no.89-3 Techniques Development Laboratory
wuputer Program NWS TDL CP 89-3

EXTENDED MEMORY LIBRARY
FOR AFOS APPLICATIONS

Silver Spring, Md.
June 1989

U.S. DEPARTMENT OF National Oceanic and
COMMERCE Atmospheric Administration

/

National Weather
Service

PREFACE

The Techniques Development Laboratory’s (TDL’s) computer program (CP)
series is a subset of TDL's technical memorandum series. The CP series
documents computer programs written at TDL primarily for the Automation of
Field Operations and Services (AFOS) computers.

The format for the series follows that given in the AFOS Handbook 5,
Reference Handbook, Volume 6: Applications Programs, Part 1l: Policy and
Procedures, published by the Office of Technical Services/AFOS Operations
Division.

NOAA Techniques Development Laboratory
Computer Program NWS TDL

CP 83-1 Gross Sectional Analysis of Wind Speed and Richardson Number.
Gilhousen, Kemper, and Vercelli, May 1983. (PB83205062)

CP 83-2 Simulation of Spilled 0il Behavior in Bays and Coastal Waters.
Hess, October 1983. (PB84122597)

CP 83-3 AFOS-Era Forecast Verification. Heffernan, Newton, and Miller,
October 1983. (PB84129303) :

CP 83-4 AFOS Monitoring of Terminal Forecasts. Vercelli, December 1983.
(PB84145697LL)

CP 83-5 Generalized Exponential Markov (GEM) Updating Procedure for AFOS.
Herrmann, December 1983. (PB84154822LL)

CP 84-1 AFOS Display of MDR Data on Local Map Background. Newton, July 1984.
(PB84220797) »

CP 84-2 AFOS Surface Observation Decoding. Perrotti, September 1984.
(PB85137586)

CP 84-3 AFOS-Era Forecast Verification. Miller, Heffernan, and Ruth,

. September 1984. (PB86148319LL)

CP 85-1 AFOS Monitoring of Terminal Forecasts. Vercelli and Norman,
May 1985. (PB85236388LL)

CP 85-2 AFOS Terminal Forecast Decoding. Vercelli, Norman, and Heffernan,
October 1985. (PB86147360LL)

CP 85-3 AFOS-Era Forecast Verification. Ruth, Miller, and Heffernan,
October 1985. (PB86148319LL)

CP 87-1 AFOS Terminal Aerodrome Forecast Formatting. Wantz and Eggers,
July 1987. (PB8810449LL)

CP 87-2 AF0S-Era Forecast Verification. Ruth and Alex, July 1987.
(PB88125570LL)

CP 87-3 Forecast Review. Wolf, July 1987. (PB88125588LL)

CP 87-4 AFOS Monitoring of MDR Data Using Flash Flood Guidance. Norman and
Newton, October 1987. (PB88137450LL)

CP 87-5 AFOS Terminal Forecast Quality Control. Vercelli and Leaphart,
December 1987. (PB88169925LL)

CP 88-1 AFOS Terminal Forecast Decoding. Vercelli and Leaphart,
August 1988. (PB89101240LL)

CP 89-1 Structure Flow Diagram Generator. Adams, March 1989.
(PB89195978AS)

CP 89-2 String Search. Adams, March 1989. (PB89195986AS)

NOAA Techniques Development Laboratory
Computer Program NWS TDL CP 89-3

EXTENDED MEMORY LIBRARY

FOR AFOS APPLICATIONS

Mark A. Leaphart

Techniques Development Laboratory
Silver Spring, Md.
June 1989

UNITED STATES National Oceanic and
DEPARTMENT OF COMMERCE Atmospheric Administration
Robert A. Mosbacher William E. Evans, Under Secretary

Secretary

/

National Weather Service
Etbert W. Friday, Jr.
Assistant Administrator

10.

11.

12.

TABLE OF CONTENTS

Introduction

Extended Memory

Window Mapping

Setting up Extended Memory
Handling Data in Extended Memory
Loading

Error Returns

XMEM.LB

References

Figures

Library Information

Library Module Descriptions

VMEM - Determines the amount of extended memory available.

MAfDF - Defines the logical window.
Example 1 (VMEM and MAPDF)
Example 2 (VMEM and MAPDF)

REMAP - Does a logical window transfer.
Example 3 (REMAP)

Example 4 (REMAP)

VRW - Extended Direct Block I/0.
Example 5 (ERDB and REMAP)
Example 6 (EWRB and ERDB)

VDL - Extended Direct Block I1/0.
Example 7 (VLOAD)

Example 8 (VDUMP and VLOAD)

TDL CP 89-3
June 1989

Page

10
12
15
16
17
19
21
24
27
30
32
35

36

TDL CP 89-3

June 1989
TABLE OF CONTENTS
Page
SF - Copies data to and from extended memory 38
Example 9 (VFETCH) 41
Example 10 (VFETCH) 42
Example 11 (VSTASH and VFETCH) 44

Example 12 (VSTASH and VFETCH) 45

ii

TDL CP 89-3
June 1989

EXTENDED MEMORY LIBRARY FOR AFOS APPLICATIONS

Mark A. Leaphart

1. INTRODUCTION

The Data General Corporation’s Eclipse S$/230 minicomputer limits every
applications program to 32K of logical memory. This is often very burdensome
to programmers who are trying to develop software on Automation of Field
Operations and Services (AF0S). The Techniques Development Laboratory (TDL)
has developed an extended memory library, XMEM.LB, which provides the program-
mer with a way of using more than 32K words of logical memory. This collec-
tion of FORTRAN IV callable assembly language routines interfaces with the
Real Time Disk Operating System (RDOS) window mapping facility. The capabil-
ity and flexibility of XMEM.LB was adapted from the Data General FORTRAN 5
version (Data General Corporation, 1984). All routines in XMEM.LB were assem-
bled with the Data General Macro Assembler, Revision 6.30.

This document provides information about extended memory and window mapping,
including setting up extended memory, handling data in extended memory, defi-
nitions of error codes, and a description of the modules in XMEM.LB with ex-
amples showing how to use them.

2. EXTENDED MEMORY

The allotment of memory (both logical and extended), defined in 1024-word
blocks, is done via the CLI SMEM command at system start time. The logical
address space is the amount of memory that can be referenced by instructions
in a program (Data General Corporation, 1975a). Memory outside of the logical
address space is called extended address space or extended memory (Data
General Corporation, 1979). The amount of extended memory available to a
program will depend on the amount of memory allotted to the background and the
amount of memory the program takes up. The difference between these two
amounts will make up extended memory. For example, at a WSFO, background mem-
ory is allotted in the AFOS start-up macro. If 128 blocks are allotted to
background, and an applications program uses all 32K logical address space
(32 blocks), another 96 blocks will be available for window mapping.

3. WINDOW MAPPING

Window mapping allows the programmer to gain direct access to portions of
extended memory; it also allows the programmer to transfer blocks between
extended memory and disk (Data General Corporation, 1979). A window is an
area (basically an array) in a program that you use to make references to
extended memory. There can only be one window in your program and it must be
aligned, in memory, on a 1024-word boundary. The window area can be defined
anywhere in your program as long as its location in memory is below the NMAX
value of your program. The NMAX value can be found in your program’s load
map. When a program is being loaded by the RLDR, NMAX is used as an address
counter for Relocatable Binary (.RB) files. NMAX is the address of the next
.RB file placed in the save and overlay file. When the RLDR is done with the
current .RB file, the RLDR updates NMAX by the number of instructions that the

TDL CP 89-3
June 1989

current .RB file takes up. After the program is loaded, the NMAX value you
see in the load map is the program’s address space minus 1. The program will
execute instructions in locations O through NMAX - 1. The way that the window
references extended memory can be best described as analogous to the FORTRAN
EQUIVALENCE statement. The blocks in the window and in extended memory share
the same memory location. The main difference between the two is that you can
only equivalence two data objects at a time per EQUIVALENCE statement, but
with the window you can reference different blocks of extended memory as many
times as you like. Once you define your window, your window will always be
referencing extended memory. All updates (intentional and unintentional) to
the window will simultaneously be updated in extended memory.

4., SETTING UP EXTENDED MEMORY

There are two parts to setting up extended memory and each part consists of
a couple of steps. The first part is done by the programmer before program
execution, and the second part is done by the program at execution time.

The first part consists of aligning the window on a 1024-word boundary. The
first step is making sure that the window is in COMMON and in its own labeled
common block, The location of the labeled common block with respect to other
labeled common blocks is important. The window must be the only labeled
common block or the last labeled common block in the routine. The reason for
this is due to the way the FORTRAN IV compiler (Rev 5.20 and 5.57) handles
common blocks. The compiler handles common blocks in the reverse order that
you list them (see Figs. la & 1b).

The second step involves setting up the load line so that the address of the
routine that defines the window starts on a 1024-word boundary. This is done
through the CLI RLDR command. The RLDR command has a local switch that allows
you to start a routine’s code at a given address. The format of the switch is
"n/N", where n is an octal address and a multiple of 1024 (decimal):

RLDR 2000/N Mainprgm

Using the "/N" switch with a program that uses extended memory will leave an
unused portion of memory located just before the address of the "/N" switch.
In this unused portion, you can place any subroutine(s) which fit(s) into
memory between the address where the RLDR starts loading subroutines and the
address given by the "/N" switch (see Figs. 2a & 2b). (The address where the
RLDR starts loading subroutines will vary from program to program.) For
example:

RLDR Subprgm 2000/N Mainprgm Subprgms

If you do this, you must use another local switch of the RLDR command to name
the save and overlay file. Normally, the RLDR gives the save and overlay file
the name of the first binary file in the load line, and in this case the RLDR
will give the save and overlay file the names "Subprgm.SV" and "Subprgm.OL".
The local switch that you use to name the save and overlay file is "name/S",
where name is Mainprgm.

RLDR Subprgm 2000/N Mainprgm Subprgms Mainprgm/S

TDL CP 89-3
June 1989

The second -part in setting up extended memory consists of defining the win-
dow in your program. First you must determine the amount of extended memory
available to your program. Second, you must define a map from the window in
your program to extended memory. These two steps must be done in this order
to ensure that the rest of the extended memory routines will work properly.
VMEM and MAPDF are the routines that perform these steps and are described in
more detall starting on page 10.

5. HANDLING DATA IN EXTENDED MEMORY

When developing software using routines from the extended memory library,
the programmer needs to know how to look at extended memory. By knowing how
extended memory is viewed, the programmer can decide which view best fits
his/her data. Routines have been developed so that the programmer can look at
extended memory in two ways. Extended memory may be thought of as: 1) one
large FORTRAN array, or 2) broken up into many FORTRAN arrays, each one the
size of the window,.

VSTASH and VFETCH are the routines to use when viewing extended memory as
one large FORTRAN array. REMAP is the routine to use when viewing extended
memory as an aggregate of many arrays. These routines are described in more
detail on pages 17 and 38.

The two views différ in their methods of accessing extended memory. For the
first view, data are accessed by a word index. This is done by specifying the
word location in extended memory and the number of elements you want to ac-
cess. The window is used as a buffer between extended memory and an array
aggregate. All calculations to the data are done in the array aggregate, and
after the calculations are done, the data must be put back into extended mem-
ory. Accessing the data this way, when compared to the second method, is
slow. A lot of time is spent copying data to and from extended memory. With
the second method, data are accessed in terms of 1024-word blocks. This is
done by specifying the block location of the FORTRAN array in extended memory
and the block location in the window. All calculations to the data are done
using the window. The data do not have to be copied back into extended memory
because extended memory is referenced directly. Accessing the data this way
is very fast. ©No data is actually transfered; only the position in extended
memory that the window points to is changed.

XMEM.LB provides the programmer with routines (EWRB and ERDB) that write and
read data to and from disk and extended memory. The second view of extended
memory is ideally suited for EXTENDED DIRECT BLOCK DISK I/O because the window
is a multiple of 1024, and hence, a multiple of 256. (EXTENDED DIRECT BLOCK
I/0, like regular BLOCK I/0, reads and writes data in terms of 256-word
blocks.) The first view is not really suited for EXTENDED DIRECT BLOCK I/0
because it accesses data on a word index, but if the element size used happens
to be a multiple of 256, EXTENDED DIRECT BLOCK I/0 can be used.

Because the window size has to be a multiple of 1024 words, often the window
may be bigger than the size that is really needed. For example, if an array
of 2200 words is needed, the smallest size the window can be is 3072. Within
each of the many FORTRAN arrays, the last 872 words would not be used. When
this happens, extended memory becomes fragmented. This does not happen when
extended memory is viewed as one large FORTRAN array. Here, the data are put

TDL CP 89-3
June 1989

consecutively into extended memory, and all unused portions are at the end of
extended memory.

6. LOADING

XMEM.LB can be placed anywhere in the load line before the FORT.LB. A typ-
ical load line for a FORTRAN program appears as follows:

RLDR 2000/N Mainprgm Subprgms <UTIL XMEM FORT SYS AFOSE>.LB

The extended memory library provides you with the option of placing XMEM.LB in
its own overlay, and the overlay name is OXMEM. XMEM.LB can be placed any-
where in the overlay structure. A typical load line for a FORTRAN program
with an overlay structure appears as follows:

RLDR 2000/N Mainprgm Subprgms [Overlayl, XMEM.LB, Overlay3]
<UTIL FORT SYS AFOSE>.LB

7. ERROR RETURNS

Bad error returns from XMEM.LB routines are the RDOS error codes plus three
which give you the respective FORTRAN error codes. A good error return is the
FORTRAN error code of one. In some instances, when the End-of-File condition
is met or Disk Space Exhaustion occurs, the error code is recognized by the
routine, all activity for that routine stops, and the FORTRAN error code is
returned as one. This will be discussed later in the COMMENTS section of some
of the Module Descriptioms.

8. XMEM.LB

There are nine subroutines and five functions contained in six modules in
the extended memory library. The library was designed with flexibility in
mind. Several of the routines allow the programmer a choice of multiple forms
of the CALL statement (see the attached Module Descriptions), thus giving the
programmer a greater range of use of the software. Several related routines
share a lot of the same code, so these routines are merged into one module
with multiple entry points. By getting rid of redundant code, you cut the
size of the library down, thus giving the programmer optimal code. There is a
Module Description starting on page 10 for each module, followed by examples
that show how to use the routines in each module. All references to FORT.LB
came from Run Time Library User’s Manual FORTRAN IV (Data General Corporation,
1975b), and the documentation for the wvariables in the ARGUMENT section of the
Module Description came from the FORTRAN 5 Programmer’'s Guide (RDOS) (Data
General Corporation, 1984).

9. REFERENCES

Data General Corporation, 1975a: Programmer’s Reference Manual: FEclipse Line
Computers, Data General Corporation, Westboro, Mass., 121 pp.

1975b: RUN TIME LIBRARY User’s Manual FORTRAN IV, Data General
Corporation, Westboro, Mass., 186 pp.

—e)

, 1978: Extended Relocatable Loaders User’s Manual, Data General
Corporation, Westboro, Mass., 66 pp. '

TDL CP 89-3
June 1989

, 1979: Real Time Disk Operating System (RDOS) Reference Manual, Data

General Corporation, Westboro, Mass., 204 pp.

, 1984: FORTRAN 5 Programmer'’'s Guide (RDOS), Data General Corporation,

Westboro, Mass., 122 pp.

COMMON/IB/IBUF(10)
COMMON/JB/JBUF(25)
COMMON /MB /MBUF (16)
COMMON /KB/KBUF (15)

STOP
END

TDL CP 89-3
June 1989

Figure la.

Example program with four labeled common blocks.

LINE TITLE ADDRESS (8)

04 .MAIN 000445 The RLDR'’s Load Map has two parts: a memory map

05 STOPP 000503 and a list of symbols. The memory map contains
the .RB titles, and the list of symbols contains

. . . assembly instructions and logical addresses of

18 TMIN 002014 variables and labeled common blocks. Here,

19 NSAC3 002110 lines 4 through 19 are the memory map and lines

20 22 through 95 are the list of symbols.

21

22 NMAX 002110 The RLDR builds the save file upward in memory

23 ZMAX 000076 (Data General Corporation, 1978). A routine

24 CSZE 000000 with a lower address means it was handled before

25 EST 000000 a routine with a higher address.

26 SST 000000

27

28 ESV.Z 000006

29 .STOP 000050

30 .IOPR 000051

48 QsP 000074

49 NSP 000075 Lines 51 through 54 hold the logical addresses

50 USTAD 000400

51 C KB 000445 000017

52 C MB 000464 000020

53 Cc JB 000504 000031

54 ¢ IB 000535 000012

55 CMAIN 000551

56 EXIT 000564 of the four labeled common blocks in Fig. la.

57 I 000717 A common block has a "C" preceding its name and
its length is shown to the right of its address.

. . . Compare the order of the common blocks in Fig. la

95 FRTSK 177777 with lines 51 through 54. You will see that the
order is reversed.

Figure 1b. Abbreviated Load Map of the program in Fig. la.

TDL CP 89-3
June 1989

RLDR/P EIJLL IERX TIMPR RDIDG 2000/N DRE4OOAEXT PROPEN E400AEXT RDIDE

ANAL1EXT

[RDSTNEXT ELLIJ, XLTAGEXT FSTGS CHGDT CUTIT, ESLPEXT, BCDEXT]

[RDTDL WRTDL FLOPN RDARG FLNAM IASCI DAY19 IERCK CLFIL, PRTGR SETUP
BESEL, ESPEXT CLOSEXT SMOTH ITRP, A4ORD A4OWR DATMP]

DRE400AEXT/S DRE4OOAEXT.IM/L

<FSISA SYS>.LB LONGTRACE F5<IO MATH1 MATH2 ENV BGDR>.LB AFOSE.LB

Figure 2a. Load Line of LAMP’S Objective Analysis program, DRE4OOCAEXT, using
extended memory and using the local switch "/S".

DRE4OOAEXT. SV LOADED BY RLDR REV 07.10

EIJLL 000456 The RLDR started loading the .RB’'s from the load
IERX 000642 line at address 000456. The programmer was able to
TIMPR 000767 place four subroutines before the local switech */N".
RDIDG 001067
.MAIN 002000 <---- Main program, DRE40OOAEXT
PROPEN 004454
E400A 004702
.BDTA 010344
RDIDE 010344
ANAL1 010704
012207

000,000 RDSTN 012207

ELLIJ 013401 000736
000,001 XLTAG 012207 000261
000,002 FSTGS 012207

CHGDT 014112

CUTIT 014302 002475
000,003 ESLP 012207 000401
000,004 BCD 012207 002544
015207

Figure 2b. Partial Load Map of program DRE4OOAEXT. Load Line is in Fig. 2a.

TDL CP 89-3
June 1989
11. LIBRARY INFORMATION AND SPECIFICATIONS
EXTENDED MEMORY LIBRARY

LIBRARY TINFORMATION

PROGRAM NAME: XMEM.LB AAI. ID: LBSO21
Revision No.: 01.00

PURPOSE: Provides the programmer with a method for using more than 32K of
logical memory. XMEM.LB is a collection of FORTRAN IV callable
assembly language routines that interfaces with the RDOS window
mapping facility. Window mapping allows the programmer to gain
access to memory outside a program’s logical address space. This
memory is known as extended memory.

LIBRARY ROUTINES

VMEM - Returns the amount of extended memory that is available to a
program.

MAPDF - Defines the window map or redefines the permanent element size.

REMAP - Does a logical window transfer by placing blocks from extended
memory address space into the window.

EWRB - Writes a series of disk blocks from extended memory into a
random or contiguously organized file.

ERDB - Reads a series of disk blocks from a random or contiguously
organized file into extended memory.

VDUMP - Copies blocks from extended memory to a disk file.

VLOAD - 1Initializes extended memory to the contents of a disk file.

VFETCH - Copies one or more elements from extended memory to an array
aggregate.

VSTASH - Copies one or more elements into extended memory from an array
aggregate.

IVF - Fetches one integer number from extended memory.

VF - Fetches one real number from extended memory.

CVF - Fetches one complex number from extended memory.

DVF - Fetches one double precision number from extended memory.

DCVF - Fetches one double precision complex number from extended
memory.

TDL CP 89-3
June 1989

LOAD LINE

RLDR X000/N MAINPRGM (user-defined code)
. XMEM.LB FORT.LB .

X000 is multiple of 2000 (octal), and XMEM.LB must precede FORT.LB some-
where in the load line.

LIBRARY SPECIFICATIONS

Developmemt Programmer(s): Maintenance Programmer(s):
Mark A. Leaphart Mark A. Leaphart
Location: Techniques Development Location: Techniques Development
Laboratory Laboratory
Phone: FTS 427-7639 Phone: FTS 427-7639
Language: Macro Assembler/Rev 6.30 Type: FORTRAN IV callable
assembly routines
Library creation date: - May 11, 1988
Disk space: Library files - 2 RDOS blocks

LIBRARY REQUIREMENTS

Library files:
NAME COMMENTS

LBSO21 Contains all necessary routines
that will allow the programmer
to set up the window and access
extended memory.

TDL CP 89-3
June 1989

VMEM
I. IDENTIFICATION
Module name: VMEM
Date: May 11, 1988
Function: Determines the amount of extended memory.
Language: Assembly

II. PURPOSE
Determines the amount of extended memory available to a program.
III. ENTRY POINTS
VMEM
IV. CALLING METHOD
CALL VMEM(BLOCKS, IER)
V. ARGUMENTS
BLOCKS = An integer variable that receives thé number of free 1024-
word blocks of extended memory.
IER = An integer variable that receives the routine’s error return
code.
VI. ERROR RETURNS
NONE
VII. REFERENCED EXTERNALS
. VMEM (System call)

FORT.LB

.CPYL transfers effective address of a caller’s argument list to its
called subroutine’s stack.

.FRET restores a caller’s accumulators and state of carry upon exit
from the called subroutine, and returns to the next instruction
following the call.

VIII. COMMENTS

1) VMEM must be called after calls to OVOPN and MEMI (if you use these
routines).

2) VMEM is the first routine in sequence you need to call to set up
extended memory.

10

TDL CP 89-3
June 1989

Module name: VMEM

3) You must call VMEM to determine the amount of extended memory,

otherwise the rest of the extended memory routines will not work
properly.

4) You need to call VMEM only once in your program.

5) It is possible for VMEM to return zero as a value for BLOCKS. The
return code will be one.

11

TDL CP 89-3

June 1989
MAPDF
I. IDENTIFICATION
Module name: MAPDF
Date: May 11, 1988
Function: Defines a logical window.
Language: Assembly

II. PURPOSE

Defines a window map or redefines the permanent element size (ELMSIZ).
MAPDF will assign relative block numbers O through BLOCKS - 1 to
extended memory.

III. ENTRY POINTS

MAPDF
IV. CALLING METHOD

1) CALL MAPDF(BLOCKS,WINDOW,WINSIZ, [EIMSIZ,]IER)

2) CALL MAPDF(ELMSIZ,IER) - redefines the element size.
VI. ARGUMENTS

1) BLOCKS = An integer that specifies the total number of blocks of

memoxry you want to allocate for window mapping use.

WINDOW = An aggregate in your program through which references to
extended memory are made.

WINSIZ = An integer that specifies the size of the window in
1024 -word blocks.

EIMSIZ = An integer that specifies the size of an element in
words. If omitted, the element size is one.

IER = An integer variable that receives the routine’s error
return code.

2) ELMSIZ = An integer that specifies the new permanent element
size.
IER = An integer variable that receives the routine’s error

return code.
VI. ERROR RETURNS
FORTRAN:
25 = No more memory available.

3100 = Window aggregate does not begin on 1024-word boundary.

12

TDL CP 89-3
June 1989

Module name: MAPDF

VII.

VIII.

REFERENCED EXTERNALS
.MAPDF (System call)
FORT.LB

.FARL transfers effective address of a caller’s argument list to its
called subroutine’s stack and counts the number of arguments
transferred to the called subroutine’s stack.

.FRET restores a caller’s accumulators and state of carry upon exit
from the called subroutine, and returns to the next instruction
following the call.

COMMENTS

1) You must call MAPDF after calls to OVOPN and MEMI (if you use these
routines).

2) MAPDF is the second routine in sequence you need to call to set up
extended memory.

3) You may only call the first form of MAPDF once (see CALLING
METHOD). If you call MAPDF a second time, you will get a error.

4) You can call the second form of MAPDF as many times as you like.

5) After the call to MAPDF (form 1), blocks zero through WINSIZ - 1 of
extended memory are mapped to the window. Blocks zero through
WINSIZ - 1 are initialized to the data in the window.

6) After swapping to another program and returning, you must redefine
your window (form 1) before using any other feature of the extended
memory library. This is the only exception to comment 3.

7) The window will always be referencing some block(s) in extended
memory.

8) Arguments BLOCKS and WINSIZ are in terms of 1024-word blocks.

9) If your window is not aligned on a 1024-word boundary, and if you
use the error checking routine, ERROR, to see if an error has oc-
curred, the following message will be typed on the console:

UNKNOWN ERROR CODE 6031: XXX.SV

where XXX is the name of the program. 6031 is the octal represen-
tation of 3097 decimal. This is RDOS'’s reaction to an unknown
system error reported to routine ERROR. The error return for a
window not on a 1024-word boundary (FEW1K) was taken from the
FORTRAN 5 error file, FSERR.FR, Revision 6.10. Please refer to the
program’s load line and make sure that the local switch "/N" is a
multiple of 1024 decimal and precedes the routine that defines the

13

TDL CP 89-3
June 1989

Module name: MAPDF

window. If that doesn’t work, look in the main program and make
sure that the common block that contains the window is the last
common block listed or the only common block listed.

10) A good way of determining the window size (WINSIZ) is by the
following formula:

WINSIZ = (ES * DW) / 1024
where ES is the element size and has the following values:

1 for INTEGER

2 for REAL

4 for COMPLEX

4 for DOUBLE PRECISION

8 for DOUBLE PRECISION COMPLEX

and DW is the dimension of the window (a multiple of 1024).

e.g., You have a window whose type is REAL and whose dimension is
2048. By the formula, WINSIZ is 4.

(2 % 2048) / 1024 = 4

11) The blocks in the window and in extended memory are both ordered
relative to zero. The window is ordered consecutively from 0 to
WINSIZ - 1. Extended memory is ordered from 0 to BLOCKS - 1.
RDOS has an elaborate scheme that numbers the blocks in extended
memory (Data General Corporation, 1979). You can’t assume that
block N in extended memory will always be in the same location on
each run.

14

TDL CP 89-3
June 1989

FILES ACCESSED

GCAST =~ GRIDDED DATA. (INPUT/OUTPUT)
GSAVE = DIGITAL VALUES/GRID FIELDS. (INPUT/OUTPUT)
GELE = ATTRIBUTES OF ELEMENTS. (INPUT/OUTPUT)

EXTENDED MEMORY

BLOCK 0 = SCRATCH BLOCK - ANY SUBROUTINE CAN USE IT FOR THE DUR-
ATION OF THAT SUBROUTINE.

ASCII DISPLAY INSTRUCTIONS FOR MAP BACKGROUND.

ASCII DISPLAY INSTRUCTIONS FOR GRID MENU OPTIONS.
PACKED DATA FROM WHICH IDATA() IS DETERMINED FROM.
ASCII DISPLAY INSTRUCTIONS FOR GRID DISPLAY.

BLOCK 1
BLOCK 2
BLOCK 3
BLOCK 4

NONSYSTEM ROUTINES CALLED.
OCHN, GSET,WRCLS ,MODIFY

OO0 0O00000000O000

EXTERNAL OGSET,OMOD

COMMON/VTIME/JMON(12),IDUM(4),LEAP
COMMON/GDMDIR/IGCHN, ICON, ICHNL, IOVRLY

COMMON/WIN/IWINDOW(1024) ; NOTICE THE LOCATION OF THE COMMON BLOCK
DIMENSION IBOXES(4,MBOX),IDATE(3)

DIMENSION NCLD(3,MCLOUD)

DATA JMON/31,28,31,30,31,30,31,31,30,31,30,31/

IZERO=0
ICON=-1
ICHNL~-1
IOVRLY=1

C OPEN CHANNEL TO THE OVERLAY FILE.
CALL GCHN(IOV,IER)
CALL OVOPN(IOV,"GMOD.OL",IER)
CALL OVLOD(IOV,OGSET, IZERO,IER)

(@}

C DEFINE YOUR WINDOW.
CALL VMEM(NBLOCKS, IER)
CALL MAPDF(NBLOCKS, IWINDOW, 1, IER)
CALL ERROR(IER, "MAPDF- ERROR")

(@}

C OPEN CHANNELS TO THE DATA FILES.
CALL OCHN("S$GDM",IGCHN)
CALL OCHN("GCAST",IGCCHN)
CALL OCHN("GELE",IGECHN)
CALL OCHN("GSAVE",IGSCHN)

Example 1. A partial subroutine that shows how to set up the window and
extended memory (VMEM and MAPDF).

15

cNeNoNeoNe NN NONe NS

TDL CP 89-3
June 1989

EXTENDED MEMORY

BLOCK O TO 4
BLOCK 5 TO 9

GRAPHIC INSTRUCTIONS FOR WIND BARBS.
GRAPHIC INSTRUCTIONS FOR WIND SPEED, IF /S
SWITCH IS USED.

GRAPHIC INSTRUCTIONS FOR U-COMPONENT, IF /U
SWITCH IS USED.

GRAPHIC INSTRUCTIONS FOR V-COMPONENT, IF /V
SWITCH IS USED.

BLOCK 10 TO 14

BLOCK 15 TO 19

LOGICAL TOGGLE,FLAG,SWITCH(4),TOG,SKIP,EVERY1,EOF
DIMENSION ITIME(3),NWORD(&4),IEX(4),LOC(4),IHS(9)
COMMON/BLK/IFN(6),IBDR(11),JDAY(2,7),JMO(2,12),JPRES (MPRES),

JFT(MPRES) ,MB(2) ,IFEET(4) ,MONTHS(12,0:1),LABEL(6,3)

COMMON/WIN/IWINDOW(5120)

DATA
DATA
DATA
DATA
DATA

DATA

Q

IBDR/0,0,4095,0,4095,3071,0,3071,0,0,-1/

JDAY/"SUN MON TUE WED THU FRI SAT "/, MB/"MB"/, IFEET/"1000 FT"/

JMO/"JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC "/

JPRES /1000, 900,800,700,600,500,400,300,250,200,150,100/

MONTHS/0,31,59,90,120,151,181,212,243,273,304, 334,
0,31,60,91,121,152,182,213,244,274,305,335/

LABEL/"WIND SPEED",0,"U-COMPONENT", "V-COMPONENT" /

C INITIALIZE SWITCHES.
IS='<0>S’
IU='<0>U’
IV="<0>V"’

C SET YOUR DEFAULTS.
IWINSIZ=5
NHOURS=16
JZMIN=0

C SET UP EXTENDED MEMORY.

CALL
CALL
CALL

VMEM(NBLOCKS, IER)
MAPDF (NBLOCKS, IWINDOW, IWINSIZ, IER)
ERROR (IER, "MAPDF ERROR")

C READ COMMAND LINE FOR SWITCHES.

CALL

FCOM(ICH,IER)

C LOOK FOR GLOBAL SWITCHES.

CALL

SWITCH(1)=-1

COMCM(ICH, IBUF,JBUF, IER)
. WIND BARBS

SWITCH(2)=ISWSET(JBUF,IS) ; WIND SPEED
SWITCH(3)=ISWSET(JBUF, IU) ; U-COMPONENT
SWITCH(4)=ISWSET (JBUF, 1IV) ; V-COMPONENT

Example 2.
extended

A partial subroutine that shows how to set up the window and
memory (VMEM and MAPDF).

16

IT.

III.

Iv.

VI.

VII.

TDL CP 89-3
June 1989

REMAP

IDENTIFICATION

Module name:
Date:
Function:
Language:

PURPOSE

REMAP

May 11, 1988
Window transfer.
Assembly

Does a logical window transfer by placing blocks from the extended
memory address area into the window.

ENTRY POINTS

REMAP

CALLING METHOD

1) CALL REMAP(WB,MB, [NB,] IER)

2) CALL REMAP(BN,IER)

ARGUMENTS

1) WB =
MB =
NB =
IER =

2) BN =
IER =

An integer that specifies the starting block number, rela-
tive to zero, in the window.

An integer that specifies the starting block number, rela-
tive to zero, in extended memory.

An optional integer variable that specifies the number of
blocks you want to remap to the window area. If omitted,
one block is remapped to the window.

An integer variable that receives the routine'’s error
return code.

An integer that specifies the block number in extended
memory that gets mapped to block zero of the window.
An integer variable that receives the routine’s error
return code.

ERROR RETURNS

FORTRAN:

29 =

Illegal starting address.

REFERENCED EXTERNALS

.REMAP (Task call)

17

TDL CP 89-3
June 1989

Module name: REMAP

VIII.

FORT.LB

.FARL transfer effective address of a caller’s argument list to its

called subroutine’s stack and counts the number of arguments
transferred to the called subroutine’s stack.

.FRET restores a caller’s accumulators and state of carry upon exit

from the called subroutine, and returns to the next instruction
following the call.

COMMENTS

D

2)

3)

4)

No data transfer is done in a remap operation.

Remapping can best be described as analogous to the FORTRAN
EQUIVALENCE statement. After the remap operation occurs, the
block(s) in the window and in extended memory share the same memory
location. One remapping operation stays in effect until another
remapping operation is done.

Arguments WB, MB, and NB are in terms of 1024-word blocks.

The difference between form 1 and form 2 is the number of blocks
that get mapped to the window and where the blocks get mapped to.
Form 1 can map multiple blocks anywhere in the window (0 to
WINSIZ - 1) and form 2 maps one block to block 0 of the window.
You can use form 2 when you know you are only using block 0 of the
window.

18

OVERLAY ODDAT
PARAMETER LEAD=0O
PARAMETER NMISS=9999
PARAMETER JCHAR=3
PARAMETER IOPT=-1

TDL CP 89-3

June 1989

SUBROUTINE DISDAT(IDATA, IRV,MAXCOL,MAXROW,IX,IY,IGCHN, ICON, ICHNL,
IOVRLY,1Z,IGR, IUP, IBRT,NBLOCK, IRC)

NOVEMBER 1987
FORTRAN IV/REV 5.
PURPOSE
CONVERT NUMERI
DISPLAY IT ON
VARIABLES
IDATA() =

IRV() =
MAXCOL =

MAXROW =
IX,IY =

IGCHN =
ICON =
ICHNL =
IOVRLY =
IZ =

IGR =

IUP =

IBRT =
NBLOCK =

IRC =

INTERNAL
IASCII() =
JCHAR =
NMISS =
LEAD =

NPTR =
NBYTES =

a0 O00O00O0acO00O00a0O00O0000000000a00aa00n

MARK LEAPHART TDL FTS 427-7639
57 DG ECLIPSE S230 RDOS/REV 6.17

CAL DATA FROM IDATA() INTO ASCII AND THEN
THE SCREEN.

CONTAINS DATA FROM SELECTED ELEMENT AND
PROJECTION HOUR.
TELLS IF THE GRID POINT IS ON/OFF.

O: OFF 1: ON
MAXIMUM NUMBER OF COLUMNS DISPLAYABLE ON THE
SCREEN.
MAXIMUM NUMBER OF ROWS DISPLAYABLE ON THE SCREEN.
THE ASCII DATA, HELD IN IASCII(), STARTS AT
THESE COORDINATES.
CHANNEL TO THE GDM.
CONSOLE OF THE GDM YOU ARE USING.
CHANNEL OF THE CONSOLE YOU ARE USING.
OVERLAY OF THE CHANNEL YOU ARE USING.
Z0OM LEVEL (0-4):

0: 1:1 1: 4:1 2: 9:1 3: 16:1 4: 25:1
TELLS WHETHER OR NOT TO LOAD THE GDM INSTRUC-
TIONS INTO IASCII().

0: DON'T LOAD 1: LOAD
TELLS WHAT TO UPDATE:

0: UPDATE ONLY GRIDPOINTS THAT ARE ON.

1l: WHOLE GRID.

2: SCREEN.

USE BRITENESS LEVELS? O: NO 1: YES

BLOCK (1024-WORD) IN EXTENDED MEMORY WHERE THE
INSTRUCTIONS FOR THE ASCII REPRESENTATIONS OF THE
DATA IS STORED.

RETURN CODE.

CONTAINS ASCII CHARACTERS MASKED FOR BRITENESS.
NUMBER OF ASCII BYTES TO CONVERT.
MISSING VALUE INDICATOR.

SUPPRESS OR INSERT LEADING ZEROES.

0: SUPPRESS 1: INSERT
WHERE THE ASCII CHARACTERS START IN IASCII().
NUMBER OF BYTES WRITTEN TO THE SCREEN.

Example 3. A partial subroutine that shows the use of REMAP.

the following page.)

(Continued on

19

TDL CP 89-3
June 1989

IOPT = WRITE OPTION:
1: CLEAR CHANNEL AND WRITE.
2: CLEAR OVERLAY WITHIN CHANNEL AND WRITE.
OTHERWISE JUST WRITE.
LINE = NUMBER OF WORDS PER LINE (PACK).
IOFF = VALUE REPRESENTING OFF.
IPOINT() = HOLDS THE UNPACKED ASCII REPRESENTATION FOR THE

GRIDPOINT.
ITHOLD() = HOLDS THE THRESHOLDS OF THE NINE LEVELS OF
BRITENESS.
INCCW = NUMBER OF PACKED CARRIAGE RETURNS WORDS.

NWORDS = NUMBER OF WORDS OF DISPLAY INSTRUCTIONS.
JP = CURRENT POSITION IN IPOINT().

N = START POSITION OF A LINE WITHIN IASCII().
IP = CURRENT POSITION WITHIN A LINE.
JVAL = TEMPORARY VARIABLE USED INSTEAD OF AN ARRAY

ELEMENT (IDATA(I,J)).
I9990 = ANY VALUE GREATER THAN THIS VALUE IS CONSIDERED
MISSING.
ICRS = A WORD CONTAINING TWO CARRIAGE RETURNS.
NONSYSTEM ROUTINES CALLED.
INTRC,CONVRT,WRCLS, INITAR, TROUBL

+sNeNeoNesNeNsNoNeNoNeoNoNsNoNeoNosNoNo NN NG NGNS G)

COMMON/II/IASCII(1024)

COMMON /WIN/IWINDOW(1024)

DIMENSION IDATA(MAXCOL,MAXROW), IRV(MAXCOL,MAXROW)
DIMENSION ITHOLD(8),IPOINT(6)

C
IZERO=0
IRC=IZERO
TAVRG=IZERO
ITWO=2
c
C REMAP BLOCK (NBLOCK) INTO THE WINDOW.
CALL REMAP(NBLOCK, IER)
IF(IER.NE.1)CALL TROUBL("REMAPPING ERROR ","IN DISDAT")
C
ICRS='<15><15>"'
NPTR=5
IF(IGR.NE.1)GO TO 5
C
C LOAD IN INSTRUCTIONS ONCE.
CALL INTRC(IWINDOW,IP,ICON,ICHNL,IOVRLY,IX,IY,IZ,IRC)
IGR=IZERO
c
C UPDATE THE GRID FIELD.

5 IP=NPTR
IF(IUP.EQ.ITWO)GO TO 60
IF(IUP.NE.1)GO TO 40

Example 3 (cont.)

20

TDL CP 89-3
June 1989

SUBROUTINE CDVVT(IWINDOW,IDATA,XIN,U, LENGTH,MAXCOL,MAXROW, IFCOL, LCOL,
NROW,NB, SCALE)

NOVEMBER 1988 MARK LEAPHART TDL FTS 427-7639
FORTRAN IV/REV 5.57 DG ECLIPSE S230 RDOS/REV 6.17
PURPOSE

COMPUTES TWO OF THE SIX LINEAR KINEMATIC PROPERTIES OF A FLOW
FIELD (DIVERGENCE AND VORTICITY) AT THE CENTROID OF A TRIANGLE
OF STATIONS BASED ON THE LINEAR VECTOR POINT FUNCTION (LVPF)
METHOD DESCRIBED BY ZAMORA ET AL. (1987)

VARIABLES

IWINDOW() = USED TO ACCESS U- AND V-COMPONENTS OF THE THREE
STATIONS FROM EXTENDED MEMORY AND STORE DIVER-
GENCE AND VORTICITY VALUES IN EXTENDED MEMORY.

IDATA() = BUFFER ARRAY THAT CONTAINS THE VORTICITY VALUES

AFTER COMPUTATIONS THE VORTICITY VALUES ARE
STORED IN EXTENDED MEMORY.

XIN(I,J) = (I=1) THE CONTRIBUTION TO THE U-COMPONENT CAL-
CULATED AT THE CENTROID OF THE TRIANGLE BY EACH OF
THE THREE STATIONS AT THE POINTS OF THE TRIANGLE.
(I=2) THE CONTRIBUTION TO THE V-COMPONENT CAL-
CULATED AT THE CENTROID OF THE TRIANGLE BY EACH OF
THE THREE STATIONS AT THE POINTS OF THE TRIANGLE.
(I=3) THE CONTRIBUTION TO THE STRETCHING
DEFORMATION CALCULATED AT THE CENTROID OF THE TRI-
ANGLE BY EACH OF THE THREE STATIONS AT THE POINTS
OF THE TRIANGLE. .
(I=4) THE CONTRIBUTION TO THE SHEARING DEFORMATION
CALCULATED AT THE CENTROID OF THE TRIANGLE BY EACH
OF THE THREE STATIONS AT THE POINTS OF THE TRI-
ANGLE.
(I=5) THE CONTRIBUTION TO THE DIVERGENCE CAL-
CULATED AT THE CENTROID OF THE TRIANGLE BY EACH OF
THE THREE STATIONS AT THE POINTS OF THE TRI-
ANGLE.
(I=6) THE CONTRIBUTION TO THE VORTICITY CAL-
CULATED AT THE CENTROID OF THE TRIANGLE BY EACH OF
THE THREE STATIONS AT THE POINTS OF THE TRI-

ANGLE.
STATION 1 (J=1,2) STATION 2 (J=3,4) STATION 3
(J=5,6).
U() = THE THREE NON-COLINEAR HORIZONTAL WIND MEASURE-
MENTS: (U1,V1,U02,V2,U3,V3).
LENGTH = NUMBER OF KINEMATIC PROPERTIES.
MAXCOL,MAXROW = DIMENSIONS OF IDATA().

IFCOL = FIRST COLUMN IN IWINDOW() THAT HAVE DATA.

LCOL = LAST COLUMN IN IWINDOW() THAT HAVE DATA.

NROW = NUMBER OF ROWS IN IWINDOW() THAT HAVE DATA.

a0 O00O0O0O00O0000O00O00000000000000000000000

NB BLOCK IN EXTENDED MEMORY WHERE THE DIVERGENCE

Example 4. A subroutine that shows the use of REMAP. (Continued on the fol-
lowing page.)

21

SCALE

INTERNAL
PTFIVE
ICP
NCP
JB
HOLD()

IP
ICOL

ICR
IDIVG

IVORT

BLOCK 0,1 =

BLOCK 2,3

BLOCK 4,5

BLOCK 6

BLOCK 7

WMoV

eNeoNo oo Ne N R RN Es e N NeRoNsNeoNoNoNoNoNoNoNoNoNoNoNeNoNoNoNoNoNe N N

TDL CP 89-3
June 1989

VALUES ARE TO BE PLACED. VORTICITY VALUES ARE
PLACED IN BLOCK NB+l.

= SCALING FACTOR. ALL VALUES ARE IN TERMS OF
0.00001 RADIANS PER SECOND.

= ROUND UP FACTOR.

= ROW INDEX, MAXCOL*(J-1) FOR (J=1,NROW).

= COLUMN INDEX, ICP+I FOR (I=IFCOL,LCOL).

= BLOCK NUMBER OF U- AND V-COMPONENTS.

= HOLDS THE DIVERGENCE AND VORTICITY VALUE AT A
GRID POINT. (1) DIVERGENCE (2) VORTICITY

= CURRENT POSITION IN HOLD().

= CURRENT COLUMN POSITION IN XIN().

= CURRENT ROW POSITION IN XIN() AND U().

= COLUMN IN XIN() WHEN MULTIPLIED BY U() WILL
GIVE YOU THE DIVERGENCE VALUE AT THAT GRID
POINT.

= COLUMN IN XIN() WHEN MULTIPLIED BY U() WILL
GIVE YOU THE VORTICITY VALUE AT THAT GRID
POINT.

EXTENDED MEMORY

U- & V-COMPONENTS OF STATION 1 FOR GRID POINTS (I,J)
(I=IFCOL,LCOL) (J=1,NROW)

U- & V-COMPONENTS OF STATION 2 FOR GRID POINTS (I,J)
(I=IFCOL,LCOL) (J=1,NROW)

U- & V-COMPONENTS OF STATION 3 FOR GRID POINTS (I,J)
(I=IFCOL,LCOL) (J=1,NROW)

DIVERGENCE VALUES FOR GRID POINTS (I,J) (I=IFCOL,LCOL)
(J=1,NROW)

VORTICITY VALUES FOR GRID POINTS (I,J) (I=IFCOL,LCOL)
(J=1,NROW)

NONSYSTEM ROUTINES CALLED.

DIMENSION IWINDOW(1024),IDATA(MAXCOL,MAXROW) ,XIN(LENGTH,LENGTH),
U(LENGTH) ,HOLD(2)

PTFIVE=.000005
IDIVG=5
IVORT=6
IZERO=0
ZERO=IZERO

C COMPUTE DIVERGENCE AND VORTICITY FOR EVERY GRID POINT WITH DATA.

ICP=IZERO
DO 50 J=1,NROW

DO 40 I=IFCOL,LCOL

NCP=ICP+1I

Example 4 (cont.)

22

TDL CP 89-3
June 1989

a0

RETRIEVE THE U- AND V-COMPONENTS FROM EXTENDED MEMORY.
JB=IZERO
DO 10 K=1,LENGTH
CALL REMAP(JB,IER)
CALL ERROR(IER,"REMAP ERROR")
U(K)=IWINDOW(NCP)
JB=JB+1
10 CONTINUE

C REMAP TO THE BLOCK FOR DIVERGENCE.
CALL REMAP(NB, IER)
IP=1

c COMPUTE DIVERGENCE AND VORTICITY FOR THE GRID POINT.
DO 30 ICOL=IDIVG,IVORT
SUM=ZERO
DO 20 ICR=1,LENGTH
SUM=SUM+U(ICR)*XIN(ICOL, ICR)
20 CONTINUE

HOLD(IP)=SUM+PTFIVE
IP=IP+1
30 CONTINUE
C
C STORE THE DIVERGENCE VALUE IN EXTENDED MEMORY
C AND SAVE THE VORTICITY VALUE.

IWINDOW(NCP)=HOLD (1)*SCALE
IDATA(NCP)=HOLD(2)*SCALE
40 CONTINUE

ICP=ICP+MAXCOL
50 CONTINUE

C

C STORE THE VORTICITY VALUES IN EXTENDED MEMORY.
CALL REMAP(NB+1,IER)
CALL WMOV(IDATA,MAXCOL*NROW, IWINDOW)

C
RETURN
END

Example 4 (cont.)

23

ITI.

IIT.

Iv.

VI.

TDL CP 89-3

June 1989
VRW
IDENTIFICATION
Module name: VRW
Date: May 11, 1988
Function: EXTENDED DIRECT BLOCK I1I/0.
Language: Assembly
PURPOSE

EWRB writes a series of disk blocks from extended memory to a random
or contiguously organized disk file. The contents of the window are
unchanged, as are the contents of extended memory.

ERDB reads a series of disk blocks from a random or contiguously orga-
nized file into extended memory. The current contents of the window
are unchanged unless one of the extended memory blocks read into is in
the window.

ENTRY POINTS

EWRB

ERDB

CALLING METHOD

CALL EWRB(CHAN,DB,MB,BG, [PC,]IER)

CALL ERDB(CHAN,DB,MB,BC, [PC,]IER)

ARGUMENTS

CHAN = An integer that specifies the RDOS channel on which the disk
file was opened.

DB = An integer that specifies the initial disk block of the disk
file you want to write/read.

MB = An integer that specifies the initial disk block of extended
memory into which data are written/read.

BC = An integer that specifies the number of disk blocks you want
to transfer. The maximum is 127 disk blocks.

PC = An optional integer variable that receives the number of disk

blocks transferred successfully in the event an End-of-File
condition is met or when disk space is exhausted.

IER = An integer variable that receives the routine's error return
code.

ERROR RETURNS

FORTRAN (BOTH):

3 = Illegal channel number.

24

Module name: VRW

VII.

VIII.

6 = Illegal command for device.

7 = Not a randomly- or contiguously-organized file.

9 = End of file.
16 = No file is open on this channel.
35 = File not accessible by direct I/0.
63 = Address outside of address space.
68 = Disk time-out occurred.

FORTRAN (EWRB): |
11 = File is write protected.
26 = Disk space is exhausted.

FORTRAN (ERDB):

10 = File is read protected.

27 = File read error (Mag tape or cassette:

REFERENCED EXTERNALS
.EWRB (System call)
.ERDB (System call)

FORT.LB

bad tape).

TDL CP 89-3
June 1989

.FARL transfers effective address of a caller’s argument list to its
called subroutine’s stack and counts the number of arguments
transferred to the called subroutine'’s stack.

.FRET restores a caller’s accumulators and state of carry upon exit
from the called subroutine, and returns to the next instruc-

tion following the call.

COMMENTS

1) Do not write/read more than 127 disk blocks at a time.

If you do,

beware; you can crash your system and possibly get a MAP.DR error

on the file you are writing/reading to/from.

2) Argument DB is in terms of disk blocks, not 1024-word blocks.

3) The value of argument MB reflects the location in extended memory
in terms of disk blocks. If there are N 1024-word blocks avail-

25

TDL CP 89-3
June 1989
Module name: VRW

able, then MB can range from O through (N * 4) - 1. Extended
memory can be pictured as:

1024 -word Block Absolute Disk Block Relative Disk Block
—e 0 0
0 1 1
2 2
— 3 3
f—— 4 0
1 5 1
6 2
L 7 3
r—— 8 0
2 9 1
10 2
— 11 3
(N * 4) - 4 0
N -1 (N* 4) - 3 1
(N * 4) - 2 2
o (N*4) -1 3

26

TDL CP 89-3
June 1989

SUBROUTINE RDGRD(IFILE, IDATA, IWINDOW,MAXCOL,MAXROW,MROW, IGCHN,NPR,
NPRJ ,KELM, JBLK,NBSR,NBITS,NBLOCK, IRC)

NOVEMBER 1987 MARK LEAPHART TDL FTS 427-7639
FEBRUARY 1988 MARK LEAPHART REVISED

FORTRAN IV/REV 5.57 DG ECLIPSE S230 RDOS/REV 6.17
PURPOSE '

READ IN THE DATA FOR THE CURRENT ELEMENT AND PROJECTION HOUR
AND UNPACK IT.

VARIABLES
IFILE() = NAME OF THE FILE YOU ARE READING FROM.
IDATA() = RECEIVES THE DATA OF THE SELECTED ELEMENT AND
: PROJECTION HOUR.
IVINDOW() = DATA AREA THROUGH WHICH REFERENCES TO EXTENDED
MEMORY ARE MADE. ALSO HOLDS THE PACKED DATA.
MAXCOL = MAXIMUM NUMBER OF COLUMNS DISPLAYABLE ON THE
SCREEN.
MAXROW = MAXIMUM NUMBER OF ROWS DISPLAYABLE ON THE SCREEN.
MROW = NUMBER OF ROWS IT TAKES TO MAKE IDATA() TWO DISK
BLOCKS LONG.
IGCHN = CHANNEL TO THE FILE HELD IN IFILE().
NPR = CURRENT PROJECTION HOUR.
NPRJ = TOTAL NUMBER OF PROJECTIONS.
KELM = ELEMENT INDEX. THERE ARE 45 TOTAL ELEMENTS BUT
ONLY 10 DISTINCT ELEMENTS.
(1) TEMP
(2) DEW
(3) 12HR POP
(4) 12HR QPF
(5) SNOW AMOUNT
(6) WIND DIRECTION
(7) WIND SPEED
(8) VISIBILITY
(9) CLOUDS
(10) WEATHER
JBLK = BLOCK NUMBER OF THE ELEMENTS' ATTRIBUTES.
NBSR = NUMBER OF BITS TO SHIFT RIGHT.
NBITS = NUMBER OF BITS THE ELEMENT VALUE TAKES UP.
NBLOCK = BLOCK (1024-WORD) IN EXTENDED MEMORY WHERE YOU
WANT TO READ IN THE DATA.
IRC = RETURN CODE.

INTERNAL
NBLK = NUMBER OF DISK BLOCKS TO READ.
IBLK = STARTING DISK BLOCK TC READ.
MASK = PATTERN OF BITS THAT PRESERVE THE ELEMENT VALUE.
IVAL = VALUE OF THE UNPACKED ELEMENT VALUE.
NB = BIT NB TELLS YOU THAT THE VALUE, BEFORE PACKING,
WAS A NEGATIVE VALUE AND IT WAS LOST IN THE

OO0 O00O000O00O00O0000000000000000000000000000000000000a00n

Example 5. A subroutine that shows the use of ERDB and REMAP. (Continued on
the following page.)

27

TDL CP 89-3

June 1989
C PACKING. SO, WHEN BIT NB IS SET, THEN YOU WANT
C TO MAKE A FULL WORD NEGATIVE VALUE.
C POSITIVE = LOGICAL VARIABLE THAT TELLS YOU THAT THE ELEMENT
C CAN HAVE ONLY POSITIVE VALUES.
C TRUE - POSITIVE ONLY
C FALSE - POSITIVE AND NEGATIVE
C NMIS = MISSING VALUE INDICATOR.
C IP = MAXCOL*(K-1)+J FOR (K=1,MAXROW) (J=1,MAXCOL).
C IDBLK = DISK BLOCK IN EXTENDED MEMORY WHERE THE DATA IS TO
C BE READ IN.
C NEG = CONTAINS A BIT PATTERN WHEN OR'D WITH IVAL WILL
C GIVE YOU A NEGATIVE NUMBER.
C NONSYSTEM ROUTINES CALLED.
C TROUBL
C
DIMENSION IFILE(10),IWINDOW(1024)
DIMENSION IDATA(MAXCOL,MROW)
LOGICAL POSITIVE
IRC=0
IP=0
ITWO=2
ITEN=10
NMIS=9999
o
o] DETERMINE WHICH MASK TO USE TO MAKE A NEGATIVE
C NUMBER IF THERE IS ONE.
NEG=177400K
IF(KELM.EQ.ITEN)NEG=174000K
POSITIVE=KELM.NE.1 . AND.KELM.NE.ITWO.AND.KELM.NE.ITEN
C
C FIGURE OUT THE STARTING BLOCK TO READ.
IBLK=(NPR-1)+(JBLK-1)*(NPRJ+1)
IBLK=IBLK+IBLK
IDBLK=NBLOCK*4
NBLK=ITWO
C
C READ THE DISK BLOCKS INTO BLOCK (NBLOCK) OF EXTENDED MEMORY.
CALL ERDB(IGCHN,IBLK,IDBLK,NBLK, IER)
IF(IER.NE.1)CALL TROUBL("READING ",IFILE)
C
MASK=ITWO**NBITS-1
NB=NBITS-1
C
C REMAP BLOCK (NBLOCK) INTC BLOCK ZERO OF THE WINDOW.
CALL REMAP(NBLOCK,IER)
IF(IER.NE.1)CALL TROUBL("REMAPPING ERROR ",IFILE)
C
C UNPACK THE DATA OF THE ELEMENT.

DO 20 K=1,MAXROW
DO 20 J=1,MAXCOL
IP=IP+1

Example 5 (cont.)

28

TDL CP 89-3
June 1989

C ISOLATE THE VALUE.
IVAL=ISHFT(IWINDOW(IP),NBSR)
IVAL=IAND (IVAL,MASK)

C

Cc . SEE IF THE VALUE IS MISSING.
IF(IVAL.EQ.MASK)IVAL=~NMIS
IF(IVAL.EQ.NMIS.OR.POSITIVE)GOTO 10

C
IF(ITEST(IVAL,NB))IVAL=IOR(IVAL,6NEG)
IVAL=IVAL+100

C

10 IDATA(J,K)=IVAL
20 CONTINUE

RETURN
END

Example 5 (cont.)

29

TDL CP 89-3
June 1989

SUBROUTINE STELMS(MAXELM, ISDBLK,IGCHN,NDB,NBLK, IWINDOW, IWS)

DECEMBER 1988 MARK LEAPHART TDL FTS 427-7639

FORTRAN IV/REV 5.57 DG ECLIPSE S230 RDOS/REV 6.17

PURPOSE
STORE BLOCKS OF ELEMENTS (TEMP, DEW, WEATHER, ETC.) CONSECU-
TIVELY IN A DISK FILE. THE ORDER IS DETERMINED FROM THE ELEMENT
DIRECTORY LOCATED IN THE FIRST BLOCKS, ISDBLK, OF THE FILE.

VARIABLES
MAXEIM MAXIMUM NUMBER OF ELEMENTS.
ISDBLK DISK BLOCK OF THE ELEMENT DIRECTORY.
IGCHN CHANNEL TO THE DATA FILE.

NSB = BLOCK (1024-WORD) IN EXTENDED MEMORY TO PLACE THE
ELEMENT DIRECTORY.

NBLK = NUMBER OF BLOCKS (1024-WORD) THE ELEMENT DIRECTORY
TAKES UP.
IWINDOW() = HOLDS THE ELEMENT DIRECTORY.
IWS = SIZE OF THE WINDOW (A MULTIPLE OF 1024).
INTERNAL
MBLK = NUMBER OF DISK BLOCKS THE ELEMENT DIRECTORY TAKES UP.

NELMS = NUMBER OF ELEMENTS TO PROCESS.
IP = CURRENT POSITION IN THE ELEMENT DIRECTORY.

ICBLK = CURRENT DISK BLOCK IN THE DATE FILE.
IPC = NUMBER OF BLOCKS WRITTEN TO THE DISK FILE ON ONE
WRITE.

sNeNs N NN ReReNeoNoNoNoNoNoNoNeoNoNeoNoNoNoNeo No o No N

DIMENSION IWINDOW(IWS)

o
c READ THE ELEMENT DIRECTORY INTO EXTENDED MEMORY AND
C PLACE IT IN THE WINDOW.
MBLK=NBLK*4
CALL ERDB(IGCHN,ISDBLK,NSB*4 6MBLK,IER)
CALL ERROR(IER,"ERDB ERROR STELMS")
CALL REMAP(O,NSB,NBLK, IER)
CALL ERROR(IER,"REMAP ERROR STELMS")
c
c GET THE NUMBER OF ELEMENTS TO PROCESS.
NELMS=IWINDOW(1)
IF(NELMS.GT.MAXELM)GO TO 20
C
c INITIALIZE POINTERS.
TTWO=2
IP=ITWO
ICBLK=ISDBLK+MBLK
C
C PROCESS ALL THE ELEMENTS.
DO 10 K=1,NELMS
NDB=IWINDOW(IP+1)

Example 6. A subroutine that shows the use of EWRB and ERDB.
the following page.)

(Continued on

30

TDL CP 89-3
June 1989

CALL EWRB(IGCHN,ICBLK,IWINDOW(IP),NDB,IPC,IER)
IF(IER.NE.1)GO TO 30

ICBLK=ICBLK+NDB
IP=IP+ITWO
10 CONTINUE
20 RETURN
c :
C FATAL ERROR.

30 TYPE'EWRB ERROR STELMS IER=', K IER
TYPE'NDB, ICBLK, IWINDOW(IP),IPC,IP=' ,NDB,ICBLK, IWINDOW(IP),IPC,IP
STOP
END

Example 6 (cont.)

31

ITI.

IIT.

IV.

VII.

IDENTIFICATION

Module name: VDL
May 11, 1988
EXTENDED DIRECT BLOCK I/0

Date:

Function:
Language:

PURPOSE

Assembly

TDL CP 89-3
June 1989

VDL

VDUMP copies blocks from extended memory to a disk file.

VLOAD initializes extended memory to the contents of a disk file. If
the disk file is smaller than the amount of extended memory currently
defined, VLOAD will initialize up to the size of the disk file.

ENTRY POINTS

VDUMP

VLOAD

CALLING METHOD

CALL VDUMP (CHAN,NDB, SDB, SMB, [BC,] IER)

CALL VLOAD (CHAN,NDB,SDB,SMB, [BC,]IER)

ARGUMENTS

CHAN

NDB

SDB

SMB

BC

IER

An integer that

file was opened.

An integer that
to copy from/to
An integer that

specifies the RDOS chamnel on which the disk

specifies the number of disk blocks you want
extended memory.
specifies the initial disk block of the disk

file you want to write/read.

An integer that

specifies the initial disk block of extended

memory into which data are written/read.

An optional integer variable that receives the number of disk
blocks successfully written/read if the write/read operation
can’t be completed due to an End-of-File condition or disk
space exhaustion.

An integer variable that receives the routine’s error return

code.

ERROR RETURNS

FORTRAN (BOTH):

3

6

Illegal channel number.

Illegal command

for device.

32

TDL CP 89-3
June 1989
Module name: VDL

7 = Not a randomly- or contiguously-organized file.

16 = No file is open on this channel.

35 = File is accessible by direct I/0.

63 = Address outside address space.

68 = Disk time-out occurred.

FORTRAN (VDUMP):
11 = File is write protected.
FORTRAN (VLOAD):
10 = File is read protected.
27 = File read error (Mag tape or cassette: bad tape).
VII. REFERENCED EXTERNALS
FORT.LB

.FARL transfers effective address of a caller’'s argument list to its
called subroutine'’s stacks and counts the number of arguments
transferred to the called subroutine'’s stack.

.FRET restores a caller'’s accumulators and state of carry upon exit
from the called subroutine, and returns to the next instruction
following the call.

.FCAL calls a subroutine which has no page zero entry, or calls a
subroutine which has a page zero entry without using the page
zero entry.

XMEM.LB

EWRB writes a series of disk blocks from extended memory to a random
or contiguously organized file.

ERDB reads a series of disk blocks from a random or contiguously
organized file to extended memory.

VIII. COMMENTS

1) Because the most you can read or write at one time with ERDB and
EWRB is 127 disk blocks, you must make multiple calls to these
routines when you want to read or write more than 127 disk blocks.
VLOAD and VDUMP have been developed with this in mind. VLOAD and
VDUMP should be used in place of making multiple calls to ERDB
and EWRB for reading or writing large number of disk blocks.

33

TDL CP 89-3
June 1989

Module name: VDL

2)

3)

4)

5)

6)

7)

Argument SDB is in terms of disk blocks, not 1024-word blocks.

The value of argument SMB reflects the location in extended memory
in terms of disk blocks. If there are N 1024-word blocks avail-
able, then SMB can range from O through (N * 4) - 1. Extended
memory can be pictured as:

1024 -word Block Absolute Disk Block Relative Disk Block

— 0 0
0 1 1
2 2

. 3 3
— 4 0
1 5 1
6 2

L 7 3
— 8 0

2 9 1
10 2

S 11 3
— (N % 4) - 4 0

N -1 (N * 4) - 3 1
(N % 4) - 2 2

- (N % 4) -1 3

If you try to exceed the number of blocks in extended memory,
VLOAD will read only the number of disk blocks it takes to exceed
extended memory. If the argument BC is passed in, then BGC will
receive the number of disk blocks actually read.

If you try to read more disk blocks than you have in the file,
VLOAD will recognize the EOF condition, stop, and return a 1. If
the argument BC is passed in, then BC will receive the number of
blocks actually read.

If a disk space exhaustion error occurs during VDUMP, VDUMP will
recognize the error, stop, and return a 1. If the argument BC is
passed in, then BC will receive the number of disk blocks actually
written.

VDUMP will lengthen a random file if you dump more disk blocks than
the original size of the file or if the number of disk blocks added
to the starting disk block minus one is greater than the original
size of the file.

34

o000 00000000000O000000o0

«Q

10

TDL CP 89-3

June 1989

SUBROUTINE LDDATA(IFILE,IGCHN,ISMB,NSPR,NPR,MAXPR,NBLK,NELM)

DECEMBER 1988

MARK LEAPHART TDL FTS 427-7639

FORTRAN IV/REV 5.57 DG ECLIPSE S230 RDOS/REV 6.17

PURPOSE

LOAD IN CONSECUTIVE HOUR’S WORTH OF DATA INTO EXTENDED-

MEMORY.
VARIABLES
IFILE()
IGCHN
ISMB

NSPR
NPR

MAXPR

NBLK

NEIM
INTERNAL

NBPR

ISDBLK

NDB

IER

NAME OF THE FILE YOU WANT TO LOAD INTC EXTENDED
MEMORY.

CHANNEL TO THE FILE THAT YOU WANT TO PUT INTO
EXTENDED MEMORY.

STARTING DISK BLOCK OF EXTENDED MEMORY INTO
WHICH DATA IS WRITTEN.

STARTING PROJECTION HOUR.

NUMBER OF PROJECTION HOURS YOU WANT TO LOAD INTO
EXTENDED MEMORY.

MAXIMUM NUMBER OF PROJECTION HOURS.

NUMBER OF DISK BLOCKS AN ELEMENT TAKES UP.
NUMBER OF ELEMENTS PER PROJECTION HOUR.

NUMBER OF BLOCKS FOR ALL THE ELEMENTS FOR ONE
PROJECTION HOUR.

STARTING DISK BLOCK OF THE DISK FILE YOU WANT TO
READ.

NUMBER OF DISK BLOCKS YOU WANT TO READ INTO
EXTENDED MEMORY.

ERROR RETURN.

NONSYSTEM ROUTINES CALLED.

TROUBL

DIMENSION IFILE(10)

IF(NSPR+NPR-1.GT.MAXPR)GO TO 10

NBPR=NBLK*NELM

ISDBLK=(NSPR-1)*NBPR

NDB=NBPR*NPR

READ THE DATA INTO EXTENDED MEMORY.
CALL VLOAD(IGCHN,NDB,ISDBLK, ISMB,IER)
IF(IER.NE.1)CALL TROUBL("READING ", IFILE)

RETURN

FATAL ERROR.

TYPE"ERROR, CAN'T LOAD IN ALL THE DATA",NSPR,NPR

STOP
END

Example 7.

A subroutine that shows the use of VLOAD.

35

TDL CP 89-3
June 1989

SUBROUTINE CHECK(IGCHN, ISDBLK,ID,LDBLK, IWINDOW,IWS)

C

C DECEMBER 1988 MARK LEAPHART TDL FTS 427-7639

C FORTRAN IV/REV 5.57 DG ECLIPSE S230 RDOS/REV 6.17

C PURPOSE

C LOADS IN A FILE INTO EXTENDED MEMORY AND GOES THROUGH AND CHECKS
c THE VALIDITY OF THE DATA (DONE IN CHECKR). IF ENOUGH OF THE DATA
C HAS BEEN ALTERED THEN THE DATA IN EXTENDED MEMORY WILL BE WRIT-
C TEN TO DISK WITH ONE CALL AS OPPOSED WITH SEVERAL CALLS.

C VARTABLES

c IGCHN = CHANNEL TO THE DATA FILE.

C ISDBIK = STARTING DISK BLOCK IN THE FILE YOU WANT TO START

C LOADING THE DATA.

C ID = DIRECTORY ID.

C LDBLK = BLOCK IN THE FILE WHERE THE DIRECTORY ID’'S ARE KEPT.
C IWINDOW() = HOLDS THE DATA THAT IS TO BE CHECKED.

c IWS = SIZE OF THE WINDOW.

C

C INTERNAL

C ICBLK = CURRENT BLOCK IN THE DISK FILE.

C MBLK = MEMORY BLOCK YOU WANT TO PUT THE DATA.

C NB = NUMBER OF 1024-WORD BLOCKS READ FROM THE FILE.

C IBC = NUMBER OF DISK BLOCKS READ FROM THE FILE.

C NCB = CURRENT 1024-WORD BLOCK YOU ARE PROCESSING.

C LOAD = THE NUMBER OF DISK BLOCKS TO LOAD INTO EXTENDED

C MEMORY. 1IF YOU DON'T WANT TO CALCULATE THE NUMBER

C OF DISK BLOCKS IN EXTENDED MEMORY, JUST USE A VERY

C LARGE NUMBER AND VLOAD WILL STOP WHEN IT IS ABOUT TO
C EXCEED EXTENDED MEMORY.

C DUMP = A LOGICAL VARIABLE USED TO INDICATE THAT YOU WANT TO
G DUMP EXTENDED MEMORY TO DISK.

C NONSYSTEM ROUTINES CALLED.

C CHECKR

C

DIMENSION IWINDOW(IWS)
LOGICAL DUMP

C
IZERO=0
ICBLK=ISDBLK
LOAD=10000
MBLK=IZERO
C
C FILL UP EXTENDED MEMORY.

10 CALL VLOAD(IGCHN,LOAD,ICBLK,MBILK,IBC,IER)
CALL ERROR(IER, "VLOAD ERROR")
IF(IBC.EQ.IZERO)GO TO 30

o PROCESS THE DATA.
NB=(IBC+1) /4

Example 8. A subroutine that shows the use of VDUMP and VLOAD. (Continued on
the following page.)

36

TDL CP 89-3
June 1989

NCB=IZERO
DO 20 K=1,NB
CALL REMAP(NCB, IER)
CALL ERROR(IER,"REMAP ERROR")
CALL CHECKR(ID,IWINDOW,LDBLK, DUMP)
NCB=NCB+1

20 CONTINUE

C SEE IF YOU NEED TO DUMP EXTENDED MEMORY.
IF(DUMP)CALL VDUMP(IGCHN,IBC,ICBLK,MBLK, IER)
ICBLK=ICBLK+IBC
GO TO 10

30 RETURN
END

Example 8 (cont.)

37

II.

IIT.

IV.

TDL CP 89-3
June 1989

SF
IDENTIFICATION
Module name: SF
Date: May 11, 1988
Function: Copies data to and from extended memory.
Language: Assembly
PURPOSE

VFETCH copies one or more elements from extended memory to an array
aggregate.

VSTASH copies one or more elements into extended memory from an array
aggregate.

IVF, VF, DVF, CVF, and DCVF fetch one integer, real, double precision,
complex, and double precision complex number, respectively, from
extended memory. DVF, CVF, and DCVF must be declared double
precision, complex, and double precision complex, respectively.
ENTRY POINTS

VFETCH

VSTASH

IVF

VF

DVF

CVF

DCVF

CALLING METHOD

CALL VFETCH(DATA,INDEX[,ELMS[,SIZE]])

CALL VSTASH(DATA,INDEX[,EIMS[,SIZE]})

I=IVF(INDEX)

R=VF(INDEX)

D=DVF (INDEX)

C=CVF (INDEX)

DC=DCVF (INDEX)

38

Module name: S

V.

VI.

VII.

VIII.

ARGUMENT
DATA -
INDEX =
ELMS =
SIZE =
I =
R =
D -
c £
DC -

TDL CP 89-3

June 1989
F
S

An array aggregate that defines the area in which data is
written from/to extended memory.
An integer that specifies the word index of the position in
extended memory where the element or the first of a number of
consecutive elements is to be copied.
An integer that specifies the number of elements you want to
copy. If omitted, one element is copied.
An integer that specifies the element size for the current
transfer. If omitted, the permanent element size given by
the most recent call to MAPDF is used. (Note: If you are
passing SIZE to VFETCH/VSTASH, you must pass EIMS also, even
though ELMS may be omne.
An integer variable.
A real variable.
A double precision variable.
A complex variable.
A double precision complex variable.

ERROR RETURNS

NONE
REFERENC
XMEM.LB

REMAP

FORT.LB

.FARL

.FRET

.FCAL

. SMPY

COMMENTS

1) VSTa

ED EXTERNALS

does a logical window transfer by placing blocks from the
extended address space into the window.

transfers effective address of a caller’s argument list to its
called subroutine’s stack and counts the number of arguments
transferred to the called subroutine’s stack.

restores a caller’s accumulators and state of carry upon exit
from the called subroutine, and returns to the next instruction
following the call.

calls a subroutine which has no page zero entry, or calls a
subroutine which has a page zero entry without using its page

zero entry.

performs a multiplication of two signed integers.

SH transfers EIMS * SIZE words from the aggregate DATA to

extended memory, beginning at offset (INDEX - 1) * SIZE.

39

TDL CP 89-3
June 1989

Module name: SF

2) VFETCH transfers EIMS % SIZE words from extended memory, begin-
ning at offset (INDEX - 1) * SIZE, into the aggregate DATA.

3) For IVF, VF, DVF, CVF, and DCVF to work properly, the argument in
MAPDF, ELMSIZ, must be set to 1, 2, 4, 4, and 8, respectively.

4) Use VFETCH and VSTASH for placing/fetching data one right after
another in/from extended memory.

5) All the routines contained in SF use the window to copy the data
from and into extended memory. After each routine has finished,
the window may not be referencing the same block(s) as it was
before the routine was initiated.

6) No error checking is done.

40

OO0 0o00000000000000000000

aQ

200

TDL CP 89-3
June 1989

OVERLAY OEVIS -
SUBROUTINE EVIS(NSTA,LTAG)

MAY 1986 CHAMBERS, GLAHN TDL ECLIPSE (MARD)
MAY 1987 CHAMBERS, GLAHN TDL REVISED

PURPOSE
TO PREPARE VISIBILITY DATA FOR ANALYSIS. LTAG() SET = 1
FOR ANY VALUE NOT IN RANGE 0 THRU 40 MI. NOTE THAT ARCHIVED
HOURLY DATA HAD VISIBILITIES GT 40 MI. SET TO 40 MI. THIS
VERSION USES EXTENDED MEMORY.

DATA SET USE
NONE.

VARIABLES

INPUT
NSTA = NUMBER OF STATIONS FOR WHICH DATA ARE AVAILABLE.

INPUT - OUTPUT
LTAG() = 0O INDICATES DATA ARE JUDGED GOOD AT THIS POINT.
1 DATA IS OUT OF VALID RANGE, DO NOT USE.

INTERNAL
XX(J) = WORK ARRAY USED FOR THIS EXTENDED MEMORY VERSION.
(J=1,6)
DATA = CONTAINS DATA TO ANALYZE. THIS VARIABLE IS STORED
IN EXTENDED MEMORY WITH A CALL TO VSTASH, AND IS
RETRIEVED BY A CALL TO VFETCH. THE LOCATION IN
EXTENDED MEMORY IS (I-1)*6+6 WHERE I=1,NSTA.

DIMENSION XX(6)
DIMENSION LTAG(NSTA)
EQUIVALENCE (XX(6),DATA) : NOTE: THIS IS A FORTRAN 5 ROUTINE

VALUE OF DATA RETRIEVED FROM EXTENDED MEMORY.

DO 200 K=1,NSTA

CALL VFETCH(XX, (K-1)*646,6)
IF(DATA.GE.O. .AND.DATA.LE.40.)GO TO 200
LTAG(K)=1

CONTINUE

RETURN

END

Example 9. A subroutine that shows the use of VFETCH.

41

a0 0000O00O000000000000000000000000000

TDL CP 89-3
June 1989

SUBROUTINE UCOMP(WRK1,UV,NXM,NYM)
MAY 1987 GLAHN, WOLF TDL ECLIPSE (MARD)

PURPOSE
TO COMPUTE ADVECTIVE U-WIND IN GRID UNITS PER HALF HOUR.
THIS SUBROUTINE REPLACES THE FOLLOWING CODE IN NON-
EXTENDED VERSION, AVWND:

DO 110 Jy=2,J¥M1
DO 100 IX=2,IXM1
UV(IX,JY)=D1(IX,JY)*((P(IX,JY-1)-P(IX,JY+1))*CBDA-
1 (PG(IX,JY)-PG(IX,JY+1))*CADVM)

100 CONTINUE

110 CONTINUE

EXTENDED MEMORY IS SET UP AS FOLLOWS:

POSITION ARRAY
1 PG(,)
NXYM+1 D1(,)
2% NXYM+1 P(,)
3*NXYM+1 Ul ,)
DATA SET USE
NONE.
VARTIABLES
WRK1(IX,JY) = ARRAY USED IN EXTENDED MEMORY VERSION TO TAKE PLACE
OF ARRAYS P(,), PG(,), AND D1(,) FROM NON-
EXTENDED AVWND. (IX=1,NXM) (JY=1,NYM). (INTERNAL)
UV(IX,JY) = ADVECTIVE U-WINDS IN GRID UNITS PER HALF HOUR ON THE
1/4 BEDIENT GRID. (IX=1,NXM) (JY=1,NYM) (OUTPUT)
NXM,NYM = DIMENSIONS OF WRK1(,) AND UV(,). (INPUT)
CBDA = FRACTION OF 500-MB HEIGHTS USED TO ADVECT MAP
FEATURES.
CADVM = WEIGHTING CONSTANT USED FOR MOUNTAIN INFLUENCE ON

ADVECTIVE WINDS.

NONSYSTEM SUBROUTINES CALLED.
NONE.

DIMENSION WRK1 (NXM,NYM),UV(NXM,NYM)

NXYM=NXM*NYM
NXM1=NXM-1
NYM1=NYM-1
CADVM=2.
CBDA=.55

Example 10. A subroutine that shows the use of VFETCH. (Continued on the

following page.)

42

TDL CP 89-3
June 1989

CALL VFETCH(WRK1,1l,NXYM)

DO 110 JY=2 ,NYM1
DO 100 IX=2,NXM1
UV(IX,JY)=(WRKI(IX,JY-1)-WRK1(IX,JY+1))*CADVM
100 CONTINUE
110 CONTINUE

CALL VFETCH(WRK1, 2*¥NXYM+1,NXYM)

DO 210 JY=2,NYM1

DO 200 IX=2,NXM1

UV (IX,JY)=CBDA*(WRK1(IX,JY-1)-WRK1(IX,JY+1))-UV(IX,JY)
200 CONTINUE
210 CONTINUE

CALL VFETCH(WRK1, NXYM+1,NXYM)

DO 310 JY=2,NYM1
DO 300 IX=2,6NXM1
UV(IX,JY)=UV(IX,JY)*WRK1(IX,JY)
300 CONTINUE
310 CONTINUE

RETURN
END

Example 10 (cont.)

43

TDL CP 89-3
June 1989

SUBROUTINE SUMX(WRK,H,NXLHB,NYLHB,T,J)

MAY 1987 GLAHN, WOLF TDL ECLIPSE (MARD)
OCTOBER 1988 GLAHN, WOLF TDL REVISED

PURPOSE
TO COMPUTE SUMS OF CROSS-PRODUCTS OF PREDICTORS AND PREDICTANDS.

DATA SET USE
NONE.

VARIABLES
WRK(IX,JY) = WORK ARRAY FOR SUMMING HEIGHTS. (IX=1,NXLHB)
(JY=1,NYLHB). (INTERNAL)

H(IX,JY) = 500-MB HEIGHT FIELD FOR A PARTICULAR PROJECTION
(IX=1,NXLHB) (JY=1,NYLHB). (INPUT)
NXLHB,NYLHB = DIMENSIONS OF WRK(,) AND H(,). (INPUT)
T(J) = HOLDS PROJECTIONS FOR TERMS: LINEAR, QUADRATIC,
CUBIC, AND CONSTANT, FOR J=1,4 RESPECTIVELY.
(INPUT)
J = NUMBER OF THE TERM WHICH THE ROUTINE IS CALCULATING

COEFFICIENT FOR: LINEAR, QUADRATIC, CUBIC, AND
CONSTANT FOR J=1,4 RESPECTIVELY. (INPUT)

NONSYSTEM SUBROUTINES CALLED.
NONE.

oNoNoNoNoNeNsNoNoNosNeNoNsNoNo NN NGNS NG NONINONONSNS]

DIMENSION WRK(NXLHB,NYLHB),H(NXLHB,NYLHB)
DIMENSION T(4)

NXYLHB=NXLHB*NYLHB
CALL VFETCH(WRK, (J-1)*NXYLHB+1,NXYLHB)

DO 200 JY=1,NYLHB

DO 190 IX=1,NXLHB

WRK (IX,JY)=WRK(IX,JY)+H(IX,JY)*T(J)
190 CONTINUE
200 CONTINUE

CALL VSTASH(WRK, (J-1)*NXYLHB+1,NXYLHB)
RETURN
END

Example 11. A subroutine that shows the use of VSTASH and VFETCH.

44

OVERLAY ORDSN

TDL CP 89-3
June 1989

SUBROUTINE RDSNR(KFIL10,KFIL12,KFIL4 ,KFIL5,KFIL7,JFILE,JDATE,JTIME,NXP,

1

NYP,XMESHL,ORIENT,X,ND1,NSTA,ID,JD,ND9, IER)

C

C JUNE 1987 GLAHN, CHAMBERS TDL ECLIPSE (MARD)

C

C PURPOSE

C TO READ CALL LETTERS, LATITUDE, AND LONGITUDE FROM JFILE AND

C COMPUTE GRID LOCATIONS. THESE ARE STORED IN EXTENDED MEMORY.

C

C DATA SET USE

C KFIL4 = UNIT NUMBER FOR TDL ELEMENT KEY FILES. (INPUT)

C KFIL5 = UNIT NUMBER FOR TDL ELEMENT DATA FILES. (INPUT)

C KFIL7 = UNIT NUMBER FOR READING ID SET FOR ACCESSING TDL

C DATABASE FILES FROM FILE 'IDEIM.DA’. (INPUT)

C KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)

C KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

C

C VARIABLES

C INPUT

c KFIL4 UNIT NUMBER FOR TDL ELEMENT KEY FILES.

C KFIL5 UNIT NUMBER FOR TDL ELEMENT DATA FILES.

C KFIL7 UNIT NUMBER FOR READING ID SET FOR ACCESSING TDL

C DATABASE FILES FROM FILE ’'IDEIM.DA’.

C KFIL10 UNIT NUMBER FOR CURRENT CONSOLE.

C KFIL12 UNIT NUMBER FOR OUTPUT (PRINT) FILE.

C JFILE(J) 4 CHARACTERS (J=1,2) DENOTING THE FIRST 4 CHARACTERS
C OF THE TDL ELEMENT FILES. IF JFILE(l) = 9999, THE
C DEFAULT NAME IS USED.

C JDATE(J) DATE, CONSISTING OF YEAR (4 DIGITS), MONTH, AND DAY
C (J=1,3), OF DATA TO ACCESS.

C JTIME HOUR OF DATA TO ACCESS.

o NXP,NYP NORTH POLE POSITION WITH RESPECT TO LOWER LEFT

C CORNER (1,1).

C XMESHL GRID SPACING IN KM.

C ORIENT LONGITUDE PARALLEL TO GRID COLUMNS.

o] ND1 SIZE OF SEVERAL ARRAYS.

C NDS DIMENSION OF ID() AND JD().

C

C

C OUTPUT

C NSTA NUMBER OF STATIONS FOR WHICH DATA ARE AVAILABLE.

C NSTA*S 4-BYTE (2 RDOS WORDS) LOCATIONS ARE FILLED IN
C EXTENDED MEMORY. THE FIRST 5 LOCATIONS ARE USED FOR
C THE CALL LETTERS, LATITUDE, LONGITUDE, X-GRID LOCA-
C TION AND Y-GRID LOCATION OF THE FIRST STATION (IN

C THAT ORDER). LOCATION 6 IS RESERVED FOR THE OBSER-
C VATIONS FOR THAT STATION. THE SAME VARIABLES FOR

C THE REST OF THE STATIONS FOLLOW.

Example 12. A subroutine that shows the use of VSTASH and VFETCH. (Continued

on the following page.)

45

TDL CP 89-3

June 1989
C . IER RETURN FROM DATABASE ROUTINE RDTDL. A RETURN OF 1
C MEANS ALL 3 RECORDS WERE READ CORRECTLY. -ANY OTHER
C VALUE IS RETURNED FROM ONE OF THE READS. 1IER IS
C ALSO USED INTERNALLY FOR SYSTEM ERROR RETURNS.
C
C INTERNAL
C XPl STATION LATITUDE (SEE NSTA).
C YP1 STATION LONGITUDE (SEE NSTA).
C XP STATION X-GRID LOCATION (SEE NSTA).
C YP STATION Y-GRID LOCATION (SEE NSTA).
C ID(J) IDENTIFICATION INFORMATION FOR READING ELEMENT FILE
C PREPARED BY RDIDE (J=1,ND9).
C JD(J) CONTAINS INFORMATION FROM KEY RECORD RETURNED AFTER
C READING ELEMENT FILE (J=1,ND9).
C ICHZ2 DUMMY CHANNEL NUMBER NECESSARY IN THE CALL TO OVLOD.
c NOTE: THIS SUBROUTINE IS WRITTEN IN FORTRAN 5.
C XX(I) WORK ARRAY TO ASSIST WITH EXTENDED MEMORY ACCESS
C (J=1,6).
C X(J) WORK ARRAY, DIMENSION OF ND1.
C
C NONSYSTEM SUBROUTINES CALLED.
C RDIDE, IERX, RDTDL, IERCK, ELLIJ
C OVERLAY FILE IS CALLED FOR RDTDL BUT NOT FOR OTHER ROUTINES.
C

DIMENSION X(NDI1)

DIMENSION ID(ND9),JD(ND9)

DIMENSION JFILE(2),JDATE(3) ,XX(6)

EQUIVALENCE (XX(2),XP1l),(XX(3),YP1), (XX(4),XP), (XX(5),¥YP)
EXTERNAL ORDTD

c
c READ CALL LETTERS OF STATIONS IN ELEMENT FILE AND PUT
c INTO EXTENDED MEMORY. '
c
CALL RDIDE(KFIL10,KFIL12,KFIL7,28,200,JDATE,JTIME,O,ID,ND9)
CALL OVLOD(ICH2,0RDTD,0,IER)
IF(IER.NE.1)CALL IERX(KFIL1O,KFIL12, 'RDSTN ’,’100)
CALL RDTDL(KFIL10,KFIL12,KFIL4 KFIL5,JFILE,JDATE,JTIME,ID,JD,
1 ND9,0,X,ND1, 2, IER)
IF(IER.NE.1)GO TO 200
NSTA=JD(2)
c
C NSTA EQUALS NUMBER OF ITEMS OF DATA IN THE CALL LETTERS
c RECORD OF THE ELEMENT FILE.
c

DO 100 K=1,NSTA

CALL VSTASH(X(K), (K-1)*6+1,1)
100 CONTINUE
C .
C READ LATITUDES AND PUT INTO EXTENDED MEMORY.

Example 12 (cont.)

46

TDL CP 89-3
June 1989

C
CALL RDIDE(KFIL1O,KFIL12,KFIL7,29,200,JDATE,JTIME,O,ID,ND9)
CALL RDTDL(KFIL10,KFIL12,KFILA4,KFILS5,JFILE,JTIME,JDATE,ID,JD,
1 ND9,0,X,ND1,2,1ER)
IF(IER.NE.1)GO TO 200
C

DO 125 K=1,NSTA
CALL VSTASH(X(K), (K-1)*6+2,1)
125 CONTINUE

c

C READ LONGITUDES AND PUT INTO EXTENDED MEMOCRY.

c
CALL RDIDE(KFIL1O,KFIL12,KFIL7,30,200,JDATE,JTIME,0,ID,ND9)
CALL RDTDL(KFIL10,KFIL12,KFIL4,KFILS,JFILE,JDATE,JTIME,ID,JD,

1 ND9,0,X,ND1,2,IER)

IF(IER.NE.1)GO TO 200

C

DO 150 K=1,NSTA
CALL VSTASH(X(K), (K-1)#6+3,1)
150 CONTINUE

C
C COMPUTE GRID COORDINATES IN XP AND YP UNLESS STATION
c POSITION IS MISSING. ASSUME XPl = 9999. FOR MISSING
c POSITION.
c
DO 175 K=1,NSTA
CALL VFETCH(XX(2),(K-1)*6+2,2)
IF(XP1.NE.9999.)GO TO 165
C POSITION MISSING.
XP=9999.
YP=9999.
GO TO 170
C

165 CALL ELLIJ(XP1,YPl,XMESHL,ORIENT,FLOAT(NXP),FLOAT(NYP),6XP,YP)
170 CALL VSTASH(XX(4), (K-1)*6+4,2)
175 CONTINUE

RETURN
END

Example 12 (cont.)

47

