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Contoured echo intensity display of squall line as seen 
by NSSL's WSR-57 radar, 2021 CST, 2 June 1971. Elevation 
angle is 1°. Outlined area is region of Doppler velocity 
measurements. Intensity Scale: 10g10Z = 1-2,2-3,3-4,4-5, 
5-6 corresponds to gray, white, black, gray, white, 
respectively. 

Display of me?n velocity versus radar range and azimuth. 
Trace vertical displacement is proportional to mean 
velocity for each volume sample. Sample spacing and size 
in range are 600 meters and 150 meters, respectively. 
Horizontal straight lines are zero velocity references for 
each range sample. The velocity scale is approximately 
35,m sec-1 between zero reference lines. 

Display of mean velocity versus radar range and azimuth. 
Same as 'figure 2 without the zero velocity references. 

Display of mean and standard deviation versus radar and 
azimuth. Same as figure 2 except the vertical width of 
each trace is p!:''1p.ortiona1 to the standard deviation of 
the velocity spect.rum in each volume sample. 

Display of mean and velocity standard deviation versus 
radar range and azimuth. Same as figure 4 without the 
zero velocity references. 

Comparison of velocity displays with and without fold/image 
check in computer processing of data. 

Alphanumeric display of mean velocity. A symbol is 
printed for each sample volume. Hyphens are where echoes 
were not detected, and blanks correspond to velocity 
intervals between those indicated in the scale above. 
Velocity intervals 2.5 m sec-1 . 

Alphanumeric display. Same as figure 7 except velocity 
intervals set at 5 m sec-1 . 

Alphanumeric display. Same as figure 7 except velocity 
intervals set at 10 m sec-1 . 

Alphanumeric display. Same as figure 7 except velocity 
intervals set at 20 m sec-1 . 

Flow diagram of Doppler radar velocity program. 
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SIMULATED REAL-TLMEDISPLAYSOF 
DOPPLER RADAR VELOCITY FIELDS 

G. B. Walker 
National Severe Storms Laboratory 

L. D. Hennington 
Oklahoma University Research Institute 

ABSTRACT 

This report describes a technique to display, in real time, severe storm 
velocities available from a Doppler radar. Velocity combined with storm 
precipitation intensity on a PPI and/or a RHI display offers the Doppler radar 
operator information to determine if a storm is suitable for detailed investi
gation and data t~ establish range, azimuth, and elevation limits necessary to 
sample the storm. We used a digital computer and a storage oscilloscope display 
to process Doppler velocity data. taken from a squall line on 2 June 1971 with 
NSSL's 10-cm Doppler radar. Mean Doppler radial velocity is presented as 
vertical displacements for each volume, sampled as a function of range and 
azimuth. Standard deviation is shown as broadening of the mean velocity trace. 
Regions of high shear and turbulence are clearly visible. A second techrtique 
presents mean Doppler velocity as an alphanumeric display for velocity inter
vals ranging from 2.5 m sec-l to 20 m sec-I. Compcdites of eight photographs 
of the storage display cover the storm section. Computation time for 64 range 
locations was 20 m sec, whereas radar dwell time is about 250 m sec, indicating 
a real-time capability. 

1. INTRODUCTION 

The National Severe Storms Laboratory, aiming to advance knowledge of 
severe storm morphology and dynamics, has established a Doppler radar system to 
determine air flow. Velocity information combined with storm precipitation 
intensity displayed on a PPI scope and/or a RHI scope offers the Doppler system 
operator information both to determine storm suitability for detailed study and 
to establish azimuth, elevation, and range limits required to sample the storm. 

This study tests the feasibility and practicality of displaying spectral 
moments of actual storm data in alphanumeric or graphic forms on CRT displays. 
The data inputs for the simulation originated from a squall line that formed 
in southern Kansas, during the afternoon of 2 June 1971, and moved south
southeast through central Oklahoma. Time series data, the Quadrature and 
Inphase components available as Doppler radar outputs, were collected at 
Norman, Oklahoma from· this squall line with a modified FPS-18 radar (NSSL's 
10-cm Doppler radar: WDS-7l). Mean and standard deviation of the velocity 
spectrum are computed from these data by using Fast Fourier analysis, and 
these results, as well 'as housekeeping parameters (e.g., range, time, angle 
etc.) are then stored on magnetic tape and are the data inputs required for 



simulation of the real-time display. 

2. SIMULATION STUDY 

The simulated real-time displays were provided by the Doppler Radar 
Velocity Program (DRVP) developed as a part of this study. The DRVP aids in 
evaluating prospects of real-time analysis and graphic display of severe 
storm velocity information available from a Doppler radar and velocity 
processor. The DRVP comprises a series of sub-programs to generate graphic 
or alphanumeric displays for evaluation. These programs were designed and 
executed by a PDP-9/L computer and a Tektronic 611 storage displayl. The 
programming was in machine language using the PDP-9/L assembler and ODT-9 . 
(octal debugging technique). A simplified flow diagram used in· the DRVP is 
given in the appendix. 

The storm segment selected for study was 74 km to 112 km from the radar 
at an azimuth of 310 0 to 350 0 (see figure 1). Figure 1 presents NSSL's 
WSR-57 radar contoured echoes from the 2 June 1971 squall line. The Doppler 
velocity data were taken from the region outlined in white. Sixty-four 
range samples were taken at an elevation angle of 1 0 and at 0.5 0 azimuth 
intervals. These data are shown in figures 2 through 6; alphanumerical 
~ta are in figures 7 through 10. Figure 2 shows mean Doppler radial velocity 

·sus radar range and azimuth. Each graphic display trace radial records 
precipitftion particle velocities along a circumferential arc at a fixed 
range. Vertical displacement of each trace is proportional to the mean 
velocity for the volume sample, and the sample range spacing is 600 meters. 
Volume sampled is assumed to be the antenna beam cross sectional area (at 
the 1 dB width) in meter2 ; at a given r~nge, times 150 meters (150 meters 
corresponds to the time-sample window coverted to space). The horizontal 
straight lines are zero velocity references located at each range sampled. 
The distance between zero reference lines represents + 35.S m sec-I. Regions 
of shear wind are (clearly visible) near the graph's center. All the graphic 
displays, except figure 6, are a composi;(te of eight photographs taken from 
the Tektronix 611 storage display. 

Figure 3 removes the zero velocity reference lines in figure 2. The 
blank areas evident in figures 2 and 3 are regions without data, (insufficient 
radar return for Doppler measurements). 

Figure 4 incorporates the velocity standard deviation (second moment 
about mean) that is porportional to the vertical width of the velocity trace. 
The mean displacement of the line is proportional to the mean velocity. 
Figure 5 is again figure 4 without the zero reference lines. 

lThe PDP-9/L high speed computer, at the University of Oklahoma College of 
Engineering, is a single address, parallel binary computer with SK of 
addressable memory and a cycle time of 1.5 microseconds. The Tektronix 611 
storage employs a storage oscilloscope with 4096 by 4096 addressable points. 
Mention of commercial products does not imply endorsement. 
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There is a maximum unambiguous velocity measurable by a Doppler radar 
with fixed parameters. For the NSSL radar, which uses a pulse repetition 
frequency of 1300 and a wavelength of 10.6 cm, the maximum unambiguous 
velocity is + 34.5 m sec-I. When the velocity of the scatterers exceeds 
this maximum, the velocity spectrum folds, which can lead to calculated 
estimates many times greater than the actual velocity spectrum standard 
deviation. NSSL has developed a computer technique to automatically 
detect and correct the folding for many cases. Figure 6 contrasts "raw" 
velocity data display and one generated after correcting the folds. These 
data were taken from a high velocity region of a severe storm on 31 May 
1971. 

Alphanumeric displays of Doppler velocity information for the 2 June 1971 
storm are shown in figures 7 through 10. These were generated with the 
Tektronix 611 character generating routine. The display shows just the 
velocity at a particular sample volume. Here, numbers correspond to 
negative velocities and letters are positive velocities (away from the 
radar). Zero indicates velocities near zero and dashes mean "no data." 
Characters indicate velocity intervals and not the specific velocities. 
The velocity intervals indicated by characters are separated by blanks 
(absence of characters), which represent velocity intervals between the 
characterized ones. Figures 7 through 10 are presentations with 
sequentially decreasing resolution of velocity details. 

3. CONCLUSIONS 

The experimental alphanumeric and graphic displays illustrated here 
simulate displays obtainable under real-time conditions. The real-time 
capabilities are evident from comparison of ·present Doppler radar data 
collection time per radial (dwell times = 250 m sec) with the PDP-9/L 
and Tektronix 611 computational and display time (20 m sec for 64 range 
locations). Actual times for each display are formulated in the appendix. 

As our interpretive abilities improve, we (may) expect real-time 
displays such as presented here to become valuable aids in operational 
use of Doppler radar for storm warning and aviation forecasting~ Early 
use ~f such displays should, in research settings, contribute to 
understanding of Doppler radar applications. 

3 



Figure 1. Contoured echo intensity display of squall line as seen by ~SSL's 
WSR-57 radar, 2021 CST, 2 June 1971. Elevation angle is 1°. Outlined 
area is region of Doppler velocity measurements. Intensity Scale: 
loglOZ = 1-2,2-3,3-4,4-5,5-6 corresponds to gray, white, black, gray, 
white, respectively. 

DATE- 2 JUNE 71 TIME 2020'23 to 2021'56 CST EI.I.O° 

~5 km~ 

311" 
I-- 5 km -I 

330 0 

AZIMUTH ANGLE 

340 0 

- 110.4 k m 

- 106.8 

- 103.2 

- 99.6 

- 96.0 

- 92.4 

- 88.8 

- 85.2 

- 81.6 

- 78.0 

- 74.39 

Figure 2. Display of mean velocity versus radar range and azimuth. Trace 
vertical displacement is proportional to mean velocity for each volume 
sample. Sample spacing and size in range are 600 meters and 150 meters, 
respectively. Horizontal straight lines are zero velocity references for 
each range sample. The velocity scale is approximately 35 m sec-

l 
between 

zero reference lines. 
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DATE- 2 JUNE 71 TIME 2020'23 to 2021,56 CST E1.1.0· 

~5 km..J 

320· 330· 

AZIMUTH, ANGLE 

340· 

- 110.4 k m 

- 106.8 

- 103.2 

- 99.6 

- 96.0 

- 92.4 

- 88.8 

- 85.2 

- 81.6 

- 78.0 

- 74.39 

Figure 3. Display of mean velocity versus radar range and azimuth. 
figure 2 without the zero velocity references. 

Same as 

DATE- 2 JUNE 71 TIME 2020,23 to 2021'56 CST E1.1.0· 

~5 km..j 

320· 330· 

AZIMUTH ANGLE 

340· 

...; 110.4 km 

-106.8 

- 103.2 

- 99.6 

- 96.0 

- 92.4 

- 88.8 

- 85.2 

- 81.6 

- 78.0 

- 74.39 

Figure 4. Display of mean and standard deviation versus radar range and 
azimuth. Same as figure 2 except the vertical width of each trace is 
proportional to the standard deviation of the velocity spectrum in each 

volume sample. 
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DATE- 2 JUNE 71 TIME 2020'23 to 2021'56 CST EI.I.O· 

~5 km1 

311" 

r- 5 km -/ 
320· 330· 

AZIMUTH ANGLE 

- "0.4 k m 

- 106.8 

- 103.2 

- 99.6 

- 96.0 

- 92.4 

- 88.8 

- 85.2 

- 81.6 

- 78.0 

- 74.39 

340· 349· 

Figure 5. Display of mean and velocity standard deviation versus radar range 
and azimuth. Same as figure 4 without the zero velocity references. 

Figure 6. Comparison of velocity displays with and without fold/image check 
in computer processing of data. 
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- 96.0 
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- 88.8 

- 85.2 

- 81.6 

- 78.0 

- 74.4 

349 0 

Figure 7. Alphanumeric display of mean velocity. A symbol is printed for each 
sample volume. Hyphens are where echoes were not detected, and blanks 
correspond to velocity intervals between those indicated in the scale above. 
Velocity intervals 2.5 m sec-I. 
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Figure 8. Alphanumeric display. 
set at 5 m sec-I. 

Same as figure 7 except velocity intervals 
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Figure 9. Alphanumeric display. Same as figure 7 except velocity intervals 
set at 10 m sec-l 
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- 81.6 

- 78.0 

- 74.4 

Figure 10. Alphan~s:eric display. Same as figure 7 except velocity intervals 
set at 20 m sec . 
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APPENDIX 

Flow Diagram of Doppler Radar Velocity Program 

During data processing, three interpolated points are generated between 
each pair of data points to give continuity to the generated graphical curves. 
Arrays of numbers are then generated for velocity and standard deviation. In 
the flow diagram, figure AI, V(I,J) is the velocity for azimuth 'I' and range 
gate 'J', and cr (I,J) is the corresponding standard deviation; X and Yare the 
coordinates on the oscilloscope; and ~ AZ is the distance on the scope between 
azimuths. Distance on the scope refers to the number of addressable points 
between two locations. The distance between two adjacent addressable points 
represents, for the case used in this simulation, a velocity scale of 0.23, 
m sec-l and a range scale of 3.8 meters. The term fj, R equals the distance on 
the scope between gates; lMAX is the total number of azimuthal locations; and 
JMAX is the total number of Doppler radar sampled range locations. 

The flow diagram is for the graph routine; however, the alphanumeric 
routine (except instead of drawing a line) evaluates the velocity and draws 
its representative character. The standard deviation was not programmed for 
alphanumeric displays. 

Time Required for Displays 

The following equation determines the time required to draw a complete 
graphical display of spectrum mean and standard deviation on the Tektronix 611: 

[Jmax (fj, R (DPT) + DST)] IMAX + (fJ AZ (DPT) + DST)Imax 

Imax 
+ (DWT) ( Y' 

1=1 

Jmax 
r (J (I,J)) 10.23 

J = 1 
T. 

Where T = time for one graph display in seconds, DWT = dot writing time = 
20 U sec, DPT = dot positioning time (between contiguous addressable lqcations) 
= 14 nsec, and DST = dot settling time = 5 usec. For the figure 2 example, 
where lMAX = 618, JMAX = 64, and (J (I,J) = 1 (1 is the smallest length that 
can be drawn), the time required is 3.73 sec. 

To find the time for an alphanumeric display using the equation above, 
replace 

IMAX 
r 

I = 1 

JMAX 
'5" 

J = 1 
(I~J)/o.23 

with the number of characters to be drawn times the number of dots per 
character. (Average character consists of 20 dots.) 
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Start 

1=0 

J - 16 

J = J - 16 

A 

I = 1+1 
(Initially +) 

J = J" + 1 

X=(I*~Z) - .1AZ 

y= .1R*J + 
V(I.J) + 
/2o-(I.J) -.1R 

Draw a vertical 
line down from 
(X,Y) of length 

0- (I ,J) 

Change Sign 
of Instr. A 

figure AI. Flow diagram of Doppler radar velocity program. 
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