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A SHEARED COORDINATE SYSTEM FOR STORM SURGE EQUATIONS
OF MOTION WITH A MILDLY CURVED COAST

Chester P. Jelesnianski

Techniques Development Laboratory
National Weather Service, NOAA
Silver Spring, Md.

ABSTRACT. To improve numerical computations of coastal
storm surges, a mildly curved coastline is shifted or
sheared onto a straight 'baseline'". A surface plane,
truncated from the ocean shelf and containing the curved
coast as a boundary, is fitted with a curved, non-
orthogonal grid. The plane with curved boundaries is
then transformed via a sheared coordinate system onto
an image rectangle. In the transformed system, the
computational grid is cartesian, orthogonal, equally
spaced, and the coast lies exactly on and not across

a grid line. Linearized transport equations of motion
for storm surges are modified to accommodate the
sheared coordinate system.

A surge model, incorporating the sheared system, is
now fully operational for 3000 mi. of United States
coasts, from the Mexican-American border in the Gulf
of Mexico to the east end of Long Island, New York.
The model can run with curvilinear storm tracks,
changing storm celerity along the track, and changing
storm parameters such as intensity and size.

1. INTRODUCTION

This report describes revisions of an operational storm surge model, SPLASH
(Special Program to List Amplitudes of Surges from Hurricanes). The model
is designed to compute tropical®* storm surges on the open coast; i.e., a
virtual coast unbroken by bays, estuaries, sounds, intracoastal waterways,
deltas, capes, spits, etc. The range of applicability lies on 3000 mi. of
coastline from Port Isabel, Texas to the east end of Long Island.

A major revision to the model, a sheared coordinate system to partially
account for curved coastlines, is discussed in some detail. An offshoot of
the "Method of Characteristics" is used to test and compare coastal boundary
computations with our present methods. Also, the explicit finite-difference
form used, and a cursory stability analysis of it, are discussed.

* Not to be confused with extratropical.



The model has been partiallyv documented in three publications, the mathematical
technique, Jelesnianski (1967), and two operational techniques to run and

interpret the results for forecasting purposes, Jelesnianski (1972, 1974).
The mathematical techniques are adapted from Platzman (1963). Another pub-
lication, Jelesnianski and Taylor (1973), discusses the tropical storm model
used to generate surges.

To apply the equations of motion via finite differencing, it is convenient to
use an orthogonal, equally-spaced, cartesian grid, and to treat natural
coastlines as fixed boundaries. There are difficulties with this approach,
however, because points on such a grid do not lie on naturally curved coast-
lines. )

Coastal curvature, of course, can be ignored by subjectively distorting ocean
basins into rectangles with straightline coasts. This procedure is especially
useful when dealing with tropical storms whose curvature is much larger than
coastal curvature, and if the storm's track is near normal to the coast.

Some models use stair-step boundaries to represent curved coastlines on a
cartesian grid; however, there can be objections to treatment of inside/out-
side corners of the steps. Such a scheme is appropriate to contemplate
surges atop the undisturbed sea surface of the basin, but not necessarily on
coastal boundaries.

In storm surge applications one is not interested in circulation patterns in-
side basins but rather in surges on the coast and inland encroachment of sea
water. If one has a choice on where to distort basins, then it is better to
do so, say, on deep water boundaries and not the shoreline. Coastal water
levels are usually of more interest than seaward levels across basins; conse-
quently in numerical computations, curved coastal boundaries need as natural
a representation as the interior of basins. In this report we consider
continuously curved coastlines, fixed in space, with small but still signi-
ficant curvature with respect to storm curvature; i.e., we consider a limited
and restricted coastal curvature.

A natural approach is to form an orthogonal, curvilinear, coordinate system
bounding the real coastline. Such a transformation preserves angles but not
areas. The transformed equations of motion contain a variable magnification
factor (a Jacobian) to account for area changes in the transformation.

Our approach, however, is to use a simple shearing transformation. The surface
of an ocean basin with curved boundaries is transformed into a rectangle, with
grid points lying on the transformed coast. Because we insist on coasts that
curve gently (relative to storm curvature), strongly curved, broken-coast
features—-bays, estuaries, capes, sounds, inlets, intracoastal waterways,
barrier island, etc.--must be ignored.

Our non-conformal, oblique or sheared, coordinate transformation preserves
areas but not angles. The equations of motion are transformed through a
variable slope factor to account for angle changes in the transformation. The




system has a non-variable Jacobian; e.g., no new terms are added to the trans-
formed equations of motion--however, some coefficients of existing terms are
changed.

For operational use, oceanographic data such as coastal geometry and shelf
bathymetry of basins are permanently stored in the model for instant recall.
To compute surges along a particular coastline, input data consisting only of
simple meteorological data during storm passage are required. The parameters
can be determined by weather forecasters; whereas, for planning purposes,
hypothetical ones can be assigned.

The model is not calibrated locally with storm and surge data, Appendix C.
Instead, it is only verified locally. In only a few cases does storm data
exist jointly with surge data. In any local area it is rare that such data
exists for more than one event. In fact, in most cases there are no ap-
propriate data. Also, an acceptable calibration in a local area for one

event may not hold for other events (e.g., other storms that are weaker/
stronger, bigger/smaller, faster/slower, etc.). We use a universal calibration®
for existing data on 3000 mi. of coastline. Coefficient values in the equations
of motion and storm model, for drag, slip, viscosity, etc., are set once and
for all in the model. These are fitted so as to verify with existing data

in a useful or acceptable manner.

No revisions of the shelf bathymetry or coastline are used to help force
agreement between observed and computed surges in local areas. Revisions

are made when errors (punching, etc.) are discovered or whenever it is felt
that more geographical and basin detail is appropriate, but we make no ad-hoc
revisions solely to force computed results to agree with observed data. To
fit our imposed shoreline constraints, some revisions in geography have been
made, usually at some distance from the basin center. Also, some smoothing

of bottom topography was made to prevent aliasing from bottom features smaller
than two grid widths.

This generalized approach does not give the elegant and precise results one
can obtain when calibrating for a particular storm event in a local area;
however, it does give useful results for all storms in a global or large area
rather than a local area.

2. BASINS DESCRIBED WITH A SHEARED COORDINATE SYSTEM

[f tropical storm surges are to be modeled numerically, then the horizontal
scale of the surge precludes treating an entire ocean. Also, for deep waters
off the continental shelf, an explicit finite-difference scheme with constant
grid size imposes unacceptable time steps in computations. To form a tractable
geometric system, we truncate a basin from the ocean consisting of a limited
length coastline and the surrounding shelf region, but not the deep ocean
waters. Certain formalities are discussed in this section to prepare an input
basin for our surge model.

* See Jelesnianski (1972), pp. 26-29.
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At a specified coastal point 0, figure 1, consider the broad-scale features
for the curved coastline, AOC (the coast about points A and C have been dis-
carded to form convenient termini). All small-scale, broken-coast features——
such as esturies, bays, capes, etc.--are discarded so that a general "open
coast' boundary is formed. Curvature along this coast must be no larger than
the curvature of tropical storms. One measure of curvature is the smallest

R to be considered, where R, figure 1, is the distance from a storm's center to

the radius of maximum winds. The grid spacing As should be small enough to
see* a storm's curvature, and hence, curvature along a simulated coast.

If As >R, or if As >R, then there will be computational aliasing with finite-
difference operators and the computed results are then suspect.

Draw a "baseline" on the y-axis of length L., bisected at the coastal point
O. The length of L, should be at least an order of magnitude larger than

the largest R. The baseline (parallel to the y-axis) may be tangent to the
coast as shown in the figure, but this is not necessary; in fact, when con-
venient, other orientations--subject to certain constraints--are admissable.
Now consider the curve "BD", seaward and parallel to the coast "AC" at dis-
tance L from O; L_ is measured perpendicular from the baseline and its length#*#*
should be at least as large as the largest R or else the average width of the
continental shelf. In a loose way, this second curve represents the junction
of continental shelf and slope; it lies in deep water (<300 ft)*** and acts
as an open boundary when boundary conditions are set. For computational
convenience, the ends of the two parallel curves have been distorted to
parallel the baseline; e.g., the coasts about points A and C have been dis-
carded to form convenient termini. Now, connect the two parallel curves,

AC and BD, with parallel, open-boundary lines AB and CD, perpendicular from

the baseline. In this manner we construct a curvilinear parallelogram ABDC for
the surface of a basin, with three open and one cleosed boundaries.

* Also, to see depth variations in the basin. If there are strong variations
seaward, such as off the southeast Florida coast, then the grid distances
must be small. One can "stretch" the coordinate system seaward so that grid
points telescope toward the shore and elongate in deep water according to
ocean depths; this is a project presently under development.

*% This length is constant in our sheared coordinate system. One could, of
course, use a stretching transformation to stretch this length according to
shelf width (or bay/estuary width) with respect to the y-axis for a better
description of basins. The mathematics are a bit more complicated; this re-
mains as a project for the future.

*%% If the depths are greater than 300 ft, they are arbitrarily set to 300
ft. Such a distortion in deep water has little effect on coastal waters
during high surge activity.



An orthogonal, (x,y), rectangular grid on the surface of this basin would
represent the curvilinear coast and deep water boundary in stair-step

fashion. To eliminate the stair-steps, we form a quasi-curvilinear grid.

On the curved surface ABDC, draw n lines perpendicular from the baseline,

As apart, so the baseline length is Ly=nAs; on the x—-axis, draw m curves
parallel to the coastline, As apart, so the shelf width is Ly=mAs. This forms
a non-orthogonal curvilinear grid of parallelograms with equal areas; for the
particular curved net chosen, contra-variant base vectors span the space,
Appendix B.

It is not desirable to compute with finite-difference forms using a non-
orthogonal grid. Instead, we transform (strain) the basin ABDC onto the
image rectangle A*B*D*C*; i.e., we shear the curvilinear grid. This is
controlled by means of a shift function n(y), which measures the perpendicular
distance from the y-axis to the coast; each of the n horizontal lines of grid
points on the curved parallelogram is shifted a distance n(y) so that the
coastal points fall on the y-axis (the baseline, of course, is then shifted
an equal amount from the Oy axis). The area of ABDC is the same as A*BXD*C*;
that is, shifting the curved parallelogram onto the linear parallelogram
conserves areas. All parallelograms formed by the curvilinear grid, such as
abde or efhg are transformed or sheared onto squares, such as a*b*d*c* or
e*f*h*gk, Thus we transform a non- orthogonal curvilinear grid, via the shift
function n(y), onto an orthogonal system. The transformed, sheared, or image
orthogonal grid is now rectangular and labeled (x*,y*) so as not to confuse
it with the original (x,y) coordinates; see figure 2.

>

Consider any vector F (such as wind, transport, forces, etc.) at a point

on the basin's surface. It is represented in component form by two real
numbers. For non-orthogonal frames, the two component numbers can have at
least two different forms called contra-variant and co-variant, Appendix B.
Any vector* may be represented in the computer by either variant form for the
two component numbers or even in terms of components from an orthogonal frame.
Of the three choices, it turns out that the mathematics are simplified
(particularly the boundary conditions) if contra-variant component numbers
are used.

The vector ¥ in the original (x,y) coordinate system has components (Fy,F).
Transforming the vector by means of the shift function n(y) gives the sheared
vector F* on the image plane; it has components (Fx*’Fy*)' The magnitude of
F is changed by the transformation; e.g., the transformation conserves areas
but not lengths.

The choice of new coordinate systems for the location of vectors and scalars
and the choice of a new system of components imply that the dynamic equations
must be re-written in terms of the new coordinates and components. This is
done in the next section.

% In this report we will use vector components, magnitude of components, and
component numbers interchangeably. For a description of contra-variant,
co-variant, and other components, see Appendix B.



Although there are no boundary singularities such as inside/outside corners

on stair-steps (except for the four corners on the termini of the basin),

there are geometric restrictions of a practical nature applied to the basin
and coast. The slope of the coast from the baseline can approach a right
angle, but this is avoided. We arbitrarily restrict the slope to half a

right angle ( w/4 or 45°) on either side of the baseline for a total slope
change of 90°; our motivation for this subjective restriction is governed

by stability criteria of explicit finite-difference forms. It turns out that
time steps in numerical computations are related inversely to [ 1 + (dn /dy)z]%’

Appendix A, so the larger the slope function dn /dy the smaller the time step;
as the slope approaches a right angle, the time step approaches zero. Choosing

the slope no greater thanljy/4 means the slope function can decrease time
steps by a factor of (2)~%; this is one disadvantage of the sheared system.

Techniques to extract depth values at basin grid points require subjective
decision processes. Questions raised are: How is bathymetry distorted about
discarded capes, figure 1, or the basin itself when coastal slope exceeds

+1 /43 how is chelf bathymetry smoothed from randomly observed data on marine
charts, etc.? Discussions on some of these techniques are given by Barrientos
and Jelesnianski (1973).

The models, as presently developed, cannot be used below Port Isabel, Tex.
nor above Long Island, N.Y. The revisions of this report have been incor-
porated in the SPLASH models, Jelesnianski (1972, 1974), for 3000 mi. of
coastline. Storms and their tracks can be variant with time, and the storm
need not landfall.

3. THE EQUATIONS OF MOTION IN A SHEARED COORDINATE SYSTEM

A geographical plane with orthogonal (x,y) axes, figure 2.a, is ordinarily
used in surge computations. This cartesian system is oriented with respect
to some baseline such as a north/south "y" axis, or an axis tangent to the

coast at a given coastal point. The natural coastline meanders about the
m_n

y —axis.

y COAST
k L
y¥

Fly) f
"

<<‘<<<(° BASELINE
v

x¥= X -n(y)
y=y
X
GEOGRAPHICAL COMPUTATIONAL
(x,y) plane (x*y*)plane
(a) (b)
Figure 2.--(x,y) has cartesian components in the geographical plane, whereas

(x*,y*) has sheared components. The opposite holds in the com-
putational plane.



It is desirable to form a computational system whereby the coast is trans-
formed into a straightline, figure 2.b; furthermore, we want this line to
form one axis of an orthogonal, rectangular frame. This can be done with

a simple shearing transformation through the shift function p(y). The
transformation shears the baseline into a curve and the natural coast into
a straight line. In the computational or image plane, the original (x,y)
axes are non-orthogonal, and the lengths are altered; similarly in the geo-—
graphical or original plane, the image (x*,y*) axes are non-orthogonal and
the lengths are altered. To use the computational (x*,y*) plane, consisting
of a straightline coast perpendicular to the x*-axis, we must transform the
surge equations of motion from the original geographical plane to the com-
putational plane.

The storm surge equations of motion come in many forms and degrees of com-
plexity. We limit the complexity in the SPLASH models because most users

are interested in surges for a limited* period only; that is, on a coast,
during the dominant stage of the forced wave under a storm. For this re-
striction, linearized equations of motion are suitable for forecasting purposes
<the uncertainty of meteorological input parameters usually exceed non-linear

effects). TFor extreme surges in shallow waters, the linearized model may over-
forecast the surge; the model is not designed to compute 'probable maximum
surges". Even with linearized equations, however, some complexities in surge

dynamics need to be accounted for; these are unsteady flow from driving forces,
its effects on bottom stress (time history bottom stress), and the coriolis
parameter in an ocean basin.

There are solutions for the linearized equations of motion with "time-history-
bottom-stress'" in numerical form; examples are a truncated power series ex-
pansion, Platzman (1963), and a solution in intergral form, Jelesnianski (1970).
We have chosen the former for the SPLASH models because of ease in computation,
core storage requirements, and economics; the computed results from either
solution do not differ greatly and both are suitable for forecasting purposes.

% The model was designed to give the space envelope of highest surges on the
coast. It was not designed to give a complete '"time-history" or duration of
the coastal surge. By "time-history" or duration we mean surge against time at
any coastal point. The model is initialized with a quiescent sea, at most 12-hr
before landfall or else before nearest approach of a storm to basin center,
and 6-hr thereafter for at most an 18-hr run. At any coastal point, the
computed, time-history, surge profile is viable at time of maximum surge but
defective at the earliest limb of the profile. Of course, the model can be
redesigned to incorporate longer time runs or duration, and this has been
done for special runs (figure 6 is a special run for 36-hr); for practical
forecasting this is wasteful of computer resources because such long duration
runs do not ordinarily affect the space envelope of highest surges.




The linearized storm surge equations of motion in a geographical plane,
Platzman (1963), and modified by the addition of a slip coefficient,
Jelesnianski (1967), are

. _ gD[B_ - Bth=hg) B.-éiﬁ:ho)]+f(A V+AU +c_ X -c¢, 7
r 9% 1 3}7 r 1 r T

(1) v 3 (h-hy) 3 (h-ho) y X
— o) ) 0/ 1~ - A. .
= gD[B_ 5 + B, - 1-£(AU - AV) +C. T + ¢y By
oh _ _ 93U _ av
at 9x 9y
where
U,V = transport components
h = surface height (the storm surge)
h, = hydrostatic heights due to atmospheric pressure
f = coriolis parameter
D = depths
g = gravity
XT,yT = components of surface stress*
AL oo C; = bottom stress functions varying with depth

These equations are for the geographical plane of figure 2.a, with ortho-
gonal (x,y) axes. To transform the above for the computational or image
plane, figure 2.b, consider the following transformation,

(2) x* = x - n(y)
yE =y

>
where the shift function n is a function of y only. Any vector F*=(FX*,F *)
in the computational system has components in the geographical system as

ox* ox* an
3 F, = F_ + F =F --90F
S x* ox X dy Y X dy ¥
Fox =—°F +-0*p =p

e X X 3y Y 'y

> > > > - -5
* T = CIW W, where W is vector wind and the drag coefficient C = 3X10™°. The
bottom stress functions use an eddy viscosity v = 0.25 ft“/s and a slip co-
efficient s = 0.006 ft/s, see Jelesnianski (1967).



These components

transports of eq.

(4) U = U*
V = V%
where U*, V* are

The gradients of
rule as

are a contra-variant form*, Appendix B. In particular the
(1), from eq. (3) are, after rearrangement,

%
+ nyV
=00
y ay
contra-variant component numbers of transport, Appendix B.
the fields in eq. (1) are given through eq. (2), via a chain

b

9 = 9x* 23 +9y* ) = 9
ox 9 X 9 x* 9 x 9 y* 9 x*
(59
3 = 9ax* 9 +3y* 3 =3 -n 39
3y dy d x* dy D y* 9 y* Yox*

Applying eq. (4)
U*, V* gives

and eq. (5) in eq. (1), separating the time derivative of

oU* * = _ 2y oh  _ _oh
st~ £AUF =g DIB (1+n 9 e~ (B +B.n g 1+
+EAL [ (L+n2) VE+n Ux]+ %1 - n YT
y y M
(6) ov* 3h dh
— AV*:- g s - e -
J ¢t 5 i & D[Br oy* + (Bi Br ny) ax*]
-fA (U* + 1 V¥) + VT
r y
oh _ _ _aU*  qv¥
ot Ix* y*
where
xp . BBy _ B, 8hy  LC. Xt - ¢y Ve
X ay
(7
Yr = B_ _sh

h
5 o4+ B; 3% +Cp Yo + Ci XT

ay 9x

*# This form is very convenient for boundary conditions; the co-variant form
is most convenient for coastal boundaries, see Appendix B. Birchfield and
Murty (1974) shear and stretch a coordinate system in two-dimensions, but
use untrasformed Vector components; some manuevering is required to form
transports on the boundary.
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The components of the driving forces eq.

geometrical (x,y) system because of convenience in computations.

(7) are retained in the original,

The field

values (transports, surges), and their gradients, are in the (x¥*,y*) comput-

ational system.

cipation of explicit finite-differencing techniques.

The arrangement of the coriolis terms in eq. (6) are in anti-

Notice in particular,

the invariant character of the continuity equations in both coordinate

systems eq. (1) and eq.
mapping from one system to the other.

(6); this occurs because areas are conserved* when

4. AN EXPLICIT FINITE-DIFFERENCE SCHEME FOR INTERIOR AND BOUNDARY POINTS

In numerical computations of storm surges, we use an equally spaced, staggered

grid of size As, figure 3.
surge or forces, is labeled Fpy =

9
are integers. Note, "m" and '"n"

Any field value F(x*,y*,t), such as transport,
F(mAs, nAs, kAt) on the grid, where "m,n,k"
are both even or both odd at each point of

the space-staggered grid**; also, (mtn) or (m-n) are even integers.

v
f

T

2AS ee¢—2AS—>e

l

[ ]
® [ )
o O
m=1 M m+l

® N+2

N+

e N

e N-2

» X*

Figure 3.--An equally spaced, staggered grid in the (x*,y*) computational

plane.

* We could shear and then stretch the coordinate system so that eq.

x* =[8 / B(y) ] [x-n(y) ], y* =y, where B

and B(y) is the width of the basin as a function of V.

(2) becomes

is a typical width along the x-axis’
In this system, for a

variable B(y), areas are not conserved and the continuity equation is a bit

more complicated.

Note, shear and stretch are one-dimensional.

Birchfield

and Murty (1974) have made such an application for_two—dimensional transforms.

%% This is in contrast to the grid of figure 1 which is merely illustrative.
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In our finite-difference scheme, we compute the three field values, ''U*, V*
and h", at every grid point. Compared to other schemes, the computer core
storage for field values is excessive; for example, there are many ways to
set up "leap-frog'" schemes that use only half the core. Our scheme allows
computations of surge values on boundaries. A better scheme could be de-
signed to conserve core storage and still give the same information; this
remains as a project for the future.

The equations of motion in differential form eq. (6) are

QU* oh oh
= = fAiU* - gDh [BraZ i (Bi + Bral) ——*-] + fAr(aZV* + alU*) +
] 90X ay
X y
s T al T
dV* 9h oh y
v t—3 - — — o *
oh - oU* _ v
at ax*  Jy*

where 81 = Mgy #g & L + (al)z. In anticipation of finite differencing, we
set a; = (n gn, where "n" is shorthand for y* or y = n As. In this way we
form discrete values for the coastal slope function Ny = on ; note, the
slope function varies only with "y". oy

For most of the United States coasts, the average offshore depths or slope
at the coast is orders of magnitude larger than the slope a small distance
seaward. Also, for a short distance inland, the coast is covered with dunes,

figure 4. We have taken advantage of this geographical configuration by setting

ﬂw
f‘F LL\\\
0 Mo
Np’” ,Lw \\ y* av*_o
| ﬂ6 yF LATERAL BOUNDRY
f COASTA
If“SLOPE - [
A ]
~ ! hgh. FF“
- 0
N ,o"“
77N
DUNE e Nt
// \ﬁﬁ‘\
- > : AN
ot Rt
7
COAS
o&#ﬁé Q%>
ﬂ@v
Q<Sy
N

Figure 4.--The basin and boundary condition used in our model. A vertical
wall simulates the rapidly changing land and ocean contours at
the coast.
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a vertical wall at the coast and extrapolating the local average shelf slope
onto the vertical wall. In this way the undistrubed water depths of the United
States coasts vary between 10-50 ft, with an average of about 15 ft. We also
assume that the dunes are not overtopped, or if overtopped the distance of
inundation inland is small compared to some scale length such as storm size.

It is anticipated in future work, for inland inundation, this coastal con-
figuration can be treated as a weir when dunes are overtopped.

Our truncated basin from the sea has three open and one coastal boundaries.

The open boundaries do not have a physical boundary condition, but mathematically,
boundary conditions are demanded. Hence, arbitrary conditions are set to
approximate the influences of the exterior sea. There are three types of
boundary conditions* used in our model:

1. On the coast, normal transport is zero but parallel transport is
permitted. The coastal boundary is fixed in space. We are assuming
a typical wavelength, for the storm surge wave, is much larger than
any distance inland penetrated by seawater. This, of course, is not
true for broken coast features such as bays and estuaries, or if
the dunes are overtopped and the terrain for large distances inland
is flat and even; in these cases, our boundary condition may overfore-
cast the surge on the fixed coast.

2. The deep water, open boundary, uses static heights (the inverted
barometer effect) of the storm.

3. Each lateral boundary (open boundary) has vanishing normal derivatives
of transport. This is fictitious but convenient.

The basin, figure 1, is fictitious at and near lateral boundaries. We could
consider an absorptive condition in regions surrounding the lateral boundaries;
this remains as a future endeavor. We are assuming that surges at basin center,
during storm passage when surges are extreme, are not affected by distant
lateral boundaries; this is borne out with empirical tests for different sized
basins.

In our finite-difference scheme, the time derivative is approximated as

9) 5F  _ 1 [Fk+l—Fk“1]
ot 2 Ac - ™2 mn o

For finite differencing of spatial derivatives, a notation for interior,
boundary, and corner points will be developed.

* It can be shown that the boundary conditions are properly posed for the storm-
surge, linear, differential equations of motion. Boundary conditions 2. and 3.
reflect energy to the basin interior; however, bottom stress disipates some of
the energy before it reaches the coast.

13



A. Interior Points

A five-point centered scheme is used for finite differencing of spatlal

derivatives. The "x*'" derivative is approximated as

(10) dF __ 1 [Fk + 7N - FK Pl
ox* 4 As mt+1,n+1 mt+l,n-1 m-1,n+1 m-1,n-1

1.

We now define an operator for the above, in positional form, as

(11a) D

5 1. -1,
(11b) Dy = 0.
=1. -1.
Now let
b1= 2 At
= A A
b2 At/2As
b= &b,

Then eq. (8) with ea. (9) and eq. (11), in finite-difference form, is

|""

5

U* = A_(U*
( )m n =4 ) R *]hm .
k k X k
+ A, (V* + A_(U* + - A7
( )m,n 5( )m,n A6 Tﬁ,n A7 Tm,n
k+ -1 5
(12)  (v* = B (V% - -
( )m,n ( ) m,n Dm,n[BZDy T B3DX*]hm n
k k k
- B, (U; - B_(V* y
( )m,n S(V )m,n + B7 Tm n
k+1 k-1 5 k 5 k
h = h - ‘U*
m,n m,n bZ[DX*KU %,n+ Dy*(v*%,h]
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AL =1+ f(Ai)m’nbl B, = A

Ay = (B, n22P3 B, = Ay/a,

Ay = [(Bi)m,n M (Br)m,n31]b3 By = [(Bi)m,n B (Br)m,nal b3
Ay = £A), n32Py B, = A/,

Ag = A4a1/a2 By = Ag

A6 = b1 B6 =0

A7 = alb1 B7 - bl

Note the "past' times of transport associated with A1, By terms; this is a
requirement for stability in the finite-difference scheme. A positional
derivitive, such as "D%*hk,n" means an operation through eq. (11), at time
"k", centered at position (m,n), on-any field. The friction coefficients,
A, A, ......, have discrete values, (A;) AP ., at each grid point
1> e Lm,n’ "0 "0

according to the depth Dm ; these can be séet initially once and for all
(similarly for ny) for eAeh basin.

Under ideal conditions of constant depths, no bottom stress, and no driving
forces, the stability criterion for eq. (12) is, Appendix A,

(13) At < As
‘/gD [1+ (n }27) 1+ (£As)?

Notice that if |[n_| becomes too large, then At approaches zero; in our compu-—
tations we convenlently restrict |ny| <1, or a slope of 45°, It turns out
in practice that a " At" smaller than eq. (13) is required to ensure well-
behaved solutions with boundaries. This is derived by empirical tests;

usually a factor of (2)~ suffices.

The grid spacing in the present SPLASH models is 4 statute mi. Inasmuch as
depths are not permitted to exceed 300 ft, then to maintain stability " At"
is not quite 3 min. The models use a time increment of 120 sec.

B. Coastal Boundary

For coastal computations with the boundary condition U*=0, Appendix B, we

discuss two methods to compute surges on the coastal boundary. The first

method, which uses uncentered finite-difference forms in space, does not directly
satisfy the continuity equation on the coast; it appears however, mass may be
conserved about the coast. The truth of this assertion requires an extensive

15



exploration of uncentered finite-difference forms in space, and weights to
be assigned to surrounding grid points; this remains as a project for the
The second method, an offshoot of the "Method of Characteristics",
does satisfy the continuity equation along the coast. If both methods are
to apply, then it is necessary they compute equally well at the coast. Such
equality however, does not guarantee that mass is conserved about a coast;

a deeper study on this point is a project for the future.

future.

For a linear system, with partial differential equations of motion and pro-
perly posed boundary conditions, there exists a unique solution for a given
storm. However, a stable numerical solution is no guarantee of equivalency
to the unique solution. We make no attempt to prove existence or uniqueness
in our methods, and our approaches are empirical and intuitive.

1. Computations With Uncentered Forms

On this boundary normal transports are zero, and then the derivative with
respect to time is also zero. In the absence of overtopping, a necessary
condition on the boundary is that '"drift" transport balances ''slope' transport,
(Jelesnianski 1970) T produce this balance we use the first momentum equation
of eq. (8) with 9U*/9t=0. The spatial derivatives, in finite-difference

form, allows one to extrapolate height values onto the coast to satisfy known
terms in the equation.

Notice, we do not directly satisfy continuity on the coast. It is impossible
to satisfy the three equations of eq. (8), in finite-difference form, plus

the boundary condition, by direct means*; instead, we dispense with the
continuity equation on the coastal boundary and rely on the momentum equations
as being adequate for forecasting purposes. One can set complicated com-
patability requirements to satisfy all of eq. (8) and the boundary condition
on the coast, but this remains as a project for the future.

On the boundary we use an uncentered form, which for the x* derivative is
approximated as
k S

k k
+ 4(F + F ~F =
ol ) 3,n+2 3,n-2

(14) oF 1
n 2,n+l 2’n_l

ox® 4 As

[ -6FK
1,

We now define positional operators on the coast as

0. -1, 0. ;;.
15
'p2, = [-6.7 o. - =0 o
> >
.\ - -\
O- -li 0- 1-

where "L'" means left boundary on the rectangular grid, figure 1.

* One can use the '"Method of Characteristics" to satisfy the equations
This is done in the following section, as a check on

boundary condition.

the procedures of this section.

and



By empirical means, we have found for variable depths that an expansion of
the depth and surge gradients are desirable in boundary computations as

(16) D oh _ 93(hD) ~h 9D p _oh - 9(hD) -h oD .
ox* 9 x* ox* oy * 9 y* ay*

The above form permits numerical computations, if the sloping depths have

zero depth at the coast. Empirically, we have found only small changes in
surges if the bottom stress coefficients in eq. (12) are similarly expanded

as in eq. (16). If we approximate eq. (16) by means of eq. (15), then the

grid point with a factor of "6'" becomes "0'". Hence, we define a new positional

operator for the left boundary on the coast as

0. -1,
D 4, =~
5 _ |0~ o.

LDx* I ’
0. ~l.

Note, factor "6" does not appear in the y* derivative in eq. (15).

To compute the V#* transports on the coast, the 2d mOmentum equation of eq. (12)
is used, but with spatial derivatives incorporating eq. (16), (15), and (17), as

(18) (V*) - “*1("*) - (8, 11)5 + B Lns*) (hD)& ‘{,H(BZL‘D; +3,50°,)p

2,0

k vk
- *
BS(V )1,n.+ B7 Tl,n

where the subscripts (1l,n) mean a point on the coastal boundary. Note: V¥* is
not the orthogonal projection of the vector V on the coast. The transport
component, projected parallel or tangent to the coast, is

- 2 2y%.
Vengne™ [ nyU* + (L) ve ] /(Lm0

Similarly, V

1
normal=U*/(l+n§)6, see Appendix B.

To compute heights on the coast, the 15 momentum equation of (12) is used,
with U* and 9U*/dt.set to zero, and with spatial derivatives incorporating
eq. (16), (15), and (17) as

L5 5 k+1 k+1 k+1 y, k+1
- * -
(AZLDX A LD )(hD) AS(U )1,n AGXTl,n + A7 Tlln
' 5 L 5
(AZLDX* -

2. Computations by "Method of Characteristics"

k+1 _
(19) hl,n =

*)Dl n

We want to check the technique of the last section by comparing results with
an alternate technique, an offshoot of the '"Method of Characteristics'". To
develop the equations for this method requires some maneuvering. To begin,

17



consider the continuity and first momentum equation of eq. (18)

(20) - B‘U* -+ Dﬁ 3h = gD B B +Lvx + DUk + Frx
oh_ _3Ux _ v
ot ax* Ay *

where A = Ba), B = BLajtB,, €= fA a, = £(ALa, + A)), XF* = X1 &, 77,
The above can be rewritten as

gDA __Qh__jL____ = VepA n 31115:2§;.+ gDg —2 . + L v+
ox* ay\
Dux + Fpx

(21) __3h Vg A . ‘\,gD aU* _ \eog _ovx

Ay *

Now adding and subtracting these equations gives

d(ux T thDﬁ ) + ",gDﬂ a(u* *n quA ) =V8Dﬂ h J)@ *
E+ Dux

where

\jgnﬂ' + g B —8__ 4 £ yx + Xpa

The previous equation can be written as

(22) D(U*—h VenA ) =4zpA n 3NegpA  + & + B u.
9 x*

Some of the derivatives of the dynamic variables V*, h are kept in theé; term

and not combined in D/Dt. This reduces the full effectiveness of the method of
characteristics in two-dimensions when all derivatives are combined into a
differential operator in one direction (the characteristic direction). Hence

the approach of this section is not a full fledged generalization; it only
constitutes an extrapolation of the method of characteristics to three-dimensions.

18



Equation (23)has the characteristics¥*

(23) dx*/dt = = gD A

Notice, (x*,t) are treated as variables in the substantive derivative of

eq. (22), and the two equations of (21) telescope into one along a characteristic
eq. (23). On the coastal boundary of a basin, eq. (22) holds on the negative
characteristic; see figure 5. Hence, to predict at point P we need to know

(k+hat LP

L ‘s
'Y

kAt
- AY R
A

x*

—’—0:0

S

COAST

Figure 5.--An (x%*,t) system for the characteristic dx*/dt = —\)gQ/r, see
eq. (23). At time A t, the characteristic must issue from point
S on the abscissa so as to arrive at point P (the coast) at time
(k+1) At. As is a grid length, and At is a computational time
step.
all fields on the line LR, and in particular, on the point S at distance px*
from the coast; that is, the starting point on LR of the negative characteristic
that intersects the coastal boundary at point P.

Once Ax* is determined, then field values at point S can be interpolated
from known values at discrete grid points such as L and R. We manipulate eq.
(23) to form Ax* as follows:

At =[sdx*/ ‘/;J

But the depths "D" and the coefficient A are almost linear along the line
LR or LS. 1If the coast is set at x*=0, and gD/[ is linearized, then

* We are assuming \/gD/Iis a function of x%*; this holds about the coast where
depths are small and the characteristic length between time steps is also
small, where coastal curvature is small, and where depth changes dominate
along the x* coordinate. Should depths be deep and vary significantly along
the y* coordinate, and if coastal curvature is large, then eq. (23) does not
hold and one must then consider curving bi-characteristics.

The methods of this section may not be applicable if one wishes to consider
bay/estuary mouths, where depths vary significantly along both x* and y*
coordinates, the coast curves dramatically, and flow axis through the mouth

has a localized direction.
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AX* L L
(24) At -—f dx*/(a +bx¥)% = 2 [ (a+b ax®)io g% ]
b\[8
where

a=OA), b= [OA ) - A ]
As

and the subscripts L and R signify values at those points. Solving eq. (24)
for Ax* gives

(25)  sx* = At [(gdf) £+ _at {(Df), - (DA ) }.
4 As

To interpolate any field value F at point S, we have chosen the following linear
form,

(26) F_, = FL +  Ax* (F

- F
S As

R L)°

Integrating eq. (22) on the characteristic, dx*/dt = —\VgD/f , gives

(27) (U*h Vg A )—(U*—thD A) = [{‘ng h o%ed A + £+ v } gt
ox*

{424 n g +'é?'FID U%}g 1-
3x*

The coastal boundary condition, U* = U*L = 0, gives

(28)  hp = -(Us-h VgD A ) - x- &} + (Vepf n aVaggﬁ +E+Dux}
X
[ ‘\FEDE ( 1+-At At m

S~ Ox*

Ip

All fields, at point S, are determined from eq. (26), and includes U*, by
setting U* —0 All field values at point R are mean values from the staggered
grid; i.e., *p(As, nls, kAt) = % U*(As, (n+l) As, kAt) +U*(As, (n-1) As, kA) .
The transport V* is determined by the second momentum equation (8), and eq.
(18). Derlvatlves, such as 3V*/3y* at point P and L, are determined by an un-
centered form eq. (15); at point "R", by 3V#/oy* = _1 V*(As, (n+l)As,kAt) -

V* (As, (n-1)As,kAt) . 2As

There are ways, other than eq. (25) thru (27), to determine Ax*, interpolation
procedures for fields at point S, and approximate integration along a charac—
teristic. After some empirical testing, we have chosen these methods because
of their simplicity and performance. Results, with the techniques of this
and the previous section, do not differ significantly. We have tested the

two techniques for a range of storm conditions and basins normally encount-
ered along the United States coasts. We have not tested for abnormal sit-

uations; i.e., very small storm sizes, extremely shallow/steep slopes on the
continental shelf, etc.
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C. The Deep Water Boundary

On this boundary, the heights are static from the "inverted barometer effect';
that is, the storm itself supplies height values on the boundary.

It is impossible to satisfy the three equations of (8) in finite-difference
form, plus the boundary condition, by direct means*; instead, we dispense with
the continuity equation on the deep water boundary and rely on the momentum
equations as being adequate for forecasting purposes. One can set complicated
compatibility requirements to satisfy all of eq. (8) and the boundary condition
on the deep water boundary, but this remains as a project for the future;

also a radiation type boundary condition may prove useful.

We define an uncentered positional operator on the coast which is eq. (15)
rotated through 180°, with proper signs as

Is 0. 1. 0.
(29) —\4. - \4.
- N - N

2= | o. . 2, =10 .

¥ -4,7 y —4.7

1.7 o. 1.7 o.

where R means right boundary on the rectangular grid, figure 1. Also, as
in eq. (17)

.. o
— "4.\
(30) I%S = .
0. 0.
> 4.7
1./ 0.

The transports are computed from the two momentum equations of (12) but with
the spatial derivatives incorporating eq. (29), by eq. (16) and (30). The
form is equivalent to eq. (18) for V¥*; similarly for the U%* term.

The storm already provides static height gradients along the boundary if

eq. (7) is rearranged in (x*,y*) coordinates, but in eq. (8) the dynamic

height gradient is calculated by finite-difference forms. The static and
dynamic height gradients along the boundary do not automatically cancel be-
cause the methods of calculation are different. For a sheared grid, empirical
tests imply that is is better to explicitly compute the dvnamic height gradient

* One can use '""Method of Characteristics'" to satisfy the equations and boundary
condition. This is a project for the future. We have experimented empirically
by placing the boundary further/closer from shore, but in all cases at distance
greater than storm size R; in general, there are no significant changes in the
coastal surges, providing the width of the continental shelf is greater than R.
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along the Boundary according to eq. (29) rather than cancel directly with
static height gradient. For the unsheared system, it was not necessary to
explicitly compute height gradients along the boundary.

D. Lateral Boundaries

We assume, during storm passage when surges are greatest, that the central

area of the basin is not affected by lateral boundaries. This is borne out
with empirical tests for various types of lateral boundary conditions, pro-
viding the lateral boundaries are sufficiently far from the basin center.

We set fictitious conditions on the boundary of 3V#/3y* = 3V/ 3y = 0; note
that the boundary, and immediate neighboring region, has 9n/ 3y = 0, figure 1.
To compute for V#*, we dispense with the 2d momentum equation of eq. (12) and
use the following uncentered positional operator

1
B et
(31) D3 N 4

where B means bottom lateral boundary; a similar procedure is used for the top
lateral boundary. With eq. (31) operating on V*, and set to zero, then

k kL k+1
452) (V*)l::i =[5 {(V*):ﬁ,z * (V*)nﬁ,,z} - (V975 5 - (VR 3176

Note eq. (31) is no more than eq. (15) rotated 90° with no sign changes.

For the top lateral boundary the rotation is 270° and eq. (3l) reverses signs.
We compute U* and h with the first and third equations of eq. (12) but with
spatial derivatives incorporating eq. (15) under proper rotation; also, eq.
(16) and (30)*under proper rotation are used to compute U*; the continuity
equation in eq. (12) does not require eq. (16) since depths are not present.

E. Corner Points

There are four corner points, figure 1. A direct way to dispose of these
points (and the lateral boundaries as well) would be to formulate a graduated
absorptive condition so field values are zero on the lateral boundaries.
However, until such time as this is investigated we compute on the corner

* Empirically, for long time runs, we have found that
1 0
B 5 l\ L]

Dx*— % 2 -4'\

-l'
4,”
o il A

gives better results.
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points with an uncentered positional operator®*, as

(33) . .
C = . C == =,
Dk | -2, -, Py* 2. -l
4. —I. 4. llo
-3l 2, -3l .2,

where '"'C" means left—bottom—corneré similar forms exist for the other three
corner points but rotated 90°, 180~, 270°, and with proper sign changes.

On the coastal corner points, 9V*/dy* = 0 gives V* through eq. (33). The
first momentum equation of eq. (12), with (16), and spatial derivatives in-

corporating eq. (33) under proper rotation, are used to compute "h'"; in eq.
(12), U* = 0 and hence 3U*/3t = 0.

On the deep water corner points, 9V*/3dy* = 0 gives V¥ through eq. (33). The
first momentum equation of (12), with (16), and spatial derivatives incorporating
eq. (33) under proper rotation, are used to compute U*. The continuity equation
is ignored since '"h" is supplied by the storm itself.

5. AN EXAMPLE AND COMPARISON WITH AN UNSHEARED SYSTEM

The effects of a curving coastline are best demonstrated with a storm moving
more or less alongshore. Such a storm track generates surges on a longer
length of coastline compared to a landfall storm. The coast, at a distance
from the basin center** can veer dramatically away from the baseline; con-

sideration of this deviation from the baseline can be significant in surge
generation.

* These forms are weighted combinations of two separate 5-point forms. Empirical

tests with eq. (33) give better results than either of the two separate 5-point
forms.

**By '"basin center'" we mean the mid-point of the baseline, figure 1.
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As an example, consider hurricane Donna, 1960, which passed the Eastern Sea-
board, figure 6. For meteorological input data (to generate driving forces)
we specify:
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Figure 6.--Observed/computed time-history surges at four tide gages, generated
by hurricane Donna, 1960. The computed surges are for the sheared
system. Atlantic City is a coastal gage, whereas the other three
gages are inside estuaries. "@§" means time-of-storm-abeam-of-tide-
gage. The left side of the figure illustrates the storm track,
and the "baseline'" for the basin used in computations. The basin
is centered at Cape May, N.J., just north of Breakwater Harbor.

1. initial and final pressure drops for a 24-hour span (APO,AP24),
where AP means difference between ambient and central pressure of
the storm, '

2. dinitial and final storm size (RO,R24), where "R" means distance
from storm center to maximum winds, and

3. five storm positions at 6-hourly intervals.

For details on how these data are used to form 48 hours of driving forces, see
Jelesnianski (1974) and Jelesnianski and Taylor (1973). From various sources,
we have tentatively assembled initial and final pressure drops of 46 and 57 mb,
a constant storm size of 40 statute mi., and five track positions as shown on
figure 6.

The simulated coast of the basin is centered with a baseline at Cape May, just
north of Breakwater Harbor; at the entrances to Chesapeake, Delaware, and
Lower (Raritan) bays, there are fictitious vertical walls. Details of the
simulated coast are not shown in figure 6 due to coarse scaling.
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The sheared SPLASH II program was specially altered for Donna for 36 hr of
model time to compute resurgences after storm passage (the operational program
runs for 18 hr, 12 hr before storm passage at the basin center plus 6 hr there-
after).

We want to compare real data from Donna; these exist for four tide gages,
figure 6. Three of the gages are located inside bays/estuaries (not the
ocean side) and only Atlantic City lies on the open coast. The original gage
data was modified by subtracting out predicted astronomical tide as well as
sea level anomolies determined from monthly means (Harris 1963); the resulting
data can be described as "meteorological" tide, for it is this tide we use

for comparisons. We compare our model with surges generated from driving
forces only; no attempt is made to compute with astronomical tide, nor inter-
action between astronomical and meteorological tide. The computed, time-
history, surge profiles are for the sheared system.

In figure 6, the symbol "@" locates "time-of-storm-abeam-of-gage'. At any
fixed times, the highest surge on the coast is associated with the storm; it
moves along the coast with the storm as part of a forced wave; all following
resurgences—-behind the storm on the coast--are free waves. Such wave phenomena
are discussed by Jelesnianski (1974). All four gages exhibit a general rise
above sea level before storm arrival, followed by a general fall below mean
sea level after storm passage. These phenomena*, before storm arrival, are
sometimes called "forerunners'; note, these are computed by the model if the
storm is initialized sufficiently back in time, and hence should not be con-
strued as an initial set-up to be added onto the computed peak surge, Appendix
C.

Figure 7a compares the computed envelopes of high waters on the simulated
coast, generated by Donna, for the sheared and unsheared systems. In the
unsheared SPLASH system, the natural coast (and forces) are shifted to the
baseline, but the equations of motion (1) are not transformed to eq. (6).

Figure 7b compares observed time-history surges at Atlantic City and Sandy
Hook against the sheared and unsheared systems. The sheared system is an
improvement over the unsheared system.

* The opposite occurs if the storm moves in the opposite direction; i.e.,

a storm moving north along the west Florida coast, or a storm moving northwest
along the northwest Florida coast. In such cases there is a general fall be-
fore storm arrival, followed by a general and rapid rise after storm passage.
This situation is very deceptive to the surge forecaster if he 1is depending
on the trend of tide gages to aid in forecasting.
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Figure 7a.--A comparison of computed surge envelopes generated by the sheared
and unsheared models, for the Donna 1960 storm, see figure 6.

Figure 7b.--A comparison of observed time-history surges at Atlantic City and
Sandy Hook, for hurricane Donna 1960, with the sheared and un-
sheared models.

‘The storm exited south of Portsmouth and made landfall north of Sandy Hook.
The SPLASH models without the shear system compute acceptable surges about the
‘basin's center; but for adjacent areas, where the coast deviates from the
baseline, the computed surges may not be valid. With the sheared system,
however, we can consider surges on adjacent areas if the coastal curvature

is not dramatic and the coastline orientation does not deviate greatly (more
than + 45°) from the baseline; also, the baseline need not be tangent to the
coast at the basin's center.

There is little difference in surge computations between the sheared and un-
sheared models at basin center, figure 7a; the small differences there are
due to small coastal curvature and a baseline not quite tangent to the coast.
the most significant differences are south of Cape Henry and north of Sandy
Hook where the coast has greatest curvature and is orientated at a large
angle with respect to the baseline. About Cape Henry the storm is exiting
and the computed surge with the sheared system is smaller, but about Sandy
Hook the storm is landfalling and the surge is larger; these discrepancies
are due to a curving coast orientated at a large angle with the baseline. To
compute surges in these two areas with the unsheared SPLASH models, we would
need to compute in separate basins for short stretches of coasts that do not
deviate significantly from a baseline; with the sheared system, however, the
coast can deviate from a baseline and it is possible to compute along a
greater stretch of coastline. The envelope of surges with the sheared system
shows detail; in particular, where the coast is concave landward (a cape) the
surges are smaller, and where the coast is concave seaward (a cove) the surges
are larger.

26



In our model, the ocean is uncoupled from bays/estuaries; there are fictitious
vertical walls at the mouths and we should not expect valid comparisons be-
tween computed surge values on the open coast and a tide gage inside the bay.
The effects of a bay (feedback) on the mouth and surrounding open coast de-
pends in part on storm size relative to size of the bay's major axis, the
orientation of this axis to the ocean coast (perpendicular/parallel), and

the orientation of the storm's track relative to the axis. Also, the mouth
may act as a control so that the bay and ocean sides have different surge
heights. On the Eastern Seaboard, the axis of bays are nearly perpendicular
to the ocean coast and storm tracks are generally perpendicular to the axis.
Under these conditions, the storm passes quickly across the bay mouths, the
significant driving forces inside the bays have a short time span, and the
ocean surges acting through the bay mouths have a lot to say about the re-
sponse inside the bays. For different size bay axes, relative to storm size,
the following may hold:

1. For short axis——-such as Lower (Raritan) Bay--the time lag between
events on the open coast (mouth) and inside the bay are small,
with small local variations inside the bay, and the computed open
coast surge is useful to represent conditions inside the bay.

2. For an intermediate-size axis-—-such as Delaware Bay--there are

lags between events on the open coast and inside the bay. There

are some local variations inside the bay, and reflections from the
head to the mouth of the bay during the active time of the storm

in the bay area may be present. These rejection surges complicate
not only the surges at the mouth but also the surrounding coasts

and our model as presently consituted cannot compute these additional
events on the coast. The computed open coast surge does have some
skill in representing conditions inside the bay in a coarse way.

3. For a large axis--such as Chesapeake Bay—-there are large time
lags between events on the open coast and deep inside the bay,
some possibly significant local variations inside the bay, but
during the active time of the storm in the bay area there are
limited rejection surges affecting the mouth; i.e., the return
period of the rejection surges are large, and storm tenure small,
so that bottom stress and other phenomena have sufficient time to
help dissipate the reflected surge. The computed peak surge of
the forced wave has some skill in representing the peak surge in-
side the bay and not too far from the mouth, but following resurg-
ences are not well represented inside the bay.

The Portsmouth gage is located about 20 mi. inside Chesapeake Bay, on a
tributary, figure 6. The computed peak surge leads the observed by about

2 hr; this is to be expected, for it takes time for the open coast surge to
reach into the bay. The amplitude of the computed peak surge is slightly
larger than given by the gage; the amplitudes of the minimum surge and re-
surgences compare poorly with the gage values. Inasmuch as the gage is far
removed from the mouth, and the mouth may act as a control, we don't know
how pronounced the resurgences are at the ocean side of the mouth nor how
well our computations fit there.
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The Breakwater Harbor gage is located slightly inside Delaware Bay. The

Bay is much smaller than Chesapeake Bay, and its major axis is larger (but
not much larger) than storm size; in this situation, rejection surges (reflec-
tions from the head of the bay) may complicate the gage output. The amplitude
of the computed peak surge is slightly larger than given by the gage; the am-
plitudes of the minimum surge and resurgences compare poorly to fairly with
the gage values. Since the mouth may act as a control, we don't know how well
the computed resurgences at the ocean side represent real ones.

The Atlantic City gage is located on the open coast where our model is
applicable, and we expect useful results. The computed peak and minimum
surge agree fairly well with observed. The short period '"'spike'" at about
1400 hr is completely missed by the model; its duration is much smaller than
the resurgences and possibly represents feedback and focusing from Delaware
and other bays. The computed resurgences are well represented except for
leading the observed values. Recall that the periods of the resurgences
depend on storm speed, size, and distance from the coast (Jelesnianski 1974);
hence,using a constant storm size of 40 statute mi. may be an oversimplifi-
cation; the storm acquires extratropical characteristics——and possibly in-
creasing size-—as it moves into higher latitudes. We can easily change the
period of the resurgences by allowing storm size to change with time--and
this can be done well within meteorological accuracy--for a better repre-
sentation of the resurgences.

The Sandy Hook gage is located inside Lower (Raritan) Bay, close to the en-
trance. The bay is much smaller than Chesapeake and Delaware Bays and even
smaller than storm size; we therefore expect some useful results here. The
computed resurgences lead the observed, just as at Atlantic City but even
more so (due possibly to improper storm size), and the amplitudes are slight-
ly off. The amplitude of the computed peak surge is slightly smaller. The
sheared coordinate system recognizes coastal curvature and the large slant
between Long Island and the mainland and this enables the model to compute
larger surges than for an uncurved coast. Since the mouth may act as a
control, we don't know how well the resurgences on the ocean side represent
real ones.

6. SUMMARY AND CONCLUSIONS

The operational prediction of storm surges is almost exclusively concerned
with the rise of coastal waters generated by storms. The circulation
patterns on the shelf and in deep ocean waters, are of casual interest, if
at all. 1In fact, they are a means to an end; that is, an aid to calculate
coastal surge heights.

Model basins, with vertical walls representing the coast, need not be broken
in stairstep fashion for convenience in numerical computations. Stairstep
boundaries distort the natural coast precisely where computational results

are required. In our methods, the simulated coast curves naturally and con-
tinuously, and we distort instead the remaining boundaries where computational
results relative to the coast need not be accurate.
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Our model computes surge heights on the coast, as well as parallel flow.
Some numerical schemes, in contrast, perform no computations whatever on

the coast. Such schemes compute surge heights one grid space from the simu-
lated (stairstep) coast; they are useful to compute circulation patterns on
basin interiors but not necessarily surges on coast lines.

The sheared coordinate model

1. shifts (transforms) curved coasts onto a straight "baseline"
which touches the coast midway on the basin, figure 1,

2. transforms a plane surface with curved boundaries, truncated from
the ocean shelf, into a rectangle, and

3. transforms the equations of motion to accommodate the sheared
coordinate system.

Finite-difference forms are used on the transformed rectangle, and the trans-
formed coast now falls on a grid line and not between grid lines; i.e.,
stairstep boundaries are not required. Our model does not route water over—
land.

Coastal curvature affects coastal surge generation, and this is recognized
by the sheared system. Should land jut out into the sea (a cape) all other
things the same, the surges on the curved coast are smaller; whereas, if sea
juts out into the land (a cove), then the surges are larger. These actions
are more pronounced the shallower the basin.

The natural coast, at large distances from the basin center, will slant
significantly from a baseline. Compared to the unsheared SPLASH models, the
sheared model is more useful with non-landfall storms or for storm tracks
with a small angle of attack to the coast. In such cases the sheared system
accounts for a large segment of curved coast exposed to surge generation;
whereas, a linear geographical coastline in the unsheared models is an over-
simplification to simulate the naturally curved coastal segment.

The sheared model, on the other hand, is not necessarily an improvement if
the storm track is nearly perpendicular to the coast and strikes the coast
near basin center. In such cases only a small segment of coast is exposed
to surge generation and this segment can be approximated with a linear line
as used in the unsheared models. At short distances from the basin center
the natural coast does not slant significantly from the baseline, even if
there is some coastal curvature there. Of course, if there is significant
curvature of the coast at landfall point, then the sheared system is an
improvement. '

In the vicinity of basin center there is little improvement with the sheared
model, no matter what the storm track. This is so because the coast does not
slant significantly from the baseline; an exception of course would be strong
coastal curvature at basin center. The greatest improvement occurs when surges
abound on a large coastal segment and portions of the coast slant significantly
from a baseline. This means that one computational effort is usually
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sufficient when storms affect a lengthy coastline (less than 300 mi.) with
surges. In contrast, the unsheared models require several runs to handle
such a coast; the separate runs compute with succeeding basins and baselines
that effectively simulate only a small portion of the coast in the vicinity
of succeeding basin centers.

A disadvantage of our model is shorter time steps in numerical computations.
The time step varies inversely as the slant of the coast relative to the
baseline; a coarse stability analysis shows this to be true. For this
reason4 we do not permit any part of the coast in our model to slant by more
than T45° with respect to the baseline.

ACKNOWLEDGMENTS

I am deeply indebted to Albion Taylor for his many helpful suggestions and
the many friendly hours of discussion on storm surge hydraulics.

Work on this project was partially supported by the Federal Insurance Admini-
stration (FIA) of the U. S. Department of Housing and Urban Development (HUD),
under Interagency Agreement No. IAA-H-10-76, dated November 24, 1975, Project
Order No. 1.

REFERENCES

Barrientos, Celso S., and Jelesnianski, Chester P., 1973: Storm surge
shoaling corrections along the Gulf Coast, A Study for Federal Insurance
Administration, U. S. Dept. of Housing and Urban Development, Dec., 41 pp.

Birchfield, G. E. and Murty, T. S., 1974: A numerical model for wind-driven
circulation in Lakes Michigan and Huron. Mon. Wea. Rev., 102, Feb., 157-
165.

Harris, D. Lee, 1963: Characteristics of the hurricane storm surge, Technical
Paper No. 48, Weather Bureau, U. S. Department of Commerce, Washington,
D. C., 139 pp.

Jelesnianski, Chester P., 1967: Numerical computations of storm surges with
bottom stress, Mon. Wea. Rev., 95, Nov., 740-756.

» 1970: Bottom stress time-history in linearized equations of motion
for storm surges. Mon. Wea. Rev., 98, June, 462-478.

s 1972: SPLASH (Special Program to List Amplitudes of Surges from
Hurricanes): I. Landfall Storms. NOAA Technical Memorandum NWS TDL-46,
Techniques Development Laboratory, National Weather Service, NOAA, U. S.
Dept. of Commerce, Washington, D.C., April, 52 pp.

, and Taylor, Albion D., 1973: A preliminary view of storm surges before
and after storm modifications, NOAA Technical Memorandum ERL WMPO-3,
Weather Modification Program Office, ERL, NOAA, U. S. Dept. of Commerce,
Washington, D.C., May, 33 pp.

30



, 1974: SPLASH (Special Program to List Amplitudes of Surges from
Hurricanes): 1II. General Track and Variant Storm Conditions. NOAA
Technical Memorandum, NWS TDL-52, Techniques Development Laboratory,
National Weather Service, NOAA, U.S. Dept. of Commerce, Washington, D.C.,
Mar., 55 pp.

Platzman, George W., 1963: The dynamical prediction of wind tides on Lake
Erie, Meteorological Monographs, 4, Sept., 44 pp.

Wanstrath, J., Whitaker, R. W., Reid, R. 0., and Vastano, A., 1976: Storm
surge simulation in transformed coordinates, Texas A and M, to be pub-
lished.

31



APPENDIX A: STABILITY CRITERIA

This Appendix discusses a gross stability criteria for an abbreviated form
of the sheared equations of motion of the main text, given as

oU*/3dt

-gD(ay dh/dx* - a; 3h/dy*) + f£(a,V* + a U%)
(A1)

oV#*/dt

—gD(—al dh/9x* + dh/3y*) - f(alV* + U*)
o0h/3t = -3U*/3x* — dV*/oy*

- - . - 2
where a; = dn/dy = n_; ay = L% ny.
A coordinate transformation, x* = x - n(y), y* = y, shifts the shoreline
boundary onto x* = 0, see eq. (6) of the main report. For a study of sta-
bility, the surface and bottom stresses, and pressure gradient driving force

are not considered. For convenience the depth or bathymetry is taken as
constant; that is, the maximum depth of a basin.

y

The time and space derivatives are approximated by eq. (9-11b) in the main
text. Setting these equations into eq. (Al) gives

erl k=1 5 5 1.k is K

* = * - - % *

e n (%)) o ~olapDiy = ayDoy Thy | +ylay (VR |+ a) (U )m,n]
(42) khL
k-1 5 5. .k K k

* = * - O~ - % %
V) = o Hlma Dy + Dy*] hy,n ~la (v )m,n + (U )m,n]

" hm,n B[DX*(U )m,n + Dy*(v )m,n]

where @ = gD At/(24s), B=At/(2As),Y = f2At.

Consider now formal solutions for the transport and height field consisting
of individual terms

t
(A3)  (U*,vE,h) A (g, Ve, n) Ok

where (U*,V*,h)g ei(am’bn)AS,and a = 2r/L, b = 27/W are spatial wave numbers.

The formal solution permits

(U*,V*,h)(k+l)At= AZ(U*,V*,h)(k—l)At
(A4)
(U, v, 1) EBEL o (g, yx,py (K-1)AE
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Setting eq. (A4) into eq. (A2) gives, after some rearrangement

2 s 3 1 e * kel
A -1 XYal - XYaz i uA(az v a; v'h) (U )m,n
2 N [ 1 k_l
(A5) AY A4 =1 + AYa ig A(-a, v' +v'") (V%)
1 1 m,n
128V iABY" ! A2 -1 B
m,n
where v' = 4 sin aAs cos bAs, v'' = 4 sin bAs cos als.
In order for eq. (A5) to hold, then
2 .2 2
@e) (2-1) (2 -D% 2 Y +2%a 87 - 2a; vV ey V1) 1= 0

or

4 2 2

(A7) AT =227 |1 - Y7 + aB( v"2 - 2a7 v' v'' + as v'2) +1=20

2

for stability it is required that |X2|_i 1; then from eq. (A7)

@8) 2 +aB(v'' - 2a, VIV +ap'D) <1

4

or with af replaced by gd(at2) / (4as?), y= f2At,

(A9) At? < re
f2A52 + gQ_(v"z - 2al 9iytt + azv'z)
16
The term
A = v"2 -~ 2a_ vW'' + a v’
1 2

in eq. (A9) is a positive definite form. It can be written as
p=4l@- 2 ni) s¥i° (b) Bs % (2+2n+ né) sin?(a-b) s +
o4 2n§ sin (atb) As sin(a-b) As ].
But reaches its maximum when a = (+ w/2) /As and b = 0. In this case
2
A =16 (1L 4+n).
y
Hence,

(A10) At < As

2
\/fz As™ 4+ gD (1 + nz)
vy
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where the depth "D'" is maximum depth of a basin. At corresponds to the
extreme upper limit of stability, or alternately to the extreme lower limit

of instability, for very short waves in deep water. Factors not included

in the above analysis, such as the effects of boundary conditions or curvature
of the coast ( ny not identically zero), may then induce productions and amp-
lification of sucK short waves. To avoid such effects, a safety margin is
used; in practice, one should not set At equal to the right side of eq. (AlO).
Applying a safety factor of (2) 2 to the right side of eq. (Al0) usually
suffices. Since fAs is usually much less than %, we may drop the coriolis
term and establish a practical stability criterion

At <As/ \/2 gD (1+n§) .
If ny is to be limited to lnyljl, we may set

(A11) At = As/24/gD
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APPENDIX B: SHEARED COORDINATES

This Appendix describes several coordinate systems, not necessarily ortho-
gonal, to describe a meandering coastline, figure Bl. For illustrative
purposes, the four systems have been localized, wigh origin placed at a
coastal point of interest, and with a flow vector V issuing from the origin.
In all four systems the parallelogram law (addition of vectors) holds.

In figure Bl.a, a coastline at point "o" has a local slant ( w/2-6) from

a fixed axis or baseline (call it relative NORTH). The vector Vv = Ui + Vj,
where (i,j) are unit vectors, have components (U,V) on the NORTH and EAST,

or (x,y), orthogonal axes. The components are cumbersome to apply on a
meandering coast; e.g., if the vector V is parallel to the coast, then the
boundary condition of no normal component at the coast is U sin® - V cos® = 0.

Suppose now the NORTH and EAST axis are rotated ( w/2-8) to form a natural
coordinate system so that V = Unin + Vij., figure Bl.b. Then the boundary
condition Un = 0 is less cumbersome to apply at the coast. However, the axes
are not fixed and meander with the coast. To use this system it is necessary
to develop a general-curvilinear, conformal transformation to maintain ortho-
gonality of axes on a meandering coast. Such a transformation has been ex-
plored by Wanstrat et. al., (1975).

We want to directly recognize a meandering coast on a grid scheme, without
recourse to a general-conformal transformation of curvilinear coordinates.

To do so, a particularly simple system can be formed if the constraint of
orthogonal axes in the original plane is dispensed with. Even though non-
orthogonal forms are not popular and rarely used in ordinary applications,
they do have powerful properties and useful advantages for particular cases.
In this Appendix we give a brief summary on non-orthogonal frames for those
readers unfamiliar with it. However, instead of a general and concise
mathematical overview in "n' space with tensor notation, we restrict ourselves

to a plane (2 space) for useful application in storm surge prediction.

We must start with two reference directions, and for convenience we choose
the following:

1. a direction perpendicular to the straight baseline (call it the
x*-axis, and noting the that the x-axis and x*-axis are identical),

2. a direction parallel to the meandering coast (call it the y*-axis).
One can look on the axes as a pair of scissors, one blade (the coast) having
the freedom to open or close. It is possible to span this space in two
strongly different ways, each with two base vectors as follows:

1. (ix,js«) base vectors parallel to the two axes, figure Bl.c,

2. (i*,j*) base vectors perpendicular to the two axes, figure Bl.d.

35



*3x0daI STY3 UT Posn ST WO3ISAS JUBTIBA-BIIUOD SYL ~ *1SBOD SUTISpUBSW ©
103 sasqunu usuodwod pue ‘s3usuoduiod I03OSA “SIOIDOA 9SBq ‘SWOISAS 9IBUTPIOOD JUSISIITP INOJ--°Tg oIndtj

(P) (?) (q) (®)

IA+'Nn=A

£ 0 =p YA +4,0 =A o 4 U0 2 p
LNVIYVA-0D LNV(YVA -VHLINOD IVYNLYN NVIS31YVI

(3NI1T3SVE)
H1YON

1Sv0D 1Sv0>D

36



Each of the (ix,jx) base vectors is drawn with a half arrow, the barb to the
left; each of the (i%*,j*) base vectors is drawn with a half arrow, the barb
to the right. When both axes are perpendicular (orthogonal) in a cartesian
frame, the separate base vectors (i4 and i*, jx and j*) coalesce into an
arrow and there is no difference between the two systems. We call the
(i4,j%) system contra-variant, the (i*,j*) system co-variant. Unless the
axes are orthogonal, the components of one system are completely different
from components in the other.

Any vector V.can be broken into two component numbers, directed along base
vectors. The components are vectors, with magnitude proportional to the
magnitude of the base vector; it is important to realize that the base
vectors need not be of unit magnitude. Usually in a cartesian, orthogonal
frame, the absolute value of a vector component is simply called the
"component", it being understood the component vector is a component number
multiplied by a unit base vector. For a non-orthogonal frame in a plane, or
for a curvilinear orthogonal coordinate system in the plane, a component
vector is a component number multiplied by a base vector that may or may not
be of unit magnitude. In this case, a component number is the absolute
value of a component vector divided by the absolute value of a basis vector.

In the contra-variant form, the component vectors are written (U1, V%3,),
and the co-variant from (Ugi*,V,j*). The component numbers are not the same
in each frame, unless the axes are orthogonal. In the orthogonal frames
of figures Bl.a, Bl.b, the dot products for unit base vectors are
(B1) i) = d e =03 A s L B .5 W e 1.
In the non-orthogonal frames,
s L% LR
(B2) ig'j =1 °3x =0,

and we wish to form, in conformity with the second set of equations in (BL),

(B3) 1gpd¥% = J550% = da
This is possible if we set,

@s) 1%l = 13,] = 1/sine
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Then,

Uk = Veix = [Uk, + VA, ]'i% = U sin®

(B5)

-5
Vi = Vi, = [ d% + v, 3" 103, = v sino.
The component numbers (U*,V,) are no more than the natural "components"
(Un,Vt), scaled by sin®. Eq. (B5) is an important conclusion for a coastal
boundary condition. If there is no transport through the boundary, then
Un = U* = 0 is a boundary condition. Because of this important property,
contra-variant, component numbers are used in the prediction equations for
storm surges in this report. Conceivably, one could postulate no parallel
flow along a boundary; in this case V., = Vs, = 0 would be a boundary condition
and co-variant, component numbers wouEd be used.

To use the contra-variant, component numbers in our prediction equations, we
make use of a transformation.

(B6) x = x* + n(y), n(y) is the distance of the coast from the baseline,
directed along the x*-axis
y =y*
or,
(B7) dx = dx* + nydy*, ny = d n(y)/dy = cot ©
dy = dy*
or,
(B8) U= U% + n V¥
V = V#,

The transformation eq. (B6) preserves areas. To prove this, the Jacobian of
the transformation must be 1,

(89) 9x 3% 1 n
ox* 9y* y
J = = = 1.
3y ay | |0 1
ox* Jy*

We visualize a shifting of the axes in figure Bl.c, by means of the shift
function n(y), through eq. (B6), onto an image plane; the axes in the image
plane are orthogonal; see figure 2 of the main text.

The gradients have the following forms,

(B10) 9 = ox* 9 4 9y* 9 = )
ox 9x ox* ox ay* ax*
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5 _ ox* 9 4 _9y* _ 3 = _9 -mn _2
Ay dy dx* oy dy* oy* 7 Tayx

Hence, when eq. (B8) and (B10) are plugged into the original equations of
motion, we then transform the original equations of motion into contra-
variant, component numbers. This has been done in the main text.

To set the natural system in terms of the contra-variant, component numbers,

dxn = dx sin® - dy cos@ = dx - nzdy , sin® = 1
L 712 1+ nz
(B11) y
dx + d
dy, = dx cos6 + dy sin® = _’ Y , cos® = ny
1+ n2 1 = n2
y y

where (xn,yt) are on the natural system of figure Bl.b. Combining eq. (B7)
and (B11l) gives

dx*/v 1+ n
(B12) n

dx

dy . [n dx* + (1 4 n ) dy*] /v

or for flow

, 2

U = U*/4/1 +n

- y

(B13) 5 5
v, [nU*+(1+n)V*]/l+n.

If the flow vector V is parallel to the coast, then the boundary condition
U, = 0 implies U* = 0 from eq. (B13).
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APPENDIX C: SOME SPECIAL PROBLEMS WITH SURGE MODELS

There are many troublesome procedures to deal with before a researched

surge model can be developed for operational planning and prediction.
Application of these procedures has a lot to say about the computed surge
output. A model will stand or fall depending on how it is applied, no matter
the sophistication of the mathematics or physics of the model.

In this Appendix, the author gives some personal views on some special aspects
and problems with model calibration, input boundary conditions for bays and
estuaries, initialization of models, storm models and driving forces, short
gravity-wind waves, and wave set-up.

A. Comments on Model Calibration and Input Boundary Conditions

A set of partial differential equations, plus properly posed boundary
conditions on simulated basins, is called a system. A surge model considers
the activity or action in a system and can be summarized as

system
input — or —> output
black box

The system (black box) contains several dangling coefficients which need to
be pre-set or determined experimentally. The coefficients can be viewed as
tuning knobs on the black box; they connect surface and bottom stress, ad-
mittance at bay mouths, weir contractions, etc., to the equations of motion
of the systemn.

The input can be storm driving forces, input boundary values (surge or
astronomical tide at selected boundaries), etc. The output is the final
product of the model; it can be coastal surges, transport, etc. The model
runs from left to right, output from input. The inverse, input from output,
is rarely attempted because use of the model for this situtation may be
over-specified and improperly posed.

For any surge model with a given input, a pre-set position of the knobs on
the black box has a great deal to say about the output. The knobs (co-
efficient values) are a result of physical approximations and are a measure
of the ignorance of subtle dynamic phenomena in the equations of motion.

To test a model, historical input data are sent through the box and the knobs
are then adjusted until the output agrees in some sense with historical
measurements; this is called calibration and represents the major develop-
ment effort for future production runs. Calibration is sometimes performed
with data from a single storm and the coefficients set as fixed constants.

It does not automatically follow that such a calibration can be universally
applied. The knobs have many degrees of freedom, and data from a single
storm may not be sufficient for calibration with constant coefficients;
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this is equivalent to solving many unknowns with too few equations. Also,
data from a single storm can be of poor quality, too sparse, etc., to effect
a sound calibration. However, if the meteorology is reliable, and if the
coefficients are physically related from experimental evidence, then the
calibration is useful.

In a utilitarian sense, massive amounts of data, for a range of storm situa-
tions, are desirable to set the knobs for a general calibration. This of
course is not always possible and one must do with the data on hand. However,
before accepting a model for production runs, one must ascertain the worth
and range of the calibration according to type basin and storm condition.

Shelf models have fewer knobs to deal with on the black box than bay models;
also, the dynamics and boundary conditions are simpler. The knobs can be
easily tuned with massive amounts of data from many types of basins, with
many historical storms having a large range of conditions. The coefficients
can be universally set as best fit constants for a global or large area and
for all observed storm conditions; the surge output is not limited to a
local region (a single basin) for a small range of storm conditions. The
output, of course, does not fit the observed data perfectly, but does so in
some best fit sense. It is an article of faith that the model can then be
interpolated into regions where no data from historical storms are available.

In the SPLASH model which uses linearized equations of motion and a given
storm model, the coefficients to be calibrated are eddy viscosity, bottom
slip, and surface drag. The surge at the coast is weakly sensitive to the
eddy and slip coefficients, but directly proportional to the drag coefficient.
(If non-linear equations are used, the surge is much more sensitive to the
eddy and slip coefficients.) After pre-setting the eddy and slip coefficients
from experimental and empirical testing, the drag coefficient was then fitted
as a fixed constant to accomodate surge data observed in many basins with
many historical storms. Such a calibration does not give ideal results for

a particular storm situation; its usefullness depends on how well the computed
results of the model agree for a range of storms and basins, Jelesnianski
(1972), page 28.

For bay models the situation is not so direct because of complicated dynamics
and lack of data. It is doubtful if all the coefficients can be universally
set as fixed constants, for all bays, and for all storm conditions. They

may be set as local constants in separate bays for a limited range of storm
conditions. A calibration requires coefficients of the system to represent
dynamic ignorance in the equations of motion; this means simple models
dealing with intricate bay physics have coefficients that may not be constant.
A further difficulty is the severe limitation of data for calibration purposes
in separate bays. In this situation, most of the coefficients are preset

and only one or two are calibrated as local constants to fit the model's
output to the limited data.

There can be objections to this abbreviated technique if the calibration is
insufficiently general for a range of storm conditions, or if the calibration
is done haphazardly. With the same data set, there are many ways to pre-

set a portion of the system coefficients and each way may give a different
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calibration for the remaining coefficients. When limited data are used, a
misuse of the art of calibration can hide many sins of omission and commission.
In fact, it is almost always possible to calibrate any model to effect a good
verification with observed data from a single event; this by itself does not
describe the character of the model, its strengths and its weaknesses.

A bay model calibrated directly with limited data and most coefficients pre-
set as constants may be an oversimplification. Some models are calibrated
for astronomical tide only; the coefficients for surface drag, overtopping
of barrier islands, etc., are pre-set. Others use no calibration whatever
and all the coefficients are pre-set. Such models are generally developed
with a "make-it-work" attitude, concentrating solely on one particular area,
and the user must be aware of the limitations; of course, they give meaning-
ful insight for the mechanics of bay surges, but the output should be viewed
with some discretion for planning or forecasting purposes. If a production
run uses a radically different storm than used for calibration, then the out-
put must be viewed with extreme caution.

Shelf models are sometimes used to generate boundary conditions for bay
(estuary) models; usually, the models are uncoupled and feedback to the

shelf model is ignored. At times this system works very well, but dynamically
it can be a dangerous procedure.

To justify uncoupling of the models, it is assumed that events inside the
bay have little effect on events outside the bay. In many cases, the input
boundary data have greater influence in generating surges inside bays than
driving forces do; hence, we can at times be cavalier with driving forces
inside bays but not on the ocean shelf.

There are troublesome problems with broken coast entrances. For example,

a bay mouth is usually constricted, possibly with a sill, and this gives
complicated dynamics. The mouth can act at times as a control (height-
discharge relation) to sustain large height differences over the bay and
ocean sides. In this situation there can be large energy losses across the
control, and simple linear equations of motion as well as energy conserving
flow are then suspect. It is especially dangerous in these situations to
use ocean-side surges from uncoupled shelf models as boundary data for bay
sides.

After storm passage, figure 6, there are large height differences between
observed-bay-side and computed-ocean-side surges. This does not mean that

the computed-ocean-side surges are totally wrong; there is such a rapid change
in flow* with passage of an alongshore moving storm that a mouth may be

forced to act as a control and it is then dynamically possible to maintain
large height differences. It is a mistake, however, to directly use the
computed-ocean-side surges as boundary values on the bay side [ similarly, to
use the observed-bay-side surges as input boundary data for the shelf model,
see eq. (27)].

* For landfalling storms, the flow change with storm passage is not as
rapid.
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One can use control features such as "downdrafts/updrafts" for sub-critical
flow, or occurrence of critical flow at the mouth followed by a quasi-
stationary hydraulic jump at a short distance from the mouth; also, if a
coupling of the heights at bay and ocean sides is made to fit the dynamics,
such as conservation of momentum, then this approach may be viable. It may
be useful to use the computed-ocean-side surges (from an uncoupled shelf
model) with the occurring action of a control at the mouth; the control then
acts at times as a brake by backing-up water in the bay, and the computed-
ocean-side surge may be representative in a coarse way.

1f controls are used in a coupled bay/shelf model with one successful ver-
ification, it does not necessarily follow that the calibration will be suit-
able for all storm situations. By their nature controls can be sensitive to
the existing flow and calibration coefficients; controls such as weirs,
nozzles, overtopping of barriers, etc., can vary with the surge situation. If
the model coefficients change with the flow situation, then the calibration

is more reliable.

The practice of immediate applications for operational or planning purposes
after one simulation result is premature. Instead, many tests should first
be performed with a horde of simulated storm situations to protect against
future surprises. The model's grid size should be optimized to the point
where no siginficant changes occur with smaller grid sizes, and this should
hold for all anticipated storm situations. Sensitivities at mouths, inlets,
overtopping etc., should be ascertained before a model is considered op-
erational. Should model results be sensitive to small changes in shelf/bay
geometry, barrier heights, mouth depths, etc., or to meteorological para-
meters, then the model is suspect; in this situation subjectivity easily be-
comes rampant and physics just as easily ignored.

When judging surge models, the following may apply:

1. Do not judge the efficacy of a model merely by a comparison of
observed and computed surges from a single storm event. Such a
comparison is not necessarily relevant. Surge and storm models,
no matter how primitive, can almost always be calibrated with
pre-set coefficients to reflect a single storm event. However,
if the coefficients recognize a changing flow situation (based
on experimental evidence), then the calibration can be effective.

2. The efficacy of a surge model can be judged when comparing
observed and computed surges for two or more vastly different storms
affecting the same geographical area. It does not follow that
the same calibration can be extended to a vastly different geo-
graphical area.

3. Do judge the efficacy of a model that has been universally
calibrated with a multitude of basins and historical storm events.
The comparison of computed and observed surges should fall within
some statistical level of acceptability. Do not reject the model
out of hand if it generates poor quality surges for a particular
or rare storm event; the fault can lie with poorly measured
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meteorological parameters, a rare or unusual storm whose character
is not properly portrayed with the storm model, the generation

of special and rare dynamic effects that the model is not geared
to handle, etc.

4. Do not expect any model to be perfect.
B. Some Comments on Initialization of Models

Ideally, the storm surge is defined as the water height of a long gravity
wave generated by a storm, in the absence of astronomical tide and other
phenomena such as "wave set-up" from breaking wind waves. For practical
forecasting, the predicted astronomical tide is superimposed onto the
computed surge after computations are completed and without regard to any
non-linear interaction with the surge; wave set-up may be added or incorpo-
rated in the computations. It is possible to compute with astronomical tide,
but there is always a phasing problem with the storm surge because the pre-
dicted space/time track of the storm is usually significantly in error.

There are many ways to initialize surge models. One principal to remember
is, initialization procedures become more important the closer the storm is
initially positioned to shore. If the initial position of the storm is
close to shore, then the coastal surge may already be significant and must
be accounted for.

Sometimes, models are initialized with a statistical average of observed
surge heights, or else historical surge heights for each event, so-many-
hours before landfall; sometimes to finalize calibration, an ad-hoc initial
set-up is used to force agreement between computed surges and observed data;
sometimes models are initialized with a quiescent sea for a specified datum,
and after computations an initial set-up is added onto the computed surge;
sometimes the initial set-up is ignored completely.

Concepts on initial set-up vary and there are disagreements. Initial water
heights (other than astronomical tide) can be broken into at least two
categories, storm and non-storm induced. By non-storm induced is meant
coastal sea level anomalies in the absence of storm effects; that is, season-
al or long term residuals of the astronomical tide not a concomitant of
storms. For forecasting purposes the anomaly is determined several days
before storm arrival by comparing differences between observed and predicted
tide levels.

A local or anomalous change in sea level induced by vagaries in say, semi-
permanent meteorological systems on the sea, sea temperatures, general

oceanic flow, upwelling, etc., is the writer's concept for non-storm induced
set-up. The resulting local change in sea level (at a coastal point or length)
is then one type of "initial set-up" if it occurs before-during-after storm
passage; the "after'" portion is not really germane, but then one is not
certain if the anomaly exists for the important "during' portion.



Harris (1963) suggests several ways to measure sea level anomalies for
historical storms; for example, the difference between average mean sea level
for a month and an observed monthly mean of coastal water heights, and the
storm affecting the coast midway in the month. The effect of the surge on
the monthly mean usually is small.

By storm induced is meant coastal sea level rises generated by a storm as a
precursor or forerunner; they can be looked on as quasi-steady state when the
storm is distant from shore but yet affecting coastal areas; usually, one day
or less before landfall. Forerunners do not occur with all storms; in fact,
with many storms there are sea level falls before storm arrival. Positive
forerunners could be surge, wave set-up, or a combination of both. Wave
set-up is discussed in a later section.

YIIIZIIIIY) IIIIPIII INNNNNIRNNNT] COAST

A

—
DOWN THE COAST ——

% UP THE COAST
H

VARIOUS IDEALIZED TRACKS
AFFECTING COASTAL
POINT %' .

4 D

FEET
SURGE VERSUS TIME
SEA LEVEL 4 AT POINT ‘o BY
)

b TRACK ‘A

lTIME—-»

& SURGE VERSUS TIME
& AT POINT ‘P’ BY

d TRACK ‘B’

‘_’/\ SURGE VERSUS TIME
§ AT POINT ‘»* BY

TRACK'C’

SURGE VERSUS TIME
N\ AT POINT 'p' BY
TRACK ‘D’

Figure Cl.--Idealized time-history, surge profiles at point "p" on the
coast for four selected storm tracks. Astronomical tide and
sea level anomolies are not included.

Figure Cl shows several ways that initial set-up can occur during storm
activity. The idealized time-history surge profiles at a coastal point are
portrayed without astronomical tide, sea level anomaly, or wave set—up; if
there were an anomaly the entire profiles would merely move up or down the
ordinates, whereas the tide can be superposed (assuming no non-linear inter-—
actions), and wave set-up requires specialized treatment. A time-history,
surge profile has tail ends that feather in to sea level; they are a form of
set-up. These tail ends, before and after storm arrival, change slowly with
time and are in a quasi-steady state until the fury of the storm affects

the coast; they are dynamically induced by the storm and should not be added
onto the computed surge. The formation of quasi-steady state sea level on
the coast, before and after storm passage, varies as storm track relative to
the coast. The slower the storm speed, the longer the duration of the tail
ends on the time-history surge profile.

In an idealized sense, for simplicity of presentation, consider two types of
storm track, out of phase by 90° or 270°; these are perpendicular and parallel
to the coast. Both tracks have sub-forms that affect coastal surges dif-
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ferently at a coastal point, and in particular affect the tail ends of the
surge profiles.

For alongshore moving storms, the SPLASH model, and observationms, agrée as
follows:

1. For storms moving up the coast

a. high waters precede the storm
b. low waters follow the storm

2. For storms moving down the coast

a. low waters precede the storm
b. high waters follow the storm

The storm track need not be precisely parallel to the coast; it need only
have a component of track along the coast. Naturally, there are variations
from the ideal cases, including wave trains (Jelesnianski 1974); see figure
6 of this report for a fast moving storm. Some situations that can cause
variations are: S

A. A storm that changes its character along a track (size, pressure
drop, speed, etc.) so that a. or b. above, in 1. and 2., is more
dominant.

B. The track curves dramatically so that only one of a. and b. occurs.

C. The coast curves sharply so that only one of a. and b. occurs.

For landfall storms perpendicular to the coast, the SPLASH models, and ob-
servations, agree as follows:

1. For storms landfalling left of a coastal point, a gage at the point
will see

a. high waters before landfall
b. high waters after landfall

2. For storms landfalling right of a coastal point, a gage at the point
will see

a. low waters before landfall

b. low waters after landfall

c. an excursion immediately after landfall due to a splitting of
waves under the core of high waters; this profile is highly
idealized and rarely occurs in nature so precisely.

Storms produce a local, quasi-steady state, dynamic surge situation on the
coast prior to storm arrival. These are sometimes called "precursors" or
"forerunners", that is, the first or earliest tail end of profiles given in
figure Cl. With arrival of the storm, the state is then superseded or wiped
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out by a new, rapidly changing, dynamic situation. After storm passage,

a quasi-steady state, dynamic situation reforms. For an along-shore moving
storm the two quasi-steady states are in opposite sense; whereas, for a track
perpendicular to the coast, they are similar, see figure C1.

One can begin computations with an initially quiescent sea, and the storm

at a set distance from shore; if larger storm distances from shore (longer
computer runs) do not appreciably change the computed coastal surge during
the active time of the coastal surge, then initialization is optimized. The
SPLASH models operate with this technique for shelf surges. If the storm is
initialized too close to shore, there will be over and undershoots of surge
on the coast with time; if farther from the coast, the over and undershoots
are reduced; farther distances have little effect on the computed coastal
surge and this is wasteful of computer resources. In this situation, the
forerunners (if present, and not laced with wave set-up) are in general
quickly computed by the model since they are a temporary, quasi-steady-state
phenomena. Now, if the real sea has a pre-determined sea level anomaly, then
it should be added onto the computed coastal surge or else the datum of the
basin changed accordingly.

On a shelf, the coastal surge response from driving forces may be quick and
hence insensitive to initial storm placement if set sufficiently far from
shore. 1Inside a bay, however, the response may be slower and more sensitive
to initial storm position because it takes time for waters to move into or
out of a bay.

Sometimes bay models initialize with a quiescent bay and "initial set-up"

on the ocean side of the bay; sometimes "initial set-up" is used inside the
entire bay as well as the ocean side. One must be careful here to test for
sensitivities of surges inside the bay, especially if the storm is arbitrarily
initialized on the shelf and close to the bay. When calibrating a bay model,
one should not merely add on some biased positive set-up (unless it is an
anomaly); if such is required to aid calibration, the model may have short-
comings. When calibrating a model with a given historical storm it should

be ascertained that the final results are insensitive to storm induced initial
set-up and initial storm placement; e.g., empirical tests made with the storm
placed further away from the bay and initial set-up* changed accordingly.

In calibrated bay models, empirical tests should be made to determine optimum,
initial storm distance from shore. The optimum distance, however, may be

very distant from shore (much further than a shelf model) if the model starts
with a quiescent sea. TFor convenience, models sometimes are initialized with
a pre-arranged, storm-induced, initial height inside the bay and the storm
close to shore. The validity or accuracy of this approach should be tested.
This can be done by setting the initial storm position further from shore,
setting a concomitant smaller initial water height inside the bay, and then
comparing final computed surge heights for separate runs; if the final surge
heights do not change significantly, the model is optimized for initialization.

* The computed surge output from a shelf model, initialized with a quiescent
Sea, may not be appropriate as input boundary conditions for a bay model; e.g.,
the response of a bay has a different sensitivity to initialization than shelf

models.
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C. Some Comments on Storm Models and Driving Forces in Basins

Some storm surge models ignore the pressure gradient force of a storm and
substitute instead a static-inverted-barometer effect. This can be a mistake
because the dynamic effects from a moving pressure gradient force across the
sea surface can substantially exceed the static effect.

Some older surge models employ empirical or simple storm models to generate
driving forces. This can be dangerous if the storm model is designed to
generate forces acting on small scale items such as buildings. Storm models
should be designed for generation of long gravity or shallow water waves on
the continental shelf. These waves are sensitive to storm characteristics
which may be poorly specified in empirical or simple storm models.

Many storm models compute wind for a circularly-symmetric, stationary storm

on one ray from the storm center, and the winds are assumed parallel to the

concentric isobars or else angled off by some empirical amount; storm mo tion
effects then may or may not be incorporated.

Many storm models use an analytic pressure profile as input to a wind form—
ulation, but the direction of the wind is not accounted for. A common pressure
formulation is

(l) P - PO — e"R/r

AP

where AP = P__ - P , P is ambient pressure surrounding the storm, P, is the
storm's central pressugg, and R is a space parameter (usually the distance
from storm center to maximum winds). When fitting eq. (1) to real data there
are problems. Usually, the fitting is forced to agree about the core of the
storm for a given Po; in this case, P, is left to wander on its own without
any control, sometimes to unrealistic values.

There is also a fitting problem with R for wind formulations when using eq.
(1). To show this, consider cyclostrophic Wind:

(2) W5 = r dP

When eq. (1) is plugged into eq. (2), the maximum wind (WC) occurs at
r = R. Now consider the geostrophic wind: max

(32 W o= L dp

& pf dr
where f is the coriolis parameter. When eq. (1) is plugged into eq. (3), the
maximum wind (W eo) occurs at r = R/2. If a gradient wind formulation is
used, then the fiSRiman wind (W ) occurs between R/2 and R. Usually

for tropical storms, the maximﬁﬁa%igaxoccurs near the position of the maximum
cyclostrophic wind; the discrepancy of the computed storm size and R is
magnified as the storm increases in size and pressure drop becomes smaller.
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If an observed storm size is substituted for R in eq. (1), then the computed
position of the maximum gradient wind from the storm center will be smaller
than the input parameter R.

If a gradient wind formulation, through eq. (1), is used, then it must be
fitted to measured wind data at a given altitude for the effects of friction;
the gradient wind profile is usually fitted by scaling with a best fit
constant. Before such a wind model is accepted in a surge model, it should

be tested for sensitivities; by sensitivities the writer means testing the
output-computed-surge with the surge model for a range of inflow angles of

the wind, other fittings of the pressure profile to control P , to realistic
values, R scaled properly to reflect actual storm size, a range of scaled
constant for the effects of friction, and the effects of storm motion on

the wind. Even though the surge and storm models are calibrated for a one
storm situation with the computed surge comparing near perfect with observed
data, this in itself may not be sufficient. What is desirable is a universal
calibration of the surge and storm models for a range of real storm situations,
a range of real basins, and real surge data. Calibration in a universal sense
has been discussed previously.

To compute surges with a dynamic surge model, it is helpful if the storm
model is dynamically consistent on the sea surface. By dynamically consistent
the writer means equations of motion are satisfied so that pressure, wind and
inflow angle (wind direction across isobars) are in balance. With this
balance, certain errors in meteorology can be tolerated. In fact, the storm
model can be designed without maximum wind as input data; this is desirable
because observed winds have a noisy structure, are not generally observed on
the sea surface, the average sampling time is not clearly specified, the
maximum wind is hard to define, and small errors in wind produce large errors
in surges (for all scale sizes* the same, the surge varies as the wind
squared). On the other hand, central pressure, or pressure drop of the storm,
is desirable as input data because it is relatively easy to measure on the
sea surface, has a much less noisy structure than wind, and small errors
produce only small errors in storm surge (for all scale sizes* the same, the
surge varies almost linearly with pressure, Jelesnianski 1972).

As an example of the usefullness of a dynamically consistent storm model, con-
sider a fixed pressure drop. An error or change in storm size will change the
wind and hence the surge; however, the inflow angle will also change (in
opposite sense to the wind change) and hence the surge. These two separate
changes oppose each other in surge generation and the coastal surge heights,
when nmormalized with respect to storm size, are then quasi-conservative with
respect to changes in storm size. In any case, the peak surge is quasi-
conservative to errors in wind, when compensated by biased errors in inflow

* For constant storm size, an increase in wind implies an increase in pressure
drop. Also, the inflow angle changes and this is of some consequence in
surge generation.
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angle. Of course the errors do not oppose exactly in a one-to-one manner
and one or the other may dominate depending on scale size; with changing
storm size in a given basin, the dynamics of surge generation also changes.
An important thing to realize is that surges are not monotonic with respect
to any one storm parameter, such as maximum winds, because of the resulting
action from other parameters; unexpected reversals in surge amplitude can
occur with changes in storm parameters.

A dynamically consistent storm model on the sea surface does not mean surge
amplitudes are computed properly or accurately; it is difficult to design an
adequate storm model to represent nature. It means however, that the dynamics
of surge generation are better portrayed and critical situations and reversal
of surge amplitude can be better specified. Also, the sensitivities of surge
generation inherent with an empirical storm model are reduced.

Sometimes storm models are designed to decrease winds in bays, estuaries,

and near shore regions because of frictional effects from the neighboring
land. Physically the decrease may be true, but it does not automatically
follow that the generated surge will be smaller than those with uncorrected
ocean winds. Any local decrease in wind may be associated with larger inflow
angle, and the drag coefficient of the wind may also be larger. These feed-

back effects are, of course, masked in calibration procedures; for, if the
model winds are too strong or weak, then the calibration coetfficients of the

surge model will adjust accordingly. However, it is not wise to calibrate
for situations with, say, uncorrected winds and then for different situations
to apply the same calibration coefficients with corrected winds. The physics
for the storm model input data, and the equations of motion, should be con-
sistent in production runs to those of the calibration procedure.

If one computes surges with a dynamic surge model, the model storm should
have dynamic sophistication equivalent to the ocenographic surge model; an
exception are bays for which surge generation may be dominated by input
boundary conditions--but even so, the storm model used in a shelf-surge model
must properly generate input boundary conditions that are coupled with bay
and shelf models.

For operational use such as forecasting and planning, a poorly designed storm
model may prove an exercise in futility and it would be better then to explore
surge phenomena by statistical rather than dynamic techniques.

D. Some Comments on Short Gravity-Wind Waves and Wave Set—up

Short gravity wind waves are generated by a storm. The periods are measured
in seconds and the lengths in fraction of a kilometer. The storm creates
many wind waves; whereas, the long gravity surge wave is a single forced
wave which may or may not be attended with a few long gravity-wave resurgences
or free waves. Because of small differences in period and length of seperate
wind waves, they can superimpose at times to form an extraordinary high amp-
litude. Near the coast, they are akin to wave trains and ride atop the long
gravity-wave surge. Short gravity-wind waves generally break offshore with
only residual effects on the coastal amplitude of the storm surge; however,
there are occasions when the effects are substantial compared to the storm
surge. The long gravity-wave storm surge does not produce a long breaker,
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but under appropriate conditions will cascade energy into short waves over
an area small compared to its length; these will mix with the wind waves and
break.

When wind waves travel across a sloping beach toward shore, there is an in-
duced change of the still water surface called "wave set-up'", figure C2. The
induced wave set-up is roughly the mean water height relative to a hypothetical
still-water level in the absence of wind waves. The passing wave train has

an envelope of high waters or crests, an envelope of low waters or troughs,
and in between a wave set-up, surface envelope that does not agree with the
still water line in the absence of waves. It is difficult to isolate the
wave set-up and crest height from tide gage readings, or from high water marks
in buildings, except under controlled laboratory experiments. The wave set-
up is variable; it is negative seaward of breaking wave activity (a set-down
slope), positive landward of breaking wave activity (a set-up slope).

BREAKING POINT
OF WAVES

ENVELOPE OF WAVE
CRESTS

ENVELOPE OF WAVE
CRESTS

=—WAVE SET-UP

______ oo WIND WAVES —— L\ _sTieL water
LEVEL

ENVELOPE OF WAVE TROUGHS

Figure C2.--Idealized, one-dimensional schemata of wave envelopes and wave
set-up in the near shore region. The juncture of the three
solid lines on the coast is imprecise because of run-up and
backwash from the breaking waves. If the dune is overtopped
by the still water level (storm surge), then the surge waters
can penetrate miles inland on low terrain; the major effects
from the breaking waves are limited to the near shore region.

Wave set-up depends on the character of the wind wave, the breaking character,
the on-offshore coastal depth profile, and position along the depth profile
relative to the breaking wave position; hence, for a variety of storms and
storm tracks, wave set-up is difficult to ascertain in any local region. The
treatment of wave set-up in a surge model is almost an art based on the ex-
pertise of the modeler. It can be made implicit in the calibration pro-
cedure.

Occasionally, particularly large amplitude wind waves will ride atop a large
amplitude storm surge- in shelf areas with deep waters just off the coast.

In this situation, the waves will break close to shore or even inland because
of inland inundation from the storm surge and the deep offshore waters. If
buildings are located between the dune and shore (less than a few hundred ft.
from the coast) and in the regime between wave set-up and wave crest, figure
C2, than this is a particularly dangerous predicament during a storm surge.
In this situation the waters in the buildings may have, in addition to wave
Set-up, a capricious add-on accumulation of water that can be significantly
higher than the still-water-level storm surge; this is due to periodic run-

51



up inundation from the remnants of breaking waves entering upper level open-—
ings (doors, cracks, windows, etc.). Tide gages, however, do not have upper
level openings and the smoothed readings are relatively insensitive to the
periodic wave phenomena, except for wave set-up.

A building's interior acts as a stilling well, just as a tide gage, and pre-
sumably has equivalent wave set-up. The add-on accumulation of water in
buildings (if any) from upper level openings is one reason why high water
marks in the edifices are occasionally higher than measurements from a near-
by tide gage; similarly, why neighboring buildings with different upper level
openings record different high water marks. Also, some buildings are tightly
constructed and it is then more difficult for water to enter.

The SPLASH model was calibrated with data from tide gages and measured high
water marks. These contain wave set-up in a random fashion because the geo-
graphical location of the data points relative to the origin of breaking wave
location is unknown. In the data sample, no attempt was made to discriminate
wave set-up from the storm surge. No dynamic refinement was made for severe
wave set-up or isolated wave set-up to depend on the storm, shore geometry,
and inland distance from shore. As a result, the calibration loosely implies
wave set-up in a statistical sense and without regard to any dynamical con-
siderations. This means severe wave set—up is underforecast, weak wave set-—
up is overforecast. Similarly for the action of waters between the wave set-
up and crest, figure C2.

The surge forecaster should be aware that wave set-up and add-on accumulations
in buildings are generally limited to the landward nearshore region between
the dune and coast (several hundred ft) whereas if the still-water storm surg
level overtops the dune then waters from the surge can penetrate miles inland
on low and flat terrain. Breaking wave activity and wave set—up may be more
pronounced on the landward nearshore regions when deep waters are just off
the coast; some examples are the Pensacola-Panama City coast and Ft. Lauder-
dale-Vero Beach coast. If the waves break inland, the wave set—up may be
small but the direct action of the waves themselves can be very destructive.
If waters are shallow just off the coast, and if the on-offshore beach slope
is small, then breaking wave phenomena is at some distance from the coast
with only residual effects inland from the coast.
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