur d’Alene areas of northern Idaho.
Note there is a distinct minimum in
frequency over central Idaho (Fig. 2),
where population is limited due to the
existence of the Sawtooth Mountains
(Fig. 1B). Mountainous terrain exists in
other areas of the study region and these
areas also show a relative minimum of
severe weather reports.

Three quarters of the total number of
reports in the dataset occur during the
summer months of June (27%), July (29%),
and August (19%). A state by state
breakdown of the type and number of
severe weather reports in the northwestern
United States for the March-September
period from 1955 through 1993 is
illustrated in Fig. 3. The most common
type of event is convective wind gusts (or
damage) which make up over half (53%) of
the total reports. Large hail comprises
34% of all reports with tornadoes
accounting for 13%. The frequency of
large hail appears to decrease rapidly as
one goes west from the Continental Divide
region to the Pacific Ocean. Over one-half
(57%) of all hail reports occurred over
Montana and Wyoming with 28% over
Idaho and only 15% over Washington and

Oregon. This frequency distribution is
likely associated with greater amounts of
moisture and instability that usually exist

further east toward the Continental Divide
during the warm season.

A comparison of the number of severe
weather reports in three 13 year intervals
(1955-1967, 1968-1980, and 1981-1993) for
the March-September period is shown in
Fig. 4. Note that over 50% of all reports in
each state were reported in the latest 13
year period, 1981-1993. Wyoming showed
the greatest increase with 68 percent of all
severe weather events reported in the
latest period.

b.  Significant Severe Weather Episodes
(SSWEs)

Using the criteria defined in Section 2,
twenty seven SSWEs were identified
during the 39 year period (Table 1). Of
this total, 22 cases met criterion I while 3
episodes met criterion III, Only 2 episodes,
which were associated with the Vancouver,
Washington ¥3 tornado on April 5, 1972
(Hales 1994) and the Teton Wilderness F4
tornado in Wyoming on July 21, 1987
(Fujita 1989) met criterion IL

The dataset suggests that SSWEs are
confined to the spring and summer months
(April-September; see Fig. 5). Further,
one-third of the SSWEs (9) were reported
during the month of June, The
distribution of SSWEs for the three 13
year periods discussed earlier shows that 1
SSWE was reported between 1955-1967, 5
SSWEs from 1968-1980, and 21 SSWHEs
from 1981-1993. Therefore, about eighty
percent (78%) of the SSWEs were reported
in the last 13 year period! The higher
number of severe weather reports and
resultant SSWEs during the latest 13 year
period are likely the result of several
factors including increased population, a
heightened meteorological awareness from



the public, and improved National Weather
Service (NWS) verification and storm
reporting procedures (Hales, 1987). Given
this evolution in improved reporting, it
appears the data supports a frequency of
SSWEs in the study area of close to two
per year. With the improved detection
capabilities of the WSR-88D radar
currently being installed throughout the
region, it is likely to be found that the
actual frequency distribution is greater
than two per year.

IV. SYNOPTIC AND
THERMODYNAMIC
CONDITIONS ASSOCIATED
WITH SSWEs

Meteorological features associated with
each of the individual SSWEs in the
dataset were examined fto determine
common patterns.  This examination
suggests two common synoptic patterns
based on mid- and upper-level trough
orientation: Pattern A - the "negative tilt"
pattern and Pattern B - the "trough axis"
pattern. To better assess the relative
locations of meteorological features
associated with these patterns to the area
of severe weather occurrence, the study
region was divided into two subregions: 1)
Idaho, western Montana, and western
Wyoming (ID/MT/WY), and 2) Oregon and
Washington (OR/WA). Pattern A is the
most common synoptic pattern associated
with S8SWEs occurring in the northwestern
United States (21 cases) and it has been
observed in both subregions (Figs. 6 and 7).
Pattern B is less frequent (5 cases) and it
has been observed in the ID/MT/WY
subregion only (Fig. 8). Meteorological
features associated with one SSWE, the
tornado episode of 5 April 1972, which
occurred in the OR/WA subregion, fits
neither Pattern A nor Pattern B. Further,
it is the only case in the OR/WA subregion
that affected areas west of the Cascade

Mountain range. This case is discussed
further in Section 4b,

In the interior northwestern United States
(i.e., east of the Cascade Mountains) during
the warmer months of the year moisture
values are usually low and inverted-V
soundings are typically present (Beebe
1955, Barnes and Newton 1986). However,
the air mass associated with SSWEs in this
region is often modified with generally
higher moisture values in the lower
portions of the troposphere. Surface dew
points are typically 45F or greater in the
area of occurrence before the event.

In many of the SSWE cases, moisture
values increase downward from the
midlevels with time (e.g., Fig. 9). This
moisture increase appears to resulf from
both advection and mixing. Northward
transport of moisture into the region
typically occurs in the southerly to
southwesterly flow ahead of the upper
trough and is typically concentrated in the
vicinity of the frontal band at 700 mb. At
times, particularly later in the warm
season, this moisture transport appears to
be a northward extension of the southwest
monsoon (Hales 1974). The northward
transport is greatly facilitated by the
strongly backed (southerly) flow ahead of a
negatively tilted upper trough (Pattern A).
This helps to explain why Pattern A is the
most common upper air pattern associated
with severe thunderstorm development in
the northwestern United States.

Because of the high mountain ranges in
the western United States, the northward
transport of moisture into the region is
most effective at midlevels. Once midlevel
moisture has advected into the region, a
significant  contribution to low-level
moisture appears to result from midlevel
moisture mixing downward into the
relatively deep mixed layer typical of the
region. One of the authors (Evenson) and



forecasters in the region (personal
communication) have also noted that
precipitation from high based cenvection
(cloud bases generally between 600 and 500
mb) commonly occurs in the area during
the 24 hr period preceding an SSWE event.
This precipitation is usually light (less than
one-quarter in at the surface), but can
serve to redistribute moisture into the
lower portions of the troposphere,
enhancing potential instability.

a. Idaho, western Montana, and western
Wyoming

Examination of meteorological features
associated with the 22 SSWEs affecting
this subregion reveals that 17 cases are
associated with Pattern A, or the "negative
tilt" pattern. The remaining 5 cases are
associated with Pattern B, or the "trough
axis" pattern.

1)  Pattern A (negative tilt pattern) in
ID/MT/WY subregion

For the ID/MT/WY subregion cases, this
pattern typically features a long-wave
trough position in the eastern Pacific
Ocean (not shown) with a mid-level ridge
axis extending from central Saskatchewan
southward into eastern Wyoming (Fig. 6).
A negatively-tilted short-wave trough®
extending from 700 mb up through 300 mb
is lifting northeastward into the subregion
from the west central United States.
Significant 300 mb 12 hour height falls, as
large as 80 to 100 meters, are associated
with the short-wave trough. South to

3 A negatively tilted trough is one whose axis in not
meridionally oriented, but leans toward the west with
increasing latitude (Bluestein 1992),

subregion ahead of the trough with
pronounced diffluence indicated at both
500 and 300 mb levels. A 500 mb

jet axis of 40 to 60 kt winds typically
extends along a band from west central
Nevada into west central Montana while a
southwesterly flow aloft prevails across the
jet axis of 60 kt or greater winds at 300 mb
extends from western Nevada north
northeastward into northern Idaho. In the
nearly half of the cases the 300 mb wind
maxima were between 80 and 100 kt.

The precurser 500 mb thermal field (at
1200 UTC) displays a warm axis across
central Montana with a cold axis
somewhere off the west coast (Fig. 10).
Colder temperatures (less than -15C) are
confined to an area from the central
portions of Washington and Oregon
westward. During the 12 h period between
1200 and 0000 UTC temperatures cool
slightly (1 to 2C) over central and southern
Idabo as a weak thermal trough axis moves
northeastward into the area. However,
during the same 12 h period temperatures
warm slightly, on average, over western
Montana and western Wyoming. This
suggests that destabilization owing to
cooling aloft is typically not a major factor
with these cases.

Probably the most significant contributions
to destabilization are 1) the increase in
moisture values in the lower half of the
troposphere from moisture transport,
mixing, and precipitation moistening, and
2) diurnal heating. Surface dew points are
typically in the 50 to 60F range ahead of
the cold front with 45F being the lower
limit. A relatively warm north northwest-
south southeast oriented 850 mb thermal
ridge (temperatures in the 18-20C range) is
present ahead of the cold front (Fig. 11)
and strong diurnal heating typically adds to
destabilization in the warm sector. Surface
based CAPE values are typically between
1000 and 2000 Jkg' in the subregion at



0000 UTC, and in some instances values
reach 2500 Jkg! Surface based lifted
index values (SBLIs) are relatively stable in
the precursor soundings (at 1200 UTC),
ranging from +2 to -2. However, by 0000
UTC instability has increased significantly.
SBLI values by that time typically range
from -3 to -6, with a few values reaching -8,

All of the 17 Pattern A cases in this
subregion are associated with a cold front,
with severe thunderstorm development
typically occurring in the vicinity or ahead
of the front. However, surface reflections
of fronts in the western United States are
usually ill-defined. These boundaries can
be more clearly identified by examining the
thermal pattern changes at the 850 mb,
and especially the 700 mb levels (Williams
1972). The composite 850 and 700 mb
temperature fields associated with Pattern
A cases In ID/MT/WY subregion (Figs. 11
and 12) suggest that a cold front usually
extends from northwestern Montana across
central Idaho into northeastern Nevada at
0000 UTC (Fig. 6).

2) ID/MT/WY subregion Pattern A case
study - 30 April 1987

On the afternoon of 30 April 1987 severe
thunderstorms producing primarily
damaging winds struck western and
northern Idaho and northwest Montana
(Fig. 13). Winds estimated between 80 and
100 mph in northwestern Montana caused
extensive damage. Damaging winds were
also reported across southern Idaho as well
and into portions of western Wyoming.

The severe weather composite chart for
the 30 April 1987 case (Fig. 14) appears to
fit Pattern A relatively well. The locations
of most features associated with this case
are close to those in the mean severe
weather composite chart for Pattern A in
the ID/MT/WY subregion (Fig. 6). There
are a few variations, however. For

example, in the 0000 UTC 1 May 1987 case
the 500 and 300 mb jet axes downstream
from the short-wave trough, are farther
west than the mean and there is an
easterly component to the flow (Fig. 15).
Further, the short-wave trough is moving
more northward than northeastward, in
part because of the strong ridge over south
central Canada. Despite these variationsin
jet structure and trough movement, large
12 h (1200 to 0000 UTC) 300 mb height
falls are associated with the short-wave
trough (from 90 meters at Boise, Idaho to
140 meters at Salem, Oregon). Further, an
area of pronounced diffluence at the mid-
and upper-levels is nearly coincident with
the primary area of severe weather
occurrence, a signal common to Pattern A
cases.

Also typical of Pattern A, the 500 mb
temperature changes over the subregion
between 1200 and 0000 UTC in the 30
April 1987 case are relatively small
Temperatures remained constant or
warmed slightly in Montana and Wyoming,
with modest cooling taking place in
southwestern Idaho (-2C at Boise). Diurnal
heating contributed to destabilization,
particularly over the western portions of
Montana and Wyoming where afternoon
temperatures reached upper 70s and lower
80s F.

3) Pattern B (trough axis pattern) in
ID/MT/WY subregion

Pattern B or the "trough axis” pattern
differs from Pattern A in that a positively
tilted long wave trough (at 700, 500, and
300 mb) is propagating eastward across the
northwestern states. Since there are only
five Pattern B cases in the dataset, the
composite charts of associated features
(Figs. 8, 16, 17, and 18) should be used
with caution. Generally, many of the
features and their locations are similar to
those in Pattern A. These include the



850 mb thermal axis, the 700 mb and 500
mb thermal patterns, the 500 mb wind
speeds, the location of the cold front (at
700 mb), and the upper ridge axis over the
northern Plains, Further, cooling aloft
over the subregion between 1200 and 0000
UTC is minimal. The severe weather
composite chart suggests that there is
typically some upper level diffluence over
the subregion, but it appears to be less
pronounced than it is with Pattern A,
Also, there may be a closed low associated
with the mid- and upper-level trough in
Pattern B cases.

Within the subregion, Pattern B cases are
typically associated with weaker instability
than Pattern A cases. CAPE and SBLI
values at 0000 UTC in Pattern B cases
range from 700 to 1500 Jkg* and -2 to -5,
respectively. The weaker instability
associated with this pattern results largely
from lower values of moisture than is the
case with Pattern A cases. Surface dew
points ahead of the cold front range from
the mid 40s F to the lower 50s F.

4) ID/MT/WY subregion Pattern B case
study - 10 May 1989

Several clusters of severe thunderstorms
producing damaging winds and isolated
large hail affected portions of western
Montana, southeastern Idaho, and western
Wyoming on 10 May 1989 (Fig. 19). The
storms became severe during the late
morning hours, continued through the
afternoon, and diminished during the
evening. Wind gusts reaching 70 and 80
mph were reported in portions of western
Montana and southeast Idaho, damaging
buildings and felling trees and power poles.
Winds blew the roof off a commercial
building and hail accumulated to 5 inches
in depth in the south central Idaho town of
Jerome.

The mid- and upper-level flow pattern in
this case is basically Pattern B with a
positively tilied long wave trough moving
eastward in the western United States
(Figs. 20 and 21). However, it does vary
from the Pattern B severe weather
composite in that there are two distinct
short-wave troughs that have come into
phase.  Consequently, there are two
branches to the mid- and upper-level jets,
and the severe thunderstorm development
appears to occur near and to the left of the
southern branch 300 mb jet. Any
diffluence in the subregion appears to be
weak. Further, mid- and upper-level wind
speeds in the subregion appear to be
weaker than the mean.

The low-level (850 mb) thermal ridge
remained nearly stationary during the day
and extended from southern Saskatchewan
southward across eastern Montana into
central Wyoming at 0000 UTC (Fig. 21A).
A north-south trough axis at 700 mb,
initially along the Oregon/Washington
coast at 1200 UTC, shifted eastward into
the intermountain region during the day
and a strong thermal gradient representing
the 700 mb front extended from
northwestern Montana into southwestern
Idaho at 0000 UTC (Fig. 21B). 'The
thermal gradient and 12 h changes at 500
mb, however, were generally quite weak
(Fig. 21C). The only significant cooling
occurred at Great Falls, Montana where
the 500 mb temperature fell 3C in the 12 h
period ending at 0000 UTC.

b. Oregon and Washington

Examination of the meteorological features
assoclated with the 5 SSWEs affecting this
subregion reveals that 4 cases display
Pattern A characteristics. The remaining
case (5 April 1972) has some characteristics
that fit neither Pattern A nor Pattern B.
Because of this, it is discussed separately



later in this section and is not included in
the composite.

1)  Pattern A (negative tilt pattern) in
OR/WA subregion

Generally, the Pattern A severe weather
composite chart for the OR/WA subregion
resembles that of the ID/MT/WY
subregion, but with the features shifted
westward (Fig. 7). The mid- and upper-
level short-wave troughs are typically
offshore at 1200 UTC and move
northeastward into the Oregon/northern
California region by 0000 UTC. Because of
the sparsity of data offshore, satellite
imagery is critical in assessing the
orientation and timing of the short-wave
trough in these instances.

As the short-wave trough moves into the
subregion, temperature changes in the
midlevels are typically not large. In the
12 h period ending at 0000 UTC, some
cooling may occur over the western
portions of both Washington and Oregon
while minor warming is likely over eastern
Washington (Figs. 22 and 23). Changes are
typically less than 2C at the 500 mb level.
The cooling is greater at 700 mb, averaging
more than 2C along coastal sections of
Washington and Oregon.

At 850 mb, a thermal ridge extends from
Utah across Idaho and into southeast
British Columbia. Temperature values at
Boise, Idaho (BOI) are greater than 25C
and at Spokane, Washington (GEG) greater
than 18C. Maximum afternoon surface
temperatures are typically in the 80s and
lower 90s F. Surface based lifted index
values of -4 or less and CAPE values of
1000 and 2000 Jkg, are cornmon in the
area of severe weather occurrence,

2) OR/WA subregion Pattern A case
study - 6 August 1991

Severe thunderstorms producing damaging
winds and large hail developed in north
central Oregon just east of the Cascade
Mountains early on the afternoon of 6
August 1991 (Fig. 24). This activity
developed northward into central
Washington by late afternoon and spread
northeastward over eastern Washington
and portions of northeast Oregon during
the late afternoon and evening hours.
Convective gusts as high as 70 to 80 mph
and golfhall sized hail were reported at
several locations. A gust to 100 mph was
recorded at the Umatilla Army Depot in
northeast Oregon. Five people were
injured when a tent collapsed at the
Umatilla County Fair in Hermiston,
Oregon and a trailer was picked up and
turned upside down by thunderstorm
winds in Omak, Washington.

The composite chart for the 6 August 1991
case (Fig. 25) resembles the OR/WA
Pattern A mean composite chart (Fig. 7).
The primary differences are that in the 6
August case, the short-wave trough is a bit
farther west and the upper ridge is farther
east than on the mean composite,

Other characteristics of the 6 August 1991
case include, relatively dry warm axes at
850 and 700 mb that extended northward
across Idaho and northwestern Montana at
0000 UTC 7 August (Figs. 26A and B). A
moist axis can be noted along the 700 mb
thermal gradient from central Washington
southward into northwestern California, A
moist axis is also noted at 850 mb, but the
axis appears to lag behind (west) the 850
mb cold front. Surface temperatures
during the afternoon reached the mid-80s
to lower 90s F over much of Washington
and Oregon east of the Cascades. Surface
dew points were greater than 50F from
east central Oregon northward. Some
early morning precipitation may have
contributed to higher low-level moisture
values in portions of the region, Surface



based lifted index values reached -4 or less
and surface based CAPE values averaged
around 1000 to 1500 Jkg, at 0000 UTC.
These values are somewhat lower than was
found with the other case studies, but were
still sufficient for SSWE development.

At the 500 and 300 mb levels (Figs. 26C
and D), relatively strong southerly winds
prevail. An area of diffluence is noted over
the eastern portions of Washington and
Oregon. Cooling aloft was minimal and
confined to areas west of the Cascade
mountains.

3)  The unusual OR/WA subregion case
of 5 April 1972

About midday on April 5 1972 severe
weather developed in northwest Oregon
and extreme southwestern Washington
west of the Cascades and spread
northeastward during the afternoon hours
into eastern Washington before ending.
Five tornadoes were reported, including
two of F'3 intensity and two of F2 intensity.
One of the F3 intensity tornadoes killed 6
people and injured 300 others in
Vancouver, Washington.

Although this case was associated with
southwesterly flow aloft and a negatively
tilted short-wave trough (Pattern A
characteristics), other features differ
significantly from those typically found in
Pattern A cases. The episode commenced
on the west side of the Cascades and was
associated with a surface trough, well
behind the cold front. Further,
temperatures aloft were quite cold when
compared to the other cases and 500 mb
temperatures were generally less than -
20C. These conditions closely resemble
those that Hales (1985) found to be
associated with cool season tornado
development in coastal portions of
southern California. For additional details
concerning the meteorology and evolution

of this case the reader is referred to Hales
(1994).

V. CONCLUSION

The results of this study have shown that
severe weather occurrence in the
northwestern United States is generally
restricted to spring and summer (98% of
events reported during March through
September) and is most common during
the summer months of June through
August (756% of all reports). Generally the
frequency of occurrence decreases as one
goes west from the continental divide to
the Pacific coast.

The most common type of event reported
1s damaging convective winds and many of
these events are likely associated with
isolated microbursts and downbursts that
are common in the western United States
during the warm season. On occasion,
however, when the wind fields are
relatively strong and instability and forcing
are sufficient, organized deep convection
develops over the northwestern United
States and more widespread severe
weather results. In recent years these
more widespread and significant severe
weather episodes (SSWEs) have been
reported about twice a year.

To assist forecasters in anticipating SSWE
development, mean composite charts of
those pertinent meteorological featuresand
parameter values associated with SSWEs
occurring within that portion of the region
east of the Cascades were prepared.
Although the number of cases (26)
available to construct these charts was
limited, several common features appear {o
stand out. All of the cases are associated
with a long wave trough to the west of the
area of occurrence and south to
southwesterly flow at mid- and upper-levels
prevails over the area of occurrence. Also,



all cases are associated with a short-wave
trough moving into the region.

In most cases the short-wave trough is
negatively tilted (80% of the cases) which
appears to facilitate moisture transport
into the region. This is probably a primary
reason why those cases (20%) that are
associated with a positively tilted short-
wave troughs are restricted to the eastern
portions of the region where moisture was
more readily available.

Other conditions common to the composite
cases are the relatively strong winds
associated with the mid- and upper-level
jets entering the region (40 to 60 kt at 500
mb and 50 to 100 kt at 300 mb), and the
lack of any strong cooling above the region
at midlevels (500 mb). Severe weather
development is typically associated with a
diffluent zone aloft and usually takes place
along to well ahead of the boundary layer
cold front. Because of mountainous
terrain, the boundary layer cold front is
usually most easily identified by examining
the 700 mb thermal field. The front is
typically located near or just east of the
Jeading edge of the stronger thermal
gradient at 700 mb.

Instability typically reaches moderate
values in Pattern A (negatively tilted
trough) cases with surface based lifted
index values of -3 to -6 and CAPE values of
1000 to 2000 Jkg,. However, in a few
cases lifted index values may reach -8 and
CAPE values may reach 2500 Jkgt. In
Pattern B cases instability is typically weak
to moderate with surface based lifted index
values of -2 to -5 and CAPE values of 700
to 1500 Jkg’. This degree of instability is
achieved in part through diurnal heating
and moisture transport. Moisture is most
efficiently transported into the region by
the mid-level flow and likely mixes
downward through precipitation,
evaporation, and other means.
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This study demonstrates that there are

some common meteorological
characteristics associated with most
significant severe weather episodes

occurring in the northwestern United
States, Further, recent trends in severe
weather reporting for the area suggests
that such episodes occur on average about
twice a year or more. With continued
trends in increased awareness in the region
and with vastly increased capabilities for
detection with the installation of the WSR-
88D radar network, it may be found that
SSWEs in the region are even more
common than current statistics would
indicate, For this reason it is important for
forecasters to have effective tools to aid in
forecasting these larger scale events. It is
hoped that this study will lead to improved
forecast techniques concerning SSWE
development in the northwestern United
States.
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Table 1
Significant Severe Weather Episodes

No. Date States Reports D/I Significant Events
T/W/A

1 9/4/60 OR/ID/MT - 0/0 Widespread wind damage

2 6/27/70 ID/MT/WY 0/16/1 0/0 80-100 mph winds in Montana

3 4/5/72 WA/OR 5/0/0 6/301 Two F3 tornadoes in Washington

4 6/22/73 ID/MT - (/0 Widespread wind damage

i) 6/23/75 ID/MT 1/-/- 0/1 1 F2 tornado and wind damage

6 7/34/75 WA/ID 0/3/11 0/0 I2d3 diameter hail near Reubens,

7 6/28/82 ID/MT 1/4/6 0/0 30 million dollars damage in
Helena, MT due to 3" diameter
hail

8 8/9/82 WA/OR 1/9/2 0/0 Winds estimated to 100 mph in
NE OR

9 8/11/82 ID/MT 0/8/8 0/0

10 7/6/83 ID/MT/WY 0/14/1 1/2 80-100 mph winds reported in 1D,
MT, and WY

11 7/9/83 1D 0/7/7 0/0

12 8/24/84 ID/MT 1/8/8 0/0

13 4/30/87 ID/MT/WY 0/16/2 0/0 80-100 mph winds in western MT

14 6/15/87 ID/MT/ WY 1/27/2 0/6 $10 million worth of damage in
Nampa, ID

15 7/21/87 OR/ID/WY 2/5/2 0/0 F4 tornado in the Teton
Wilderness

16 6/28/88 MT 0/0/13 0/0 Baseball size hail in western MT

17 5/10/89 ID/MT/WY 0/11/1 0/0

18 9/17/89 ID/MT 1/13/0 0/4 Extensive wind damage in SE ID

19 8/20/90 WA/OR/ID/MT 0/5/7 0/0

20 8/6/91 WA/OR 0/9/1 0/5 80-100 mph winds in NE OR with
2" diameter hail

21 9/10/91 ID/WY 1/3/6 0/0

22 4/17/92 ID 0/24/1 0/0

23 6/12/92 ID/MT 1/9/2 0/0

24 6/28/92 WA/OR/ID 0/10/3 0/0

25 7/22/92 OR/ID/MT 2/6/3 0/0

26 5/3/93 OR/ID 1/10/0 0/4 Extensive wind damage in SE ID

27 6/21/93 OR/ID/MT 3/11/0 0/1 97 gph winds at Choteau, MT |

Note - Reports column denotes number of tornadoes/wind/hail events while D/I column denotes number
of deaths/injuries.
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and is defined in this paper as the northwestern United States
while b) shows important topographical features within the study
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NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on
October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and
technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and
their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the

following kinds of publications.

PROFESSIONAL  PAPERS--Important  definitive
research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS--Reports prepared
by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in
the form of maps showing distribution of rainfall,
chemical and physical conditions of oceans and
atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.

TECHNICAL ~ SERVICE ~ PUBLICATIONS--Reports
containing data, observations, instructions, etc. A
partial listing includes data serials; prediction and
outlook periodicals; technical manuals, training pa-
pers, planning reports, and information serials; and
miscellaneous technical publications.

TECHNICAL REPORTS:-Journal quality with extensive
details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS--Reports of preliminary,
partial, or negative research or technology results,
interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:
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