
u.s. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 

Environmental Research Laboratories 

NOAA Technical Memorandum ERL NSSL-57 

NUMERICAL SIMULATION 
OF CONVECTIVEVOR TICES 

Robert P. Davies-Jones 
National Severe Storms Laboratory, NOAA 

Norman, Oklahoma 

Glenn T. Vickers 
Advanced Study Program 

National Center for Atmospheric Research 
Boulder, Colorado 

National Severe Storms Laboratory 
Norman, Oklahoma 
November 1971 

Property of 
NWC Library 

University of Oklahoma 



TABLE OF CONTENTS 

Page 

ABSTRACT v 

1. INTRODUCTION 1 

20 MATHEMATICAL FORMULATION 3 

30 LINEARIZED SOLUTIONS 6 

40 NUMERICAL METHOD 8 

50 RESULTS 11 

501 Selection of Flow Parameters 11 

502 Test of Stretched Coordinate System 12 

503 Case with Rigid Bottom Surface (K=O) 13 

504 Case with Free Bottom Surface 19 

505 Effects of Varying Flow Parameters 23 

60 CONCLUSIONS 24 

70 ACKNOWLEDGMENTS 25 

I 80 REFERENCES 26 

iii 



il 
:) 

NUMERICAL SIMULATION OF CONVECTIVE VORTICES 

Robe~t P. Davies-Jones 
National Severe Storms Laboratory, NOAA 

Norman, Oklahoma 

and 

Glenn T. Vickersl 

Advanced Study Program 2 
National Center for Atmospheric Research 

Boulder, Colorado 

ABSTRACT 

We present a numerical model of axisymmetric thermal 
convection with swirl in a non-rotating cylinder with height­
to-radius of order unity. The top and bottom are kept at uni­
form temperatures, and the rim is assumed .to be a perfect 
insulator. In general, the top and the rim are free boundaries, 
while at the bottom we apply either no-slip, no-stress, or the 
turbulent conditions used by Kuo (1971). Initially, the fluid 
is unstably stratified and swirling, and the subsequent flow 
is determined by numerically solving the initial value problem. 
The model is crudely applicable to dust-devils although the 
top and side and the use of constant eddy diffusivities are 
unrealistic features. 

We show how Arakawa's conservative scheme for the 
Jacobian can be generalized to an irregular mesh. We are thus 
able to improve the resolution in the boundary layers without 
increasing the number of grid points. 

Within certain ranges of the flow parameters, the flow 
consists of a one-cell meridional circulation, and forms a 
transient concentrated vortex near the axis. With a non-slip 
bottom, the vortices are comparable in angular velocity ampli­
fication ( ~ 30 times initial value) with those obtained by 
Leslie (1971), using a similar model but with externally 
supplied buoyancy. With a free bottom, we get amplifications 
of up to 300 times. 

1 On leave from the Department of Applied Mathematics and Computing 
Science, The University of Sheffield, England. 

2 The National Center for Atmospheric Science is sponsored by the 
National Science Foundation. 
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~IT1ERICAL SIHULATION OF CONVECTIVE VORTICES 

'Robert P. Davies-Jones·' and Glenn T. Vickers 

., 1. INTRODUCTION' 

Concentrated vortices have been generated successfully in the lab..;.. 
oratory by a number of investigators. The rotation introduced into th~ 
system by rotating a tank of water (Long, 1956, 1958; Turner and Lilly, 
1963; Turner ,1966) or an outer screen if air" is the working fluid 
(Barcilon, 1967; Ying 'and Chang, 1970; ward, 1970) is concentrated into 
a vortex by establishing meridional circulationsin'the fluid. The 
driving mechanism is provided by extracting fluid from the top or bottom 
of the apparatus (Long, Yingand Chang, Ward), by the drag of rising gas 
bubbles released near the axis of the tank (Turner'iind'tilly, Turner),·or 
by heating the bottom plate (Barcilon). Although allinaintain constant 
rotation to achieve a steadystate~'Ward (private communication) has 
demonstrafed'that a transient vortex is formed when the screen~ initially'· 
at rest, is given a small impulse. 

Theoretical vortex models, on the other hand, have not'been nearly 
as successful. The steady state similarity solutions, generatec,i by . 
Burgers (1948), Gutman (1957), Sullivan (1959), Kuo (1966), and many others, 
while ingenious, suffer from important drawbacks, notably non..;..satisfaction 
of boundary conditions both at the ground where siip occurs (with the 
exception of Serrin's (1971) solution) and at infinity where th~ vertical 
velocity is genera1iy infinite. However, Turner (1966) has b~en quite 
successful in approximately matching a boundary layer solution to ?D. ..... 
interior solution. By assuming that pressure deviation fr<?ma basic' state 
is a function of radius only, solutions such as Kuo's (1966) also fail in': 
the zero 'order to represent the inhibiting effect that the centrifugal·· 
force has on the convective meridional circulations. Similarity solutions 
are also unable to describe the time evolution of a vortex during its 
developing stages. Only Gutman (1957) and Kuo (1966) include thermo­
dynamic buoyancy forces and attempt to model atmospheric vortices. Kuo 
obtains both one and two-cell solutions, but the downdraft in his two­
cell vortex is cold (not likely for reasons pointed out by Lilly, 1969). 

With the advent of fast computers it is now possible to attempt 
numerically the time dependent problem of vortex formation, starting from 
suitable initial conditions. There have been various previous investi­
gations. Inman (1966) has generalized Ogura's (1963) numerical study of 
a moist convective element released in a shallow, conditionally unstable 
atmosphere by introducing rotation. Unfortunately, he was not able to 
integrate long enough to reach a steady state, his' numerical scheme was 
neither energy nor vorticity conserving, and the boundary conditions 
were not realistic as the bottom is free while on the side zonal velocity 
is fixed but the vertical shear stress vanishes (Le., the side is neither 
free nor rigid). Work on this model has been continued by Wilkins, 



Sasaki and Schauss (1971). If we define a swirl amplification factor, S, 
as the ratio of the maximum swirl velocity ever attained to the maximum 
swirl velocity present initially, and r as the radius at which this 
maximum swirl velocity is reached, thenmi3 their model S is less than two 
(although it is presumably still increasing at termination) and r is 
typically one-tenth of the radius of the system. The convective ~~tls 
in the atmosphere which form tornadoes and dust-devils probably ar.e much 
more efficient at concentrating vorticity. 

Leslie (1971) has numerically simulated the carbonated water vortex 
experiments of Turner and Lilly (1963) and Turner (1966) [b"ut at higher 
Rossby number]. He used the conservative numerical schemes devised by 
Arakawa (1966) and integrated to a steady state. He obtained values of 
S of 2.2 for a free top and 2.9 for a rigid top, with r approximately 
equal to one-tenth of the tank radius. His work is notma!rectly applicable 
to the atmosphere because the fluid is in a rotating tank, and because 
he was forced to maintain an artificially prescribed buoyancy force in 
the neighborhood of the axis to simulate the drag of rising gas bubbles. 

In addition, Wippermann, Berkofsky and Szillinsky (1969) have 
investigated numerically the formation of a tornado funnel under an 
intensifying vortex. However, as pointed out by Leslie, Morton and 
Smith (1970), the development of the funnel was greatly speeded up by an 
artificial generation of vorticity created by their numerical scheme. 
It therefore seems vital to use a conservative scheme. 

In our work we model Kuo's idea (1966) that pre-existing ambient 
vorticity is drawn inward and concentrated by thermal convection. Our 
work differs from Leslie's in that the buoyancy force, driving the 
meridional circulations, is thermal in origin and is maintained by keeping 
a constant temperature difference between the top and bottom plates of 
a cylinder containing air. We thus have an extra equation, describing 
the thermodynamics of the system, to lift. the restriction of a prescribed 
buoyancy force. Note that the formation of a strong vortex may be 
hindered here by the breakdown of the meridional circulation into two or 
more cells. These two cell solutions are undesirable: they do not 
resemble a two cell vortex since the inner cell is comparable in size with 
the outer cell, and the vortex that eventually forms is contained in the 
downdraft of the inner cell. In addition, the outer rim is not generally 
rotated so that angular momentum is supplied only through initial swirl, 
and the vortex that forms is transient rather than steady. 

Our model applies very crudely to the formation of (stationary) 
dust devils although it contains many features not found in the atmosphere 
such as an artificial isotherma~ lid, an isothermal ground, artificial 
side boundary to close the system, constant eddy diffusivity, and inade~ 
quate resolution of the thin thermal boundary layer which exists next to 
the ground under dust-devil conditions (Ryan and Carroll, 1970). 
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2. MATH&'1ATICAL FORMULATION 

Ogura and Phillips (1962) showed that over depths of 3 km or less 
in the atmosphere the Boussinesq approximation is valid. After making 
this approximation, introducing terms for the turbulent eddy mixing of 
momentum and heat, and assuming axisymmetry, their 'ane1astic' equations 
become (in cylindrical coordinates) 

(1) 

. dV + u dV + w dV + ~ = v I..iv - rV2) 
dt dr. dZ r \' 

(2) 

dW dw dW dn' n et1 2 - + u - + w ~z = - c e -- + ~ + vV w dt dr 0 p dZ e (3) 

(4) 

d(ru) + d(rw) = 0 
dr dZ 

(5) 

where u, v, ware the velocities in the r, ~ and Z directions, cp is 
the specific heat at constant pressure, ~ , is the deviation of potential 
temperature from that in a dry adiabatic atmosphere of constant potential 
temperature e , g is acceleration due to gravity, v and K are the eddy 
viscosity and thermal diffusivity which are assumed to be equal constants, 

Ric . 
and TI' is the deviation of TI[=(p/P) p where R is the gas constant for 
dry air, p is pressure and P is a constant reference pressure (1000 mb)] 
from that in the dry adiabatic reference atmosphere. Note that,a~ter 
Leslie (1971), we assume that we can neglect variations of dens~ty in the 
centrifugal force, and deformation of the free top. 

We assume that the air is bounded vertically by an isothermal ground 
(z = 0) and a free layer at Z = H which is maintained at temperature e . 
To obtain a closed system we place a side boundary at r = L, the effect of 
which is minimized by assuming that it is free and insulating so that only 
the normal component of velocity vanishes there. L/H defines the aspect 
ratio of the cylindrical flow region. At the ground we adopt the turbulent 
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boundary conditions on velocity used by Kuo (1971), applicable at the top 
of the laminar sub-layer. In summary, the boundary conditions are 

u -

dU 
oz 

K ~ = v - K dV 
dZ dZ 

ov az = w cp' 

w 

a 

u = ~ (:!.-) = ow = ocp' = a 
or r· or or 

0, ,+-' yH at Z o 

at Z H 

at r = L 

where K is a constant (= 0 for no-slip, = 00 for free boundary) and y 
is the mean potential temperature lapse rate between Z = 0 and H. Note 
that if an identical turbulent boundary condition on temperature had 
also been chosen, the limit K = 00 would not have any interest since the 
ground would then act as a perfect insulator. Other boundary conditions 
were also tried, and are described later. In addition, we require that 

u = v = ow = ocp' = a 
dr or 

at r = 0 (axis). 

We define non-dimensional variables (denoted by the subscript*) as 
follows: 

_ -1 
(r ,Z ) = H (r,z) 

* * 
-1 -1 

(u*,v ,w ) = R HK (u,v,w) * * a 

cp' = (yH)-lcp' 
* 

-2 
t* = KH t 

~. -1 
where R is defined below. [We discovered later that R H K would 
have be~n a better choice for characteristic velocity.]a Henceforth, we 
shall drop the subscripts and assume that these variables are non­
dimensional unless otherwise stated. 

If, in addition, we introduce theStokes'sstreamfunction, ~, 
given by u = 1. d~ w = _ 1. ol/J and form the equation for 11 , the <p 

r dZ' r or' . 
component of vorticity (= dU _ dW) we obtain the following set of 
equations - dZ dr ' 
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R [J dV a 2 v 
- = - J (vr 110) +cr V v - -dt 2 rz· ,'I' 2 

r r 

'"I' R 2 
~- ~ J (' 110) + V rro' d t - r rz cP ,'I' 'I' 

where J ,the Jacobian operator, is defined by rz 

) =~.£s_~~ Jrz(p,q - dZ dr dr dZ ' 

_ . -1 4 -1 . 
R = g8 yH (KV) is the Rayleigh number, and cr = V/K is the eddy 
P¥andtl number (assumed to be 1). 

In terms of n,v,cp' and ljJ, the boundary conditions are 

ljJ = dljJ _ K d
2

ljJ = v _ K ~vz = 0, 
dZ dZ2 a 

cpr 1 

ljJ = d
2

ljJ = dV = n = cpr 
dZ2 dZ 

o 

ljJ = dljJ = v = n = dCP' = 0 
dr dr 

We use the following initial conditions at t = 0: 

u = w = ~ = n = 0 

v = Or cos[A(z-l)] 

5 

at Z = 0 

at Z 1 

at r = L/H 

at r 0 

(6) 

'(7) 

(8) 

(9) 

(10) 

(11) 



where A is the smallest positive root of cot A - lC~ = ° [i.e., each 
layer of the atmosphere is initially in solid body rotation but the 
rotation rate varies with height (except when K = ~ ) to accomodate the 
bottom boundary condition]. 

Also 

cpt 

or 

l-z + cp cos(n Hr/L) sin (nz) 

, 
cp 

exp (5 (l-z» - 1 

exp 5 - 1 

('12) 

(l3) 

/I 
When cp ~ 0, we choose it positive as then the initial radial temperature 
gradient is negative and fluid starts rising on the axis and sinking at 
the outer rim. Equation (12) represents a sinusoidal disturbance imposed 
on a constant potential lapse rate atmosphere. Equation (13) models an 
atmosphere with an initial exponential stratification, and takes partial 
account of the strong increase of lapse rate near the ground observed 
under dust-devil conditions. 

When K = co (all free boundaries) .the mean angular momentum of the 
fluid is conserved. For finite values of ~ it decays, but only slowly 
since the characteristic diffusion time, H IK is large compared to the 
advective time scale (- H/lwl or L/lul). 

It is convenient here to define a Taylor number T = 4 n~ H4/v2 
where nd is the (dimensional) initial rate of rotation of the top surface. 
In terms of dimensionless quantities T = 4 n2 R21a2 . 

a 

3. LINEARIZED SOLUTIONS 

Solutions to the linearized equations can be obtained in the 
special case where K =co and the basic steady state is one of solid 
rotation, and constant (negative) temperature gradient if we replace the 
boundary condition dv/dr - vir = ° at r = L/H by v = n(L/H) ~s Inman did). 
The solutions for perturbations from the basic state (denoted by primes) 
are 

Cest 
J (kr) sin mnz 

o 

6 

(14) 
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u' -ninS 2 
kR a st Ce Jl(kr) cos mnz (15) 

2mnSG S2 
k R Sl a v' 

where C is an arbitrary constant ,Sl == (s + ak
2 + CJm

2n2), S2 == (s + k2 + 
m = 1,2 etc. and k is given by the condition that kL/H are ~he positive 
zeroes of Jl(x). The results are similar to those obtained by 
Chandrasekhar (1961) for convection in a rotating thin unbounded 
horizontal layer if k is replaced by horizontal wave number (continuous 
in his case). Chandrasekhar·shows that for (J 2: 1 there are no over­
stable modes. This is reassuring (although it may not be true for 
other boundary conditions) since the phase speeds of overstable modes, 
if comparable to the particle velocities, would further.restrict the 
size of the time increment in the numerical integration. For (J = 1, 
the growth rate is given by 

s = ± or _k2 _ 2 2 mn. 

and a given mode is unstable if 

R k2 _ m2n2 T > (k2 + m2n2) 3 
a 

Note that the rate of conversion of meridional into zonal kinetic . _.. ·2 
energy, -2nR

a
ff u'v' dr dz, is positive for s > O. The ratio, 

rw'~' dr dz, varies as T/R3 and is explicitly 
a 

independent of s when (J = 1. Thus, a larger fraction of potential 
energy is converted into zonal kinetic energy (via the meridional 
circulation) at higher Taylor or lower Rayleigh number. 

2 2 m n ), 

Equation (16) shows that for C > 0 (i.e., those modes with hot fluid 
n.sl..ng off the bottom at the axis), swirl enhances the initial tendency 
toward falling pressure at the foot of the axis. 
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4. NUMERICAL METHOD 

To avoid 'non-linear instability' in the numerical computations, 
the Jacobian terms must be formulated by a second order scheme which 
conserves at least one quadratic quantity (Arakawa, 1966). He use 
Arakawa's scheme which is devised for a regular square (or rectangular 
with a simple generalization) mesh and conserves the following four 
properties of the Jacobian for a closed system (i.e., ~ = 0 on 
boundaries): J (a,b)+J (b,a)·=/J (a,ljJ»=/aJ (a,ljJ)'= rz . rz '\' rz ,.. rz / 

~~rz(a,ljJ~ = 0 where the angular brackets denote mean value over a 

radial cross-section of the cylinder. From (6) - (8) we see that our 
finite difference forms of the Jacobians conserve the cross-sectional 
mean of T) , a radially weighted mean of T)2 , and volume means of cpl,.cp,2, 

vr (angular momentum), vZrZ and meridional kinetic energy (- t (\jJn) 
as well as other quadratic quantities with less obvious physical inter­
pretations. In contrast, Williams (1967) and Leslie (1971) write the 

terril ~·J(vr,ljJ) in (7) as .!J(v,ljJ) - ~1jJ Vz and conserve zonal 
r r oZ r 

velocity and zonal kinetic energy instead of angular momentum. [They 
also use schemes for J(v, W ) and J(cpl~W ) which satisfy only two 
integral constraints (the physically obvious ones) arid do not conserve 
the anti-symmetry property of the Jacobian.] 

If the forcing and diffusion terms are ignored, all three prog­
nostic equations are of the form 

where 

J (a~) = da ~ da dljJ 
rz' dZ dr - ar az . 

Consider the transformation of co-ordinates from (r, z) to (R,Z) where 
R = R(r,z) and Z = Z(r,z). From elementary properties of Jacobians we 
have that 

d(R,Z) 
J (a,ljJ) = J RZ (a,1jT) de ). rz r, z 

The transformation is always, chosen so that iri (R,Z)-space we have a 
regular, square mesh of points. Consequently, it is possible to use 
Arakawa's. sch;:me for J RZ (a, ~ ). A typica~ quantity that we wish to 
conserve 1S ~ the mean value of a. If A 1S the area and name of the 
region in the (r,z)-plane in which the fluid motion takes place, and if 
A' is the corresponding region in the (R,Z)-plane, then 
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A aa = f[J (a, ~)dr dz = at rz 
jj(f J '( ',/1) 'laCr'z)ldR dZ 
A' rz a,,¥ a(R,Z) , 

We shall only consider transformations such that the Jacobian of the, 
transformation is positive, i.e., ,one-to~one mappings between (R,Z) and, 
(r,z). Thus 

A ~a = . ff J
RZ 

(a,lJI) dR dZ. 
ot A' ' 

But since Arakawa ',s scheme is being used we know that the numerical 
analog of this integral is zero (except, possibly; for contributions 
from boundary points) and thus a is a constant, as required. The same 
method obviously applies to the other quantities of interest. 

The general transformation described above 
points anywhere in physical space. However, it 
cluster points into the boundary layers. Thus, 

suffice to have R = R(r) and Z = Z(z) where R' 

allows us to' clus'ter 
is usually sufficient to 
in this case it wiil 

dR dZ 
== - and Z' == - are dr dz 

positive definite. The functions Rand Z should be as smooth as possible. 
We chose the formulae given by Schulman (1971). Since we effectively 
have boundary layers at the axis and on both horizontal surfaces we, chose 

Z = cl(az + tanh ~ + tanh z-l + Q ) 

l sl s 1 1-'1 

R = c2 (c/'2 r + tanh :2 + B2) • 

(We should also have improved the resolution at the rim since the return 
flow tends to concentrate there - see figure 3 for example.) The eight 
constants were chosen such that 

Z(O) = 0, 2(1) = 1, 

R(O) = 0, 

Z' (0) 

R' (0) = D
1

, R,(L) 
, H 

Two pairs of values were tried forD1 andD2 , viz. 

These will be referred to in Section 5 as "severe stretch"'and "moderate 
stretch" cases, respectively. 

We define (non-staggered) grid points by 
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R. 
1 

Z. 
J 

(i 

(j 

1) d i 0,1, ... N + 1 

1) d j 0,1, ... M + 1 

where d, the grid interval in stretch space, is chosen equal to the 
smallest grid interval in real space. Points with i = 0, i = ~+1, 
j = 0, j = M+l are exterior points used to satisfy boundary conditions. 
All space derivative terms apart from the Jacobians are represented by 
the usual three point centered difference formulae. 

We use Euler I s method to advance 11 , v and cpt through the first 
time step, and the leap frog scheme for all subsequent time steps. The 
diffusion terms are lagged one time step to avoid computational 
instability (Richtmyer, 1957, p. 94). Provision is made in the program 
for keeping ~t large without coming too close to violating the 
stability criteria (which are only approximate); 

J 
dZ dZl 

~ t < Min 8cr' 8 ~ 

Max JI u I ~ I w II ~ t < 1 

[ignoring the possibility that gravity-inertia oscillations, possibly 
of large amplitude since we do not, in general, perturb about a steady 
state, or overs~able modes may restrict ~t still further]. We also 
avoid time splitting by averaging the variables over adjacent time 
steps every twentieth step. 

Values of cpr on the axis are obtained by using L'H8pital ' s rule 
to rewrite (8) in a form suitable for use on the axis (i.e., free from 

singularities). We also need to substitute .! J (n ,.l/J) + nz ~l/J for 
r r oZ 

J( ~,l/J) at points where r = d since the finite difference form of 

J ( ~, l/J) is indefinite there. 

The general integration procedure is as follows. We apply the 
marching technique to update cpl, v and 11 at all interior and some· 
boundary points. We use the boundary conditions to determine the 
remaining boundary values and exterior values (as needed), except 
for values of 11 along the bottom boundary which are indeterminate as yet. 
We update W by solving (9) with W = 0 on the boundaries by over-relax­
ation. The additional boundary conditions on W determine W at exterior 
points, and enable us to complete the integration by evaluating 11 on 
the bottom from (9) and the updated W-field. 
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5. RESULTS 

5.1 Selection of Flow Parameters 

The flow depends on the Rayleigh number, the Taylor number, the 
initial and,boundary conditions and the aspect ratio (the Prandtl 
number is fixed at 1). It is practical to vary the flow parameters 
only through a restricted range of values. The Rayleigh number was 
chosen to lie be tween 6xl04 and 1. 2xl06 , in alL cases, and was se t 
equal to 6xl05 in most runs. At higher Rayleigh numbers, too fine a' 
mesh is needed to resolve the small scale motions which become 
increasingly important in the heat transports and Reynolds stresses. 
Lower Rayleigh numbers are also not practical as the meridional circulation 
proceeds slowly, long-time integrations are necessary, arid the elapsed 
time for vortex formation becomes comparable to the diffusion time. 
Furthermore, the vortices are weaker as centrifugal opposition to flow 
toward the axis has more effect. 

, . , "5 
, The Taylor number also cannot be larger than about 10 as the 

swirl inhibits the largest-scale convection most, and at higher Taylor 
numbers the meridional circulation breaks down into two or more cells." 

A value of one was found to be the optimum choice' for the aspect 
ratio. We found that increasing the aspect ratio above this value 'had 
little effect on the vortex strength until the circulation broke down 
into two cells (at some value less than two). However,flow$,at smaller 
aspect ratios produced weaker vortices due probably to increased viscous, 
dissipation in the fluid interior. 

It would have been preferable to integrate toa (quasi .... ) steady 
state as the steady-state solutions obtained would then stand on their 
own merit, and little attention need be paid to the actual path to the 
steady state, which depends on the quite arbitrary initial conditions. 
Of course, different steady states might be reached from different 
initial conditions even for initial small perturbations 'away from an 
unstable equilibrium state as found by Ogura (1971). We found similar 
behavior at large K (=316) where the initial state is very close to 
being one of unstable equilibrium, and the introduction of a small 
initial temperature disturbance of amplitude 0.001, was sufficient to 
prevent the subsequent breakdown of the flow into two cells. However, 
at small or zero K we are a long way from an initial equilibrium state 
so that a small temperature perturbation makes little difference. In 
addition we cannot obtain a steady state vortex without artificially 
prescribing v(as a function of z) on the rim and this proved unsatis­
factory because of the formation of large radial shears in v near the 
rim (except for K~ 00). Thus, the initial conditions can playa 
critical role in the determination of the flow, and hence of the 
properties of the transient vortex that forms. 
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We tried other kinematic boundary conditions, in addition to those 
already described in Section 2. In one variation (see Section 5.4) with 
a free bottom boundary, we fixed v on the side (after Inman) so that we 
could obtain a (quasi-) steady state vortex. The results were similar 
in structure to the transient vortex that forms in the same case when 
the rim is allowed to be completely free. Cases were also run where 
the boundary conditions were those applicable to a rotating tank with 
either a free or a rigid lid. These were considered unsuccessful as 
the meridional flow broke into two cells and the resulting steady state 
was complicated. 

5.2 Test of Stretched Coordinate System 

The case with R .= 6xl05 , T = 4xl04 , L/H = 1 and K = 0.01 was chosen 
for testing the stre~ched coordinate system. In all runs a 26x26 mesh 
was used. In the no-stretch run the temperature contours become jagged 
near the axis (see figure 1). Convection tries to establish a nearly 
isothermal core on the axis such that the isotherms there are vertical. 
However, the boundary condition is that the horizontal temperature gradi­
ent is zero; i.e., that the isotherms are horizontal. This situation 
causes numerical problems which produce the jaggedness; also it is 
noticeable that the spikes get worse in the direction of the flow. One 
consequence of these spikes is"that the temperature gets as high as 1.2, 
which is clearly unphysical since the boundary temperatures are fixed at 
o and 1. These numerical difficulties do not seem to have any other 
serious results, probably because they do not appear until close to the 
time when v is reaching its maximum, and the integration is stopped 
soon after this point. 

In the severe-stretched system the situation is worse. Now the 
spikes are much broader, smoother and bigger and appear sooner. Thus, 
the whole flow is affected and there is very poor agreement with the 
unstretched system. Again, the temperature goes up to about 1.2. Spikes 
also begin growing from the top boundary in the v-field. Another 
disquieting feature is that there are small oscillations of about 100 
time steps in the flow. This system is also uneconomical since the 
diffusion time-step limit is cut by a factor of 16 from the unstretched 
case (because the smallest grid interval is decreased by a factor 4). 

With the moderate-stretch system, however, there are definite 
improvements over a square mesh3 as shown by figure 2. There are now 
no spikes and the temperature does not exceed 1. The ~-field is also 
much smoother than in the other cases. Otherwise, there is generally 
good agreement with the square-mesh case. We attribute these results to 
the fact that too severe a stretching, although it improves radial 

3 Note that the moderate-stretch 26x26 grid has the same resolution near 
the axis and horizontal boundaries as a 51x51 square mesh, but is much 
more economical, and, was found to achieve comparable results. 
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resolution near the axis, makes the vertical resolution poor there at the 
mid-levels. It would appear from these ex.per:Lme_ntstha_t considerable care 
is required in choosing the stretching if the best possible results are 
to be obtained. 

5.3 Case with Rigid-Bottom Surface (K = 0) 

We choose the case, R = 6xl05 , T = 4xl04, L/H = 1, ~= K = 0 with 
the initial conditions (11' and (12) and the boundary conditions (10), 
to describe in detail. We used moderate stretching with a 26x26 grid. 
Initially, the meridional circulation is uni-cellular with maxim~m up­
draft, downdraft, outflow and_~nflow at the axis, rim, top and z- 0.11, 
respectively. By t = 1.18xlO a plume of hot fluid rising along and 
near the axis has hit .the top surface, and spread out laterally, forming 
in the process a very strong thermal boundary layer along the top. The 
cold downdraft descending at the rim also forms a thermal boundary layer 
along the outer part of the bottom surface, but this layer is not as thin~ 
The inflow has drawn the vortex lines in to form a diffuse vortex with 
a nearly isothermal core. At this stage_zhe maximum updraft is about 
0.2 radii from the axis. By t = 1.38xlO it is back on the axis, the 
center of the streamline pattern has lowered but the inflow layer is 
still relatively thick (~.25). The point of maximum swirl is located 
at r = .19, z = .62, and the radius of the isothermal core has decreased 
considerably. 

The vortex reaches its maximum intensity at t = 1.49xlO-2 . The 
swirl amplification factor, S, defined in the introduction, is 2.77 and 
the maximum tangential velocity, v ,is located at r = .13, 
z = .67. Figures 3, 4, and 5 sW~~ the stream funct~fi, zonal velocity 
aW3Xtemperature fields at this time. A notable feature is the 
appearance of a region of weak flow reversal in the ground boundary 
layer. This is probably due to

4
an adverse pressure gradient associated 

with deceleration of the inflow. In fact, the whole region near the 
bottom of the axis is one of relatively weak flow, and the streamline 
pattern suggests that the vortex is not in contact with the ground. 

We can justify our neglect of density variations in the centrifugal 
force by noting from our results that the ratio of maximum centrifugal 
acceleration to gravitational acceleration (a rotational Froude number), 

2 [v:J:s Y: «1. 

r,z,t 

4 Ward (1970) notes that barograph recordings of tornado passages fre­
quently show high pressure rings surrounding the core, and is able to 
obtain similar surface pressure profiles with his laboratory model at 
low inflow angles. With increasing rotation, the ring disappears as 
the flow above the boundary layer becomes more cyclostrophic. 
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Figure 1. Temperature field at t = 1.54x10-2 with square 
26x26 mesh, illustrating spikes in isotherms near axis. 
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-2 
Figure 2. Isotherms at t = 1.60xlO in same case as figure 1, 

showing effect of moderate coordinate stretching in 
smoothing contours. 
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Figure 3. Streamlines at time of maximum vortex intensity 
for case described in Section 5.3. 
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Figure 4. Contours of zonal velocity at time of maximum 
vortex intensity for case described in Section 5.3. 
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Figure 5. Isotherms at time of maximum vortex intensity for 
case described in Section 5.3. 

18 



The intensity of the vortex subsequently decays in an oscillatory 
fashion, and the flow reversal disappears by t = 2x10-2. At the time, of 
maximum intensity the fluid has lost only about 20% of its original mean 
angular momentum to the ground. 

We ran a similar case with zero swirl except for an initial temper­
ature wave of amplitude ~ = ~001, which was necessary to perturb the 
system. This flow also exhibited strong downflow on the rim arid strong 
vertical temperature gradients near the top surface and the foot of the 
rim. The weak flow reversal appeared at the same place but at a later 
time (t ~ 2x10-2). The maximum updraft was always on the axis, and 
the meridional circulation was roughly the same strength as in the swirl 
case. It thus appears that at T = 2x104 there is not very close coupling 
between the axial and ?zimutha1 flow even though the ratio of characteristic 
zonal and vertical velocities for the vortex is about 0.4. (Leslie claims ' 
there will be close coupling if this ratio is of order one.) 

5.4 Case with Free Bottom Surface 

We will also describe the case, Ra = 6x105 , T = 2304, L/H = 1, 
<t> = 0.001, K = 00 (Le., free bottom) with the initial condit'ions (11) 
and (12), and the same boundary conditions as (10) except that v was 
fixed at the outer rim so that a quasi-steady state vortex solution 
could be obtained. We used a lower Taylor number here than in the pre­
vious cases because the meridional flow no longer consists of 'a single 
cell at T = 4x104. These computations were performed on a 26x26 grid 
without stretching. 

The effect of 'freeing' the lower surface is quite dramatic. The 
vortex becomes greatly more concentrated and makes contact with the 
ground due to inflow along the bottom. Figures 6, 7, and 8 show the 
quasi-steady state solutions for W , v and ~I (at t = 2.16x10~2). The 
maximum swirl occurs at the ground and the first grid point away from 
the axis, so clearly a finer grid should have been used to resolve the 
core. The swirl amplification factor is about 13, and the assumption 
that we can neglect density variations in the centrifugal force is now 
a bad one in the vicinity of the vortex core. However, a centrifugal 
circulation would enhance the one cell meridional circulation, and 
hence the vortex. Deformation of the top surface should also occur 
at rotational Froude numbers of order one or larger and should again 
aid.vortex formation by lowering pressure on the axis if we assume that 
potentially lighter fluid lies above the top surface. The maximum updraft 
always lies on or very close to the axis, and the inflow is a minimum at 
the bottom. 

A similar case was run with T = 0, and again shows that the swirl 
has little inhibiting effect on the convection at T = 2304. Therefore, 
the fact that we get a more concentrated vortex when we free the bottom 
surface can be attributed to inflow along the ground. Presumably, in 
more rotation dominated flows the no-slip condition is more favorable for 
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Figure 6. Streamlines at quasi-steady state for case 
described in Section 5.4. 
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Figure 7. Contours of zonal velocity at quasi-steady state 
for case described in Section 5.4. 
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Figure 8. Isotherms at quasi-steady state for case 
described in Section 5.4. 
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vortex formation because the centrifugal force and pressure gradient 
balance in the. fluid interior and fric tion is required to ?llow inflow 
near the ground. 

We also ran a similar case at T = 2304 with a completely free rim. 
The flow was very similar, except that the vortex was transient, rather 
than steady, but it was almost as intense. In this case mean angular 
momentum of the fluid should be conserved as all the boundaries are free. 
We were able to verify that our numerical scheme conserved this quantity 
to within O.S% during the run. 

S.S Effects of Varying Flow Parameters 

A 26x26 regularly spaced grid was used in all cases described in this 
section for Ra < 106 . At higher Rayleigh numbers the grid was SlxSI with 
moderate stretching. The meridional circulation apparently always starts 
out as one cell. 

Increasing the Rayleigh number over the range 3xlOS to 1.2x106 

(with T = 4x104 , L/H = 1, K = .01 and the exponential initial temperature 
profile (13» increases S from 2.2 to 3.4 and decreases rmax by about SO% 
to O.OS. This is probably due to the increasing meridional circulation~ 
However, when we further increase Ra to 4.Sxl06 a two-cell flow develops. 

For Ra = 6xlOS, L/H = 1, K = 0 and ~I= 1 - z initially, the Taylor 
number was varied from 23 to 2xl06. Over a surprisingly large range 
of T (from _ 2xl03 to 2xlOS) the maximum strength of the vortex was 
constant with S ~ 2.6, rmax ~ .16 and Zmax ~ .6S. At higher Taylor 
numbers the flow split into two cells due to the effect of rotation on 
the convection. However, two cells also developed at low Taylor numbers. 
The reason for this is not apparent to us (especially since with T = 0, 
$ = .001 the flow is one cell except for a small flow reversal next to 
the ground for t < 2.3xI0-2). 

Changing from the linear to the exponential initial temperature pro­
file did not affect the strength of the subsequent vortex very much; but 
in the early stages before a strong vortex developed the flow was 
'buffered' from the top surface by a stable region. Strong temperature 
gradients developed at the base of the stable region instead of at the 

·top surface. 

More concentrated. vortices are produced when the no-slip condition 
the bottom is relaxed (i.e., when K is increased through the range 0 on 

to 
Ra 
time 
It. 

00 ), unless two-cell breakdown occurs in the process (which it does for 
6xlOS , T = 4x104 , L/H = 1). Table 1 shows how S and the location and 
of maximum swirl vary with K for Ra = 6xlOS , T = 2304, L/H= 1, 

~ .001. However, we should really have had more resolution for K >.3, 
as the maximum swirl is located only one grid point away from the axis 
in these cases. The point of maximum tangential velocity approaches the 
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axis and the surface as K is increased, but<·the 'time.of raaximum vortex 
development does not change significantly (perhaps due to sMaller initial 
disturbance balancing decreased dissipation). 

TABLE 1 

S, r ,Z and t as a function of K for .. R . max max max a 

A 

T 2304, L/H = 1, cp 0.001 

K S r Z 
max max 

0 2.6 .16 .68 

.01/10 3.2 .12 .68 

.1 4.5 .08 .52 

.1/10 6.9 .08 .28 

1 9.6 .04 .04 

110 11. 3 .04 .04 

10 11.9 .04 0 

00 

12.3 .04 0 

6 • CONCLUSIONS 

5 6.10 , 

t max 
x 10-2 

1.94 

1.85 

1.84 

1. 79 

1.78 

1. 79 

1.80 

1.81 

We hqve demonstrated that vortices as intense as those obtained 
by Leslie can be generated after replacing his externally supplied: 
buoyancy with thermal buoyancy. However~ allowing advection and diffusion 
of buoyancy makes it much more difficult to demonstrate the same effects 
as Leslie. For instance, otir.YciJ:ti~es qpparentlydo not make contact 
with a no-slip bottom sur£a.ce~' Tn.ey: also do not grow down from the top, 
although th,is is probably.<;au~~d·bya,pplicat.icin of the buoyancy fcirceonly 
at the top one third of the,ax~~~':!.n.Le~;LJe~Sl1!9deJ.. We get strong 
downdrafts near the rim whereas 'Leslie only gets weak down flows. '!'he 
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rotation does not restrict the radial inflmv much to the bottom boundary 
layer, and freeing a horizontal surface (the bottom here, the top in 
Leslie's ,york) produces a stronger rather than weaker vortex. \ve can 
deduce from these results that in our experiments rotation does not 
inhibit the convection very much and we do not have a centrifugal force­
pressure gradient balance in the interior of the fluid. However, we 
are unable to increase the rotation further without getting complicated 
multi-cellular flows. 

Our work also suffers, as far as atmospheric applications are 
concerned, from the flow being contained in a clqsed box and from the 
presence of isothermal top and bottom surfaces which cause strong thermal 
boundary layers to form. Other, less restrictive, boundary conditions, 
are clearly needed. Also, it is difficult to handle the effects of . 
atmospheric turbulence with. any degree of realism in the neighborhood of 
a developing vortex. 

7 • ACKNOWLEDGMENTS 

The authors are grateful to the Advanced Study Program of the 
National Center for Atmospheric Research for support provided during the 
course of this study. We also wish to thank Dr. J. W. Deardorff and 
Dr. J. O'Brien for helpful discussions. We are further indebted to the 
National Center for Atmospheric Research for computer time on the 
CDC 6600 and 7600 machines used in this research. 

25 



8. REFERENCES 

Arakawa, A., 1966: Computational design for long term numerical inte­
gration of the equations of fluid motion. Two-dimensional incompress­
ible flow. Part 1. J. Comput. Phys. !, 119-143. 

Barcilon', A. 1., 1967: A theoretical and experimental model for adus t 
devil. J. Atmos. Sci. ~, 453-466. 

Burgers, J. M., 1948: A mathematical model illustrating the theory of 
turbulence. Adv. in Appl. Mech., Vol. 1, Academic Press , New York. 

Chandrasekhar, S., 1961: Hydrodynamic and hydromagnetic stability. 
Clarendon Press, :Oxford 652 pp. 

Gutman, L. N., 1957: Theoretical model of a waterspout. Bull. Acad; 
of Sciences, USSR (Geophysical Series), New York, Pergamon Press 
translation, 87-103. 

Inman, R. L., 1966: The evolution of convective motions in a rotating 
fluid. Ph. D. Thesis, Texas A&M University, 90 pp. 

Kuo, H. L., 1966: On the dynamics of convective atmospheric vortices 
J. Atmos. Sci. 23, 25-42. 

Kuo, H. L., 1971: Axisymmetric flows in the boundary layer of a main­
tained vortex. J. Atmos. Sci., 28, 20-41. 

Leslie, L. M., B. R. Morton, and R. K. Smith, 1970: On modelling 
tornadoes. Quart. J. Roy. Met. Soc., ~, 544-548. 

Leslie, L. M., 1971: 
numerical study. 

The development of concentrated vortices: a 
J. Fluid Mech., 48, 1-21. 

Lilly, D. K., 1969: Tornado Dynamics. NCAR Manuscript 69-117, 
National Center for Atmospheric Research, Boulder, Colorado. 

Long, R. R., 1956: Sources and sinks at the axis of a rotating liquid. 
Quart. J. Mech. Appl. Math, ~, 385-393. 

Long, R. R., 1958: Vortex motion in a viscous fluid. J. Meteor. 
15, 108-112. 

Ogura, Y. and N. A. Phillips, 1962: 
convection in the atmosphere. 

Ogura, Y., 1963: The evolution of a 
shallow, conditionally unstable 
J. Atmos. Sci., 20, 407-424. 

Scale analysis of deep and shallow 
J. Atmos. Sci., 19, 173-179. 

moist convective element in a 
atmosphere: a numerical calculation. 

26 



Ogura, Y., 1971: A numerical study of wavenumber selection in finite 
amplitude Rayleigh convection. J. Atmos. Sci., 28, 709-717. 

Richtmyer, R. D., 1957: Difference methods for initial value problems. 
New York: Interscience, 238 pp. 

Ryan, J. A., and J. J. Carroll, 1970: Dust devil wind velocities: 
mature state. J~ Geophys. Res., 11, 531-541 . 

. Schulman, E. E., 1970: Antarctic circumpolar current. Proceedings of 
Computer Simulation Conference, Denver, Colorado, June 6-12, 1970, 
pp 955-968. A.C.M./S.H.A.R.E./S.C.I. 

Serrin, J., 1971: The swirling vortex. Report from the School of 
Mathematics, University of Minnesota. To appear in Phil. Trans. 
Roy. Soc. London, Series A. 

Sullivan, R. D., 1959: A two-cell vortex solution of the Navier-Stokes 
equations. J. of the Aerospace Sciences, 26, 767-768. 

Turner, J. S. ~nd D'. -K. Lilly, 1963: The carbonated-water tornado 
vortex. J. Atmos. Sci., 20, 468-471. 

Turner, J. S., 1966: The constraints imposed on tornado-like vortices 
by the top and bottom boundary conditions. J. Fluid Mech. 25, 

/ 377-400. 

Ward, N. a.,. 1970: 
dynamics using 
ERLTM-NSSL 52, 

The exploration of certain features of tornado 
a laboratory model. NOAA Technical Memorandum 
National Severe Storms Laboratory, Norman, Oklahoma. 

Wilkins, E. M., Y. Sasaki 
successive thermals: 
99, 577-592. 

and R. H. Schauss, 1971: 
A numerical simulation. 

Vortex formation by 
Mon. Wea. Rev., 

Wll1iams, G. P., 1967: Thermal convection in a rotating fluid annulus: 
Part 1. The basic axisymmetric flow. J. Atmos. Sci., 24, 144-161. 

Wippermann, R., L. Berkofsky and A. Szi1linsky, 1969: 
ments on the formation of a tornado funnel under 
vortex. Quart. J. Roy. Met. Soc., 95, 689-702. 

Numerical experi­
an intensifying 

Ying, S. J., and C. C. Chang, 1970: Exploratory model study of tornado­
like vortex dynamics. J. Atmos. Sci. ~, 3-14. 

27 



NATIONAL SEVERE STORMS LABORATORY 

The NSSL Technical Memorando, beginning with No. 28, continue the sequence established by the U. S. 
We.,ther Bureau National Severe Storms Project, Kansas City, Missouri. Numbers 1-22 were designated NSSP 
Reports. Numbers 23-27 were NSSL Reports, and 24-27 appeared as subseries of Weather Bureau Technical Notes. 
These reports are available from the National Technical Information Service, Operations Division, Springfie Id, 
Virginia 22151, for $3.00, and a microfiche version for $0.95. NTiS numbers are given below in parentheses. 

No. National Severe Storms Project Objectives and Basic Design. Staff, NSSP. March 1961. (PB-16820n 

No. 2 The Development of Aircraft Investigations of Squall lines from 1956-1960. B. B. Goddard. (PB-168208) 

No. 3 Instability Lines and Their Environments as Shown by Aircraft Soundings and Quasi-Horizontal Traverses. 
D. T. Williams. February 1962. (PB-168209) 

No. 4 On the Mechanics of the Tornado. J. R. Fulks. February 1962. (PB-168210) 

No. 5 A Summary of Field Operations and Data Collection by the National Severe Storms Project in Spring 1961. 
J. T. Lee. Mcrch 1962. (PB-165095) 

No. 6 Index to the NSSP Surface Network. T. Fujita. April 1962. (PB-168212) 

No. 7 The Vertical Structure of Three Dry Lines as Revealed by Aircraft Traverses. E. L. McGuire. April 1962. 
(PB-168213) 

No. 8 Radar Observations of a Tornado Thunderstorm in Vertical Section. Ralph J. Donaldson, Jr. April 1962. 
(PB-174859) 

No. 9 Dynamics of Severe Convective Storms. Chester W. Newton. July 1962. (PB-163319) 

No. 10 Some Measured Characteristics af Severe Storms Turbulence. Roy Steiner and Richard H. Rhyne. July 1962. 
(N62-16401) 

No. 11 A Study af the Kinematic Properties af Certain Small-Scale Systems. D. T. Williams. October.I962. (PB-168216) 

No. 12 Analysis af the Severe Weather Factor in Automatic Control af Air Route Traffic. W. Boynton Beckwith. 
December 1962. (PB-168217) 

No. 13 500-:Kc.!Sec. Sferics Studies in Severe Storms. Douglas A. Kohl and John E. Miller. April 1963. (PB-168218) 

No. 14 Field Operations af the National Severe Storms Project in Spring 1962. L. D. Sanders. May 1963. (PB-168219) 

No. 15 Penetrations of Thunderstorms by an Aircraft Flying at Supersonic Speeds. G. P. Roys. Radar Photographs and 
Gust Loads in Three Storms of 1961 Rough Rider. Paul W. J. Schumacher. May 1963. (PB-168220) 

No. 16 Analysis of Selected Aircraft Data from NSSP Operations, 1962. T. Fujita. May 1963. (PB-168221) 

No. 17 Analysis of Methods for Small-Scale Surface Network Data. D. T. Williams. August 1963. (PB-168222) 

NC!.18 The Thunderstonn Wake of May 4, 1961. D. T. Williams. August 1963. (PB-168223) 

No. 19 Measurements by Aircraft of Condensed Water in Great Plains Thunderstorms. George P. Roys and Edwin Kessler. 
July 1966. (PB-I73048) 

No. 20 Field Operations of the National Severe Storms· Project in Spring 1963. J. T. Lee, L. D. Sanders and D.· T. 
Williams; January 1964. (PB-168224) 

No. 21 On the Motion and Predictability of Convective Systems as Related to the Upper Winds in a Case of Small 
Turning of Wind with Height. JamesC. Fankhauser. January 1964. (PB468225) 

No. 22 Movement and Development Patterns of Convective Stonns and Forecasting the Probability of Storm Passage at 
a Given Location. Chester W. Newton and James C. Fankhauser~ January 1964. (PB-168226) 

No. 23 Purposes and Programs of the National Severe Stonns Laboratory, Norman, Oklahoma. Edwin Kessler. 
December 1964. (PB-I66675) 

No. 24 Papers on Weather Radar, Atmospheric Turbulence, Sferics, and Data Processing. August 1965. (AD-621586) 

No. 25 A Comparison of Kinematically Computed Precipitation with Observed Convective Rainfall. James C. Fankhauser. 
September 1965. (PB-168445). 



No.26 Probing Air Motion py Doppler Analysis of Radar Clear Air Returns. Roger M. Lhermitte. May 1966. 
(PB- 170636) . , ' 

No. 27 Statisticol Properties of Rodar Echo Patterns and the Rodar Echo Process. Larry Armijo. May 1966. The 
Role of the Kutta-Jaukowski Force in Cloud Systems with Circulation. J. L. Goldman. M(JY 1966. (PB-170756) 

No. 28 Movement and Predictablity of Radar Echoes. James Warren Wilson. November 1966. (PB-I73972) 

No. 29 Notes on Thunderstorm M->tions, Heights, and Circulations. T. W. Harrold, W. T. Roach, and Kenneth E. 
Wilk. November 1966. (AD-644899) 

No. 30 Turbulence in Clear Air Near Thunderstorms. Anne Burns, Terence W. Harrold, Jack Burnham, and 
Clifford S. Spavins. December 1966. (PB-I73992) 

No. 31 Study of a Left-Moving Thunderstorm of 23 April 1964. George R, Hammond. April 1967. (PB-174681) 

No. 32 Thunderstorm Circulations and Turbulence from Aircraft and Radar DOta. James C. Fankhauser and J. T. Lee. 
April 1967. (PB-174860) 

No. 33 On the Continuity of Water Substance. Edwin Kessler. April 1967. (P8-175840) 

No. 34 Note on the Probing Balloon Motion by Doppler Radar. Roger M. Lhermitte. July 1967. (P8-175930) 

No. 35 A Theory for the Determination of Wind and Precipitation Velocities with Doppler Radars. Larry Armijo. 
August 1967. (P8-176376) 

No. 36 A Preliminary Evaluation of the F-l00 Rough Rider Turbulence Measurement System. U. O. Lappe. October 1967. 
(P 8- 177037) 

No. 37 Preliminary Quantitative Analysis of Airbarne Weather Radar. Lester P. Merritt. December 1967. (PB-I7718S) 

No. 38 On the Source of Thunderstorm Rototion. Stanley L. Barnes. March 1968. (P8-178990) 

No. 39 Thunderstorm - Environment Interactions Revealed by Chaff Trajectories in the Mid-Troposphere. James C. 
Fankhauser. June 1968. (P8- 179659) 

No. 40 Objective Detection and Correction of Errors in Radiosonde Data. Rex L. Inman. June 1968. (P8-180284) 

No. 41 Structure and Movement of the Severe Thunderstorms of 3 April 1964 os Revealed fram Radar and Surface 
Mesonetwork Data Analysis. Jess Charba and Yoshikazu Sasaki. October 1968. (PB-I8331O) 

No. 42 A Rainfall Rote Sensor. Brian E. Margan. November 1968. (P8-183979) 

No.43 Detection and Presentation of Severe Thunderstorms by Airborne and Ground-Based Radars: A Comparative 
Study. Kenneth E. Wilk, John K. Carter, and J. T. Dooley. February 1969. (PB-I83572) 

No.44 A Study of a Severe Local Storm of 16 April 1967. George Thomas Hoglund. May 1969. (PB-I84-970) 

No.45 On the RelOtionship Between Horizontal Moisture Convergence and Convective Cloud Formation. Horace R. 
Hudson. March 1970. (P 8-191720) 

Na.46 Severe Thunderstorm Radar Echo Motion and Related Weather Events Hazardous to Aviation Operations. 
Peter A. Barclay and Kenneth E. Wilk. June 1970. (PB-I92498) 

No.47 Evaluation of Roughness Lengths at the NSSL-WKY Meteorological Tower. Leslie D. Sanders and 
Allen H. Weber. August 1970. (PB-194587) 

No.48 Behavior of Winds in the Lawest 1500 ft in Central Oklahoma: June 1966 - May 1967. Kenneth C. 
Crawford and Horace R. Hudson. August 1970. 

No.49 Tornado Incidence Maps. Arnold Court. August 1970. (COM-71-00019) 

No.50 The Meteorologically Instrumented WKY-TV Tower Facility. John K. Carter. September 1970. (COM-71-00108j 

No. 51 Papers on Operational Ob jective Analysis Schemes at the National Severe Storms Forecast Center. 
Rex L •. lnman. November 1970. (COM-71-00136) 

No.52 The Exploration of Certain Features of Tornado Dynamics Using a Laboratory Madel. Neil B. Ward. 
November 1970. (COM-71-00139) 

No.53 Rawinsonde Observation and Processing Techniques at the National Severe Storms Laboratory. Stanley L. Barnes, 
Jomes H. Henderson and Robert J. Ketchum. Apri I 1971. 



No. 54 Model of Precipitation and Vertical Air Currents. Edwin Kessler and WiilioniC. Bumgarner. June 1971. 

No. 55 The NSSL Surface Network and Observations of Hazardous Wind Gust>. Operations Staff. June .1971. 

No. 56 Pilat Chaff Project at the National Severe Storms Laboratory. Edward A. Jessup. November 1971. 

USCOMM· ERL 


