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Abstract

This report summarizes the February 15 - March 5, 2012 cruise on the NOAA Ship Ronald
H. Brown involving full-water-column CTD, lowered ADCP, and shipboard ADCP profiles
conducted within the Florida Straits and east of Abaco Island, Bahamas. At each station,
a package consisting of a Seabird Electronics Model 9/11+ CTD O2 system, an RDI 150
kHz Workhorse Lowered Acoustic Doppler Current Profiler, a RDI 300 kHz Workhorse Low-
ered Acoustic Doppler Current Profiler, and 24 10-liter Niskin bottles, was to be lowered
to the bottom. This report includes a description of the calibrations procedures and pro-
files of pressure, salinity (conductivity), temperature, and dissolved oxygen concentration.
Water samples were also collected at various depths and analyzed for salinity and oxygen
concentration to aid with CTD calibration. A total of 59 CTD-O2/LADCP stations were
occupied and PIES data was downloaded from 5 sites. Mooring operations include recovery
and redeployment of four tall moorings with a mixture of microcats and current meters, and
five short moorings including a short upward looking ADCP mooring, a 400 m mooring with
microcats and current meters, and three bottom landers instrumented with bottom pressure
recorders. As part of NOAA contribution to the Global Surface Drifter Program, 15 surface
velocity drifters equipped with sea-surface temperature sensors were deployed. A total of 48
XBTs were deployed in 24 simultaneous deployments (for Lockheed Martin/Sippican instru-
ment development testing). Nine stations in the Florida Straits along 27N were occupied
with 10-minute neuston net tows (in collaboration with John Lamkin, Southeast Fisheries
Science Center).
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1 Introduction

The Abaco time series began in August 1984 when NOAA extended its Straits of Florida
program to include measurements of western boundary current transports and water mass
properties east of Abaco, the Bahamas. Since 1986, 40 hydrographic sections have been
completed east of Abaco, most including direct velocity observations by Pegasus and/or
Lowered Acoustic Doppler Current Profiler (LADCP). Current meter arrays were also main-
tained from April 1986 to April 1997. A new international program funded by the United
Kingdom’s Rapid Climate Change Program and the United States National Science Founda-
tion began in March 2004 and is scheduled to end in 2014, however continuation funding to
extend the program beyond 2014 is likely. Included in this program is a new deployment of
current meter moorings along the Abaco section (the UK segment of the program continues
with moorings across to the east edge of the Atlantic basin). Independently, the National
Oceanic and Atmospheric Administration began a monitoring program in September 2004
utilizing inverted echo sounder moorings (some including bottom pressure measurements and
near-bottom current meters) along the Abaco section. All of these programs are collaborat-
ing with scientific analysis and logistics including ship time.

The repeated hydrographic and tracer sampling at Abaco has established a high-resolution
record of water mass properties in the Deep Western Boundary Current (DWBC) at 26°N,
which for temperature and salinity can be reasonably constructed back to about 1985
(Vaughan and Molinari, 1997; Molinari et al., 1998). Events such as the intense convec-
tion period in the Labrador Sea and renewal of classical Labrador Sea Water in the 1980’s
are clearly reflected in the cooling and freshening of the DWBC waters off Abaco, and the
arrival of a strong CFC pulse, approximately 10 years later (e.g. van Sebille et al., 2011).
This program is unique in that it is not just a single time series site, but instead is a section
from which transport can be directly calculated, of which very few are available in the ocean
that approach a decade or more in length.

To achieve the goals of NOAA’s strategic plan in terms of understanding the Atlantic
Ocean’s role in decadal and longer time scale climate variability, these continued time series
observations at Abaco are seen as serving three main purposes:

1. Monitoring of the DWBC for watermass and transport signatures related to changes in
the strengths and regions of high latitude water mass formation in the North Atlantic.
Monitoring watermass properties in the DWBC at key locations is one part of an effort
to track decadal changes in large-scale watermass properties.

2. Serving as a western boundary endpoint of a subtropical Meridional Overturning Cir-
culation (MOC) heat flux monitoring system designed to measure the interior dynamic
height difference across the Atlantic basin and the associated baroclinic heat transport.

3. Monitoring the intensity of the Antilles current as an index (together with the Florida

Current) of inter-annual variability in the strength of the subtropical gyre. Variations
in the strength of the subtropical gyre in relation to the North Atlantic Oscillation
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(NAO) has been proposed as an important mechanism in the atmosphere-ocean feed-
back within coupled models (e.g. Latif and Barnett, 1996).

A hydrographic survey consisting of a repeat LADCP/CTD /rosette section in the west-
ern North Atlantic was carried out in February-March 2012 (Figure 1). The R/V Ronald H.
Brown departed Charleston, SC on 15 February 2012. A total of 59 LADCP/CTD/Rosette
stations were occupied, and fifteen surface drifters were deployed. Water samples (up to
23 for each station), LADCP, CTD data were collected on each cast to within 10 m of the
bottom. Salinity and dissolved oxygen samples were analyzed from every bottle sampled
on the rosette. Mooring operations include recovery and redeployment of four tall moor-
ings with a mixture of microcats and current meters, and five short moorings including a
short upward looking ADCP mooring, a 400 m mooring with microcats and current meters,
and three bottom landers instrumented with bottom pressure recorders. As part of NOAA
contribution to the Global Surface Drifter Program, 15 surface velocity drifters equipped
with sea-surface temperature sensors were deployed. A total of 48 XBTs were deployed in 24
simultaneous deployments (Table 7). The cruise ended in Charleston, S.C. on March 5, 2012.

Table 1: Cruise participants of Ronald H. Brown Cruise AB1202, February 15-March 5, 2012.

Name Responsibility Affiliation Nationality
Molly O. Baringer Principal Investigator, NOAA/AOML USA
Chief Scientist
Andrew Stefanick Salinity analysis, NOAA/AOML USA
CTD operations
Kyle Seaton Oxygen analysis UM/CIMAS, USA
Pedro Pena Salinity analysis, NOAA/AOML USA
IES operations
James Hooper CTD processing UM/CIMAS USA
Adam Houk LADCP processing UM/RSMAS USA
David Grant CTD watch Teach at Sea USA
Wes Struble CTD watch Teach at Sea USA
Darren Rayner Moorings NOC/Southampton  United Kingdom
Gerard McCarthy Moorings NOC/Southampton Ireland
Aurelie Duchez Moorings, NOC/Southampton France
CTD watch
Shane Elipot Moorings, NOC/Liverpool France
CTD watch
Jason Scott Moorings NOC/Southampton United Kingdom
Christian Crowe Moorings NOC/Southampton United Kingdom
Colin Hutton Moorings NOC/Southampton  United Kingdom
Tom Roberts Moorings NOC/Southampton  United Kingdom
Robert McLachlan Moorings NOC/Southampton  United Kingdom
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Table 2: Western Boundary Time Series Cruise — CTD Cast Summary

Station Date Time (GMT) Latitude Longitude Depth
0 02/16/2012 20:58 30.022N 75.234W 1411
1 02/18/2012 06:50 26.499N 69.667TW 5504
2 02/18/2012 13:54 26.499N 70.085W 5591
3 02/19/2012 01:32 26.499N 70.498W 5590
4 02/19/2012 07:49 26.500N 70.998W 5586
5 02/19/2012 14:14 26.498N 71.501W 5521
6 02/19/2012 21:25 26.500N 71.999W 5380
7 02/20/2012 03:18 26.500N 72.381W 5282
8 02/20/2012 09:43 26.500N 72.766 W 5224
9 02/20/2012 15:27 26.498N 73.131W 5135
10 02/20/2012 21:12 26.499N 73.500W 5046
11 02/21/2012 03:22 26.500N 73.863W 4818
12 02/21/2012 08:39 26.500N 74.233W 4611
13 02/21/2012 13:25 26.500N 74.518W 4562
14 02/21/2012 18:11 26.500N 74.801W 4604
15 02/21/2012 23:20 26.500N 75.083W 4675
16 02/22/2012 03:45 26.500N 75.300W 4709
17 02/22/2012 08:09 26.500N 75.500W 4759
18 02/22/2012 13:05 26.500N 75.706 W 4766
19 02/22/2012 17:26 26.503N 75.901W 4823
20 02/22/2012 22:53 26.501N 76.087TW 4880
21 02/23/2012 03:09 26.500N 76.218W 4892
22 02/23/2012 07:40 26.501N 76.34TW 4922
23 02/23/2012 12:14 26.500N 76.47T9W 4924
24 02/23/2012 17:08 26.500N 76.565W 4910
25 02/23/2012 21:12 26.508N 76.654W 4609
26 02/24/2012 00:51 26.499N 76.741W 3894
27 02/24/2012 04:07 26.516N 76.831W 1134
28 02/24/2012 06:18 26.525N 76.892W 313
29 02/25/2012 01:10 26.500N 75.704W 4756
30 02/26/2012 01:25 26.501N 76.090W 3554
31 02/28/2012 03:58 26.503N 76.538W 4784
32 02/29/2012 02:37 26.500N 76.743W 3801
33 03/01/2012 01:01 26.499N 76.742W 3553
34 03/01/2012 15:16 26.434N 78.667TW 757
35 03/01/2012 17:22 26.336N 78.716W 700
36 03/01/2012 20:22 26.248N 78.762W 519
37 03/01/2012 21:39 26.166N 78.800W 450
38 03/01/2012 23:10 26.067N 78.850W 297
39 03/02/2012 04:38 26.057N 79.250W 376
40 03/02/2012 06:01 26.053N 79.313W 485
41 03/02/2012 07:41 26.053N 79.400W 588
42 03/02/2012 09:23 26.042N 79.473W 667
43 03/02/2012 11:12 26.049N 79.560W 760
44 03/02/2012 13:10 26.049N 79.662W 700
45 03/02/2012 15:04 26.055N 79.763W 597
46 03/02/2012 16:48 26.046N 79.850W 311
47 03/02/2012 18:19 26.051N 79.932W 260
48 03/02/2012 19:52 26.048N 80.000W 244
49 03/02/2012 20:57 26.050N 80.063W 140
50 03/03/2012 04:07 26.996N 79.935W 141
51 03/03/2012 06:00 26.996N 79.867TW 257
52 03/03/2012 08:15 26.999N 79.782W 387
53 03/03/2012 10:51 26.989N 79.684W 541
54 03/03/2012 13:06 26.996N 79.617TW 638
55 03/03/2012 15:41 26.989N 79.500W 753
56 03/03/2012 17:59 26.994N 79.381W 665
57 03/03/2012 19:46 26.994N 79.28TW 613
58 03/03/2012 21:18 27.000N 79.201W 478
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February 2012 WBTS Cruise Track
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Figure 1: CTD station locations. The landmasses are shaded and the bathymetry is contoured at
1000 m intervals. The red dots are the CTD stations, the cyan squares are the mooring
operations, and the yellow triangles are the IES operations.
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2 Cruise Narrative

The general plan of operations for the cruise was to proceed from Charleston to 69.5°W,
performing one test CTD cast in route. We then began the CTD section along 26.5°N work-
ing from east to west. Upon completion of the CTD section, six days of mooring work was
completed, generally working from east to west towards Abaco Island. During the mooring
operations there were a total of four CTD profiles collected at night to facilitate calibration
of the sensors on the moorings. Acoustic communication with the NOAA PIES and CPIES
moorings were also completed. Upon completion of the mooring work, the ship cleared Ba-
hamian customs in Port Lucia and completed three short CTD sections in the Northwest
Providence Channel, 26°N and 27°N in the Straits of Florida. A neuston net was towed
along nine stations along 27°N. DIC samples were collected at four stations and 15 surface
drifting buoys were deployed.

Departure from Charleston had been scheduled for February 15 at 10:00 am. Shortly
after departure from the Charleston River, the ship conducted mandatory safety drills in-
cluding doing survival suits, etc. The ship executed a complete man over board with a
floating "dummy” with precision. After 2 hours of debriefing, the ship got underway for our
first station.

We preceded southward crossing the Gulf Stream heading to the far east end of the Abaco
line (near 26.5°N and 69.5°W). After 24 hours in route, we stopped and conducted a test
cast in 5000 meters of water. All bottles were fired at 1400m. We proceeded to the eastern
end of the 26.5°N line, transited to the west and began CTD operations proceeding from
east to west along the 26.5°N line.

The mooring work included recovery and redeployment of a total of six moorings and
three landers. The mooring work went very smoothly in general, however on the morning
of February 26, upon the commencement of the recovery of mooring WBH2 a line became
entangled in the starboard thruster. The thruster was immediately disengaged and no per-
manent damage was sustained. Approximately 21 hours were devoted to the transit to calm
waters where diving inspections could be completed safely. The whole incident was handled
extremely professionally and calmly, with utmost consideration given to the best way to
complete the goals of the project.

Specific summaries of the various data collected include:

1. The autosal used was ”Joysey”, which functioned normally. Standard water vial 151
was used except for station 10, which used batch number 149.

2. The Oxygen titrations were done using the AOML amperometric titration system. No
problems were reported.

3. LADCP measurements were taken using a BB 150 kH ADCP down-looking (on loan
from U. Hawaii, E. Firing and J. Hummond). The CTD frame was equipped with an
upward looking 300 kHz ADCP (s/n 13473). On station 16, the upward ADCP failed

NOAA Data Report, OAR-AOML — 43 5



(bad beam) and was replaced by another 300 kHz ADCP (s/n 15329). This ADCP was
found to be flooded on station 19 and was replaced with the longer 300 kHz ADCP
(13279).

4. A seapoint fluorometer was interfaced on the CTD, but not processed. Raw fluorometry
voltages were passed through the processing to 1 db averages.

5. Nine stations in the Florida Straits along 27°N were occupied with 10-minute neuston
net tows, which were completed without incidence.

6. A total of 15 surface drifters were deployed throughout the cruise.

7. A total of 48 XBTs were deployed in 24 simultaneous deployments. One XBT data
file was lost for an unknown reason.

3 Inverted Echo-Sounder Operations

An inverted echo sounder consists mainly of a transducer, which can produce sound waves
and hear sound waves, and a precise clock. The inverted echo sounders used here at AOML
send out a series of 24 - 10kHz or 12kHz sound pulses each hour. These pulses reflect when
they hit the ocean surface, and 1-8 seconds later the IES records the precise amount of time
between when each pulse is sent out and when the pulse is heard returning to the IES. The
median value of the 24 pulses is then taken as the travel time for that hour (multiple pulses
are needed to average out the changes in travel time due to waves at the ocean surface and
other sources of noise). Because the speed of sound in seawater is dependent on temperature,
as the water temperatures above the IES change over time the travel time measurement of
the TES changes. The travel time measurement of the IES is combined with other ocean
measurements of temperature and salinity in order to estimate full-water-column profiles of
temperature, salinity, and density. The result is a time series of profiles of these quantities
at each IES site. No major deployments or recoveries were done on this cruise. Telemetry at
the five main mooring sites was conducted (see Table 3). A summary of each of the telemetry
session is provided below.

3.1 Site A: PIES 239

24 Feb 2012 03:19:01

We arrived at the site and put the transducers in the water after starting the CTD cast.
The telemetry command was sent and a two ping confirmation followed. It was noticed that
the data were being sporadically received on both deck units using both the URI matlab
script and the java telemetry program. There was 12 kHz noise but the other markers were
for the most part missing. This was probably due to it being a shallow site and the large
wire angle on the transducer. It was decided that there would not be enough time to finish
the telemetry during the CTD cast and that we would have to attempt it during another visit.
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28 Feb 2012 07:48:55

We returned to site A under better conditions. There seemed to be less of a current therefore
the transducer cable had a very small angle. It was also noticed that the transducer cage was
connected to its cable via a shackle on one of its sides, causing the transducer to naturally
point at an angle. Adding a second shackle to evenly distribute its mass solved this problem.
The download went well and there was an almost complete record using the UDB-9000 and
the new program.

The UDB-9000 seemed to perform better than the DS-7000. On that site I set the re-
ceived threshold to 15 for the UDB-9000 and each channel’s sensitivity could be individually
set. The preferred setting for 12 kHz is sensitivity between -0.5 and -0.1 when there is a lot
of noise on that channel. For the DS-7000 we started with a gain of 2, but ended up using
a gain of 4 on the first download. On the second download a gain of 2 worked well.

3.2 Site A2: CPIES 248

24 Feb 2012 00:30

After starting the CTD cast we placed the transducers in the water and started the telemetry
session. The telemetry command was sent and a two ping response was received. Because
of time constraints the telemetry session was left unattended for some time in order carry
out a portion of the Sippican XBT experiment. The deck units seemed to be performing
nicely and all the data were being received but the download was cut short because of time
constraints.

29 Feb 2012 02:42:45

The second download attempt was successfully done using both of the deck units and the
new program. This was a particularly good download because the download went well be-
yond what was needed so there is plenty of overlap. This allowed for more ”tweaking” of
the UDB-9000 settings and the java telemetry program. The new program was modified
to timeout if an expected marker was not received getting it ready for the next marker.
This was tested by manually setting the sensitivity to -1 for each channel. This was an
important improvement because it allowed for the conversion of more data in the same day
that would otherwise be ignored. The raw data is always being recorded, so no data is ever
lost completely, but would require post processing. The download was paused and it was
decided that we were going to return the following day to download some more from this site.

1 Mar 2012 00:16:24

The telemetry session was started and everything seemed to be working correctly when at
01:00 the instrument stopped sending data. The telemetry session was later restarted with
the telemetry command and the CPIES began to send garbage data in 'Burst’ telemetry
mode. After about 15 minutes the telemetry ended. The telemetry command was sent again
and the CPIES began to send data in 'Burst’ telemetry mode once again, only this time the
values made sense.
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The preferred instrument settings for the DS-7000 was a gain of 5 (as recommended).
For the UDB-9000 the receive threshold was set to 20. The default setting of 0 sensitivity
for all channels was adequate for this station. The data was downloaded until at yearday 60.

3.3 Site B: CPIES 133

The Site B instrument is now only a PIES (i.e. we down-converted it by removing the cur-
rent meter). However, the firmware still thinks it is a current meter, hence the data must
still be downloaded using CrcvPDT (not PrevPDT | which is typically used for a regular
PIES). During site B downloads a new format was tested for the java script that writes the
processed on the fly data into the format the matlab program produces. Namely this looks
like:

359 8.7017 5709850 127.791 204.542 2012 2 23 11 20 2
51 0.4009 1477 0.020 0.173 2012 2 23 11 20 34

51 0.4018 1461 0.024 0.253 2012 223 11 21 4

where the program sends one row for the MSB at the start of a block, which is then followed
by an LSB row for that same day. The third and following rows are LSB rows for each
successive day until you reach the end of a block. For the columns, they are as follows (for

a CPIES):

—_

. Yearday

2. Travel time

3. Pressure

4. Speed

5. Direction

6. Year record was received by deck unit/computer
7. Month record was received by deck unit/computer
8. Day record was received by deck unit/computer

9. Hour record was received by deck unit/computer item Minute record was received by
deck unit/computer

10. Second record was received by deck unit/computer
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23 Feb 2012 11:12:20 GMT
Threshold was set to 15. Sensitivity set to 0.5 on 11.5 kHz. Ship began needle gunning. The
telemetry was noisy. The DS-7000 was set to a gain of 6 (as recommended).

26 Feb 2012 05:54:14 GM'T
Threshold was set to 22. Sensitivity at 10 kHz was set to -0.03. Deck box had to be power
cycled to work on all channels. Final downloaded data looked good.

3.4 Site C

Seadata PIES 58

PIES 155

No response from the pies and could not confirm that the seadata was there. We could not
confirm that either instrument was there. Deck box EG&G 8011B deck box failed perma-
nently on this cruise for the last time (the only deck box that has ever successfully confirm
the Seadata was there). We set both deck boxes to record for several hours to see if we could
hear either sample. There was nothing. We believe both instruments have been lost. We
sent release commands for PIES 155 and there was no response.

3.5 Site D
PIES 134 — can hear, but it cannot hear us
PIES 159

22 Feb 2012 11:35:11 GMT
Used DS7000 with MAC and Matlab script side by side and the UDP-9000 set to listen.

25 Feb 2012 01:56:49 GMT
Primary download on the MAC using the DS-7000. Used Linux, Mac and Windows 7 with
no Matlab script.

25 Feb 2012 04:42:36 GMT

Downloaded with Mac and Linux only. Telemeter of PIES 159 was completely successful
(downloaded to yearday 116). The PIES 134 was not responsive but I heard it sampling.
I used the Windows 7 computer running the new app and I tapped the DS-7000 with my
Linux computer while the Matlab script was running. You can see that the converted data
on match closely between the two listening to the same deck unit. The UDB is slightly
different which is understandable because it’s a different deck unit and the clock is more
precise. I also noted that on occasion (maybe once every 2 blocks) the year day would be an
odd negative value on my app but just fine on the script. I don’t know what it is yet but I
don’t think it’s a big deal. I think it’s some filtering I’'m doing. The nice thing I noticed was
that the values were the same from two different deck units which means you can potentially
use that to align the two downloads and fill in gaps.
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3.6 Site E: PIES 122

19 Feb 2012 19:54:48 GMT

The telemetry was good with the Matlab script but horrible with the UDP-9000. Did not
know how to tweak the box on this one. The UDB-9000 was tweaked and finally towards
the end of the session, the data started to be reliably received. One of the tweaks involved
switching the UDB-9000 transducer with an older DS-7000 transducer. We believe this
worked much better because the transducer points straights down. I recommend that we buy
another one of those transducers for the UDB-9000. The telemetry app seems to be working
well It makes the telemetry session much easier (particularly when sending commands).

3.7 Summary

Overall the UDB-9000 can do the job. It needs work and a bit buggy. We probably do
not need to purchase a new transducer, as weights seemed to correct the problem. There
is still a possible issue with the transmit power (you can hear that it is not as powerful
as the DS-7000), but this may have been a consequence of the transducer weight issue. A
comparison of the Matlab downloaded file from site A2 is shown in Figure 2. The median
difference between the two complete systems (program plus deck box) for site A2 was 0.0004
S.
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Figure 2: Download of Site A2 from the UDP900 using the real-time java processing script and
recorder (red dashed line) compared to the DS700 using the standard Matlab code de-
veloped by URI (blue line) and BELOW the difference between these two travel times.
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Table 3: Inverted echo-sounder locations and operations.
IES Site  Type Latitude Longitude Operations

A PIES 026°31.0' N 076°49.90' W Telemetry
A2 CPIES 026°30.0' N 076°44.60' W Telemetry
B PIES 026°29.5' N 076°28.20' W  Telemetry
C PIES 026°30.1’ N 076°05.30' W No activities
D PIES 026°30.0' N 075°42.20' W Telemetry
E PIES 026°30.0' N 071°59.95 W  Telemetry

4 Mooring Operations

In total six moorings and three landers were recovered and redeployed for the UK Rapid-
MOC project. Positions of the mooring recoveries and deployments are given in Table 4 and
Table 5 below (NB: all dates are in UK format dd/mm/yyyy, and all times are in GMT).

Instrumentation recovered from the moorings consisted of 55 SeaBird SBE37 MicroCAT
CTD’s, five SeaBird SBE53 Bottom Pressure Recorders (BPR’s), 1 SeaBird SBE26 BPR, five
Aanderaa RCM11 current meters, 22 Nortek Aquadopp current meters and one RDI 75kHz
Longranger ADCP. Of these instruments all had complete records except for one which was
recovered flooded so yielded no data. The replacement moorings consisted of the same with
the exception of three less RCM11’s, and three more Norteks.

One mooring recovery was complicated by the upper marker float becoming tangled round
the starboard propeller. All the mooring was recovered but the tangle had to be investigated
first. This is why the time taken to recover WBH2 is so long in the table below.

The moorings are due for recovery in Spring 2013 along with the landers deployed the
previous year, and the landers deployed on this cruise will be due for recovery in Spring 2014.

Mooring operations were conducted from the stern with a double barrel winch and dual
reeler system used in conjunction with a floating block raised and lowered from the A-frame
through use of the ship’s air-tuggers. The ship’s crane was used for the lighter anchor de-
ployments, and the trawl winch and A-frame used for the heavier anchors.

Six of the moorings were triangulated after deployment to accurately determine their
seabed position. This is important for those moorings that are likely to have fallen back a
significant distance along the deployment track or at the sites that have a small landing area
(WB2 and WBI especially).

Prior to deployment cross calibrations of the MicroCAT CTD’s were completed by low-
ering the instruments on the shipboard CTD frame with five-minute bottle stops to allow
the slower responding MicroCAT sensors time to stabilize relative to the shipboard CTD.
Five casts with up to twelve instruments were combined with the WBTS section, and a
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further four casts with up to 17 instruments completed during the nights of the mooring op-
erations. One additional CTD cast in the Florida Straits section was used to post-calibrate
one shallowly-deployed MicroCAT CTD that did not log data correctly on the first cast it
was on. Acoustic releases were also lowered on the frame during the CTD test cast, the 1%
CTD station and one of the overnight casts during the mooring work. These were to test
the releases at depth prior to their use on moorings.

Table 4: Summary of mooring deployment operations.

Mooring Latitude (N) Longitude (W) Release Date Release Time Duration
WB6 26° 29.58 70° 31.53’ 18/02/2012 19:25 2:00
WB4 26° 29.21° 75° 48.56° 25/02/2012 15:41 9:33
WB4L6 26° 21.78 75° 42.42 25/02/2012 12:05 1:37
WBH2 26° 28.61° 76° 37.32 26/02/2012 11:19 5:54
WB2 26° 30.92° 76° 44.57 27/02/2012 19:42 4:00
WB2L6 26° 30.52 76° 44.70° 28/02/2012 12:00 1:57
WB1 26° 30.19° 76° 48.91° 29/02/2012 12:06 2:26
WBADCP  26° 31.49’ 76° 52.08 28/02/2012 20:49 0:34
WBAL1 26° 31.50° 76° 52.56 29/02/2012 19:39 1:25
Table 5: Summary of mooring recovery operations.
Anchor Drop Anchor Seabed Corrected depth
Mooring Lat (N) Lon (W) Lat (N) Lon (W)  at anchor launch (m) Date Time Duration
WB6 26° 29.69°  70° 31.33’ 5490.4 17/02/2012  23:18 0:38
WBA4L8 26° 28.94°  75° 42.04’ 26° 28.93’  75° 42.24’ 23/02/2012  19:30 0:06
WB4 26° 28.70" 75° 41.98’  26° 28.69° 75° 42.16’ 4687 23/02/2012  18:29 0:06
WBH2 26° 28.90" 76° 37.44°  26° 28.93’ 76° 37.65’ 4729 25/02/2012  21:57 2:27
WB2 26° 30.72"  76° 43.98°  26° 30.81" 76° 44.27 3849 27/02/2012  19:21 4:08
WB2LS8 26° 30.59° 76° 44.78  26° 30.59° 76° 44.78 3884 27/02/2012  23:00 0:03
WB1 26° 29.977 T6° 44.82°  26° 30.07" 76° 48.89’ 1387 28/02/2012  18:52 2:19
WBADCP  26° 31.49° 76° 52.08’ 608 27/02/2012  22:05 0:12
WBAL3 26° 31.34 76° 52.55° 496 28/02/2012  21:31 0:03
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5 Surface Drifters

Two style surface drifters were deployed from the fan tail on the ship during transits. Posi-

tions of the deployments of the surface drifters are given in Table 6.

Table 6: Summary of drifter deployments.

Number  Date  Time Latitude (N) Longitude (W) Type
101912 2/17/16 0:41  31° 59.800° 78° 32.259 Clearwater
101975 2/17/16 18:49 30° 01.763’ 75° 14.703’ Clearwater
101970  2/18/16 16:12 27° 59.207 71° 59.388’ Clearwater
101831  2/19/16 9:57  26° 29.960’ 69° 40.568’ Clearwater
101991  2/20/16 3:39  26° 29.9’ 70° 30.2’ Clearwater
107576 2/20/16 23:30 26° 29.990 72° 00.268’ DBI
101987  2/20/16 23:28 26° 29.981"  71° 59.997’ Clearwater
101826  2/22/16 6:00  26° 29.362"  74° 00.470° Clearwater
101548  2/22/16 6:01  26° 29.361’ 74° 00.516’ Clearwater
107575 2/23/16 20:13 26° 30.212°  75° 55.298’ DBI
107574 2/23/16 20:14 26° 30.212’ 75° 55.298’ DBI
101989  3/03/16 11:57 26° 02.601 79° 33.57 Clearwater
101569  3/03/16 11:56 26° 02.733’ 79° 33.5 Clearwater
107577 3/04/16 T:45  26° 59.145 79° 48.021° DBI
107573 3/04/16 T7:45  26° 59.145"  79° 48.021 DBI
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6 FExpendable Bathythermographs

Two types of Deep Blue probes produced by Lockheed Martin Sippican (LMS) were de-
ployed on this cruise. The probe types are: Standard Deep Blue probes P/N 300681-1,
and Experimental Deep Blue probes marked with "E”. Two cases (12 probes per case) of
each probe type were deployed in pairs. The probe deployments are in support of an LMS
effort to develop improvements to the standard XBT probes for the climate study community.

The specific objectives of deploying these Deep Blue probes are to evaluate the improve-
ments in temperature accuracy that can be achieved with the following two changes to the
standard XBT probe:

1. Replacement of standard thermistor with specially screened thermistors.
— Probes marked as experimental with "E.”

2. Modification of data processing to compensate for BT wire resistance imbalance.
— Applied to both standard and experimental probes.

The general plan for the deployments was to deploy during and immediately after a CTD
cast with two probes simultaneously. Two systems were set up for the deployments. The
deployment locations, times and contemporaneous CTD station are shown in Table 7.
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7 Standards and Pre-Cruise Calibrations

The CTD/O2 system is a real-time data acquisition system with the data from a Sea-Bird
Electronics, Inc. (SBE) 9plus underwater unit transmitted via a conducting cable to a SBE
11plus deck unit. The serial data from the underwater unit is sent to the deck unit in RS-232
NRZ format. The deck unit decodes the serial data and sends it to a personal computer for
display and storage in a disk file using Sea-Bird Seasave software (version 7.21h).

The SBE 911plus system transmits data from primary and auxiliary sensors in the form
of binary numbers equivalent to the frequency or voltage outputs from those sensors. These
are referred to as the raw data. The SBE software performs the calculations required to
convert raw data to engineering units.

The SBE 911plus system is electrically and mechanically compatible with the standard,
unmodified carousel water sampler, also made by Sea-Bird Electronics, Inc. A modem and
carousel interface allows the 911plus system to control the operations of the carousel directly
without interrupting the flow of data from the CTD.

The SBE 911plus underwater unit is configured with dual standard modular temperature
(SBE 3 plus) and conductivity (SBE 4) sensors, which are mounted near the lower end cap.
The conductivity cell entrance is co-planar with the tip of the temperature sensor probe. The
pressure sensor is mounted inside the underwater unit main housing. A centrifugal pump
module flushes water through sensor tubing at a constant rate independent of the CTD’s
motion to improve dynamic performance. Dual dissolved oxygen sensors (SBE 43) are added
to the pumped sensor configuration following the temperature-conductivity (TC) pair. A
fluorometer is also attached for measuring biological fluorescence.
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7.1 Conductivity

The flow-through conductivity-sensing element is a glass tube (cell) with three platinum
electrodes (Seabird model SBE 4). The resistance measured between the center electrode
and the end electrode pair is determined by the cell geometry and the specific conductance
of the fluid within the cell, and controls the output frequency of a Wein Bridge circuit. The
sensor has a frequency output of approximately 3 to 12 kHz corresponding to conductivity
from 0 to 7 Siemens/meter (0 to 70 mmho/cm). The SBE 4 has a typical accuracy /stability
of £0.0003 S‘m~!/month and resolution of 0.00004 S‘m~! at 24 scans per second.

Two conductivity sensors were used during ABACO-12/02, serial numbers (s/n) 3860
and 3657. Pre-cruise sensor calibrations were performed at Sea-Bird Electronics, Inc. in
Bellevue, Washington during January 2012. The coefficients shown in Table 9 were entered
into Seasave using the configuration file.

Conductivity calibration certificates show an equation containing the appropriate pressure-
dependent correction term to account for the effect of hydrostatic loading (pressure) on the
conductivity cell:

(g+hxf2+ixf+jx[
[10 * (]' +ctcor *t+cpcor *p)]

C (Siemens/meter) =

where g, h, i, j, ¢,,., and ¢,,,, are the calibrations coefficients shown above, f is the in-
strument frequency (kHz), ¢ is the water temperature (degrees Celsius), and p is the water
pressure (dbar). SEASAVE®) automatically implements this equation.

Table 9: Calibration coefficients for the conductivity sensors.

s/n 3860 s/n 3657

January 25, 2011 January 25, 2011
g =-1.03230471e+01 g = -9.89956684e+00
h = 1.48404691e+00 h = 1.40182457e+00
i =-9.89295485¢e-04 i =-2.95123653e-03
j = 1.55589301e-04 j = 2.93400396e-04
CPcor = -9.5700e-08 CPcor = -9.5700e-08
CTcor = 3.2500e-06  CTcor = 3.2500e-06

7.2 Temperature

The temperature-sensing element is a glass-coated thermistor bead, pressure protected by
a stainless steel tube. The sensor output frequency ranges from 5-13 kHz corresponding to
temperature from -5 to 35°C. The output frequency is inversely proportional to the square
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root of the thermistor resistance, which controls the output of a patented Wien Bridge
circuit. The thermistor resistance is exponentially related to temperature. The SBE 3 ther-
mometer has a typical accuracy/stability of +0.004°C per year and resolution of 0.0003°C
at 24 samples per second. The SBE 3 thermometer has a fast response time of 0.070 seconds.

Three temperature sensors (SBE 3plus) were used during ABACO-12/02, serial num-
bers (s/n) 5233, 5239 and 5237. Pre-cruise sensor calibrations were performed at Sea-Bird
Electronics, Inc. in Bellevue, Washington during April and May 2012. The following coeffi-
cients were entered into SEASAVE®) using the configuration file (Table 10). SEASAVE®)
automatically implements the equation below and converts between ITS-90 and IPTS-68
temperature scales as desired. The Temperature (ITS-90) is computed from g, h, i, j and
fo and f is the instrument frequency (kHz) coefficients as follows:

Table 10: Calibration coefficients for the temperature sensors.

s/n 5233 s/n 5239 s/n 5237
May 07, 2011 June 04, 2011 May 18, 2011
g = 4.4027216e-03 g = 4.40414724e-03 g = 4.41018725e-03
h = 6.80353611e-04 h = 6.78966995e-04 h = 6.79899461e-04
i = 2.84869886e-05 i = 2.83057357e-05 1 = 2.85192728e-05
j = 2.13822364e-06 j = 2.18830787e-06 j = 2.20370495e-06
fo = 1000.0 fo = 1000.0 fo = 1000.0

7.3 Pressure

The Paroscientific series 4000 Digiquartz high pressure transducer uses a quartz crystal res-
onator whose frequency of oscillation varies with pressure induced stress measuring changes
in pressure as small as 0.01 parts per million with an absolute range of 0 to 10,000 psia (0
to 6885 dbar). Repeatability, hysteresis and pressure conformance are 0.002% of full-scale.
The nominal pressure frequency (0 to full scale) is 34 to 38 kHz. The nominal temperature
frequency is 172 kHz + 50 ppm/°C.

The pressure sensor utilized during ABACO-12/02 was s/n 95798. Pre-cruise sensor
calibrations were performed at Sea-Bird Electronics, Inc. in Bellevue, Washington on July
09, 2010 (95798) . The following coefficients (Table 11) were entered into SEASAVE®) using
the configuration file:
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Pressure coefficients are first formulated into:

c = Cl+02*U+63*U2
= di+dyxU
to = t1+t2*U+t3*U2—|-t4>I<U3+t5*U4

where U is temperature in degrees Celsius. Pressure is computed according to:

P v (1-8) o[1-ae (1)

where ¢ is pressure period (us). SEASAVE®) automatically implements this equation.

Table 11: Calibration coefficients for the pressure sensor.

s/n 95798
July 07, 2010
¢y = -4.698871e+04
co = 6.928599¢-01
c3 = 1.264330e-02
dy = 3.832000e-02
ds = 0.000000e+00
t1 = 2.996944e+-01
ty = -1.348850e-04
t3 = 3.953500e-06
ty = 2.102830e-09
t5 = 0.000000e+00
Slope = 0.99998
Offset = -1.3878
AD590M = 1.14100e-02
AD590B = -8.42813e+-00

7.4 Dissolved Oxygen

The SBE 43 dissolved oxygen sensor uses a membrane polarographic oxygen detector (MPOD).
Oxygen sensors determine the dissolved oxygen concentration by counting the number of oxy-
gen molecules per second (flux) that diffuse through a membrane. By knowing the flux of
oxygen and the geometry of the diffusion path, the concentration of oxygen can be computed.
The permeability of the membrane to oxygen is a function of temperature and ambient pres-
sure. In order to minimize the errors in the oxygen measurement due to the temperature
differences between the water and the oxygen sensor, a temperature compensation is cal-
culated using a temperature measured near the active surface of the sensor. The interface
electronics output voltages proportional to the temperature-compensated oxygen current.
Initial computation of dissolved oxygen in engineering units is done in the software. The
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range for dissolved oxygen is 120% of surface saturation in all natural waters, fresh and salt,
and the nominal accuracy is 2% of saturation.

Under extreme pressure, changes can occur in gas permeable Teflon membranes that
affect their permeability characteristics. Some of these changes (plasticization and amor-
phous/crystalinity ratios) have long time constants and depend on the sensor’s time-pressure
history. These slow processes result in hysteresis in long, deep casts. The hysteresis cor-
rection algorithm operates through the entire data profile and corrects the oxygen voltage
values for changes in membrane permeability as pressure varies. At each measurement, the
correction to the membrane permeability is calculated based on the current pressure and
how long the sensor spent at previous pressures.

Sea-Bird has implemented an optional hysteresis correction for dissolved oxygen data.
The correction algorithm requires a continuous time series of data, with no temporal data
gaps (although a continuous time series is necessary, a constant sampling interval is not
required). Prior to processing, do not remove any data from the downcast or upcast (if to
be used), other than a surface soak at the beginning of the downcast.

Oxygen sensors 0730 and 1266 were used during ABACO-12/02. The oxygen coefficients
(Table 12) were entered into SEASAVE®) using the configuration seen in 7.4.

The use of these constants in linear equations of the form I = mV 4+ band T = kV + ¢
yield sensor membrane current and temperature (with maximum error of about 0.5 °C) as a
function of sensor output voltage.

Dissolved oxygen concentration is calculated according to:

O (ml/1l) = {Soc * (V + Vg pser + tau(T, S) * i—:) + pl * station}

#(LO+ A+ T+ B+T?+ C xT% « OXSAT(T, S) + (%)

where Soc, Vi ffset, tau, A, B, C, E and pl are the calibration coefficients shown above and
V' is the instrument voltage (V). T, S and P are the temperature, salinity and pressure
measured by the CTD. K is the temperature in the absolute scale (K), dv/dt is the oxygen
voltage time derivative, station is the station number, and OXSAT is the oxygen saturation
value calculated according to (Weiss, 1970):

0 100 100

B + By % 0 + B % 0
P27 100 7\ 100

where 6 is the absolute temperature (K); and

OXSAT(6, 5) = exp {A1 LAy (@) + Ay ¢ In (i> AL (i>

+ 5 %

NOAA Data Report, OAR-AOML — 43 21



A; = —173.4292 B; = —0.033096
Ay = 249.6339 By = 0.014259
As = 143.3483 Bs; = —0.00170
Ay = —21.8492.

SEASAVE® automatically implements this equation.

The hysteresis correction is calculated, using the oxygen voltages, with the following
algorithm:

]

Dzl—i—Hl*(e(H(;))— )

O m e(-1x (Time(i) —;;me(i - 1)))

Ov (i) = Oyoit (1) + Vosfset

. a
Onewvolts (Z) =a* =

D
Ofinalvolts (2) - Onewvolts (2) - V;)ffset
Where:

i = indexing variable (must be a continuous time series to work; can be performed on bin
averaged data), where ¢ = 1:end (end is largest data index point plus 1).

P(i) = pressure (decibars) at index point i .

Time(i) = time (seconds) from start of index point i.

Ouoit(i) = SBE 43 oxygen voltage output directly from sensor, with no calibration or hys-
teresis corrections, at index point 1.

Vs fset = correction for an electronic offset that is applied to voltage output of sensor. V¢ feet
correction is always negative (see factory calibration sheet for this coefficient). V,rser is
added to raw voltages prior to hysteresis correction. At end of hysteresis corrections, V¢ fset
is removed prior to data conversion using SBE 43 calibration equation (see O finaivoirs(%))-
Oy (i) = dissolved oxygen voltage value with V,sfs; correction (made prior to hysteresis
correction) at index point i.

D and C are temporary variables used to simplify expression in processing loop.

H1 = amplitude of hysteresis correction function. Default = -0.033, range = -0.02 to -0.05
(varies from sensor to sensor).

H?2 = function constant or curvature function for hysteresis. Default = 5000.

H3 = time constant for hysteresis (seconds). Default = 1450, range = 1200 to 2000 (varies
from sensor to sensor).

Ohnewvolts(1) = hysteresis-corrected oxygen value at index point i.

O finatvoits(1) = hysteresis-corrected oxygen value at index point i with Vs removed.

This step is necessary prior to computing oxygen concentration using SBE 43 calibration
equation.
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Table 12: Calibration coefficients for the dissolved oxygen sensors.

s/n 0730 s/n 1266
February 1, 2012  February 1, 2012
Soc = 0.4946 Soc = 0.5110

Voffset = -0.5102 Voffset = -0.5418
Tau20 = 1.16 Tau20 = 1.13

A =-3.5069¢-03 A =-3.0146e-03
B = 1.3800e-04 B = 1.3378e-04
C =-2.6719e-06 C = -2.6688e-06
Ernominat = 0.036  E,omina = 0.036

7.5 Fluorometer

The fluorometer is an optical sensor used to detect chlorophyll-a fluorescence. The fluores-
cence signal is an indicator of concentrations of chlorophyll and an active phytoplankton
biomass. This allows for the tracking of the abundance and variability of biology in the
water column. The fluorometer data collected is not processed, but raw voltages are passed
through the Seabird Data Processing program. The raw voltages are not displayed here, but
are available as part of the 1db pressure averaged data.

8 Data Acquisition

CTD/O2 measurements were made using a SBE 9plus CTD with dual sensor configura-
tion. Underwater electronic components consisted of a Sea-Bird Electronics (SBE) 9 plus
CTD s/n 09P10779-0360 with dual pumps and the following sensors: dual temperature
(SBE3), dual conductivity (SBE4), dual dissolved oxygen (SBE43), and a Simrad 807 al-
timeter. The CTDs supplied a standard Sea-Bird format data stream at a data rate of 24
frames/second. The other underwater electronic components consisted of RDI LADCP’s,
and various pingers. The SBE9plus CTD was connected to the SBE32 24-place pylon pro-
viding for single-conductor sea cable operation. Power to the SBE9plus CTD, SBE32 pylon,
auxiliary sensors, and altimeter was provided through the sea cable from the SBE11plus
deck unit in the computer lab. The rosette system was suspended from a UNOLS-standard
three-conductor 0.322” electro-mechanical sea cable. A single sea cable termination for each
winch served the entire cruise.

The CTD was mounted vertically in to the bottom center of the 24-position frame. All
SBE4 conductivity and SBE3 temperature sensors and their respective pumps were mounted
vertically as recommended by SBE. One Niskin bottle was removed to accommodate the up-
ward looking ADCP, resulting in a maximum of 23 water sample depths. The CTD was
outfitted with dual pumps. Primary temperature, conductivity, and dissolved oxygen were
plumbed on one pump circuit and secondary temperature and conductivity on the other.
Pump exhausts were attached to outside corners of the CTD frame and directed downward.
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The sets were placed as mirror images to each other mounted low in the C'TD main housing
with the intakes approximately 6-8 inches apart. The TC pairs were monitored for cali-
bration drift and shifts by examining the differences between the two pairs on each CTD
and comparing CTD salinity values with bottle salinity measurements. The altimeter was
mounted on the inside of a support strut adjacent to the bottom frame ring. The LADCP’s
were vertically mounted inside the bottle rings with one 150 kHz transducer (on loan form
U. Hawaii) pointing down, the other 300 kHz transducer pointing up. The upward looking
ADCP required the removal of Niskin bottle 12 from the frame.

The CTD data acquisition system consisted of an SBE-11plus (V1) deck unit and a net-
worked generic PC workstation running Windows 2000. SBE Seasave software version 7.21f
was used for data acquisition and to close bottles on the rosette.

The deck watch prepared the rosette typically within a few minutes prior to each cast.
All valves, vents, and lanyards were checked for proper orientation. The bottles were cocked
and all hardware and connections rechecked. Once stopped on station, the LADCP was
turned on and syringes were removed from the CTD sensor intake ports. As directed by the
deck watch leader, the C'TD was powered-up and the data acquisition system started.

The console watch initiated CTD deployments after the ship stopped on station. The
watch maintained a console operations log containing a description of each deployment, a
record of every attempt to close a bottle and any pertinent comments.

The deck watch leader directed the winch operator to raise the package, the squirt boom
and rosette were extended outboard, and the package quickly lowered into the water and
submerged to 10 meters of wire out. No tag-lines were necessary for either deployments
or recoveries during this cruise. The CTD sensor pumps were configured with a 60 second
startup delay. The CTD console operator waited for the CTD sensor pumps to turn on,
waited an additional 60 seconds for sensors to stabilize (all together about 2 minutes), then
directed the winch operator to bring the package close to the surface, pause for typically 10
seconds, hitting "Mark Scan” and begin the descent. The profiling rate was no more than
30 m/min to 50 m, no more than 45 m/min to 200 m, and no more than 60 m/min deeper
than 200 m depending on sea cable tension and the sea state.

The console watch monitored the progress of the deployment and quality of the CTD
data through interactive graphics and operational displays. Additionally, the watch created
a sample log for the deployment that would be later used to record the correspondence be-
tween rosette bottles and analytical samples taken. The altimeter channel, CTD pressure,
wire-out and bathymetric depth were all monitored to determine the distance of the package
from the bottom, usually allowing a safe approach to within 10 m.

On the up cast, the winch operator was directed to stop at each bottle trip depth. The
CTD console operator waited 30 seconds before tripping a bottle using a ”point and click”
graphical trip button. The data acquisition system responded with trip confirmation mes-
sages and the corresponding CTD data in a rosette bottle trip window on the display. All
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tripping attempts were noted on the console log. The console watch then directed the winch
operator to raise the package up to the next bottle trip location. After the last bottle was
tripped, the console watch directed the deck watch to bring the rosette on deck. Once on
deck, the console watch terminated the data acquisition, turned off the deck unit, and as-
sisted with rosette sampling.

Upon completion of the cast, sensors were flushed and stored with deionized water. The
bottles and rosette were examined before samples were taken, and anything unusual noted
on the sample log. Niskin bottles were then sampled first for oxygen and then salinity.

O-rings were changed as necessary and bottle maintenance was performed each day to
insure proper closure and sealing. Valves were inspected for leaks and repaired or replaced
as needed.

8.1 System Problems

A test of the CTD system on deck showed bottle 14 would not fire. Bottle 14 was the
previous location of the upward looking ADCP. Manual exercise of the teeth corrected the
problem. Bottle 18 did not fire during the test cast, but manual exercise of the pylon tooth
corrected the problem.

Prior to the cruise, both winches were inspected by Markey, the speed control removed,
overhauled and replaced. The wire on the forward winch was also removed and respooled
using a new leader shell. Both winches were believed to be in proper working condition.
Stations 0 and 1 had excessive modulo errors on the aft winch, however. Station 2 was
conducted on the forward winch, which broke on the upcast (at something close to 2000m
depth). It was determined that the new speed control motor had broken (the bolt was
sheared off). The engineering staff on the Brown quickly by-passed this winch control so
that the CTD could continue to the surface. Station 3 was conducted on the aft winch
with approximately 100 modulo errors, until the ships electronics technician, Clay Norfleet,
attempted a mid-cast fix of the grounding on the winch using temporary alligator clamps.
Only a few modulo errors were recorded after this fix. The next day, a grounding strap was
quasi-permanently attached to the winch frame to ground to the deck. In general, the fix
required attaching the ’ground side’ of the signal cable, removing the potential of a floating
ground (in the J box on the frame and on the drum). The aft winch is wired using two of
the three internal conductors for the signal, using one as the ground (not using the shield
as a ground). The J-boxes both on the winch drum and on the winch body were grounded
and winch body grounded to the hull. A more permanent grounding should be made in the
yard.

The forward winch was tested on station 32. Upon deployment, the CTD package skipped
over the deck, landed in the water and started a free fall to depth. After 40 m, the winch
operator Leslie hit the emergency stop and successfully halted the CTD’s descent. It was
found that the compression brake that had been disengaged earlier for testing after the re-
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placement of the controller motor did not re-engage automatically. A manual re-engagement
of the brake was necessary after recovery of the CTD on deck. The cast was restarted suc-
cessfully with no further incident.

Station 0, 1 and 3 all require substantial despiking and filtering. After station 5, the
primary temperature sensor shifted relative to the secondary sensor by -0.0015 in the surface
and +0.001 at 5000m (shifting warm in the deep water). Station 7 showed clear sensor
offsets at the start of the cast. It was later determined that the primary sensor pump had
failed and both pumps were replaced prior to station 8. On station 29, the primary con-
ductivity shifted fresh 0.0005 relative to the secondary sensor, but returned to "normal” on
subsequence stations. Before station 33, the primary temperature sensor was replaced. On
station 35, the secondary pump was replaced and the cast recommenced. No other CTD
instrument related problems were noted.

8.2 Data Acquisition

The basic CTD /hydrographic measurements consisted of salinity and dissolved oxygen mea-
surements made from water samples taken on CTD /rosette casts, plus pressure, temperature,
salinity, dissolved oxygen, and a Seapoint transmissometer from CTD profiles. A total of 59
CTD/rosette casts were made, usually to within 10 m of the bottom. The bottle distribu-
tions of water samples taken are shown in Figure 3-6.
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Figure 3: Bottle locations for 26.5°N Deep Western Boundary Current section east of Abaco Island.
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8.3 Shipboard CTD Data Processing

Shipboard CTD data processing was performed automatically at the end of each deployment
using SEABIRD SBE Data Processing version 7.21f and AOML Matlab processing software.
The raw CTD data and bottle trips acquired by SBE Seasave on the Windows 2000 work-
station were copied onto the CTD-PROC workstation, and processed to a 1-dbar series and
a 1-second time series. Bottle trip values were extracted and a 1-decibar (dbar) down cast
pressure series created.

Raw data are acquired from the instruments and are stored unmodified. The conversion
module DATCNYV uses the instrument configuration and pre-cruise factory calibration coef-
ficients to create a converted engineering unit data file that is utilized by all SBEDataProc(®)
post processing modules. Unless otherwise noted, all calibration parameters given are
factory default values recommended by Sea Bird Electronics, Inc. The following is the
SBEDataProc®) processing module sequence and specifications for primary calibrated data
(1 dbar averages) uses the following routines in order for reduction of CTD/0O2 data from
this cruise:

1. DATCNYV converts raw data into engineering units and creates a .ROS bottle file. Both
down and up casts were processed for scan, elapsed time(s), pressure, t0 ITS-90 C, t1
ITS-90 C, 0 mS/cm, ¢l mS/cm, and oxygen voltage V, oxygen voltage V 2, altimeter,
optical sensor, oxygen umol/kg and oxygen 2 umol/kg, oxygen mll/l, oxygen 2 ml/l,
oxygen dv/dt, oxygen dv/dt 2. Optical sensor data were not carried through the pro-
cessing stream. MARKSCAN was used to determine the number of scans acquired on
deck and while priming the system to exclude these scans from processing.

2. ALIGNCTD aligns temperature, conductivity, and oxygen measurements in time rela-
tive to pressure to ensure that derived parameters are made using measurements from
the same parcel of water. Primary and secondary conductivity were automatically
advanced by 0.073 seconds. Align adjusted these advances to 0.006 for the primary
sensor and +0.063 for the secondary sensor (stations 8-59) and 0.083 for station 0-7
(primary sensor).

3. BOTTLESUM creates a summary of the bottle data. Bottle position, date, and time
were output automatically. Pressure, temperature, conductivity, salinity, oxygen volt-
age and preliminary oxygen values were averaged over a 5 second interval.

4. WILDEDIT computes the standard deviation of 100 point bins, and then makes two
passes through the data. The first pass flags points that differ from the mean by
more than 2 standard deviations. A new standard deviation is computed excluding
the flagged points and the second pass marks bad values greater than 20 standard
deviations from the mean. For this data set, data were kept within a distance of 100
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10.

11.

12.

of the mean (i.e., all data).

FILTER applies a low pass filter to pressure with a time constant of 0.15 seconds. In
order to produce zero phase (no time shift), the filter is first run forward through the
file and then run backwards through the file.

CELLTM uses a recursive filter to remove conductivity cell thermal mass effects from
measured conductivity. In areas with steep temperature gradients the thermal mass
correction is on the order of 0.005 PSS-78. In other areas the correction is negligible.
The value used for the thermal anomaly amplitude (alpha) was 0.03°C. The value used
for the thermal anomaly time constant (1/beta) was 7.0°C.

LOOPEDIT removes scans associated with pressure slowdowns and reversals. If the
CTD velocity is less than 0.25 m/s or the pressure is not greater than the previous
maximum scan, the scan is omitted.

DERIVE uses 1 dbar averaged pressure, temperature, and conductivity to compute
primary and secondary salinities.

BINAVG averages the data into 1 dbar bins. Each bin is centered on an integer pressure
value, e.g., the 1 dbar bin averages scans where pressure is between 0.5 dbar and 1.5
dbar. There is no surface bin. The number of points averaged in each bin is included
in the data file.

STRIP removes the computed oxygen variable.

TRANS converts the binary data file into ASCII format.

SPLIT separates the cast into upcast and downcast values.

Package slowdowns and reversals owing to ship roll can move mixed water in tow to in
front of the CTD sensors and create artificial density inversions and other artifacts. In addi-
tion to Seasoft module LOOPEDIT, a program computes values of density locally referenced
between every 1 dbar of pressure to compute N? and linearly interpolates temperature, con-
ductivity, and oxygen voltage over those records where N? is less than or equal to -1 z 10~°
s72. These data were retained but flagged as questionable in the final WOCE formatted files.
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Final calibrations are applied to delooped data files. ITS-90 temperature, salinity, and
oxygen are computed, and WOCE quality flags are created.

CTD data were examined at the completion of each deployment for clean corrected sensor
response and any calibration shifts. As bottle salinity and oxygen results became available,
they were used to refine shipboard conductivity and oxygen sensor calibrations.

A total of 59 casts were processed (including 1 test casts).

8.4 CTD Calibration Procedures

Laboratory calibrations of the CTD pressure, temperature, and conductivity sensors were
all performed at SBE. The calibration dates are listed in Table 8.

Secondary temperature, conductivity and dissolved oxygen (T2, C2 and DO2) sensors
served as calibration checks for the reported primary sensors. During the cruise, it was de-
termined that the secondary sensor behaved more stably during the cruise.

In-situ salinity and dissolved O2 check samples collected during each cast were used to
calibrate the conductivity and dissolved O2 sensors.

8.4.1 Salinity Analysis

A single Guildline Autosal, model 8400B salinometer (S/N 60843, nicknamed Joysey), lo-
cated in salinity analysis room, was used for all salinity measurements. The autosal was the
same one used for Clivar A10 (was filled, powered on and ready to go). The salinometer
readings were logged on a computer using Ocean Scientific International’s logging hardware
and software. The Autosal’s water bath temperature was set to 24°C, which the Autosal is
designed to automatically maintain. The laboratory’s temperature was also set and main-
tained to just below 24°C, to help further stabilize reading values and improve accuracy.
Salinity analyses were performed after samples had equilibrated to laboratory temperature,
usually at least 24 hours after collection. The salinometer was standardized for each group
of samples analyzed (usually 2 casts and up to 50 samples) using two bottles of standard
seawater: one at the beginning and end of each set of measurements. The salinometer output
was logged to a computer file. The software prompted the analyst to flush the instrument’s
cell and change samples when appropriate. For each sample, the salinometer cell was initially
flushed at least 3 times before a set of conductivity ratio readings were taken.

IAPSO Standard Seawater Batch P-151 was used to standardize all casts except stations
9 and 10, which batch P-149 (Table 13).

The salinity samples were collected in 200 m/ Kimax high-alumina borosilicate bottles
that had been rinsed at least three times with sample water prior to filling. The bottles were

NOAA Data Report, OAR-AOML — 43 33



sealed with custom-made plastic insert thimbles and Nalgene screw caps. This assembly
provides very low container dissolution and sample evaporation. Prior to sample collection,
inserts were inspected for proper fit and loose inserts replaced to insure an airtight seal.
Laboratory temperature was also monitored electronically throughout the cruise. PSS-78
salinity [UNES81]| was calculated for each sample from the measured conductivity ratios.
The offset between the initial standard seawater value and its reference value was applied
to each sample. Then the difference (if any) between the initial and final vials of standard
seawater was applied to each sample as a linear function of elapsed run time. The corrected
salinity data was then incorporated into the cruise database. When duplicate measurements
were deemed to have been collected and run properly, they were averaged and submitted
with a quality flag of 6. The total number of salinity samples collected from the rosette was
954 including the duplicate samples. A duplicate sample was drawn from each cast to de-
termine total analytical precision.

The running standard calibration values are shown in Figure 7. You can see the au-
tosal took some time to stabilize to nearly continual operation after about 5 casts had been
run through the autosal. Through the course of the 3 week cruise, the autosal standards
changed by less than 0.000015 in conductivity ratio (about 0.006 in salinity); once stabilized
this was about 0.002 in salinity from station 6 onwards. The duplicates taken during the
cruise showed a median precision of 0.0001 £ 0.0006 psu (Figure 8 and Table 14).

1. Recommend that in the future we bring a UPS clean power supply/conditioner. We
discovered that we thought the room was equipped with clean power, but it is not. A
UPS/power conditioner should help reduce electrical noise.

2. Recommend that all AOML salinity bottles be renamed following PMEL convention
of 1-24, 101-124, 201-224, etc. This should reduce errors and issues on incomplete cast
sampling issues, etc.

Table 13: Nominal values for the batches of IAPSO standard seawater.

P-151 P-149
May 2012 October 2007
K15: 0.99997 K15: 0.99984
Salinity: 34.999 Salinity: 34.994
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Standard Water Values vs Station
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Figure 7: Standard vial calibrations throughout the cruise.
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Figure 8: Salinity residuals of the duplicate samples.
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Table 14: Duplicate salinity samples collected during the ABACO
cruise.

Station Niskin Salinityl Salinity2 Differences

4 2 34.872 34.871 0.001
8 2 34.885 34.885 -0.001
10 11 35.067 35.068 -0.000
10 13 35.097 35.097 -0.000
12 1 34.864 34.866 -0.002
13 3 34.890 34.890 0.000
14 11 35.048 35.048 -0.000
15 13 35.084 35.084 0.000
16 1 34.868 34.868 -0.000
17 2 34.883 34.883 0.000
18 24 36.643 36.644 -0.000
19 11 35.040 35.040 -0.001
20 1 34.884 34.883 0.001
21 2 34.891 34.894 -0.002
22 4 34.900 34.901 -0.001
23 6 34.942 34.941 0.000
24 21 36.725 36.723 0.002
25 11 35.046 35.046 0.000
26 13 35.036 35.037 -0.001
27 2 35.038 35.039 -0.000
28 1 36.560 36.560 -0.000
31 4 34.893 34.893 0.000
34 2 35.299 35.299 0.000
35 2 35.264 35.263 0.001
36 4 36.609 36.609 0.000
38 10 36.089 36.087 0.002
39 6 36.724 36.723 0.001
40 2 35.832 35.832 -0.000
41 3 35.583 35.584 -0.001
42 6 35.807 35.807 -0.000
43 8 35.944 35.943 0.001
44 4 35.119 35.119 -0.000
45 2 34.910 34.910 0.000
46 2 35.269 35.270 -0.001
48 8 35.864 35.868 -0.004
49 6 36.240 36.240 0.000
50 2 35.456 35.456 0.000
51 2 35.103 35.103 -0.000
52 8 36.499 36.500 -0.000
53 6 35.902 35.903 -0.001
54 2 34.908 34.908 -0.001
95 4 35.129 35.128 0.001
56 2 35.074 35.074 -0.000
57 16 35.931 35.935 -0.004
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8.4.2 Oxygen Analysis

Dissolved oxygen analyses were performed with an automated titrator using amperometric
end-point detection (Langdon, 2010). Sample titration, data logging, and graphical dis-
play were performed with a PC running a LabView program written by Ulises Rivero of
AOML. Lab temperature was maintained at 18.5-22.5°C. Thiosulfate was dispensed by a 2
ml Gilmont syringe driven with a stepper motor controlled by the titrator. Tests in the lab
were performed to confirm that the precision and accuracy of the volume dispensed were
comparable or superior to the Dosimat 665. The whole-bottle titration technique of Carpen-
ter (1965), with modifications by Culberson et al. (1991), was used. Four replicate 10 ml
iodate standards were run every 3-4 days. The reagent blank determined as the difference
between V1 and V2, the volumes of thiosulfate required to titrate 1-ml aliquots of the io-
date standard, was determined five times during the cruise. This method was found during
pre-cruise testing to produce a more reproducible blank value than the value determined as
the intercept of a standard curve.

Dissolved oxygen samples were drawn from Niskin bottles into calibrated 125-150 ml
iodine titration flasks using silicon tubing. Bottles were rinsed three times and filled from
the bottom, overflowing three volumes while taking care not to entrain any bubbles. The
CTD temperatures were used to calculate umol/kg concentrations, and provide a diagnostic
check of Niskin bottle integrity. 1 ml of MnCI2 and 1 ml of NaOH/Nal were added im-
mediately after drawing the sample was concluded using a ThermoScientific REPIPET II.
The flasks were then stoppered and shaken well. Deionized water (DIW) was added to the
neck of each flask to create a water seal. The total number of oxygen samples collected from
the rosette was 892 including the duplicate samples. The samples were stored in the lab in
plastic totes at room temperature for 1.5 hours before analysis. The data were incorporated
into the cruise database shortly after analysis. Thiosulfate normality was calculated at the
laboratory temperature for each run.

The dispenser used for the standard solution (SOCOREX Calibrex 520) and the burette
were calibrated gravimetrically just before the cruise. Oxygen flask volumes were determined
gravimetrically with degassed deionized water at AOML. The correction for buoyancy was
applied.

Bottle number 135 broke and was replaced with bottle number 237. No other problems
were noted.

The precision of the oxygen measurements during the cruise was estimated by using the
duplicate samples. From the 51 duplicate samples (which corresponds of 15.7% of the total
samples collected during this cruise the average residual for the duplicates was 0.02 umol /kg
with and standard deviation of 0.42 umol/kg (Figure 9 and Table 15).
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Figure 9: Oxygen residuals of the duplicate samples .
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Table 15: Duplicate dissolved oxygen samples collected during the ABACO
cruise (values in umol/kg).

Station Niskin  Oxygenl Oxygen2 Differences

2 1 257.5 257.0 0.463
4 2 263.8 264.4 -0.582
5 13 213.1 215.2 -2.031
6 8 270.3 271.8 -1.526
7 3 273.1 270.5 2.578
8 4 276.2 275.0 1.197
9 11 233.8 234.0 -0.125
10 13 171.9 171.6 0.302
11 5 274.1 274.7 -0.528
13 7 268.5 268.9 -0.427
14 11 239.2 239.1 0.053
15 13 194.3 194.3 -0.015
16 4 277.1 276.6 0.499
17 2 268.8 268.4 0.444
18 1 267.0 267.1 -0.067
19 11 245.9 244.1 1.823
20 1 267.6 268.1 -0.568
21 8 267.8 267.7 0.046
22 5 276.6 274.8 1.725
23 11 245.9 244.1 1.823
24 18 203.4 203.1 0.354
25 11 244.6 244.2 0.387
26 13 240.3 240.2 0.111
27 1 250.9 251.1 -0.233
28 1 204.1 203.9 0.223
34 2 147.7 148.1 -0.403
35 2 137.2 137.3 -0.114
36 2 179.2 179.8 -0.581
37 14 207.6 207.6 0.022
38 10 209.6 209.6 -0.025
39 6 179.9 180.1 -0.143
40 2 146.5 146.4 0.094
41 3 132.3 132.3 -0.055
42 6 140.9 140.9 0.025
43 8 146.1 146.2 -0.115
44 15 183.8 183.0 0.869
45 2 141.4 141.1 0.351
46 2 123.2 123.0 0.254
47 2 121.6 122.0 -0.438
48 8 208.5 208.6 -0.172
49 6 207.1 207.1 -0.066
50 2 126.2 125.7 0.506
51 2 124.9 123.6 1.303
52 4 128.5 128.2 0.248
53 2 149.7 149.7 0.000
53 6 134.0 134.3 -0.317
54 2 146.7 146.5 0.181
55 2 141.0 140.9 0.070
56 2 125.3 124.8 0.485
57 16 207.8 196.3 11.505
58 2 163.2 163.3 -0.109
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9 Post-Cruitse Calibrations

Post cruise sensor calibrations were done at Sea-Bird Electronics, Inc. (Table 16-18). Sec-
ondary temperature, conductivity and dissolved oxygen sensors served as calibration checks
for the reported primary sensors.

In-situ salinity and dissolved oxygen check samples collected during each cast were used
to calibrate the conductivity and dissolved oxygen sensors.

Two sensor combinations were used during the cruise as listed in Table 19 . Secondary TC
pair T5239/C3657 was selected for final data reduction. Also secondary oxygen sensor (s/n
1266) was selected for final data reduction for all stations. In addition to the Seasave pro-
cessing modules, a group of Matlab script files called AOML/CTDCAL Toolbox were used.
These scripts were based in earlier work of different groups as well in modern statistical
tools. They cover all the steps of the CTD data processing from the preliminary compar-
isons between sensors or with bottle samples to data reductions and final sensors calibrations.

Table 16: Post—Calibration coeflicients for the conductivity sensors.

s/n 3860 s/n 3657

March 23, 2012 March 23, 2012
g = -1.03303154e+01 g = -9.90564197e+00
h = 1.48629398¢+00 h = 1.40360087e+-00
i =-1.55888233e-03 i =-3.39927695e-03
j = 1.960129361e-04 j = 3.24542613e-04
CPcor = -9.5700e-08 CPcor = -9.5700e-08
CTcor = 3.2500e-06  CTcor = 3.2500e-06

Table 17: Post—Calibration coefficients for the temperature sensors.

s/n 5233 s/n 5239 s/n 5237
March 23, 2012 March 23, 2012 March 23, 2012
g = 4.40266164e-03 g = 4.40433582¢-03 g = 4.41021329¢-03
h = 6.80254736e-04 h = 6.79374233e-04 h = 6.79974086e-04
1 = 2.83983858e-05 1= 2.85732104e-05 1= 2.85776376e-05
j = 2.11199831e-06 j = 2.24511506e-06 j = 2.21802153e-06
fo = 1000.0 fo = 1000.0 fo = 1000.0

NOAA Data Report, OAR-AOML — 43 41



Table 18: Post—Calibration coefficients for the dissolved oxygen sensors.

s/n 0730 s/n 1266
March 22, 2012 March 22, 2012
Soc = 0.4993 Soc = 0.5174

Voffset = -0.5074 Voffset = -0.5395
Tau20 = 1.36 Tau20 = 1.40

A =-3.0102e-03 A = -2.7060e-03
B = 9.4219¢-04 B = 1.0320e-04
C =-1.7332e-06 C = -2.0782e-06
Enominar = 0.036  E,omina = 0.036

Table 19: Various sensors configurations used during the ABACO — 12/02 cruise.
Station =~ Temperature Conductivity Oxygen CTD Pumps

Primary  Secondary  Primary Secondary Primary Secondary Primary  Secondary

0-7 5233 5239 3860 3657 0730 1266 0031 1211 3956
8-32 5233 5239 3860 3657 0730 1266 0031 1227 5946
33-34 5237 5239 3860 3657 0730 1266 0031 1227 5946
35-59 5237 5239 3860 3657 0730 1266 0031 1227 1666

9.1 CTD Data Processing

By using the post cruise sensors calibrations; time drifts were estimated for the temperature
and conductivity sensors (for estimated time drifts see the appropriate sections below). The
processing module sequence used at sea is done again to include the time drifts as well the
pressure correction. After this step the following Matlab scripts based on PMEL programs
are applied to the CTD data:

e FILL_SURFACE was used to copy the first good value of salinity, potential temper-
ature, oxygen and oxygen current back to the surface. The program then calculated
temperature and conductivity, and zeroed doc/dt of oxygen current for those records.

e DESPIKE1 removed spikes from primary oxygen current and oxygen temperature data,
as well as removing spikes from the primary conductivity sensor. Data were linearly in-
terpolated over de-spiked records. Conductivity was back calculated, and sigma-theta
and potential temperature were recomputed for the interpolated records.

e DESPIKE2 removed spikes from secondary sensors in the same method as DESPIKEL.

e Package slowdown and reversals due to ship roll can move mixed water in tow in front
of the CTD sensors. This mixture can create artificial density inversions and other
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artifacts. In addition to SEASOFT module LOOPEDIT, an AOML program, DE-
LOOP, computes values of density locally referenced between every 1 dbar of pressure
to compute N? = (- g/p) (dp/dz) and linearly interpolated measured parameters over
those records where N? < -1.0 e -05 s 2.

9.2 CTD Pressure

Pressure sensor calibration coefficients derived from the pre-cruise calibrations were applied
to raw pressure data during each cast. Residual pressure offsets (the difference between the
first and last submerged pressures) were examined to check for calibration shifts (see Figure
10 and Table 20). On deck pressures before the start of each cast was recorded and is plotted
in Figure 10. The on deck pressure before and after the cast were stable at 0.39+ 0.086 db
and 0.29 £ 0.13 db, respectively. There is a noticeable shift in the on-deck values starting
after station 33 (0.163 db median difference for station 0-33 and -0.049 median difference
for station 34-58). This corresponds to the change in station depths; station 0-33 were deep
CTD casts; Station 34 and onwards were all less than 850 m. It is clear that the pressure
offset needs to be corrected before final calibration of the data is complete. This was accom-
plished by applying an offset of 0.39 dbar to the configuration file.

Near surface pressure values (which is taken as the near-surface pressure at the markscan

and the last fired bottle pressure) showed larger variability, but no remarkable trends over

the cruise (3.47 & 0.57 db before and 3.46 £ 0.36 db after).
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Figure 10: Pressure differences vs. station number. Top panel are the pressures measured on
deck before the cast (blue),at the end of the upcast (red) and their respective difference
(green) . Bottom panel are the sea surface pressure values measured at the start of the
downcast (blue), at the end of the upcast (red) and their respective difference (green).
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Table 20: Near surface Pressure values and scan number used to remove surface
soak and on-deck values.

Station = Markscan  Deck Prs Start  Deck Prs End  Sfc Prs Start  Sfc Prs End
0 14221 0.4736 0.4505 3.2996 3.2638
1 7400 0.4173 0.0581 2.6732 3.7300
2 8954 0.3464 0.1346 3.2283 3.0260
3 11896 0.4094 0.2373 3.1107 3.7260
4 12797 0.3364 0.1727 3.4401 3.5430
5 12724 0.4102 0.2138 4.2319 3.0970
6 9656 0.3507 0.1568 3.9398 3.0600
7 7297 0.3694 0.1452 4.2811 3.2350
8 8113 0.4856 0.0524 3.6894 3.6710
9 7634 0.3271 0.1323 4.0537 3.9960
10 11310 0.3976 0.1453 3.3378 3.8740
11 11903 0.4012 0.2394 4.0921 3.8930
12 7872 0.3956 0.2720 4.3865 3.8150
13 7895 0.3924 0.2666 4.2674 3.1790
14 5575 0.3932 0.1888 2.6400 3.4160
15 5776 0.2783 0.2587 3.3739 3.3550
16 20244 0.3158 0.2391 3.2904 3.8385
17 7134 0.3376 0.2669 3.8224 3.8580
18 6880 0.3084 0.2919 3.7674 3.5480
19 13766 0.3580 0.1955 3.2051 3.5170
20 8593 0.4266 0.1635 3.3844 3.3880
21 21250 0.0350 0.2169 3.3259 3.1450
22 11830 0.2636 0.1420 3.9727 3.1140
23 9907 0.2841 0.1661 4.8906 4.1660
24 7637 0.2949 0.1388 3.4915 2.6000
25 7916 0.2925 0.2081 3.0135 3.2740
26 8199 0.2439 0.1763 3.3020 3.4800
27 12265 0.3343 0.4222 3.4396 3.3920
28 32828 0.4046 0.4036 3.4912 3.5160
29 9136 0.4768 0.2754 3.2193 3.1123
30 15094 0.3883 0.2137 3.8373 3.3280
31 7494 0.5536 0.2495 2.7653 3.6125
32 8603 0.5324 0.3203 2.8819 3.0870
33 12750 0.5736 0.2840 3.6974 3.1000
34 8492 0.4224 0.4843 4.4483 3.4590
35 6263 0.4737 0.4722 3.4705 3.2700
36 5647 0.3986 0.4826 3.0706 3.2910
37 6274 0.5284 0.4564 3.2967 3.4330
38 7372 0.3423 0.4020 3.1662 3.2740
39 27301 0.4420 0.4398 3.2746 2.7570
40 7216 0.4317 0.4661 6.2101 3.5430
41 6531 0.3406 0.4343 3.7195 3.5350
42 12379 0.3692 0.4108 3.6920 3.5330
43 8993 0.3883 0.4573 3.4702 3.2840
44 6921 0.4244 0.4273 3.6417 3.5770
45 9542 0.3744 0.4391 4.1610 3.2880
46 10783 0.3404 0.4019 3.3189 3.8060
47 10009 0.4339 0.5149 3.2349 3.6030
48 7237 0.4524 0.4534 3.5613 3.4580
49 4724 0.4249 0.4098 3.2130 3.4980
50 12254 0.5694 0.4442 3.2333 3.3070
51 6911 0.4075 0.4323 3.6919 3.3170
52 10196 0.3907 0.4617 3.7526 3.5930
53 9817 0.3775 0.4336 3.7856 3.7120
54 7878 0.3727 0.4395 3.8492 3.1570
55 727 0.4034 0.4106 3.7013 4.8760
56 6337 0.3992 0.3582 3.0805 4.0860
57 8828 0.3510 0.4158 3.1931 3.7200
58 7692 0.3454 0.3952 3.5388 3.6280
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9.3 CTD Temperature

Temperature sensor calibration coefficients derived from the pre-cruise calibrations were ap-
plied to raw primary and secondary temperature data during each cast. Data accuracy,
reproducibility and stability was examined by tabulating the difference between the two
different temperature sensors over a range of pressures (bottle trip locations) for each cast.
These comparisons are summarized in Figure 11, which shows a median temperature dif-
ference between the two sensors of -0.0002°C and a standard deviation of 0.001°C. Note
that after station 5, the scatter of the temperature differences increased because the primary
temperature sensor shifted relative to the secondary sensor by +0.001°C in 3000-5000 db
(warmer) and then nearly linearly to -0.0015°C at the surface (Figure 12). The primary
sensor was replaced on station 33, where the median difference was uniform with depth and
less than 0.0008 °C.

Following Seabird application note No. 31, a linear offset drift is applied between the pre-
cruise calibration and the pos-cruise calibration value (Table 21). The corrected temperature
and offset are computed according to:

Te.or = slope x Torp + of fset

and

of fset = bx (residual /n)

where T, is the corrected temperature, the slope is taken to be 1, Torp is the sensor tem-
perature, b is number of days between pre-cruise calibration and the cast to be corrected, n
is the number of days between pre- and post-cruise calibrations, and the residual is residual
from the post-calibration sheet (Sea-Bird Electronics, Inc., 2010).
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Table 21: Secondary temperature offset values.

Station T2 offset  Station T2 offset
0 0.0008536 30 0.0008839
1 0.0008582 31 0.0008909
2 0.0008591 32 0.0008940
3 0.0008607 33 0.0008971
4 0.0008616 34 0.0008992
5 0.0008625 35 0.0008995
6 0.0008635 36 0.0008999
7 0.0008643 37 0.0009001
8 0.0008652 38 0.0009003
9 0.0008660 39 0.0009010
10 0.0008668 40 0.0009013
11 0.0008676 41 0.0009015
12 0.0008684 42 0.0009017
13 0.0008690 43 0.0009020
14 0.0008697 44 0.0009022
15 0.0008704 45 0.0009025
16 0.0008710 46 0.0009028
17 0.0008716 47 0.0009030
18 0.0008723 48 0.0009032
19 0.0008729 49 0.0009034
20 0.0008736 50 0.0009043
21 0.0008742 51 0.0009046
22 0.0008748 52 0.0009049
23 0.0008755 53 0.0009052
24 0.0008762 54 0.0009055
25 0.0008767 55 0.0009059
26 0.0008772 56 0.0009062
27 0.0008778 57 0.0009065
28 0.0008781 58 0.0009067

29 0.0008806
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Figure 11: Temperature differences (after corrections) between sensors by station number (top)
and pressure (bottom). The green represents the surface data down to 1000 db. The
blue represents data below 1000 db. The red solid line represents the median with the
red dashed representing the standard deviation (same for top and bottom).
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Primary Temperature Correction: Stations 6 — 32
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Figure 12: Primary temperature correction for stations 6 - 32.
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9.4 Conductivity

Conductivity sensor calibration coefficients derived from the pre-cruise calibrations were ap-
plied to raw primary and secondary conductivities. Comparisons between the primary and
secondary sensors and between each of the sensors to conductivity calculated from bottle
salinities were used to derive conductivity corrections. Uncorrected C1-C2 are shown in
Figure 13 to help identify sensor drift. For the entire cruise, only one set of conductivity
sensors were used, both tracked each other extremely nicely. The two sensors show a median
difference of -0.000057 S/m and a standard deviation of 0.00013 S/m. There is a offset in
the conductivity sensor differences at station 33 (Figure 14). This occurred after the CTD
package skipped across deck at station 32. Looking at the T-S plot between station 32 and
station 33 (same location), it is apparent that the primary sensor developed an offset (Figure
15). The secondary sensor exhibited the lowest residuals when compared to the bottle data
(Figure 14) and was used for all the final data values.

Despite the large variability of the data in the last 25 stations, the bottle values are kept
in the database and used for the final calibration. Note also that these CTD stations were in
the Florida Straits and Northwest Providence Channel where bottom depths do not exceed
800 m. The AOML/CTDCAL Toolbox automatically applies a quality control to the data
based on comparison with a normal distribution. After these procedures 814 data points
(94.1 %) were used in the final calculations.

In order to calibrate the CTD conductivity data against the sample conductivity we
assume a constant additive correction (offset), multiplicative correction (slope), time drift
correction (represented by station number) and where needed, a linear pressure-dependent
term. A non-linear function is used to derive these coefficients and are applied to

Chrew = [m * Corp + (p1 * station) + b + pcor * P)]
with

m=0.9998063
p1=1.6389574e-05
b=0.0099491
pcor=-4.9147859e-07

where ., is corrected conductivity (S/m), Ceorp is pre-cruise calibrated CTD conductiv-
ity (S/m), m is the conductivity slope, b is the offset (S/m), P is the pressure, pcor is the
pressure correction coefficient, station is the station number and p; is the polynomial coeffi-
cient. The fit is weighted so that bottle data below 1000 db is counted more heavily in the fit.

The coefficients estimated by the equation above were then applied to the CTD con-
ductivities and the final results (Figure 16 to Figure 19) show a residual of 6.5 - 10-5 psu
(-1.1 - 10-5 psu for the data below 1000 dbar) and a standard deviation of 0.003 psu (0.0011
psu for the data below 1000 dbar). Also 69.0% of the residuals for the data are within the
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confidence limits determined by the WOCE (£ 0.002 psu) and this number increase to 92.0%
if we consider only the data below 1000 dbar.

A final verification about the quality of the data was made by comparing the results of
this cruise with some historical data (Figure 20 and Figure 21). Water mass properties are
very stable, specially for deeper layers of the ocean, that way by comparing these values we
can have a very good estimative of the quality of these data.
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Figure 13: Conductivity differences between sensors by station number (top) and pressure (bottom).
The green represents the surface data down to 1000 db. The blue represents data below
1000 db. The red solid line represents the median with the red dashed representing the
standard deviation (same for top and bottom).
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Figure 14: Bottle and uncalibrated secondary CTD salinity differences plotted against station
number. The green crosses represent all data points and the blue are the data points
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Figure 17: Bottle and calibrated secondary CTD salinity differences plotted vs. pressure.
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x 107 Calibrated Secondary Sensor
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Figure 18: Bottle and calibrated secondary CTD salinity differences plotted vs. station below 1000
dbar.

NOAA Data Report, OAR-AOML — 43 56



X107 Calibrated Secondary Sensor

4 T T T T
Median(>1000 dbar) = -1.1464e-05 +/- 0.0011397

o eI dban = 71, 14b8e05 v B0 -
=) } * H
@
4 + + +
— o ++¢ : + + oy + 4
= . + *
E | Pt * s
o A + T s o+
T * + +
o T+ E e e Nk e T I

+
o WL e
| i+3#+++ at Ty " T * N + ot +
> 0 + 4t 4+t + + &+ + "|=|-++ ++ n
g + * = + + + + + +
F oy A M *
(R ;:i: Fpbt A ":{: T T 4: o e 7
= i + 4 +F 4+ + + T+ ++ + :I'-
2 ++ o+ +7 + + 4+
+ + 4 +  +F N
+ 4+ T + . +
-2r 4 + HE ]
+
+
_3 | | 1 1
1000 2000 3000 4000 5000 6000

Pressure (dbar)

Figure 19: Bottle and calibrated secondary CTD salinity differences plotted vs.

1000 dbar.

NOAA Data Report, OAR-AOML — 43

pressure below

57



0-S vs. Historical data
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Figure 20: Potential Temperature - Salinity diagram for all stations. The solid black lines are
the data collected during this cruise; the solid gray lines are data from the historical

database.
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0-S vs. Historical data (deep water)
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Figure 21: Potential Temperature - Salinity diagram for all stations. The solid black lines are
the data collected during this cruise; the solid gray lines are data from the historical
database.
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9.5 Dzissolved Ozxygen

Two SBE43 dissolved O, (DO) sensors were used on this leg (Table 8). Both sensors tracked
each other very well, with no noted problems. Due to a hysteresis problem with the oxygen
sensors the DO sensors were calibrated to dissolved O2 check samples by matching the up
cast bottle trips to down cast CTD data along neutral density surfaces, calculating CTD
dissolved O,, and then minimizing the residuals using a non-linear least-squares fitting pro-
cedure.

The algorithm used for converting oxygen sensor current and probe temperature mea-
surements as described, requires a non-linear least squares regression technique in order to
determine the best fit coefficients of the model for oxygen sensor behavior to the water sample
observations. A Matlab®) sub-routine called oxfit.m from the AOML CTD/CAL TOOL-
BOX performs non-linear least squares regression using the Gauss-Newton algorithm with
Levenberg-Marquardt modifications for global convergence. This algorithm is independent
of the first coefficients guess and demonstrates excellent convergence. This oxygen fitting
routine includes an optional time drift term (related with the station number), allowing all
stations to be calibrated without breaking into discrete groupings. The Owens and Millard
(1985) algorithm was modified as follows:

O (ml/l) = {Soc * (V + Vo rser + tau(T, S) * ((55—:) + pl * station}
)

«(1.04+ AT+ B+T?+C «T%) « OXSAT(T, S) % e&*

=

with

So0c=0.5310073
V., f fset=-0.5213970
tau=1.84
A=-0.0058529
B=0.0003664
C'=-0.0000069
E£=0.0359180
p1=0.0000262

where Soc, tau, Vyffset, A, B, C, I/ and pl are the calibration coefficients shown above and
V' is the instrument voltage (V). T, S and P are the temperature, salinity and pressure
measured by the CTD. K is the temperature in the absolute scale, station is the station
number, and OX SAT is the oxygen saturation (see section 7.4 Dissolved Oxygen).

A comparison between the primary and secondary sensors (Figure 22) and between each
of the sensors to bottle oxygen (Figure 23 & Figure 24) were evaluated and the secondary
sensor was chosen. Based on the differences between the samples and the CTD sensor, out-
liers were removed and initially 98.1% of the samples were kept to perform the calculations.
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An offset is also observed in the oxygen sensor differences at station 33 (Figure 22).
No deep oxygen bottle data was drawn to perform a secondary calibration for stations 33
to 58. However, the remaining stations were calibrated to within WOCE standards. It is
very noticeable between the difference in the variability in the last 25 casts (Figure 23),
which corresponds to the Florida Straits and Northwest Providence Channel (where bot-
tom depths do not exceed 800 m), although we decided not to divide them into a second
group for separate analysis. Also, analogous to the conductivity, AOML/CTDCAL Toolbox
automatically applies a quality control to the data based on comparison with a normal dis-
tribution. After these procedures 749 data points (89.1%) were used in the final calculations.

By minimizing the differences between the oxygen samples and the CTD oxygen esti-
mated from the equation described in this section, new coefficients were calculated and then
applied to the CTD original data (Figure 25 to Figure 28). The residual is -0.11 umol /kg
(-0.03 umol / kg for the data below 1000 dbar) and the standard deviation 2.02 umol /kg (1.32
umol /kg for the data below 1000 dbar). Also 91.2% of the residuals for the data are within
the confidence limits determined by the WOCE (4 1% of the dissolved oxygen measured)
and this number increase to 95.4% if we consider only the data below 1000 dbar.

A final verification about the quality of the data, like in the salinity data, was made by
comparing the results of this cruise with some historical data available at the location of the
Abaco section and the other sections. Again by investigating water mass properties, par-
ticularly for deeper layers of the ocean, we can have an estimative of the quality of these data.
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Figure 22: Dissolved oxygen differences between sensors by station number (top) and pressure
(bottom). The green represents the surface data down to 1000 db. The blue represents
data below 1000 db. The red solid line represents the median with the red dashed
representing the standard deviation (same for top and bottom).
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Secondary Sensor — Median Diff: 16.7998 Std Dev: 5.3871
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Figure 23: Bottle and uncalibrated secondary CTD oxygen differences plotted against station
number. The green crosses represent all data points and the blue are the data points
below 1000 dbar. The median was calculated using only the data below 1000 dbar.
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Secondary Sensor — Below 500 dbar — Median Diff: 15.7711 Std Dev: 3.4567
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Figure 24: Bottle and uncalibrated secondary CTD oxygen differences plotted against pressure.
The green crosses represent all data points and the blue are the data points below 1000

dbar. The median was calculated using only the data below 1000 dbar.
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Figure 25: Bottle and calibrated secondary CTD oxygen differences plotted vs. station.
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Calibrated Secondary Sensor
15 T T T T T

Median = —-0.11435 +/- 2.0207
1
10F+ +

Bottle Oxygen — CTD Oxygen (umol/kg)

-15

Pressure (dbar)

Figure 26: Bottle and calibrated secondary CTD oxygen differences plotted vs. pressure.

NOAA Data Report, OAR-AOML — 43

0 1000 2000 3000 4000 5000 6000

66



Calibrated Secondary Sensor
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Figure 27: Bottle and calibrated secondary CTD oxygen differences plotted vs. station below 1000
dbar.
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Calibrated Secondary Sensor
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Figure 28: Bottle and calibrated secondary CTD oxygen differences plotted vs. pressure below
1000 dbar.
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O-S vs. Historical data
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Figure 29: Potential Temperature - Oxygen diagram for all stations. The solid black lines are
the data collected during this cruise; the solid gray lines are data from the historical

database.
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O-S vs. Historical data (deep water)
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Figure 30: Potential Temperature - Oxygen diagram for all stations. The solid black lines are
the data collected during this cruise; the solid gray lines are data from the historical
database.
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10 Final CTD Data Presentation

The final calibrated data files were used to produce the tables and station profile plots pre-
sented in Appendix C for each CTD station. The table on the left is in ”standard depths”
and its corresponding profile plot is shown on the facing page. Niskin bottle depths are
presented on the right side of the profile plot. Bottle salinity and oxygen values are plotted
as points in the three smaller plots.

Vertical sections of potential temperature, CTD salinity, neutral density, and CTD oxy-
gen are contoured with pressure as the vertical axis and for Abaco Sections longitude as
horizontal axis (Figure 31 to Figure 34). Florida Current North (27N) Sections and Florida
Current South (26) Sections also use longitude as horizontal axis (Figure 35 to Figure 42).
For the Northwest Providence Channel Sections latitude is used as horizontal axis (Figure
43 to Figure 46).

Post-cruise calibrations were applied to CTD data associated with bottle data using
Matlab sub-routines (apply_calibration.m). WOCE quality flags were appended to bottle
data records. ”"Bad values” (WOCE quality control value = 4) were flagged if they bottle
samples failed the initial quality control and were not used for the calibration (which meant
they typically fell outside 5 standard deviations of the difference between samples and un-
calibrated CTD values). Questionable flags (WOCE quality control value = 3) were defined
by using the value of 2.5 times the standard deviation of the difference between calibrated
CTD values and bottle samples.
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Figure 31: Potential Temperature (°C) section for the Abaco Section. Contour intervals are 1°C.

Dashed vertical lines are the CTD station locations.
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Figure 32: Salinity (PSS 78) section for the Abaco section. Contour intervals are 0.1. Dashed
vertical lines are the CTD station locations.
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Figure 33: Dissolved Oxygen (umol/kg) section for the Abaco Section. Contour intervals are 10
umol /kg. Dashed vertical lines are the CTD station locations.
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Figure 34: Potential density (kg/m?3) section for the Abaco Section. Contour intervals are 0.1
kg/m3 for density values greater than 27.5 kg/m? and 0.05 kg/m? below 27.5 kg/m?>.
Dashed vertical lines are the CTD station locations.
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Figure 35: Potential Temperature (°C) section for the Florida Current North section. Contour
intervals are 1°C. Dashed vertical lines are the CTD station locations.
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Figure 36: Salinity (PSS 78) section for the Florida Current North section. Contour intervals are

0.1. Dashed vertical lines are the CTD station locations.
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Figure 37: Dissolved Oxygen (umol/kg) section for the Florida Current North section. Contour
intervals are 10 umol/kg. Dashed vertical lines are the CTD station locations.
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Figure 38: Potential density (kg/m3) section for the Florida Current North section. Contour
intervals are 0.1 kg/m3. Dashed vertical lines are the CTD station locations.
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Figure 39: Potential Temperature (°C) section for the Florida Current South section. Contour
intervals are 1°C. Dashed vertical lines are the CTD station locations.
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Figure 40: Salinity (PSS 78) section for the Florida Current South section. Contour intervals are
0.1. Dashed vertical lines are the CTD station locations.
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Figure 41: Dissolved Oxygen (umol/kg) section for the Florida Current South section. Contour
intervals are 10 umol/kg. Dashed vertical lines are the CTD station locations.
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Figure 42: Potential density (kg/m3) section for the Florida Current South section. Contour

intervals are 0.1 kg/m3. Dashed vertical lines are the CTD station locations.
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Figure 43: Potential Temperature (°C) section for the Northwest Providence Channel section.
Contour intervals are 1°C. Dashed vertical lines are the CTD station locations.
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Figure 44: Salinity (PSS 78) section for the Northwest Providence Channel section. Contour
intervals are 0.1. Dashed vertical lines are the CTD station locations.
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Figure 45: Dissolved Oxygen (umol/kg) section for the Northwest Providence Channel section.
Contour intervals are 10 umol/kg. Dashed vertical lines are the CTD station locations.
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