NOAA Technical Memorandum ERL WPL-212

QUALITY CONTROL ALGORITHM FOR PROFILER MEASUREMENTS
OF WINDS AND TEMPERATURES

Bob L. Weber
David B. Wuertz

Wave Propagation Laboratory
Boulder, Colorado
October 1991

" 30 ATMOS.%FQ/{‘
of %o, UNITED STATES NATIONAL OCEANIC AND Environmental Research
5 DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Laboratories
%% f Robert A. Mosbacher John A. Knauss Joseph 0. Fletcher

% s Secretary Under Secretary for Oceans Director

and Atmosphere/Administrator



NOTICE

Mention of a commercial company or product does not constitute an endorsement by
NOAA/ERL. Use of information from this publication concerning proprietary products
or the tests of such products for publicity or advertising purposes is not authorized.

For sale by the National Technical Information Service, 5285 Port Royal Road
Springfield, VA 22161

il




CONTENTS

ABSTRACT .
1. INTRODUCTION
2. APPLICATION
2.1. Implementation .
2.2. Input and Control
2.3. Output
2.4. Example
3. ALGORITHM
3.1. Main Subroutine
3.2. Input/Output
3.3. Work Space
3.4. Continuity Model
3.4.1. Point continuity
3.4.2. Pattern continuity
4. PATTERN RECOGNITION
4.1. Neighborhood
4.2. Nodes
4.3. Branches

4.4, Grow Branches

iii

Page

8

. 10

11

.13

. 13

. 14

. 14

. 14

.17

. 18




4.5. Branch Connections
4.6. Branch Patterns

. QUALITY CONTROL

o]

5.1. Cutting Branches
5.2, Prunin.g Branches
5.3. Trimming Branches
5.4, Minimum Pattern
5.5. Point Discontinuities
5.6. Interpolation

6. Summary .

7. REFERENCES

iv

. 20

. 20

. 22

.22

.24

. 26

» 27

. 28

.31

.31




Quality Control Algorithm
for
Profiler Measurements of Winds and Temperatures

Bob L. Weber and David B. Wuertz

ABSTRACT. This document describes a computer algorithm that was de-
veloped to control the quality of wind and RASS temperature measurements
from remote sensing radars. It is a manual that gives detailed instructions
on how to implement the computer program and then how to apply the
algorithm to data analysis.

1. INTRODUCTION

This document describes a computer algorithm, called the continuity algorithm, that
we have used to control the quality of wind and Radio Acoustic Sounding System (RASS)
temperature measurements for the new NOAA profiling Doppler radars (Weber et al.,

1990).

This document is intended for a narrow audience primarily of computer programmers
and scientists who are interested in data quality control. It therefore contains details and
technicalities that will be esoteric to the general reader, who would better benefit from
demonstrations of this algorithm (Weber, 1991}. The critical part is contained in Section
2, which explains how to implement and how to use the algorithm. Sections 3, 4, and 5
document the code and explain the concepts embodied in that code. These three sections,
thus, will not be of interest to most readers.

The basic idea behind the algorithm is simple and has general application (Wuertz
and Weber, 1989). That is, data are checked for continuity or consistency, e.g., over height
and over time. In many cases, data found to be inconsistent (by the continuity algorithm)
can be reliably eliminated from further consideration in data analysis. Since the data are
compared against themselves, the continuity algorithm operates on the assumption that
some of the data are good.

We must emphasize that consistency alone is insufficient for determining accuracy
because some errors may be consistent over height and/or over time. Therefore, it is
important to understand the method of measurement. With profilers, the measurements
of winds and RASS temperatures begin with the measurements of Doppler frequency shifts
for backscattered atmospheric signals in radar Doppler spectra. Wind measurements use
clear-air backscattering from refractive index fluctuations caused by turbulence, but clouds
and precipitation also cause backscattiering (Gossard and Strauch, 1983; Strauch et al.,




1984). RASS temperature measurements use backscattering from acoustic waves (Strauch
et al., 1988; May et al., 1990). The natural variability in these scattering mechanisms
causes Doppler broadening of the atmospheric signals, limiting the precision of the radar
measurements. But meteorological variability limits the accuracy (Weber and Wuertz,
1990). These limits on precision and accuracy are fundamental to the profiler instrument
and consistency checks can do nothing to remove these limits.

There are other errors that may be continuous over height and over time that, thus,
are not detectable by a consistency check. For example, Strauch et al. (1987) found that
horizontal wind estimates contained errors when they were not corrected for the effects of
large vertical motion. And more errors are introduced when the wrong vertical velocities
are used to make those corrections. That can happen in convective precipitation (Wuertz
et al., 1988) and in the presence of wave motion (Weber et al., 1991). It can also happen
when ground clutter (even with clutter suppression) biases the vertical velocity estimates.
When these errors are made consistently over height and time, a cousistency check does
not detect them.

2. APPLICATION

In this section, we describe how to use and how to control the algorithm. We recom-
mend that, if nothing else, this section be read carefully in its entirety.

2.1. Implementation

We start at the beginning with the computer code, which is contained in three source
files:

ge.f
gcto. f
gcwork. f

which were written using (nearly) standard FORTRAN. We assume that the user has access
to these files and that he does not have to produce the code from the listings provided in
this document. The user’s driving program is compiled along with the sources in these

files,

The first file, ¢gc.f, contains the main routine gc¢ (Section 3.1}, which is accessed by the
driving program using call gc. This file also' contains all subroutines and function routines
used by the main routine gc. Changes in these routines should be unnecessary unless the
code is found to be incompatible with the user’s compiler.




The second file, gcio.f, contains the common region io (Section 3.2), through which the
driving program controls the algorithm (Section 2.2) and receives the results (Section 2.3).
The only change that may be required in this file is made for the parameter nmaz (Section

2.2).

The third file, gcwork.f, contains the common region work {Section 3.3); work arrays
are used only internally by the algorithm. For computers with serious memory constraints,
we suggest some changes that can be made in this file (see the end of Section 3.3).

2.2. Input and Control

The user inputs data and controls the algorithm by providing values for the following.

nmax

nTmar

ne

nmin
gd

dx

All input and output variables are declared in the file gcio.f. Except for nmaz and nemaz,
all input control variables are established in the driving program.

nmax

The maximum number of data points nmax is set in a parameter statement in the file
gcio.f. It is used to dimension the data arrays in the ie common region and the work arrays
in the work common region. It should be no larger than necessary in order to minimize
memory requirements. It is set equal to the expected largest number of data points.

nemar
The maximum number of independent variables nzmaz is set in a parameter statement

in the file gcto.f. For the present version of this algorithm, always set nzmaz = 2 even if
the data are one-dimensional. I'uture versions will allow other values.



|2

The driver determines the actual total number n of data points being sent to the
algorithm. Keep in mind that n must not exceed nmaz. If sliased data (Section 2.4) are
unfolded, n equals the total of the original plus the unfolded data.

ne

The number of independent coordinates for the data is indicated by ne, which must
not exceed nzmaz. For the present version of this algorithm, nz and nemaz should always
be kept at 2, because the algorithm uses planar interpolation for determining continuity.
This is appropriate for profiler data that are distributed over height and over time. We
plan a future version of the algorithm that uses an arbitrary number of dimensions na.
However, the present version will handle either one or two-dimensional data. With one-
dimensional data, simply set the second independent coordinates to the same value for all
data. Then the interpolation automatically reduces to linear.

nImn

Confidence in any measurement point is established by the number of other measur-
ment points with which it exhibits continuity. The minimum number required for confi-
dence is the quota nmin, the size of the smallest allowable pattern detected by the pattern
recognition in this algorithm. Data in smaller patterns will be indicated as unreliable by
the algorithm. This number is somewhat subjective, but the performance of the algorithm
should not be very sensitive to its actual value. We have used values for nmin as small as
4 and as large as 64, but it should never be less than 1. Start with nmin = n/10.

dy

The continuity of the measurement data is established by using some standard mea-
surement interval dy, whose value represents a reasonable change in the measurements over
the neighborhood interval de. One should view dy/dz as the maximum allowable deriva-
tive for continuous data. Therefore, smaller values are more restrictive, flagging more data
and making the measurements look smoother. Larger values allow more structure in the
data. In the pattern recognition part of the algorithm (Section 4), the differences in the
data values y for neighboring points are compared with dy. A pair of neighboring points
whose difference is less than or equal to dy is said to be continuous, and thus they tend
to fall in the same pattern. A pair of neighboring points whose difference is greater than
dy is said to be discontinuous; therefore, they tend to fall in different patterns. In the
quality control part of the algorithm (Section ), each point may be compared with the
value interpolated from neighboring data points using a least-squares planar interpolation.
Then, a point is flagged when the difference between it and the interpolated value exceeds
dy. The physical units of dy must be the same as those for the data Y.




od

Gross or obvious discontinuities can be readily identified using the gross difference gd,
which must be larger than dy. We have typically used values of gd = 8 dy. This parameter
is used to minimize computation time by allowing entire patterns {e.g., of aliased data) to
be flagged all at once instead of point by point. The physical units of gd must be the same
as those for the data y.

Y

The data (e.g., RASS temperatures, radial velocities, or wind components) are con-
tained in the array

y(1) for i =1, .., n

The algorithm evaluates the consistency of these measurements, the dependent vari-
ables, over the independent variables . The physical units for y, dy, and gd must be the
same,

de

The algorithm compares each point with its neighbors, where the neighborhood size
is determined by

dz(jz) for jo = 1, ..., nz

which should exceed the minimum spacing (e.g., in height or in time) between data points.
We typically allow at least two neighbors on either side in each dimension. When applying
this algorithm to hourly wind measurements by the new NOAA Wind Profiler Network
( reported at 250-m height intervals), we usually set de(1) = 500 m and da(2) = 2 h.
The physical units for dz(1) must be the same as those for z(1...n) and the physical units -
for dz(2) must be the same as those for x(n + 1...2n). Never set dz = 0 even for one
dimensional data.

The independent variables are the coordinates

z(ix) for iz =1+ n(jz - 1)

where je = 1, ..., nz



whose guality is not questioned by the algorithm. For example, z(1, ..., n) may be the
time and z(n + 1, ..., 2rn} may be the heights of the measurements y(1, ..., n}. The
data need not be entered in any particular order so long as the corresponding z and y
values have the same appropriate indices. For one-dimensional data, set all coordinates
for jo = 2 to the same value.

2.3. Output

The algorithm returns only one output result, indicating the quality (or confidence)
for each data point y(7),

gey(z) for 1 =1, .., n

with values from 0 to 100, where lower values indicate greater consistency or quality. We
recomend that, as a rule, data be retained when gey < 10 and be rejected otherwise.
However, more data may be rejected by lowering this cutoff below 10 or more data may be
retained by raising this cutoff above 10. Lowering the cutoff requires greater consistency
of the data. Raising the cutoff requires less.

2.4. Example

The following subroutine ezample is given the radial velocities vr and returns quality
controls gr (0 for good and 1 for bad). The velocities are represented on a uniform grid
over 36 heights and over 10 times. Thus, the height coordinates z(1...n) and the time
coordinates z(n + 1...2n) can be represented in terms of dimensionless indices. (See the
first two do loops.) Of course, these coordinates need not be uniformly spaced. The
height and time intervals da{1) and dz(2) are assigned dimensionless values of 2, giving 24
neighbors for each point. We have been careful to set ne = 2. The radial velocities vr have
values between +vrn, where vrn = 24 m s™!, We set dy = 3 m s~ and gd = 12 m s™*,
as fractions of vrn. The radial velocities vr are transfered to y in the first two do loops.
In addition, since some of the larger radial velocities are suspected of being aliased, we
unfold all velocities whose magnitudes are greater than gd and also include those unfolded
values in y. Note that the original data and the unfolded data have the same height and
time coordinates @. Note also that, without unfolded data, the number of data points n =
360. With unfolded data included, n is larger. Hence, the offset nmaz is used for the time
coordinates = in the first two do loops. Later, in the third do loop the indices are shifted.
This is important. Finally, nmin is equated with one-tenth of the total number of points
n. Then the subroutine ge is called.

subroutine example( vr, gr }
include 'gcio.f’ :

real vr{36,10), qr(36,10)




vrn = 24

dy = vrn / 8

gd = vrn / 2

nx = 2

dx(1) =2

dx(2) = 2

n=>0

doli=1,36
do2j=1,10
n=n-++1
x(n) =1
x(n+nmax) = j
y(n) = vr(i,j)

if( ve(i,j) .gt. + gd ) then

x(n) =1

x(n+nmax) = j

y(n) = ve(i,) - 2 % ven

else if( vr(i,j) Jt. ~ gd ) then
n=n-+1

x(n) =1

x(n+nmax) = j

y(n) = vr(i,j) + 2 * vin

end if
2 continue
1 continue
do3i=1,n

x(i+n) = x(i+nmax)
3 continue
nmin =n / 10
call gc
n=~0
dodi=1,36
do5j=1,10
n=mn-+1
qr(i,j) = 1
if( qcy(n) le. 10 } qr(i,j) = 0
if( vr(i,j) .gt. + gd ) then
n=n-+41
if( qcy(n) le. 10 ) then
vr(i,j) = y(n)
qr(i,j) = 0
end if




else if( vr(i,j) Jt. ~ gd ) then
ne=n -+ 1
if{ qcy(n) Je. 10 ) then
vr(i,j) = y(n)
qr(i,j) = 0
end if
end if
5 continue
4 continue
return
end
include ’qe.f’

Upon returning from the subroutine gc, we use the quality controls gey to flag some
of the data and to replace aliased data with unfolded data. The last two do loops reverse
the logic in first two do loops.

This example illustrates how aliased data can be easily and automatically unfolded.
The gross parameter gd is uged to quickly flag all aliased points (Section 5.1). In fact,
this algorithm can be used to unfold aliased data without controlling the quality of other
data by setting dy = gd. Normally, dy is set much smaller than gd. It is important to
realize though that we can never unfold all the data using this method alone. If all the
data are unfolded and included with the original data, then the algorithm has no valid
basis for determining which data are to be retained. The algorithm attempts to keep the
maximum number of data points that are continuous with one another. This is the basis
on which the algorithm decides to keep some of the unfolded data and to reject some of
the original aliased data. Those rejected aliased data will be discontinuous with nonaliased
data, whereas their unfolded counterparts that are accepted will be continuous.

3. ALGORITHM

'The reader need venture beyond this point only if driven by curiosity or implemen-
tation difficulties. This section describes the main routine, which serves as an outline of
the algorithm (Section 3.1). This section also discusses memory requirements, since that
can be the biggest limitation in the application of this algorithm (Sections 3.2 and 3.3).
Finally, this section presents the continuity model, the fundamental idea behind the algo-
rithin (Section 3.4). All subroutines used by the main routine are presented in Sections 4

and 5.
3.1. Main Subroutine

The main subroutine gc is contained in the file ge.f and is listed below.




subroutine qc
include ’qcio.f’
include ’qework.f’
¢ pattern recognition
call neighbors
call nodes
call branches
call grow
call connections
call patterns
¢ quality control
call cut
call prune
call trim
call weed
return
end

This routine calls 10 subroutines whose functions are outlined below.

I. The pattern recognition is accomplished in the first six subroutines (Sectiond4).

1. The neighbors subroutine {Section 4.1) identifies which points are within
dz of each other (Section 2.2). It also determines which pairs of neighbors
are connected within dy using the continuity model (Section 3.4.2).

2. The nodes subroutine (Section 4.2) identifies those points where branches
are likely to merge and orders them based on the degree of branching.

3. The branches subroutine (Section 4.3) establishes initial pattern units
that consist of points that are interconnected to all other neighbors in the
same branch. Nodes are excluded from branches at this point.

4. The grow subroutine (Section 4.4) assimilates nodes into existing branches
if they are connected to all neighbors belonging to those branches. Otherwise,
new branches are created.

5. The connections subroutine (Section 4.5) computes the average connec-
tion between neighboring branches,

6. The patterns subroutine (Section 4.6) establishes patterns of branches,
which are interconnected. Two branches can belong to the same pattern
without being directly connected, but they cannot be grossly disconnected

(gd).




1. The quality control is accomplished in the last four subroutines (Section 5).

1. The cut subroutine (Section 5.1) flags all points in branches that are
grossly disconnected from the majority of the data. This step is intended to
minimize time spent in the algorithm. Otherwise it is unnecessary because
latter subroutines would flag these points one at a time.

2. The prune subroutine (Section 5.2) flags discontinuous points (section
5.5) one at a time in the smaller patterns next to the largest patterns. This
is done because the largest patterns presumably are those in which we have
the greatest confidence.

3. The trim subroutine (Section 5.3) flags discontinuous peints (section 5.5)
one at a time in the smaller patterns starting with the largest discontinuities.

4, The weed routine (Section 5.4) flags remnants of patterns that were
reduced in size by steps 2 and 3.

Note that include statements are used here (and in all other subroutines) so that the
contents of the files geio. f (Section 3.2) and gecwork.f (Section 3.3) need not be dupli-
cated many times. Most, but not all, FORTRAN compilers should accept these include
statements.

3.2. Input/Output

The input to and output from the algorithm are done through the common region
o, contained in the file gcio.f, which is listed below. The parameters nmeaz and nemaz
{Section 2.2) are set here for purposes of dimensioning the data arrays and the work arrays
(Section 3.3). All other variables in this common region are established by the driving
program (Section 2.2). With nmae = 1440 and with 4-byte real variables, the data array
_y requires 5,760 bytes of memory., With 4-byte integer variables, the quality array gcy
requires the same memory. With namaz = 2, the array = requires twice that memory,
bringing the total memory in this common region to over 23,000 bytes. That is still small
compared with the work arrays in the next section. With some FORTRAN compilers, gcy
can be declared a byte rather than an integer variable, saving some memory.

nmax = maximum number of points
nxmax = maximum dimension of independent variable
n = nuwmber of points
nx = dimension of independent variable
nmin = minimum number of points in pattern
qcy(i) = quality
= {10 : retain
= 11-100 : reject

G a8 O o6 o o6 6 6

10




dy = standard difference between points
gd = gross difference between points
y(i) = dependent variable (i =1, ... ,n)
dx(jx) = maximum separation of points ( jx = 1, ... , nx )
x(ix) = independent variable (ix =i+ n ( jx-1))
byte qcy
integer qcy
integer nmax, nxmax, n, nx, nmin
real dy, gd, y, dx, x
parameter { nmax = 1440, nxmax = 2 )
common /io/ n, nx, nmin, gcy(nmax),
& dy, gd, y(nmax), dx{nxmax), x{nxmax*nmax)

e TN e IR « TR o TN = 2 + ]

3.3. Work Space

The work arrays used internally by the algorithm are in the common region work,
contained in the file gework.f, which is listed below:
nn(i) = number of neighbors
i,j) = neighbors fori ( j =1, .., nn(i) )
i,Ji) = neighbor connection
= 0-10 : connected
= 11-100 : disconnected
no = number of nodes
io(i) = node number fori =1, .. ,n
ioi(j) = 1 ( node order, smallest first, j = 1, ... , no )
nb = number of branches
npb(ib} = number of points in branch
ib(i) = branch number for i
=1,..,nb
ibi(ib(i)) = 1 (] = 1, - , npb(i) )
iob(j) = ib ( branch order, largest first, j = 1, ... , nb )
np = number of patterns
npp(ip) = number of points in pattern
ip(i) == pattern number for i
=1, .. ,n0p
iop(j) = ip ( pattern order, largest first,j = 1, ... , np )
be(i,ii) = branch connection
= 0-10 : connected
= 11-100 : disconnected
gbc(i) = branch gquality
= 0-10 : retain
= 11-100 : reject
byte ic, be, gbe

ni
ice(i,

SN S 0 0 G S8 0 0 8 00 00 006006 666 00 60 606

11




integer ic, be, gbe

integer nn, ni, no, io, ioi, nb, nph, ib, ibi, iob

integer np, npp, ip, iop, gqc

common /work/
& nn(nmax), ni(nmax,nmax), ic(nmax,nmax}, no, io(nmax),
& ioi(nmax), nb, npb(nmax), ib(nmax), ibi(nmax,nmax)},
& iob(nmax), np, npp(nmax), ip(nmax), iop(nmax),
&  be(nmax,nmax), gbe(nmax), gqc
Most of the work arrays are used for pattern recognition, although that information
is utilized also for quality control. The two-dimensional arrays require large computer
memory when the number of points is large. If time is not an issue, the algorithm could
be rewritten to use less memory by simply recomputing certain quantities every time they
are needed. For the present, we merely note the memory requirements hased on the value
nmaz = 1440 (Section 3.2). The largest memory requirement is for the two-dimensional
arrays ni, ic, 1bi, and bc. With 4-byte integer variables, these four arrays require more than
& megabytes each. The reason we use these arrays is to minimize compute time in real-time
applications. That memory is readily available on many virtual memory computers.

Where memory must be conserved, we offer these remedies:

(1) Keep nmaz to a minimum. In our sample application, we used nmaz =
1440 to allow all points n = 720 to be aliased. However, one should never
attempt to unfold all of the data. (See the discussion at the end of Section
2.4.) Use a smaller nmaz and check in the driving program to see if n
exceeds that value. If nmaaz is reduced from 1440 to 1000, there is better
than a factor of 2 memory reduction in the four two-dimensional arrays.

(2) On those machines that allow it, use byte (8-bit) variables instead of
integer (32-bit) variables for gbe, i¢, and be. For example, we developed
this algorithin on a Digital Equipment Corporation (DEC) MicroVAX 111
using the nonstandard VAX VMS FORTRAN. We used byte variables for
the two-dimensional arrays t¢ and be and the one-dimensional arrays gbe and
gey (Section 3.2), since their values can be stored in 1 byte. In this way, the
memory requirement for those arrays is reduced by a factor of 4.

(3) Reduce the size of the second dimension of ni, i.e., use ni(nmaz, mmaz),
where mmaz is the expected number of neighbors for each point. We like
to use about 2 neighbors on either side in each dimension (nz = 2}, giving
about 25 neighbors. Therefore, unless the neighborhood size dz is so large
as to include all points n (which should not be done!), mmaz = 144 should
be suflicient. This gives a factor of 10 memory reduction. A word of caution:
the code contains no checks for memory violations.

12




(4) Reduce the size of the first one dimension of ibi(mmaz,nmaz), where
mmaaz is the expected number of branches. That number is larger for smaller
dy and smaller for larger dy. If we use mmaz = 288, there is a factor of §
memory reduction. A word of caution: the code contains no checks for
mermory violations, so do not make this change casually.

In future versions of this algorithm, we shall pay closer attention to memory reduction
techniques. In developing the present version of this algorithm, we emphasized features in
this order: functionality, speed, standards, and memory.

3.4. Continuity Model

We present the continuity model because a competent user may wish to substitute
another model. This is the way in which the user can most easily and most effectively
change the performance of the algorithm. However, we caution the user so inclined to do
two things before making changes. (1) Carefully examine the simple model presented and
(2) thoroughly test the algorithm using this model.

This algorithm uses two models. One continuity model is used to identify continuous
and discontinuous points and another model is used in the pattern recognition. Both are
contained in the following function routine:

integer function link( y1, y2, dy, model )
yd = abs( y2 - y1)
xd =10+ (yd / dy )
if( model .eq. 1) then
ym = min( abs( y1 ), abs{ y2 ) )
if(yd 1t. ymyrd =rd x (yd / ym)
end 1if
link = min{ 100., rd }
return
end

Continuity information is stored in the link parameter, whose values are restricted to
be between 0 and 100 so that they can be stored in nonstandard byte arrays if desired in
order to preserve memory (Section 3.3). Values from 0 to 10 are used to indicate continuity
and values from 11 to 100 indicate discontinuities in varying degrees. Values larger than
100 are truncated to 100.

3.4.1. Point continuity
The continuity model for identifying continuous and discontinuous points is straight-

forward. That is, the actual data value y at some location is compared with its value y;
interpolated from neighboring points (Section 5.4). If the difference |y ~ y;| is less than or

13



equal to the standard interval dy, then the point is said to be continuous. If this difference
is greater than dy, then the point is said to be discontinuous. Remember that the user
arbitrarily sets the standard value dy and in this way determines which points are identified
as continuous. However, the interpolation makes this model insensitive to the actual value
of dy when the data are continuous.

3.4.2. Pattern continuity

Pattern recognition (Section 4.) starts with the comparisons of all pairs of neighboring
points. If those coniparisons used the same model as that used in identifying discontinuities,
then the pattern recognition would be too sensitive to the value of dy set by the user.
For example, this can cause large wind velocities to be placed in different patterns when
their differences exceed dy even though those differences represent only small fractional
changes. Hence, with this model, two neighboring points with .values y; and y; are said
to be continuously connected if lys — yy{* is less than or equal to dy yn,, where y.,, is the
minimum of |y;| and |y;|, but it is never smaller than the difference |y — yy|. Thus, this
model is not as restrictive as the other model.

Consider two radial velocities of 20 and 22 m s7! and a standard interval of dy = 1
m s, If we used the first model, then link = 20 and the algorithm would treat them as
if they were disconnected and in different patterns. But the second model gives link = 2,
and the algorithm will treat them as connected in the same pattern. Then consider two
other radial velocities of 2 and 4 m s™!, whose absolute difference is the same as the
previous example. Both models give link = 20, and the algorithm will treat them as if
they are disconnected and in different patterns. However, the fact that two measurements
are disconnected does not mean that they are automatically discarded as discontinuous.
To be identified as discontinuous, a point must not be linked with its interpolated value.

4. PATTERN RECOGNITION

This section describes the subroutines that accomplish pattern recognition. Patterns
are recoguized by identifying subsets of the data that are continuously connected in the
sense of the continuity model (Section 3.4). We define two points to be continuously
connected if their derivative is less than or equal to dy/dz, where dy and dz are parameters
input by the user (Section 2.2).

4.1. Neighborhood

Only neighbors are checked for continuity. Two points are considered to be neighbors
when the differences in their independent coordinates = are less than the intervals dz set
by the user. The following subroutine stores the neighborhood information for each point
in the number of neighbors nn and the list of neighbors na:

14




subroutine neighbors
include ’gcio.f?
include 'qework.f?
integer link

model = 1

doli=1,n

un(i) = 0

ic(ii) = 0

qey(i) = 0
1 continue

do2i=1,n-1
do3ii=1i+l,n
ie(i,ii) = 111
ie(ii) = ~111
dodjx =1, nx
X =14 n*(jx-1)
ix =1 4+ n* (jx ~ 1)
if ( abs( x(ix) - x(iix) ) .gt. dx(jx) ) go to 3
4 continue
nn(ij = nn(i) + 1
nnfii) = nn{ii) + 1
ni(i,nn(i)) == i
ni(it,nnfii)) = i
ic(1,ii) = link( y(i), y(ii), dy, model )
ic(ii,i) = ic(i,i)

3 continue

2 continue
return
end

This routine also stores continuity or link (Section 3.4} information in the ie array. For
nonneighbors, ic=-111. For neighbors, ic has values between 0 and 100, which are within
the limits ~128 and 4127 for integers that can be stored in a byte variable (nonstandard)
if desired in order to reduce memory requirements. Smaller i¢ values indicate greater

continuity or connectivity.

Finally, the quality controls gey are initialized. Later, values < 10 are used to indicate
ncceptable, high-quality points and values from 11 to 100 are used to indicate unacceptable,
Jow-quality points, with higher values meaning poorer quality.

4.2. Nodes

The starting points for pattern recognition are the points (nodes) where branches
ineet or join. The subroutine below define nodes to be points that are connected to two

15




or more points that are themselves disconnected from each other:

subroutine nodes
include 'gciof’
include 'qcwork.t’
integer link

model = 1
no =10
doli=1,n
ib(i) = 0
io(i) = 0

do 2 j = 1, an(i)-1
i = ni(i,j)
if( ie(i,ii) .gt. 10 ) go to 2
do 3 k = j+1, nn(i)
il = ni(i,k)
if( ic(i,iii) .gt. 10 ) go to 3

if( link( y(ii), y(iil), dy, model ) le. 10 ) go to 3
else
if( ic(ii,iii) le. 10 ) go to 3
end if :
io(i) = io(i) + 1
3 continue
2 continue
if( io(i) .eq. 0 ) go to 1
1no = no + 1
ioi{no) =1
jo = no
do 4 ko = no ~1,1, -1
if( io(ioi(jo)) .ge. io(ivi(ko)} ) go to 1
ioi(jo) = 10i(ko)
ioi(ko) = i
jo = ko
4 continue
1 continue
return
end

Node information is stored in io. Points that are not nodes have 0 = 0. These non-
nodes form the core of branches (Section 4.3), but initially the branch indicator b = 0
for all points. Nodes have values 10 > 1, with larger values indicating greater branching
or more structure. This subroutine orders the nodes according to the number of possible
branches diverging from them. The order is a measure of local pattern complexity. Higher

16




orders indicate the convergence of larger numbers of branches. The order is stored in 101,
with points having smaller {0 values entering first. Finally, the number of nodes is no.
If no is small compared with the total number of points n, then either the data are very
simooth or the standard interval dy is too large compared with the variance in the data
values. On the other hand, if dy is set too small, then no will be large, approaching the
limit n. Near that limit, pattern recognition is difficult.

4.3. Branches

If one thinks of a pattern as a tree, then one can identify branches in each pattern.
Branches are initially composed only of points that are connected with all neighboring
points of the same branch. As a result, nodes are initially excluded from any branch.
Later (Section 4.4), nodes are asshinilated into existing branches or they become seeds for
new branches. Initially branches identify the most recognizable features in patterns. Then
every point in a pattern will belong to a branch or it will be a node. A pattern may be
composed of a number of branches and nodes, but no branch and no node can belong to
more than one pattern. The number of branches is nb, the number of points in a branch
is npb, the number of the branch to which a point belongs is ¢b, and the list of branch
members is contained in ¢bi. The branches are ordered tob according to their size, from
largest to smallest. The branches subroutine is as follows:

subroutine branches
include ’qcio.f’
include ’qecwork.f’
nb = 0
doli=1,n
if( io(i) .gt. 0 ) goto 1
if( ib(i) .gt. 0 Jgo to 1
nb = nb + 1
ib(i) = nb
upb(nb) =1
ibi(nb,1) =1
Ipb = 0
2 mpb = Ipb + 1
Ipb = npb(nb)
do 3 j = mpb, Ipb
ii = ibi(ub,j)
do 4 jj = 1, nn(ii)
il = ni(ii,jj)
if( iofiii) .gt. 0 ) go to 4
if( ib(iii) .gt. 0 ) go to 4
do 5 jjj = 1, nn(iii)
iv = niiii,jjj)

if( ib{iv) .ne. nb ) go to 5

17




if( ic(iv,iii) .gt. 10 ) go to 4
5 continue

ib(iii) = nb

npb(nb) = npb(nb) + 1

ibi(nb,npb(nb}) = iii

4 continue

3 continue
if( npb(nb) .gt. lpb ) go to 2
job = nb

iob{job) = nb

do 6 kob = nb ~ 1, 1, -1

if( npb(iob(job)) .le. npb(iob(kob)) ) go to 1
iob(job) = iob(kob)

iob(keb) = nb

job = kob
6 continue
1 continue
return
end

4.4, Grow Branches

If dy is sufficiently small, then the branches will all be small and there will be a
large number of nodes. This situation is not conducive to clearly recognizing patterns.
Therefore, branches are allowed to grow, assimilating nodes. Care must be exercised in
this process, though, because it may not always be obvious which node should be attached
to which branch. The routine starts with the lowest order nodes because they presumably
are in regions with less branching. Furthermore, a node can become a member of a branch
only if it is connected to every one of its neighbors that belongs to that branch. When a
node has more than one branch for which it qualifies, then it goes to the branch with the
most connections. New branches are created for any remaining nodes that cannot qualify
for membership in existing branches according to the above criteria. The following is used
to grow branches:

subroutine grow
include 'qcio.f’
include 'qecwork.f’
1 ifirst =0
do 2jo =1, no
i = ioi(jo)
if( ib(i) .gt. 0 ) goto 2
if( ifirst .eq. 0 ) ifirst = i
jobmax = 0

18




i}

jbmax =0
nemax = 0

do 3 job = 1, nb
jb = iob(job)

ne =0
do 4 j = 1, nn(i)
ii = ni(i,j)

if( ib(ii) .ne. jb ) go to 4
if( 1c(i,ii) .gt. 10 ) go to 3
nc = nc -+ 1

continue

if( nc le. nemax ) go to 3
jobmax = job

jbmax = jb
ncmax = nc
continue

if( jobmax .eq. 0 ) go to 2
job = jobmax

jb = jbmax

ib(i) = jb

apb(jb) = npb(jb) + 1
ibi(b,npb(jb)) =
iob{job) = jb

do 5 kob = jobmax ~ 1, 1, ~1
if( npb(iob(job)) .le. npb(iob(kob}) ) go to 2
iob(job) = iob(kob)
iob(kob) = jb
job = kob

continue

continue

if( ifirst .gt. 0 ) then

i = ifirst

nb =nb + 1

ib(i} = nb

npb(nb) =1

ibi(nb,1) =i

iob(nb) = nb

go to 1

end if

return

end

19



4.5. Branch Connections

When branch growth is completed, the connection between branches is computed as
the average connection between neighbors in different branches. The link or bond between
pairs of individual points was important in the recognition of branches. The link or bond
between individual branches is important in pattern recognition. The following subroutine
computes branch connections and initializes the quality ¢bc of each branch:

subroutine connections
include ’qcio.f’
include 'qcwork.f’
doljb=1,nb
be(ibib) = 0
qbe(jb) =0
1 continue
do 2 jb =1, nb-1
do 3 kb = jb+1, nb
be(jb,kb) = -111
be(kb,jb) = -111
nd =0
yd = 0.0
do 4 j =1, npb(jb)
i = ibi(jb,j)
do 5 k = 1, npb(kb)
ii = ibi(kb,k)
if( ic(i,ii) J1t. ~111 ) go to &

nd =nd + 1
yd = yd + ic(i,ii)
5 continue
4 continue
if( nd .eq. 0 ) go to 3
be(jb,kb) = yd / float( nd )
be(kb,jb) = be(jb,kb)
3 continue
2 continue
return
end

4.8, Branch Patterns

Patterns are defined here to be the set of all branches that are directly or indirectly
connected to one another. Neighboring connected branches (with bc less than or equal to
10) are directly connected and, hence, in the same pattern. But neighboring branches that
are disconnected from one another may also be in the same pattern if they are connected

20




o other branches that are in that pattern. However, neighboring branches with gross
conneclions greater than gd cannot belong to the same pattern. Thus, patterns as defined
jiere can be quite convoluted. This subroutine stores the pattern information in the number
of patterns np, the number of points in a pattern npp, the number ip of the pattern to
which a branch belongs; the patterns are ordered iop according to size, with the largest
liaving lowest order. The subroutine follows:

subroutine patterns

include ’gcio.f’

include 'qework.f’

logical find, fail

gge = min( 100., 10 * gd / dy )

np =10
do1jb=1,nb
ip(jb) =0
npp(jb) =0

] continue

do 2 job =1, nb
jb = iob(job)
if( ip(jb) .gt. 0 ) go to 2
np =np + 1
ip(jb) = np
npp(np) = npb(jb)
3 find = .false.
do4kob =1, ub
kb = iob(kob)
if( ip(kb) .gt. 0 ) go to 4
fail = .true.
do 5 lob =1, nb
b == job(lob)
if( ip(lb) .ne. np ) go to 5
if{ be(ib,kb) eq. ~111 ) go to 5
if( be(lb,kb) .gt. gqc ) go to 4
if( be(lb,kb) .gt. 10 ) go to 5
fail = .false.
continue
if( fail ) go to 4
find = .true.
ip(kb} = np
npp{up) = npp(np) + npb(kb)
4 continue

if{ find ) go to 3
iop(np) = np

21



jop = np
do6kop=np-1,1,-1

if( npp(iop(jop)) le. npp(iop(kop)) ) go to 2
iop(jop) = iop(kop)

iop(kop) = np

jop = kop
6 continue
2 continue
return
end

5. QUALITY CONTROL

This section describes those subroutines that assign quality (or confidence) to each
data point. Several steps (subroutines) are involved because quality depends on a number
of factors. The first step flags entire branches that are found to be clearly inconsistent
with the majority of data (Section 5.1). The next two steps are more cautious, flagging
one point at a time (Sections 5.2 and 5.3). If the first step (Section 5.1) were not taken,
then these two steps would flag points, only more slowly one at a time. That first step
is a time saver because it flags entire branches all at once. Finally, insignificantly small
branches are flagged (Section 5.3).

5.1. Cutting Branches

When two branches in two different patterns exhibit obviously large discontinuities,
with branch connection bc larger than the gross value ggc, one or the other of the two
branches is assigned poor quality. The gross value ggc is derived from the gross difference
gd (Section 2.1) in the patterns subroutine (Section 4.8) and generally has a value much
larger than 10. All points in the branch of the smaller pattern are assigned poor quality
equal to the branch connection be. The following is used for cutting branches.

subroutine cut
include 'qcio.f’
include 'qcwork.f’
logical choose(2)
integer jb(2), jp(2)
1 do2jop=1,np-1
jp(1) = iop(jop)
if( npp(jp(1)) .eq. 0 ) go to 2
do 3 kop = jop+1, np
ip(2) = iop(kop)
if( npp(jp(2)) -eq. 0 ) go to 3

22




-

6

do 4 job =1, nb
ib(1) = iob(job)

H{ ip(3b(1)) ne. jp(1) ) go to 4
i qbe(jb(1)) .gt. gge ) go to 4
do 5 kob =1, nb
jb{2) = iob(kob)
if( ip(jb(2)) .ne. jp(2) ) go to 5
if( gbe(jb(2)) .gt. ggc ) go to 5
if( be(jb(1),ib(2)) .eq. =111 ) go to 5
it be(ib(1),b(2)) le. gac ) go to 5
if( npp(jp(1)) -eq. npp(jp(2)) ) then
if( npb(jb(1)) .1t. npb(jb(2)) ) then
choose(1) = .true.
choose(2) = .false,
else if( npb(jb(1)) .eq. npb(jb(2)) ) then
choose(1) = .true.
choose{2) = .true.
else if( npb(jb(1)) .gt. npb(jb(2)) ) then
choose(1) = .false.
choose(2) = .true.
end if
else if( npp(jp(1)) -gt. npp(ip(2)) ) then
choose(1) = .false.

choose(2) = .true.
end if
do6k=1,2

if( .not. choose(k) ) go to 6
gbe(ib(k)) = be(ib(1),ib(2))
do 7 = 1, nph(jb(k))
qey(ibi(jb(k),j)) = aqbc(jb(k))
continue
npp(jp(k)) = npp(jp(k)) - npb(jb(k))
continue
do 8 lop = jop, np-1
do 9 mop = lop+1, np
if( npp(iop(mop)) .le. npp(iop(lop)) ) go to 9
Ip = iop(lop)
iop(lop) = iop(mop)
iop(mop) = Ip
continue
continue
gotol
continue

23



4 continue

3 continue

2 continue
return
end

5.2. Pruning Branches

Ouly the cut subroutine (Section 5.1) controls the quality of entire branches, marking
all points in branches with the same quality. The next two subroutines (this section and
Section 5.3) look for point discontinuities (Section 5.5) in a special order. The present
prune subroutine identifies discontinuities only in smaller patterns next to larger patterns.
It will never identify a discontinuity in the largest pattern unless there is another pattern
of the same size. Therefore, this subroutine attempts to preserve the largest patterns. The
following gives this subroutine:

subroutine prune
include gcio f’
include 'qework.f’
logical choose(2)
integer jb(2), jp(2)
do 1 jop =1, np-1
ip(1) = iop(jop)
if( npp(jp(1)) .eq. 0 ) go to 1
do 2 kop = jop+1, np
jp(2) = iop(kop)
if( npp(jp(2)) eq. 0 ) go to 2
do 3 job = 1, nb
ib(1) = iob(job)
i( ip(jb(1)) ne. jp(1) ) go to 3
if( gqbe(ib(1)) .gt. gqe ) go to 3
do 4 kob = 1, nb
jb(2) = iob(kob)
i( ip(jb(2)) .ne. jp(2) ) go to 4
if( gqbe(ib(2)) .gt. gge ) go to 4
if( be(jb(1),ib(2)) .eq. =111 ) go to 4
i npp(jp(1)) -cq. npp(ip(2)) ) then
if( npb(jb(1)) .It. npb(jb(2)) ) then
choose(1) = .true.
choose(2) = .false.
else if( npb(jb(1)) .eq. npb(jb(2)) ) then
choose(1) = .true.
choose(2) = .true.

else if( npb(jb(1)) .gt. npb(jb(2)) ) then

24




choose(1) = .false.
choose(2) = .true.

end if
else if( npp(jp(1)) .gt. npp(jp(2)) ) then
choose(1) = .false.
choose(2) = .true.
end if
dobj=1,2
if( choose(j) ) call discontinuities( jb(j), ib{3-j) )
continue
continue
continue
continue
continue
return
end

= b G o

5.3. Trimming Branches

This subroutine looks for discontinuous points in the branch that exhibits the worst
‘connection (i.e., with the largest be value) with an adjacent larger branch. This procedure
is repeated for all branches except the largest branch in the largest pattern.

subroutine trim

include ’gcio.f’

include "qework.f’

logical choose(2)

integer jb(2), jbmax(2), bemax

1 jbmax(l) =0

jbmax{2) = 0

bemax = 0

do 2 job = 1, nb-1

jb(1) = iob(job)

if( gbe(jb(1)) .gt. ggc ) go to 2

do 3 kob = job+1, nb
ib(2} = iob(kob)
if( qbe(jb(2)) -gt. gqc ) go to 3
H( be(jb(1),jb(2)) eq -111 ) go to 3
if( be(jb(1 ),}b( )} Je. bemax ) go to 3
jbmax(1) = jb(1)
jbmax(2) = jb(2)
bemax = be(jb(1),ib(2))

3 continue

25




2 continue
if( bemax .eq. 0)
jb(1) = jbmax(1)
jb(2) = jbmax(2)
if( npp(ip(ib(L))) 1t. npp(ip(ib(2))) ) then
choose(1) = .true.
choose(2) = .false.
else if( npp(ip(ib(1))) q- npp(ip(ib(2))) ) then
if( npb(jb(1)) .It. npb(jb(2)) } then
choose(1} = .true.
choose(2) = .false,
else if{ npb(jb(1)) .eq. npb(jb(2)) ) then
choose(1) = .true.
choose(2) = .true,
else if( npb(jb(1)) .gt. npb(jb(2)) ) then
choose(1) = .false. ;
choose(2) = .true.

end if

else if{ npp(ip(jb(1))) gt npp(ip(jb(2))) ) then

choose(1) = .false,

choose(2) = .true.

end if

dodj=1,2

if( choose(j) ) call discontinuities( jb(j), jb(3-j) )
4 continue

be(b(L),jb(2)) = - be(jb(1),ib(2))

be(ib(2),jb(1)) = — be(ib(2).ib(1))

gotol

end

return

5.4, Minimum Pattern

After marking discontinuous branches and individual discontinuous points, some pat-
terns may have been so reduced in size that the remaining points should have reduced
quality. Hence, patterns smaller than nmin are flagged. This weed operation cleans up
scattered fragments left over by the previous operations: -

subroutine weed

include 'qcio.f’

include 'qcwork.f’

do 1 jop = 1, np

jp = iop(jop)

if( npp(jp) .ge. nmin ) go to 1
do 2 job =1, nb

26




jb = iob(job)

if( ip(jb) .me. jp ) go to 2
if( gbe(jb) .gt. gqc ) go to 2
gbc(jb) = 111 _

do 3 j = 1, npb(jb)

i =ibi(jb,j)

if( qcy(i) .gt. 10 ) go to 3

qey(i) = 111
3 continue
2 continue
1 continue
return
end

5.5. Point Discontinuities

The prune (Section 5.2) and trim (Section 5.3) subroutines call this subroutine to
identify point discontinuities., Individual discontinuous points are found by comparing
their data values with all neighboring points whose quality equals or exceeds the quality of
the point in question. The data value of each point is compared with its interpolated value
(Section 5.6) derived from all neighboring points that have not been previously flagged
using the continuity model (Section 3.4). This method for ascertaining continuity is used
because connectivity is determined by the arbitrary control dy. Suppose that data lie
along a straight line with intervals exceeding dy. The points are not connected with each
other but they are certainly continuous because they are connected with their interpolated
values. The following subroiitine finds point discontinuities:

subroutine discontinuities( jb, kb )
¢ this subroutine assumes nx = 2 and does planar interpolation
include ’qcio.f’
include ’gework.f’
logical find, near
integer link
real interpolate, xn(256), yn(256), zn(256)
model = 0
1 find = .false.
near = .false,
do 2 j = 1, npb(jb)
1 = ibi(jb,j)
if( qey(i) .gt. 10 ) go to 2
xo = x(i) / dx{1)
yo = x(i+n) / dx(2)
zo = y(i)
in=10

27



do 3 k =1, nn(i)
i = ni(i,k)
if( qey(ii) .gt. 10 ) go to 3
if( ib(ii) .eq. kb ) near = .true.
in=in+1
xn(in) = x(ii) / dx(1)
yn(in) = x(ii+n) / dx(2)
zu(in) = y(ii)
3 continue
if{ in .eq. 0 ) go to 2
if( .not. near ) go to 2
zi = interpolate(xo,yo,in,xn,yn,zn,dzz)
iq = qey(i)
qey(i) = max( iq, link( zo, zi, dy, model } )
if( qey(i) de. 10 ) go to 2
find = .true.
npp(ip(jb)) = npp(ip(jb)) - 1
2 continue
if( find ) goto 1
refurn
end

5.8. Interpolation

The discontinuities subroutine (Section 5.5) calls the present function routine, which
does a least-squares fit of a linear model to the data. Then that model is used to interpolate
the data to the point in question. The model is a plane for two-dimensional data and a
straight line for one-dimensional data. The present routine assumes ne = 2. It will work
for one-dimensional domains z, though, so long as dz(2) is non-zero and the @ values are
the same for the second dimension.

real function interpolate(xo,yo,nn,xn,yn,zn,dzz)
real xn(*), yn(*), zn(*)

x] = xo0
X2 = X0
yl = yo
y2 = yo

doli=1nn
x1 = min( xI, xn(i) )
x2 = max( x2, xa(i) )
yl = min( y1, yn(i) )
y2 = max( y2, yn(i) )
1  continue
f( x1 eq. x2 ) x2 =x1 4+ 1

28




iyl eq. y2)y2=y1+1
xo=(xo-x1)/(x%2~-x1)
yo={(yo-yl)/(y2-yl)
do2i=1,nn

xn(i) = ( xn(i) ~x1) / (x2-x1)
ya(i) = (yo()) -y1) / (y2-y1)

continue

x = 0.0

y = 0.0

z = 0.0

xx = 0.0

yy = 0.0

zz = 0.0

xy = 0.0

xz = 0.0

yz = 0.0

xm = 0.0

ym = 0.0

zm = 0.0
do31i=1,nn
x = x + xu(i)
y =y + yn(i)
z = z + zn{i)

xx = xx + xn(i) * xn(i)

yy = yy -+ yn(i) * yn(i)

zz = 7z + zn(i) * zn(i)

xy = xy -+ xn(i) * yn(i)

xz = xz + xn(i) * zn(i)

yz = ya + yn(i) * m(i)

xm = amax1( xm, abs( xn(i) ) )
ym = amax1( ym, abs{ yn(i) ) )
zm = amax1{ zm, abs( zn(i) ) )
continue

if( xm .eq. 0.0 ) xm = 1.0

if( ym .eq. 0.0 ) ym = 1.0

if( zm .eq. 0.0 ) zm = 1.0

x =x /( nn*xm)

y =y /(nnx*ym)
z=7z/(nn=*zm)

xx = xx / ( nn * xm * xm )

yy =yy /[ (nn*ymxym)

7z = zz / { nn * zm * zm )

xy = xy / ( nn * xm * ym )

29




xz = xz / { nn % xm % zm )

yz = yz / ( nn % ym % zm )

70 = 7

€0 = ZZ ~ Z ¥ 7

d=XX *Jy -~ XYy # Xy~ X * X *JY + 2 % X * Xy * ¥~ XX * Y %y
if( d .eq. 0.0 Y go to 4

c x and y vary, planar interpolation
a=((xx*yy-—xy*xy )%z + (Xy*y~X*yy ) %Xz
& t(x*xxy-xx*xy)xyz)/d
b=((xy*y-x*yy)*xz+(yy-y*y)*xz
& 4 (xsy-xy)eyz)/d
cm((xxxy—xx*y)kz+(X*xy—XxXy)*xz
& + (xx~x*x)*+yz)/d
e=axa+bsbsxx+crxexyy+2z+2%xaxbxx
& +2*xakcrxy—~2xaxz-+2* xbkcxxy—-2xbxxz-2%cx*yz
if( abs(eo) le. abs(e) ) go to 4
eo = e

zo = a+ bxxo /xm+ ¢ *yo/ym

4 d=xx-x*xX
if( d .eq. 0.0 ) go to &

c x vary only
a=(xx*z-x%xz2)/d
b=(xz-xxz)/d
e=ata-+b*brxx+tzzt+2xaxbrx-2xaxz-2x%bx*xz
if( abs(eo) .le. abs(e) ) goto 5
eo = e
zo = a + b * x0 / xm

5 d=yy-~y=*y
if( d eq. 0.0 )goto 6

c y vary only
a=(yy*z-y*yz)/d
b=(yz-y*z)/d
e=a*a+bxbxyy+zz+2%xaxbxy-2xa*xz-2%bxyz
if( abs(eo) .le. abs(e} ) go to 6

c linear interpolation
€0 = e
zo=a-+ b *yo /ym

6  interpolate = zo % zm
dzz = sqrt( abs(eo) ) x zm
return
end

30




6. SUMMARY

The algorithm presented lhere uses pattern recognition and a continuity model to
control the quality of data. The algorithm provides external controls which the user can
use to affect the results. However, the algorithm was designed to be insensitive to the
precise setting of those external controls.

Weber (1991) achieved very impressive results in applications of the algorithm to
profiler winds and RASS temperature measurements under a wide range of meteorological
conditions over many months of observations. The input control parameters {Section 2.2)
were adjusted to be consistent with the radar operation parameters and with the reasonable
range and resolution of the measurements. The parameters were not adjusted separately
for each individual case, but rather the same parameters were used throughout entire data
sets. No independent meteorological information was used in the case of profiler winds
and RASS temperature measurements.

The computation time is also an important factor. Weber (1991) timed this algorithm
when it was applied to 31 continuous days of wind profiler data. The algorithim was applied
independently to the radial velocities on each of three antenna beams during each hour,
for which there were 10 samples at each of 72 heights, Thus, there was a minimum of
720 points supplied to the algorithm in every case. Whenever the radial velocity exeeded
half the maximum measureable value, the velocity was unfolded and included with the
original data, bringing the total number of points to more than 720. Using a a Digital
Equipment Corporation (DEC) Micro-VAX III running the VMS operating system, the
algorithm averaged less than 20 seconds to process one hour of data for one antenna beam.

Nevertheless, quality control should not be based on continuity alone because many
different processes (and not just the desired one) can exhibit consistency. For example,
if ground clutter or sea echo is mistaken for the atmospheric signals over many heights
and over time, then wind profiler measurements will be very consistent but they will also
be very wrong. This algorithm can be a useful and effective tool when used intelligently
in combination with other quality controls based on the physics of the phenomnea being
observed.

7. REFERENCES

Gossard, E.E., and R.G. Strauch, 1983: Radar Observations of Clear Air and Clouds,
Developments in Atmospheric Science, 14, Elsevier, New York, 280 pp.

May, P.T., R.G. Strauch, K.P. Moran, and W.L. Ecklund, 1990: Temperature sounding
by RASS with wind profiler radars: A preliminary study. IEEE Trans. Geosci. Remote
Sens., 28, 19-28.

31




Strauch, R.G., D.A. Merritt, K.P. Moran, K.B. Earnshaw, D. van de Kamp, 1984: The
Colorado wind-profiling network. J. Atmes. Oceanic Tech., 1, 37-49,

Strauch, R.G., B.L. Weber, A.5. Frisch, C.G. Little, D.A. Merritt, K.P. Moran, and D.C.
Welsh, 1987: The precision and relative accuracy of profiler wind measurements, J. Afmos.

Oceanic Tech., 4, 563-571.

Strauch, R.G., K.P. Moran, P.T. May, A.J. Bedard, and W.L. Ecklund, 1988: RASS
temperature sounding techniques. NOAA Technical Memorandum ERL WPL-158, Wave
Propagation Laboratory, Boulder, CO, 12 pp.

Weber, B.L., 1991 Quality controls for profiler measurements of winds and RASS tem-
peratures. J. Atmos. Oceanic Tech. (submitted).

Weber, B.L., and D.B. Wuertz, 1990: Comparison of rawinsonde and wind profiler radar
measurements. J. Aitmos. Oceanic Tech., 7, 157-174.

Weber, B.L., D.B. Wuertz, R.G. Strauch, D.A. Merritt, and K.P. Moran, 1990: Preliminary
evaluation of the first NOAA demonstration network wind profiler. J. Atmos. QOceanic

Tech., 7, 909-918,

Weber, B.L., D.B. Wuertz, D.C. Law, A.S. Frisch, and J.M. Brown, 1991: Effects of small
scale vertical motion on radar measurements of wind and temperature. J. Atmos. Qceanic
Tech. (accepted June 1992).

Wuertz, D.B., B.L. Weber, R.G. Strauch, A.S. Frisch, C.G. Little, D.A. Merritt, K.P.
Moran, and D.C. Welsh, 1988: Effects of precipitation on UH¥ wind profiler measurements.
J. Atmos. Oceanic Tech., 5, 450-465.

Wuertz, D.B., and B.L. Weber, 1989: Editing wind profiler measurements. NOAA Tech-
nical Report ERL 438-WPL 62, Wave Propagation Laboratory, Boulder, CO, 78 pp.

32 F2U.S. GOVERNMENT PRINTING OFFICE: 1991 - §73-002/41013




