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The Probability Distribution of Irradiance Scintillation

Reginald J. Hill, Rod G. Frehlich,' and William D. Otto

ABSTRACT. We calculated the probability distribution function (PDF) from simulations. The
simulations were of an initially spherical wave propagated through homogeneous atmospheric
turbulence. The onset of strong scintillation was calculated. By onset of strong scintillation, we mean
conditions of weak scintillation changing to the condition of strong focusing. The simulations’ PDFs
are compared with several heuristic models of the PDF, and are seen to progress from close to
lognormal for the cases of weakest scintillation to close to the lognormally modulated exponential
PDF for the cases of strong scintillation. The simulations’ PDFs are not in agreement with the K PDF
for any of the calculated cases. The best agreement was obtained in comparison with Beckmann’s
PDF. Beckmann’s PDF varies from being the lognormal PDF for weak scintillation to the
lognormally modulated exponential PDF for strong scintillation, and progresses further to the
theoretically expected exponential PDF in the limit of saturated scintillation.

1. INTRODUCTION

We used numerical simulation of the propagation of an initially spherical wave through
homogeneous atmospheric turbulence to calibrate a new model of inner-scale and fluxes
scintillometer (Hill et al., 1994). For this calibration, we calculated several irradiance statistics
for conditions of weak to strong scintillation. A spin-off of such calculations is the probability
distribution function (PDF) of irradiance scintillations. Here, we present the PDFs of irradiance
and compare them with several current heuristic PDF models. Of particular interest is
Beckmann's PDF, which we describe in detail in the next section. We also compare the
irradiance PDF from the simulation with the well-known lognormal PDF, the lognormally
modulated exponential PDF (Churnside and Hill, 1987), and the K PDF (Jakeman and Pusey,
1978). (The K PDF takes its name from the usual symbol, K, used for the modified Bessel
function that appears in the formula for this PDF.)

2. BECKMANN'S PROBABILITY DISTRIBUTION FUNCTION

Beckmann (1967) derived a PDF for the amplitude of a wave propagating in a random
medium. He found that the PDF is a Rice-Nakagami PDF (Nakagami, 1960) with a lognormal
modulation. In honor of Petr Beckmann, we call this PDF "Beckmann's probability distribution,"
as did Milyutin and Yaremenko (1980). A more descriptive name, the "lognormally modulated
Rician PDF," was used by Churnside and Clifford (1987) and Churnside and Frehlich (1989).

!Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado/NOAA,
Boulder, Colorado 80309.




The Rice-Nakagami PDF is

: 1 1"
P = (r+z! exp{—r—(ru) —} I, {4r[r+l] -.} , (1)
Z é ,

where I is the irradiance, z is the mean irradiance, and I, is the modified Bessel function
(Abramowitz and Stegun, 1964). The lognormal PDF is

P _ 1 1 2)? / 2

NG& = ——— exp|-|Inz+—o0;| /20, |, 2
2n 0,z 2

where of is the variance of Inz, and the mean of z is unity. Beckmann's PDF is given by

P (|r,0%) = f: dz Poy (I |2,7) Py (z]62) . 3)

Subscripts RN, LN, and B are used to refer to the Rice-Nakagami, lognormal, and Beckmann's
PDFs, respectively. In (3), we list the parameters of the distribution on the right of the vertical
bar and list the random variable on the left of the vertical bar.

In Sec. 5, we will show that Beckmann's PDF reduces to the lognormal PDF in the limit
of weak scintillation. For very weak scintillation measured in the atmosphere, the lognormal
PDF has been shown to be accurate (Gracheva et al., 1974; Hill et al., 1988). Churnside and
Frehlich (1989) compared Beckmann's PDF with data from atmospheric scintillation obtained in
very weak scintillation using a 50-m propagation path. They showed that it gives good
agreement with the data for the locally stationary case, in fact, superior agreement compared with
the IK PDF. The IK PDF was introduced by Andrews and Phillips (1985) as a generalization of
the well-known K PDF (Jakeman and Pusey, 1978).

For strong scintillation, Churnside and Clifford (1987) showed that Beckmann's PDF
reduces to the lognormally modulated exponential PDF (abbreviated LNME PDF). The LNME
PDF was introduced by Churnside and Hill (1987), who gave a clear heuristic argument for
applicability of the LNME PDF for the case of strong scintillation and showed that the LNME
PDF is in good agreement with atmospheric scintillation data for the case of strong scintillation
of a diverged wave on a 1000-m path. The LNME PDF is also in good agreement with
numerical simulation of a diverged wave for the case of strong scintillation (Flatté et al., 1994).
Although the LNME PDF is in better agreement with experiment and simulation for the case of
strong scintillation of a diverged wave than is the K PDF (Churnside and Hill, 1987; Flatté et al.,
1994), the LNME PDF is in somewhat worse agreement with simulation for the case of a plane
wave than is the K PDF (Flatté et al., 1994). However, this does not necessarily imply that
Beckmann's PDF is in worse agreement with plane-wave simulation than is the K PDF or the
IK PDF; such comparisons have not yet been performed.

In the limit of saturated scintillation, it is well known that the PDF of irradiance becomes
the exponential PDF (Little, 1951). Churnside and Hill (1987) showed that the LNME PDF
reduces to the exponential PDF in the limit of saturated scintillations, as it should; therefore,
Beckmann's PDF does also. Beckmann (1967), as well as Milyutin and Yaremenko (1980), has
also shown that Beckmann's PDF reduces to the exponential PDF in the limit of saturated
scintillations. For a diverged spherical wave and typical inner scale, the limit of saturated
scintillation requires very long path lengths.

Since PDF models such as (3) have been found to be useful for engineering purposes as
well as in studies of fundamental aspects of scintillation, and since Beckmann's PDF seems to be
a particularly promising PDF for a very wide range of scintillation strengths from very weak to
very strong, it is useful to determine the parameters of Beckmann's PDF. These parameters are r
and oi. The former parameter r was named the coherence parameter by Churnside and Clifford
(1987); the limits of very weak and very strong scintillation correspond to r approaching infinity
and zero, respectively. Once the parameters have been determined in terms of the independent
atmospheric parameters Cf , the refractive-index structure parameter, and {, the inner scale of

turbulence, then Beckmann's PDF can be used in modeling. Fante (1975) recommended
Beckmann's PDF for such applications.

Milyutin and Yaremenko (1980) were the first to attempt to obtain the parameters of
Beckmann's PDF in terms of Cf . However, they did not consider the effect of the inner scale,
which has been shown to be important for quantitative prediction of scintillation for both weak
(Hill and Ochs, 1978; Ochs and Hill, 1985; Azoulay et al., 1988; Frehlich, 1992; Hill, 1992;
Thiermann and Grassl, 1992) and strong (Consortini et al., 1993; Flatté et al., 1993) atmospheric
scintillation. The parameters determined by Milyutin and Yaremenko (1980) were neither
as accurate as desired (even if {,= 0), nor did they present their results in terms of a minimum
number of dimensionless parameters. Churnside and Clifford (1987) obtained the parameters of
Beckmann's PDF in terms of the predictions of the heuristic theory of logamplitude variance.
The heuristic theory was originated by Clifford et al. (1974) and was later refined by Hill and
Clifford (1981) and Hill (1982) to include the effects of inner scale. However, we have shown
that this heuristic theory is not as accurate as is desirable (Hill and Frehlich, 1996). It is shown
in the Appendix that the values of r and 05 given by Churnside and Clifford (1987) are not
accurate.

3. STATISTICS FROM BECKMANN’S PDF

To obtain r and 03 from irradiance statistics, we must establish the following
relationships. Recall that for any PDF, P(I) the moments of irradiance are given by

<I"> = fo"“ dl I" P(I) . @)




Angle brackets denote the average of the quantity within. The irradiance moments of the
RN PDF are easily obtained from (1), (4), and tabulated integrals:

<Is = 2 mn: | 5
RN (r+])" m=0 (n_m)' . ( )
from which we obtain the first and second moments:
<I>y =2 (6a)
<Py = 22 dr+2) [rr )2 (6b)

Applying (4) to Beckmann's PDF (3), we immediately obtain (5) within the integration over z,
and this integration is immediately identified as the moments of the lognormal PDF. Thus, we
obtain the moments of Beckmann's PDF:

3 (n!/m!)? _rr 7

- 1 2
<I">, =(r+D)"exp|l=nm-1o
p = (D p{2 (n-be m=0 (n-m)!

which verifies Eq. (8) by Churnside and Clifford (1987), despite their misprint in their definition
of Beckmann's PDF. The mean of the logarithm of irradiance for any PDF is given by

(Inl) = fo‘” dl Inl P({) . (8)

The logarithm of irradiance is hereafter referred to as log-irradiance. Applying (8) to the
RN PDF (1) and using Eq. (5) in Sec. 2.15.12 of Prudnikov et al. (1986), we obtain

(In 1>RN = g(r) +Inz , 9)

where

g(r) = In[r/(r+ D] + E (r) (10)

and the exponential integral function is defined by

E(r = fr‘”dt tlet (11)

(cf., Abramowitz and Stegun, 1964). Applying (8) to Beckmann's PDF, we obtain (9) within
the integration over z and perform the integration by recognizing the normalization and mean
log-irradiance of the lognormal PDF. We determine that the mean of the log-irradiance from
Beckmann's PDF is

(Inl), = g~ = o] . (12)

B |

Integral tables do not allow us to express the variance of log-irradiance as an analytic formula
analogous to (12). From the irradiance moments (7), we obtain

<I>; =1, (13)

which expresses the normalization of the irradiance, and

2
<I*>p = (2 +4r+2)/(r+1)*. (14)

The moment < [* 2> for p - 1/2 > -1, where  is a real number, can also be calculated
for Beckmann's PDF by use of formulas in Sec. 6.64 of Gradshteyn and Ryzhik (1965). As the
first step for the RN PDF, we obtain

<PV = G2 (15)
where
G = rP ey D12 M () (16)
I' is the gamma function, and M _ 0 is a Whittaker function given in Secs. 9.22 and 9.23 of
Gradshteyn and Ryzhik (1965). Applying (4) with n replaced by p-1/2 to Beckmann's PDF,

we obtain z" /2 within the integration over z, which is performed by noting that for p, a real
number,

1

(7)1 = exp [5 p(p-1) 02| 17)

Therefore, for Beckmann's PDF we have the statistic
-2 - 1 1 31 2
<IHTVE>, = Gp(r) exp[—z- (p 5) (p -2—) g, |, (18)

provided that p -1/2 > - 1. In particular, for p = 0, we use the relationship of M, , to the
modified Bessel function to determine that

<I"?>. = G,(r) exp(30:/8) , (19)




where

Gy(r) = ©'? (r+ )2 e 1,(r12) . (20)

I

4. DETERMINING THE PARAMETERS r AND 0 OF BECKMANN’S PDF

We define the following parameters: A is the wavelength of the radiation; L is the
length of the propagation path; R = Lk is the Fresnel distance; C’ is the refractive-index
structure parameter; and {, is the inner scale of turbulence. The inner scale is the spacing at
which the asymptotic formula for the inertial-convective range of the refractive-index
structure function equals its asymptotic dissipation-range formula (cf., Hill and Clifford, 1978).
The refractive-index spectrum is denoted by ®, (x), where x is the spatial wave number. A
dimensionless function H(x {,) describes the spectral bump and dissipation range of @ (x).

In effect, H(k {,) is defined through the relationship

@ (x) = 0.033C2 k"3 H(x 1) .

We call the irradiance variance in the weak-scintillation limit the Rytov variance and
denote it by oﬁymv. In this limit of very weak scintillation, we have

2 _ 2 2
ORrytov = 07 = Oy = 2<1nl> .

Formulas for oﬁymv in terms of @ (k) for a spherical wave propagating through isotropic
turbulence that is homogeneous along the propagation path are given, for instance, by Eqs. (T8)
and (T26) of Lawrence and Strohbehn (1970). Let x = k R, be the dimensionless wave number,
and let u be the propagation-path position normalized by path length; thus, u varies from O at the
transmitter to 1 at the receiver. Then, (T26) of Lawrence and Strohbehn can be expressed as (cf.,
Hill and Frehlich, 1996)

Oryiov = By 82 (U,/R,) (21a)
where
B2 = 0.496 k76 L'V C? (21b)
and
8% (1,/R,) = 10.5 f; du [* xS Hxty/Ry) sin? [P u(l-wi2]. 210)

The quantity BO is the weak-scintillation variance for an inertial range extending over all wave
numbers (i.e., for ¢, =0). Thus, §%(0) = 1. The dimensionless function &2 (¢ o/Rp) is manifestly
a function of only 1ts one dimensionless argument. Thus, 02(!2 /Ry) gives the effect on
scintillation of the spectral bump and dissipation range of ® (K) in other words, it gives the
inner-scale effect.

The dimensionless quantities of{ymv and {,/R, are used to present our PDFs. Hill and
Frehlich (1996) showed that only two dimensionless parameters are needed to determine the
irradiance and log-irradiance statistics even for arbitrary strength of scintillation.

The logarithm of (14) is

In<I’>y = o + In[(2+ 4r+2)/(r+1)?]. 22)

From (10), (12), and (22), we have

2E(r) + ln[r2 (r*+ 4r +2)/(r+1)4] =2 <1nl>+ln (<I*>), (23)

which is easily solved numerically for . On the right side of (23), we substitute the statistics
from our simulation, namely, <InI> and <I%>, That is, we are requiring that <InI>; = <InI>
and <7 2> = < I*>. Knowing r, we can obtain 0 from either (12) or (22); that is, elther

= 2g(r) - 2(InI) (24a)

or

ol = In[<I%>(r+)2/(r?+ 4r+2)] . (24b)

Alternatively, we can use the moments < %> and </ V2> to determine r and 05. If we
combine (19) with (14), we obtain

(G P2+ 4r+2)[(r + 17 = <I72> <> (25)

This can be easily solved for r given that the right-hand side of (25) is assigned the value
obtained from the simulation. Then, 0 can be obtained from either (14) or (19).

In Table 1, we give r and o2 for the values of 0,/R, and Rytov variance szytov’ for which
Hill and Frehlich (1996) performed simulations. A w1de  range of {,/R is given, but Rytov
variance is given for values less than the maximum of o> ;- Thatis, Table 1 gives r and 0 for
the weak scintillation side of the strong focusing region, although o’ ; reached values as large as
10 in the simulations performed by Hill and Frehlich (1996). As discussed by Hill and Frehlich
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TABLE 1. Values of r (top number) and ©
from (21c¢).

the simulation’s values of <In /> and <I?

0,/R,

(1996), only two dimensionless parameters determine all irradiance statistics for practically the
entire range of atmospherlc -turbulence cases of interest. We have chosen the two parameters to
be {,/R, and oRytov because these dimensionless parameters efficiently display the 1rrad1ance
statlstlcs (Hill and Frehlich, 1996) and therefore also provide an orderly variation to r and 0
that is amenable to interpolation.

However, the Rytov variance depends on both C and (;, as is evident from (ZIa-c)
The second column in Table 1 gives values of 2. Given an experlment in which k, L, Cn , and
0, are spemfled one can immediately determine {,/R,. and BO The second column in Table 1
then gives &% from the value of 0,/Ry. Then (21a) gives the Rytov variance. Next, Rytov
variance and {,/R,. determine r and of from Table 1. Finally, Beckmann's PDF can be

computed by numerical integration of (3).

All values in Table 1 were obtained from <InI> and <I%>, with the exception of the
upper right corner of Table 1, for which </ 2> and <1?> were used. The asterisks in Table 1
indicate that no solution for » was found no matter what combination of two statistics was tried,
including <I°> and <I?>. For instance, for the rightmost two columns in Table 1, the asterisks
correspond to the right-hand side of (23) being less than the lower permissible limit of the
left-hand side, namely, -0.4613. This lower limit corresponds to r = 0, which corresponds to
Beckmann's PDF becoming the LNME PDF. Thus, the LNME PDF should serve as a
replacement for Beckmann's PDF in these cases. On the other hand, the asterisks in the bottom
two rows of all but the two rightmost columns in Table 1 correspond to the right-hand side of
(23) being greater than the upper permissible limit of the left-hand side, namely, zero. This
upper limit corresponds to r = o, which corresponds to Beckmann's PDF becoming the
lognormal PDF. Thus, the lognormal PDF should serve as a replacement for the Beckmann PDF
in these cases. However, the lower right corner of Table 1 apparently contains cases for which
neither limiting form of Beckmann's PDF is accurate, as will be demonstrated by subsequent
figures.

5. ASYMPTOTIC FORMULAS FOR BECKMANN’S PDF

Whereas Milyutin and Yaremenko (1980) and Fante (1975) stated without proof that
Beckmann's PDF becomes the lognormal PDF in the limit of very weak scintillation, they did not
state whether or not their result requires the scintillation to be so weak that Beckmann's PDF and
the lognormal PDFs must both be approaching the Gaussian PDF. Strohbehn et al. (1975)
showed that the RN PDF becomes nearly the same as the lognormal PDF, but that the two PDFs
are only asymptotically equal for the case of such weak scintillation that both PDFs approach the
Gaussian PDF. The analysis by Churnside and Clifford (1987) suggested that Beckmann's PDF
does not quite become the lognormal PDF for weak scintillation. Beckmann (1967) showed in
his Sec. 4.5 that for weak scattering his PDF approaches the rightmost PDF within the integral in
(3), which is denoted by P, in (3). He showed that this is true even if P, is an arbitrary PDF,




not just the lognormal PDF, provided that a certain order of integrations can be reversed.
A different proof that Beckmann's PDF becomes the lognormal PDF for weak scintillation
is given here.

The approach to the weak scintillation limit is obtained when the coherence parameter r
tends to infinity. This is seen from the fact that the right-hand side of (23) vanishes if 1
becomes a lognormal random variable, and that solution of (23) is r = « as the right-hand side
of (23) tends to zero. In the summation within (7), only the m = n term contributes as r - o,
in which case (7) becomes

<I">, -+ exp —;— nn-1)0, | = <I">, (26)

which is recognized as the moments of the lognormal PDF. However, the lognormal PDF is not
determined by its moments of all orders (Strohbehn et al., 1975). Thus, (26) cannot be taken as
proof that Beckmann's PDF approaches the lognormal PDF.

As 7 - o in (1), P(I) becomes vanishingly small unless 7 is restricted to values very near
its mean z; hence, the argument of the modified Bessel function becomes very large. We use the
asymptotic expansion of the modified Bessel function for a large argument, neglect unity relative
to r, substitute (1) and (2) in (3), and change the integration variable to x = ﬁE ; we thereby
obtain

\; (ln1+% o’ - 21nx)?
f‘” deexp |-r(1-x)?%+ —;— Inx - . @7
0

2
20,

r 172

ny2 0,1

Pp) -

As r - «, the integral in (27) is increasingly dominated by values of x very close to unity; in fact,
(1 -x)% must be of the order of » ! as r ~ ». Thus, we may neglect In(x) within the integrand.
After a change of integration variable to £ = \/ (x - 1), we have

PB(I)—»—I—exp[ (1n1+—0)/20} f dt e (28)
ny2o 1

As r - o, the remaining integral in (28) approaches VT, and we see that (28) becomes (2).
In (28), the variance of In/ is given by o ,and <InI>=-g0, 2/2 because <I>= 1. Therefore,
Beckmann's PDF becomes the lognormal PDF for weak scmtﬂlanon

The essential property of (3) is that the one PDF, denoted by Py, has a single maximum

such that it becomes the Dirac delta function &(z -1) as its variance goes to zero, and that the
second PDF, denoted by P, , is modulating the mean, but not the variance, of the first PDF.

10

Given this property, the integrand in (3) becomes d(z -1) P, (z) as the variance of the first PDF
goes to zero. Therefore, the integral over z in (3) is evaluated to give the first PDF.

6. PROBABILITY DISTRIBUTION FUNCTIONS CALCULATED FROM
SIMULATIONS

Our simulations used the spherical-wave algorithm described by Coles et al. (1995).
The Fresnel distance was 10 grid pomts For each realization, we used 20 screens along the
propagation path. For the cases oRytov < 2.0, we used 512x512 grid points per 2phase screen,
and 50 realizations were averaged to produce each PDF. For cases in which ogy, = 5.0, we
used 1024x 1024 grid points per screen, and 15 realizations were averaged to produce each PDF.
Thus, the number of partially correlated irradiance values producing the PDFs was 512x512x
50 = 13,107,200, and 1024x1024x15 = 15,728,640 for the former and latter cases, respectively.

We determine the parameter of the K PDF and of the LNME PDF from the simulations’
values of <I%>. Since <I?> is determined more by large values of In (i.e., by large values
of I) than by small values of In J, it follows that the K and LNME PDFs will fit the simulations’
PDFs better at larger In I than at smaller In /. Had we chosen to fit these PDFs to the simulation
by using statistics such as In7 and <I 2>, then these PDFs would fit the simulation better at
small In 7 because <InI> and <1 2> are determined more by small values of In 7 than by
large InI. To determine the parameters of Beckmann’s PDF, we used the simulations’ values of
<InI> and < 12>, except for one case for which we used <1 2> and <I?>; this one case is in
the far upper right-hand corner of Table 1. Thus, Beckmann’s PDF is fit by one statistic that is
determined by relatively smaller values of In I and one that is determined by larger In I.

The variance of log-irradiance is defined by

op; = {(In1 - (InI))*).

We define o by the square root of the value of 012n ; as determined from a simulation. That is,

o= yon;, (29)

provided that a 31mulat10n determined o,n ;- In contrast, the K, LNME, and Beckmann’s PDFs
have values of 0ln ; that dlffer from o” because the parameters of these PDFs were not
determined to constrain 0ln ; to equal that of a sxmulatlon On the other hand, we determine the
lognormal PDF such that its value of Om ; equals 0. We use 0 to scale the ordinates and
abscissas of our figures.
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The PDF of In I from the simulation data was binned using 2000 biss equally spaced in
InI from InI =-15to 5. We call these bins the elemental bins. No events occurred beyond the
bin limits of -15 and 5. For presentation of our figures, we reduce the number of bins to be
graphed by averaging the PDF over adjacent elemental bins to produce a single final bin. For
ofz{ymv =0.06, five adjacent elemental bins were averaged to produce final bins, and all final bins
are plotted. For of‘{ytov > 1.0, ten adjacent elemental bins were averaged to produce final bins,
and every other final bin is plotted. Furthermore, below a threshold probability level we added
yet more ac%j acent elemental bins in order to maintain a minimum number of events in each final
bin. For Ogy, = 0.06, the threshold was 5 x 1079, and for the other cases it was 10°. Thus, the
final bins may become larger than 5 or 10 (as the case may be) of the elemental bins at a
probability level below the threshold. (For the journal version of the figures, we use the same
procedure for olzzymv = 0.06, but for of{ytov > 1.0 we average 20 elemental bins to form final bins
and plot all final bins; the thresholds are unchanged.)

If there were insufficient remaining events in all the remaining lowest probability
elemental bins, then the binning into final bins ceased. For the small values of In I, the total
probability beyond the final bin of lowest probability is a cumulative probability given by

P[Inl<(nD),] = P Pltn1)], (30a)
j=0

where j is the index of the elemental bins and i is the index of the last elemental bin included
in the final bin having the smallest value of In /. Likewise, for the large values of 1n /, the total
probability beyond the final bin of lowest probability is a cumulative probability given by

2000
P[lnl>(nD,)= T P[UnD),], (30b)

Jek+1

where j is again the index of the elemental bins and k is the index of the last elemental bin
included in the final bin having the largest value of In/. In Tables 2 and 3, we give the values
of the cumulative probabilities (30a,b) multiplied by o and the values of XL and XH, which are
the abscissa values defined by

XL = [(n]), +050%] /0, (31a)

XH = [(InI), +0.50%]/0 . (31b)

Figure 1 shows the line symbol key for the subsequent figures. The subsequent figures
have an inset showing the details of the curves near the peak of the PDFs, as well as an inset
showing the corresponding values of oiytov, lo/RE, B(z), and o. Each simulation's PDF is
graphed as circles with the ordinate value equal to the probability of the final bins multiplied by
o and with abscissa values equal to (InJ + 0.5 6%)/0, wherein In I is the center of the final bins.
The curves for the heuristic PDFs are, in fact, line segments that connect points having abscissa

12

TABLE 2. The simulations’ cumulative probability (top numbers) that is beyond the leftmost
elemental bins included in Figs. 2—-10 and the abscissas’ values of those leftmost elemental bins
(bottom numbers). The top and bottom numbers are calculated from (30a) multiplied by o and

(31a), respectively.

2
GRytov
lo/Ry 0.06 1.0 2.0 5.0

0.0 1.69 E-5 5.19E-4 8.63 E-5 6.49 E-4

-5.590 -9.654 9516 7.557
0.5 3.01 E-5 472 E-4 7.33 E-4 540 E-4

-4.968 9.622 -8.020 -7.096
1.0 0 2.83 E-4 272 E-4 5.07 E-4

-4.581 9314 -8.531 -6.535

TABLE 3. The simulations’ cumulative probability (top numbers) that is beyond the rightmost
elemental bins included in Figs. 2—10 and the abscissas’ values of those rightmost elemental bins
(bottom numbers). The top and bottom numbers are calculated from (30b) multiplied by o and

(31b), respectively.

2
0.Rytov
ly/Rp 0.06 1.0 2.0 5.0

0.0 2.44 E-5 4.02 E-4 324 -5 7.87 E-4

4291 3.406 3.475 3.458
0.5 339 E-5 3.97 E-4 5.77 E-4 1.08 E-4

4.485 3.506 3.343 3.579
1.0 2.62 E-5 9.42 B-4 8.71 E-4 436 E-4

5.030 3.755 3.604 3.443

13
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FIGURE 1. Key to line symbols in Figs. 2-5.
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values equal to those of the centers of the final bins and having ordinate values equal to the
heuristic model's probability integrated over the final bins and multiplied by 0. Thus, on each
figure, the simulation's and heuristic PDFs are all graphed as histograms having identical bins.
On some of the figures, one can see a PDF end within the plotting area; this is because the end
point is at the center of the leftmost or rightmost final bin and no final bins exist beyond that bin.

Our figures are very similar in appearance to those by Flatté et al. (1994). However, our
choice of ordinate and abscissa differs from that by Flatté et al. (1994) and therefore requires
some expianatlon Flatte et al. (1994) presented the PDFs versus (In] - <Inl>)/0, ,, where
<In/>and o, = o>, differ for each PDF plotted. For instance, the exponential PDF has unit
mean irradiance, 0, , =7 //6,and <InI>= -y = -0.58, where y is Euler's number. The curves
plotted by Flatté et al. (1994) are their PDFs multiplied by their PDFs’ respective value of oln I
Plotting the exponential PDF multiplied by ©/y/6 and using (In7+vy)/(n/y/6) as the abscissa
results in the same curve on all graphs. The lognormal PDF has unit mean irradiance and
<InI>=0.5 0ln ;- For the lognormal PDF, Flatté et al. (1994) took 0ln ; to be their simulation's
value for each graph; thus, the lognormal PDF is also the same curve on all their graphs.
However, where the curves for the exponential and lognormal cross on the graphs by Flatté et al.
(1994) does not imply that the two PDFs are equal. Let A be the abscissa value for which their
curves for these two PDFs have a crossing. For the lognormal PDF, the value of In/
corresponding to the abscissa value A is obtained by solving [(In]),, + 0.5 cln o, =4,
whereas for the exponential PDF a different value of In I corresponding to the same abscissa
value is obtained by solving [(In ]), ot v1/ (n/J/6) = A. Consider the ratio of the lognormal
PDF of In/ evaluated at (InI) to the exponential PDF of In I evaluated at (In7)_, exp* The
crossing of the two curves means that this ratio is (n/\/— /o, ,. Although the lognormal and
exponential PDFs are used as an example, the same complicated interpretation of the graphs by
Flatté et al. (1994) applies to all of their PDFs.

We simplify interpretation of our figures by graphing every PDF scaled by its respective
simulation's value of o, and the abscissa for every PDF is (In/ + 0.5 0?)/o,where o is the value
from the respective simulation as defined in (29), and In/ is the value at the center of each final
bin. Thus, if two curves coincide on our figures, then the two PDFs are equal at the same value
of In . In each figure, we choose the lognormal PDF to have the same value of 01n ; as our
simulation. Thus, on our figures, the lognormal is always the same curve and serves as a
reference.

Figures 2a—c respectively show our cases for {,/R =0, 0.5, and 1.0 for our smallest value
of Rytov variance, namely, 0.06. Only Beckmann's, the lognormal, and the simulations’ PDFs
are shown because the LNME and K PDFs do not exist for irradiance variance less that unity.
One can see that the smlulatlons PDFs noticeably depart from the weak-scintillation asymptote
of a lognormal PDF even for oRytOV as small as 0.06 and that Beckmann's PDF is in better
agreement with the corresponding simulation’s PDF than is the lognormal PDF. Increasing inner
scale from Fig. 2a to Fig. 2c causes the PDFs to become closer to the lognormal PDF, even
though the statistical moments change very little as {,/R,, changes. In interpreting these slight

15



0
10 T ' T k T ' T ' T ' T 10° T . | I ' I T 1 * I
Ogyov = 0.06
2 -
» ORyoy = 0.06 » %/Rg =05
10 F  4/R, =00 7 * 10 - o = 0.0488 7
i : - 00600 o = 0.247
o = 0.246 ]
_.2 -
10 ° |+ . 1072 L 4
= 5 ]
é X
- a2
2107 . -3 | B
= 10 E 10
10“4 = = 10_4 L .
10_5 = — 10“5 L .
} L ] H ! L |
-8 -6 -8 -6
(In1 +0.506% /0 ! (In1+0.50%/0
FIGURE 2a. PDF comparison. FIGURE 2b. PDF comparison.
16 17




i,

changes, it must be kept in mind that the lognormal PDF is determined by the value of o,
whereas Beckmann's PDF is determined by the values of <InI> and <I2>.

: Figures 3a—c show our three inner-scale cases for 02Rytov = 1.0. The irradiance variance

0 ‘ exceeds unity for these and all subsequent figures so that the K and LNME PDFs can be shown.
10 l ' - 1 ‘ l ’ ‘ ' ' — The irradiance variance is so close to unity for Figs. 3a—c that the K and LNME PDFs are nearly
equal to the exponential PDF, and the K and LNME PDFs are indistinguishable on the scale of
the figures. Therefore, the K PDF is not shown on Figs. 3a—c. The simulations’ PDFs are clearly
in disagreement with the lognormal, K, and LNME PDFs in Figs. 3a—c and clearly in good
agreement with Beckmann's PDE. An interesting feature of both the simulations’ and
Beckmann's PDFs is that on the left of the peak of the curves these PDFs appear to approach a
straight line as log-irradiance decreases. This feature is most pronounced for {,/R, =1.0 in
Fig. 3c.

Opyov = 0.06
%/R, = 1.0
0.0724
0.246

(@]
|
i
a &,
n )

Figures 4a—c show our three inner-scale cases for oﬁytov = 2.0. The LNME PDF is not
shown on these figures because it is indistinguishable from Beckmann's PDF on the scale of
Figs. 3a,b and would be just distinguishable on Fig. 3¢ with the deviations of the LNME PDF
from Beckmann's PDF being in the direction toward the K PDF. That is, for OR oy = 2.0,
Beckmann's PDF has nearly approached its limiting behavior of becoming the LNME PDF.
Beckmann's PDF is clearly the closest to the simulations’ PDFs in Figs. 4a—, and the LNME
PDF is then also close to the simulations’ PDFs. The greatest deviation of Beckmann's PDF and
the simulations’ PDFs is for the case of largest inner scale in Fig. 4c.

PDF x ¢
o
I(N

Figures Sa—c show our three inner-scale cases for oﬁytov 5.0. The LNME PDF is not
shown in Fig. 5a because it is indistinguishable from Beckmann s PDF. Beckmann’s PDF is
not shown in Figs. 5b,c because fitting its parameters r and o failed for all combinations of
statistics that we tried. In fact, for the case in Fig. Sa, we obtained r and o> from <175 and
< 1> because we failed to obtain these parameters from <In />, <I%>, or any other statistics
that we tried. Essentially, Beckmann's PDF must be forced to be the LNME PDF for cases of
such large irradiance variance. In Figs. 5a—c, we see that the LNME PDF (same as Beckmann's
PDF in Fig. 5a) progressively departs from the snnulatlons PDFs as {,/R, increases (and
therefore as irradiance variance increases since oR oy 18 fixed), although quahtatlve agreement
remains. The K and lognormal PDFs are 31gn1flcantly different from the simulations’ PDFs in
Figs. Sa—c. The K PDF fits the simulations’ PDFs well on the extreme right-hand sides of
Figs. Sa—c and is, in fact, superior to the fit of the LNME PDF in places. Because of the great
difference between the K PDF and simulations’ PDFs on the left-hand side of Figs. Sa—c, we
see that if a statistic that emphasizes small values of log-irradiance is used instead of <I*> to
determine the parameter of the K PDF, then the K PDF would disagree substantially on the
(InI+0.506% /0 | extreme right-hand sides of Figs. Sa—c.

FIGURE 2¢c. PDF comparison.
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7. STATISTICS CALCULATED FROM SIMULATIONS

Before presenting tabulations of various statistics, we show the corresponding integrands
to demonstrate the accuracy of the statistics. Given a function f(In /) of In I, the average of f
is given by the integral of f multiplied by the PDF of In /, that is,

(fnD)) = f “dinl f(nl) PDE(Inl) . 32)

We present the integrands f(In1) PDF(In[) for f =Inl, (Inl - <InI>)% I"Y2 % and I® for
our cases of largest variance. These cases of large variance can cause the integral (32) on a finite
interval to underestimate the statistic. Cases for which all PDFs have accurate values of a given
statistic are not shown in the figures. Each simulation's PDF was calculated using 2000 bins
equally spaced in In7 from -15 to 5. The simulation’s integrands are shown as solid line
segments connecting the centers of these 2000 bins. The heuristic model PDFs were also
calculated at each of these bin centers, and their statistics were calculated by numerical
integration over the 2000 bins from -15 to 5. Of course, the statistics from each simulation were
also calculated in this manner. Although many statistics of the heuristic PDFs can be obtained
from analytic formulas, we have not done so. These analytic formulas are well known and can be
applied as desired.

Figures 6a—c show the integrands for f=InI and the case of largest ofzytov. Only the
K PDF fails to converge on the left side of Fig. 6c¢, indicating that the value of <In /> from the
K PDF is somewhat underestimated for that case. Figures 7a—c show the integrands for
f = (InT - <InI>)2 Again, there are two cases for which the K PDF will give an underestimated
value of of‘n ;» but the other PDFs will give correct values. In Figs. 8a—c, the integrands for
f=1I""2 are shown for 0%y, = 5.0, and Fig. 8d shows the case 0z, = 2.0. Again, the K PDF
will have underestimated values of <1 2> calculated by the numerical integration, whereas the
other PDFs will have correct values. Figures 9a—c show the second-moment integrand, i.e.,
f =12 for oZRytov = 5.0, and Figs. 9d—f show it for oiymv = 2.0. The lognormal PDF has its second
moment underestimated in all these cases, as does the LNME PDF for Figs. 9a,b, and to a much
lesser extent for the LNME and Beckmann's PDFs for Figs. 9a and 9f. Figures 10a—f show the
third-moment integrand, i.e., for f =1 3, The third moment is seen to be underestimated in most
cases, the exceptions being K PDF in all of Figs. 10a—f and the LNME and Beckmann's PDFs
in Figs. 10d,e. The simulations’ integrands for f = I show great variability and lack of
convergence to the abscissa, which indicates that the third moments obtained from the
simulations are underestimated and have significant random error because there are too few
events in the simulations to adequately determine the third moment of irradiance for the cases in
these figures.

Table 4 gives the statistics obtained by numerical integration of the PDFs, including
many footnotes to explain the entries. The simulations’ statistics are accompanied by an error
value if the error was calculated during the simulations’ computer runs. This error is obtained by
calculating the statistic from each realization and calculating the standard deviation of the

29



S00°0—

7000~

¢000—

000~

1000~

G000

1000

G00°0—

¥00°0~

£00°0—

c00°0—

100 0~—

0000

1000

Ul =/ 10] spueI3ou] "q9 HANOL]

[uf
S 0 G- 0l- Gl—
L L L L L T
- | 1 Le9'T = 0 ]
6,90t = 29
50 = "4/%
0§ = "o -
1 1 i 1 1 1 1 1 L _ 1 1 L i 1 1 1 1 1 _ 1 i 1 1 1 i 1 1 1 _ 1 1 1 1 i 1
‘JUf = 10Jspueido] -9 HIANDIL]
a1
q 0 G- OL— Gl —
[P L
- .\\\\-.:/ﬂ.«..ﬂ.’. w ¢ m - ~ = b —
i foA T 0000°S = ¢ |
.__ 00 = ‘4%
0¢ = SEN_O 1

<Jur> J40j

<[ul> J10§

31

30




(<rur>-yjup) = f 10y spueidoju] e/ HANOL]

33

|
Iul
< o> JOo]

i 8ys'T = O .
0000°S M B

00 = 24/%
0 = "o ]

6000

0L00

T
il

1100

N—‘OO 1 1 1 L L 1 L _ ) i i 1 " 1 1 1 1 )] 1 | 1 1 1 1 Il i 1 I J. 1 1 1 1 It ] Il L L i

‘TUl =f 10j spueidoju] 09 HANOL]

500°0- ]

]
=

- A pSs'l
.. €€€09 = 2

o1 =%
oS A0y 0

H

Y00 0—

H

¢000-

32

000~

<Iu[> 10}

L00°0—

0000

1000




A<Tu> - yuy) = f 10J spueisoiy] "o/ FENOL]

0000 pF==
L1000 -
¢00°0
¢000
¥00°0 -
G000 -
8000

35

LO00 |-
80070

6000 -

i
Sl
< *To> Jo]

01070 F

L1100
zL00 F pS8'1 = ©

€100 | €EE0'9 = 2 g

“ .. o1 =%

0¢ = >o&m0 i

$10°0 - N ]

7100

9100 F .

N*‘OO 1 ! 1 1 1 i L L 1 I I L ¢ ! 1 _/\

(<Iup> - up) = f 1oj spuesdepy] -q/ MINOL]

| 00070

1000
2000
€000
¥00°0
S00°0

300°0

34

L0070

1
I
0> J10]

8000

!
u
< [

600°0

0100
L69'T = O i
6L90% = © .

100 i
$0 = "4/%
Y i OW _ >o$m0

1100

¢L00

7100 4

m—‘o.o ! 1 ' ! i 1 i L X | 1 t 1 I 1 . 4 1 It | ! £ £ 1 1 1 L L 1 I 1 I 1 1 L X ! I 1




-l = £ Joj spuei3oyu] qf TINOL]

g
0000
L1000
2000
000
000
G000 |
9000 L1 =2
! 6L90F% = 29 -
{ ....,..... ..\.....\.M m.o = Ad %\ OQ B
' \ .~ _ AOKKY
£000 | 0§ =770 1
wOOO 1 1 1 i 1 i 1 1 Fl _ N L 1 1 1 i i 1 1 _ I 1 1 L 1 1 i ] | _ 1 1 1 1 ] r 1 1 L
"o1-1 = 4 10] spueidajuy ‘eg HUNOL]
G
0000 g
L0000
000
000 m:
] K@
VAN
000 Tl_
[N
L ~.
%)
G000 + v
. q 8¥S'1 = 0
200°0 |- 0000°S = 7 i}
, 00 = ‘4% |
.~ _ hoKky
L0070 | 08 = 2P .
wooo i i 1 1 1 i | Il 1 _ L ] I Il I3 1 i 1 1 J. 1 i I 1 L 1 1 1 _ L 1 X 1 1 I i 1 L




0000

1000

¢000

£000

¥00°0

G000

9000

00070
1000
¢00°0
¢000
¥00°0
G000
9000
£00°0
800°0
60070
0100
1100
¢L00
¢L00
Y100
G100
9100
£10°0
21070
6100
0200

‘-1 = £ 10J spueIsoiu] pg FANOIL]

T

1

LTy =0
€T = of
o1 = 4%

07¢

G-

ACKY 0 —
T

-1 = 4 10] spueidoruy

"8 HANDIA

£ee09
01
oS

i

i

0 4

41% ]
A0y 0
z

[> 10}

<
/11—

< J0
Z/I—I> ’

39

38



0000
¢00°0
¥00°0
3000
80070
0100
¢1l00
7100
3100
8100
0c00
¢c00
¥¢0°0
9¢0°0
8200
0¢00
¢e00
¥<0°0
9¢00
8¢0°0
0v0'0
<v0°0

0000
c00°0
¥00°0
9000
8000
0100
¢L0'0
7100
9100
8100
0c00
2c00
¥c0°0
8¢0°0

8200

I = § 10} spueidai] ‘q HANOL]

L69'1
6L90%
S0

0¢

o = 30J spueidauy e TANOLY

8VS'1
0000°S
00
0s

< I> 40}
2

< [>» J0]

41

40




0000

2000

#00°0

900°0

8000

0100

ZL00

¥10°0

9100

gL0°0

020°0

9500

03800

¥90°0

"I = § 10y spueISoju] pe TANOLY

at

I

=T

I

T

..I....u-....”-..‘_

SIv'l

"I = § 10J SpueISoy 06 TANOLI

1232
££€09
01
oS

< I> J0]

< 1> J0]

43

42



000

100

¢00

0000

¢00°0

¥00°0

9000

8000

0100

¢L00

7100

9100

8100

0¢00

cc00

‘o1 = § 1oy spueidaj] ‘J6 TANOL

[uf

oI = § 103 spueI3ou] o6 HINOLY

[uf

T

I

LTyl = 0
EEIV'T = 9
01 = ‘4%
0T = "o
_ 1 1 2 i i 1
OL-
T _ T T T T T T
SSY'L = 0
o = )
50 = “4/%
0T = "o

< > Jd0]
(4

< > J40]

45

44




oI = f 103 spueidau] ‘qQ FANOL]

000

S0°0

0¢0

47

520

< > J0]

0¢°0

§¢°0

ov0

Sv0 - 1 :

om.o i 1 ) i 1 1 1 1 | 1 1 1 i 1 L ! i A\ | 1 Il L i L i L i 1 | 1 1 1 L il ! 1 1 Il

"¢l = f 10j spueidoyu] ‘eQ[ TANOLI

OOO _ T T T T T T T L T T T T T T T T T T T T T T Y T T T T T T T T T T ¥ T T

G000

< [> J40]
46

0¢0 -
86’1 = 0

szor i g = Mg i
; [4

Om.o 5 L ! i TR 1 1 1 { 1 1 1 1 1 1 L 1 i 1 i ! 1 L 1 L L | L | Il 1 1 i | 1 1 X A




Iat
G- 0oL— Gl

ODO ¥ T T T T ¥ I T T T T T ¥ T T T T Y T T T
00 —
00 ]
900 —
800 _

SIv'l = 0

0000C = 7 7

. 00 = 4/%
0L0 07T = >8¢~_b 1

AN0 B b

] = § Joy spueidoyu] 501 HANDOIL
[ut
. ) G- OiL— Gl—

00 _ L T T T e
10 .m_ ]
¢'0 __ _
i |
co it i
¥'0 .
S0 ]
9°0 | B
O bS8l = O T
€€€0°9 = 7 )
80 : o1 = 4% -
L oS = Aokl i

z
60 [- _
I P 1

L. 1 1 1 1 1. Il i 1 1 1 A 1. \— L. 1 AL 1 1 i i _ 1 1 1 L 1 1

Ot

"¢l = f 10} spuerdoju] ‘po[ FANOLY

< [> J40]
£

< 1> J0]

49

48




0070

S0°0

020

G20 r

"¢l = J 10y spueroyuy ‘JOI TANOL]

—

my -

w
-

0¢°0 =

oI = f 30J spueidojuy 901 HINOL]

¢00

¥0°0

80°0

8070

010

LTyl = 0
€T = 2

o1 = ‘4%

0T = o

_ 1 1 1 1 i 1

OL—

T — T T T T T T
SS¥'l = 0
w9 = 2

50 = “4/%

0z = "o

< I> 10

< 10
E}I> J

51

50




"Add NN 942 99 0} Usye) 9q Ued J(IJ S, UUBUDdag "9SEd STy JOJ PAUTULIA)ep 9q 10U P[nod JJd § uaeun{osg Jo smsyourered oy,
‘S I(d renusuodxo pue AN 9y Se ures oY) A[1eou AIoA SI
AAd X 91 ‘0°T 03 9S00 AISA ST <, ] > 0UIS "JOPIO 98Ie] AIoA JO SUOTOUNY [95S9 PALIPO I0] dunmnol 1yndwod oy Yim swo[qoid Jo asnesaq panduwod 0N,

“PeIR[NOTed 10N,
*OIISIIE]S SY) Ure}qo o} o
posn 9q P[NOJ SB[AULIO] JNA[eUY -UONRISSUI [2oLISUINY 9} JO 95uel Pajlul] 9y} Aq PajodJJe ST oNsne)s 1Y) JO InJeA Y} 18y} MOYS SPUBISSIUT JUSWOW Y, e
*IAd 2y Jo (s)1e10urered o) SUIILISIOP 0) Pasn Sem ONSHe)s SI) JO on[eA S UOHR[NUIS oY,
‘som31y oY} JO SeSSIOSqe PUL SIJRUIPIO Y} S[BIS O] PIsn ST oneA ST,
"31EUINISOIOPUN UE ST < 7> JO SN[eA S, UOLRNUIIS 9y} Jey) SJedIpul SPUBLIOIUT JUSUIOUN SY g
0T > <, > 0] paulyopun dre s d 95°Y) oSNeds9q pajejnofed JON;
# # # N} #  »S80°8ET| I6V'99 & # Ny #  wCLOOLIIBEEY 4 # # ## §5860CTS | < I>
- # o 4 110+ ¥169 - # - 44 800+ SETS - # ok - 900+ 9¢eey <>
# 679t LIST b # osee # 96T OPST U ## VLLT #  9SVT  L9ET #H 09¢€T | <gy-I>
# * ¥88°C 4 00F e # o 120, AR 1000+ ,£88°C |VILE  « 8I¥'T 90¥C LOOOF ,86t°C 0
#  OIL'T- L6T'T- i} 8000+ SIV'I- | 69S°T- THV'I- 8SO'T- 4k S000F T9T'1-}¥9C1- 8611~ +96'0- 0960~ ¥OO'0F 0L60- | <IU[>
p: | T HANT d S S p| T HANT d S S p: | T HANT 4 S S
(€€€0°9°0'T ‘00°S) (6£90'% ‘S0 ‘00°S) (0000°S “0°0 ‘00°S)
ponuUnu0d “} 1AV ],
€86 # # # # o 988°LY | TI6°CT & £9G°8T €L9°8C s iLTVOT|SVOBT & 8CS'IT TTTCT  ## sl It <¢I>
- # o ok 6500+ 8SIV ok # ok o £E0'0+ L9¢¢ o # s ok 8200+ T90°¢ < J>
# LYI'C 0L€T ¥8IT #H 960°C | CLV'T TITT ¢€S1'T 6¥1'T $H STI'T |8STT 8II'C 8LOT €VOT 4 LEOT | <g-I>
1213 4 S LLET 89TT VIOOF ,660CT | T19C 991°C 091C TIOOF LITT |TVET = [L0°C 910C 8000+ ,£00C 0
90T T~ 10T~ E€P60- e 900°0+ 8880~ |9S6°0- 8S0'T- 8E€80 4« Y00'0F 9€8°0- {998°0- T00'T- 06L0 s« €000+ PLLO- | <1Y[>
.1 T HANT 4 S S ! T HANT 4 S S p| T HANT 4 S S
(EETHF'T 0T ‘00D (TLTI'T S0 °0077) (0000°C ‘0°0 ‘00D
69701 TCL'eT €8S°01 T€0El CIETY [ STOL 1eT'€E TLYL 996'8 # ¥89°8 4 # 8699 ¢99°L s 86S°L <¢d>
«~ €887 o ok 100+ LIY'T = O0ETE - LI00F TIL1T 4 8tee o ok 1100+ 1.L0T <JA>
926’1 88Y'1 106’1 S8V'1 #H 9LV’ T | TI€8T SSST  LI8T #9511 ## LTS 0 TILST S6LT 9PST s OvS'T | <gp-1>
9.8'1 ok 7e81 180T S00°0+ ,090T |PEL'T 4 LTLT $0TT 6000+ ,LLT'T 4 % 089'T +ITT LOOOF ,POT'T 20
€89°0- 0£S°0- TL9O- T00°0F ¢€6¥°0- | 1290~ 8860~ 8190~ 4 €000 16V0-] 4+ TO90- S650 000+ 08V0- | <IY> N
p: 1 T HANT 4 S S P! T HANT 4 S S p: | T HANT 9 S S
(L90T'T ‘0'T ‘00°T) (9€18°0 50 ‘00°D) (00001 ‘00 ‘00'D)
§ 86I'I § L6T'1 ## L6t § 00T1 § e61'1 ## €611 § 6611 § 061’1 #H 061°1 <I>
§ 0901 § »  S000°0F C90'1 § £90'1 § 190'T #0000+ 190°1 § 7901 § « £00000F 0901 <>
§ €0l § €01 #H €01 § €201 § €201 #H €0l § €201 § €201 #H €0l <>
§ - § 09500 ¥000°0+ L0900 § ok § 1900 +000°0+ ,190°0 § o § 1900 €000°0+ .090°0 0
§ 0£00 § = C0000+F 0£00- § 0e00 & 0€0°0- ¢000°0+ 0£00-| & 000 & « C0000% 000 | <JUr>
p| T HANT 4 S S p: 1 T HANT 4 S S p: 1 T HANT 9 S )
(FTL00°0°T “90°0) (88%0°0 ‘S0 *90°0) (0090°0 ‘0°0 “90°0)

(%9 ““a/°% <***L0) Jo sonTeA oY) 9T S[oqe] UWIN[0D 35AY) IA0GE SI[dL
pa1apIo 9yJ, "Jd ¥ St Y pue Teuntoudof si T {Jenusuodxs pajeinpour ATfeuriousof st FIANT ‘Jdd S Uuewrjoog St g ‘uone[nuis st g
:$Jd yuRrayyip 03 Surpuodsaiiod sfaqe] uwino)) ‘sy(d SNOLeA 9} JO UONRISOJUI [BOLIOWNU AQ PAUTRIQO SONSTIRIS “p ATAV ],




statistic over all the realizations. These errors are indicative of the variability between
realizations, but they are not confidence limits. Confidence limits require knowledge of the
sample distribution of the statistic.

8. SUMMARY

We have calculated the PDFs of initially spherical waves propagating through
homogeneous, nonintermittent atmospheric turbulence using numerical simulations. We
compare these PDFs from simulations with several heuristic PDF models, namely, the LNME, K,
lognormal, and Beckmann's PDFs. Since Beckmann's PDF is relatively unknown, we investigate
it in detail. In particular, we investigate its asymptotic formulas for weak and strong scintillation,
derive formulas for several of its statistics, and determine its parameters from statistics calculated
from simulations. In particular, we obtain analytic formulas for <InI>; and <I">;, where n is
an integer, and <I*~"2>_, where p is a real number such that p - 1/2 > -1. Beckmann's PDF is
superior to the lognormal and K PDFs when compared to the simulations’ PDFs. Beckmann's
PDF evolves into the LNME PDF for cases of strong scintillation; in fact, we show that
Beckmann’s PDF has become nearly indistinguishable from the LNME PDF for o’f{ytov >2.0.
Deriving the parameters of Beckmann's PDF from two statistics is found to fail for strong
scintillation, but Beckmann's PDF has already closely approached the LNME PDF for these
cases. For such cases, one should take the LNME PDF as the replacement of Beckmann's PDF.
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APPENDIX

Churnside and Chfford (1987) independently derived Beckmann’s PDFE. They obtained
the parameters r and 0 from the heuristic theory of Hill and Clifford (1981). That heuristic
theory is, in turn, a generahzatlon of the heuristic theory of Clifford et al. (1974). Hill and
Frehlich (1996) showed that the heuristic theory gives values of log-irradiance variance that are
in error by as much as 33%. However Churnside and Clifford (1987) used the heuristic theory
in a novel way to determine r and 0 » SO We must examine errors caused by use of the heuristic
theory. For several selected values of cRytov, we read Fig. 2 in Churnside and Clifford (1987) to
obtain their values of 0 for the case {4, = 0. This is the only case for which they graph 0 ; it is
also the only case that 001n01des with our simulations because they used an ad hoc model for
H (x (), which is the dimensionless function that describes the bump and dissipation range of the
refractive-index spectrum. We obtain their value of r from Eq. (26) in Churnside and Clifford
(1987). These values are presented in Table A1. Table Al also gives the corresponding values
of r and 0 as determined from the simulation; these values are rounded values from Table 1.
Also glven in Table A1 are the values of 1rrad1ance variance o, ; =<I*>-1, as obtained using
(14). Table A1 shows the errors in r and 0 caused by use of the heuristic theory. Table Al also
shows that the resulting error in irradiance varlance increases as the condition of strong focusing
is approached.

TABLE Al. Comparison of r and o determined from the heuristic theory with r and 0 from
the simulation. Values of o/ ; from ( 14) are given.

Heuristic theory Simulation
2 2 2 2 2
0Rytov r 0-z 0-I r oz 0]
0.4 5.79 0.12 0.44 7.46 0.15 0.42
1.00 2.05 0.20 0.89 2.41 0.32 1.1
2.00 0.822 0.34 1.5 0.629 0.50 2.1
5.00 0.158 0.57 2.5 0.329 0.81 3.3
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