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PREFACE

This report is designed to present a timely summary of recent observations of the global
climate system and an early assessment and interpretation of the major climate anomalies of the
past year. Our priority is to present the summary of data as soon as possible and to serve as a
spur to further investigation. Subsequent research publications will undoubtedly revise and
expand this brief descriptive volume. Our focus is on the global scale, with only limited
attention to regional issues. We hope that this global perspective will support more detailed
local and regional analyses.
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Fig. 1. Schematic depicting major climate events during 1992.



EXECUTIVE SUMMARY

Natural events such as the Mt Pinatubo eruption in the Philippines and the El
Nifio/Southern Oscillation (ENSO) episode in the tropical Pacific Ocean had a major impact on
the Northern Hemispheric climate in 1992. During the first part of the year, the 1991-92 ENSO
episode contributed to much above normal temperatures in the Northern Hemisphere, while
cooling during the latter part of the year was associated with the aerosol cloud that was produced
by the eruption of Mt. Pinatubo in June 1991. By the spring of 1992, the stratospheric aerosol
cloud had extended from the tropics well into the Northern Hemisphere. As the aerosol cloud
spread throughout the Northern Hemisphere during a time of increasing solar radiation, the
surface temperature anomalies responded by decreasing over much of the hemisphere. This
cooling contributed to surface temperatures during 1992 being estimated as the coolest year since
1986. 1t was still, however, one of the warmest years in the historical surface record.
Temperatures cooled dramatically throughout the troposphere as observed by radiosondes and
satellites, while increasing in the lower stratosphere.

Significant precipitation anomalies during 1992 were also related to the long-lived ENSO
episode (Fig. 1). The devastating drought over southeastern Africa was reported to be the worst
in this region in over 100 years, Precipitation was generally lighter than normal in the monsoon
regions of India and Australia. In North America, extremely wet conditions occurred in the
southwestern United States during the December 1991 - May 1992 period. The resurgence of
the ENSO late in the year was associated with much needed precipitation along the drought-
stricken west coast of the United States.

The presence of volcanic aerosols in the stratosphere may have further depleted the
already seriously reduced ozone concentrations over the polar regions of the Southern
Hemisphere. 1992 ozone values during the springtime in the Antarctic stratosphere were the
lowest ever observed, while the area of the ozone hole was larger than ever recorded, more than
50% larger than in 1991 and 1987, the previous maximum years of record. The depth of the
ozone hole also increased during 1992, extending from altitudes of 14 to 18 km.






1. EL NINO/SOUTHERN OSCILLATION (ENSO)

The Southern Oscillation is the major mode of interannual climate variability. Since
1990, the ocean/atmosphere system has been involved in various stages of an unusually long-
lived warm (ENSO) episode. Furthermore, the interpretation of the climate of 1992 has been
complicated by the fact that the 1991/92 ENSO demonstrated a resurgence in the latter half of
the year.

Weak warm episode conditions were observed in the tropical Pacific from early 1990
through mid-1991, featuring positive sea surface temperature (SST) anomalies in the western
equatorial Pacific (Fig. 2, bottom), slightly enhanced convection in the same region (Fig. 3,
bottom), and weaker than normal equatorial 850 mb easterlies throughout the Pacific (Fig. 4).
Winds and heights in the troposphere are derived from the NMC operational Global Data
Assimilation System (GDAS). During that period the warmest equatorial water in the Pacific was
located between 160°E and 170°E (Fig. 2, top). Beginning in mid-1991 the warmest water
gradually shifted eastward, crossing the date line in late 1991 and reaching as far east as 160°W
by March 1992. This was accompanied by a similar eastward shift of the strongest equatorial
convection [associated with outgoing longwave radiation (OLR) values less than 220 Wm?, Fig.
3, top] and an increase in the magnitude of the negative OLR anomalies in the central equatorial
Pacific (Fig. 3, bottom and Fig. 8).

During December 1991 through April 1992, precipitation anomalies in many tropical and
subtropical regions were consistent with those generally observed during the mature phase of a
warm episode (Fig. 6). Excessive rainfall was observed over central South America, over
northern Mexico and over the western gulf states of the United States. During January, heavy
rains extended into southern California where severe flooding occurred, Flooding was also
observed throughout much of the December through April period in eastern Texas. In contrast,
severe drought plagued southeastern Africa, the Philippines, northern Australia and the Caroline
Islands in the western Pacific.

By March 1992, which is close to the maximum in the mean annual cycle of SST in the
eastern equatorial Pacific, anomalous convection extended eastward to the South American coast
(Fig. 3, bottom). SST anomalies along the coast reached values greater than +2°C and were
reported to be locally greater than +4°C at stations along the northern coast of Peru, as El Nifio
conditions developed in that region. During the period from late May to mid-July, SST and OLR
anomalies rapidly decreased in the eastern equatorial Pacific (Fig. 2, bottom and Fig. 5) as the
equatorial cold tongue became reestablished. From mid-July through December, 1992 SST
anomalies returned to weak warm episode conditions, similar to those observed from 1990 to
mid-1991, characterized oceanic and atmospheric anomaly fields.

The evolution of the subsurface oceanic thermal field along the equator from mid-1991
to mid 1992 was, in many respects, similar to that observed during the 1986-1987 warm episode.
Data used in monitoring the subsurface thermal structure are derived from an analysis system
which assimilates oceanic observations into an oceanic general circulation model (Leetmaa and
Ji, 1989). Between August 1991 and October 1991, the thermocline depth increased in the
central and eastern equatorial Pacific (Fig. 7), resulting in temperature anomalies of greater than
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+6°C near 120 m depth in the region around 140°W (Fig. 8). At the same time, the thermocline
was shoaling in the western portion of the basin (Figs. 7 and 8). From October 1991 through
March 1992, there was a steady eastward propagation of the subsurface temperature anomaly
pattern (Figs. 8 and 9), as the thermocline continued to deepen in the eastern equatorial Pacific
and the shoaling spread from the western Pacific into the central Pacific. By May 1992, the
thermocline was abnormally shallow throughout much of the equatorial Pacific, which resulted
in negative subsurface temperature anomalies at 100 m that dominated the region from the
western Pacific eastward to near 110°W. Subsurface conditions changed very little along the
equator from May through September 1992 (Figs. 9 and 10). However, beginning in October
and continuing through December the thermocline again deepened in the central and eastern
equatorial Pacific, and subsurface temperature anomalies increased to greater than +4°C near 120
m depth in the region around 130°W. Thus, at the end of 1992, aspects of the subsurface thermal
field resembled that observed during the mature phases of the 1986-1987 and 1991-1992 warm
episodes.

Similarly, at the end of 1992 atmospheric fields also exhibited characteristics typical of
a warm episode. Sea level pressure was anomalously low (high) over the central and eastern
tropical Pacific (over Indonesia) and the Southern Oscillation Index (SOI) was near -1.0 (Fig.
11). Enhanced convection developed along the equator near the date line (Fig. 3, bottom), as
equatorial easterlies remained weaker than normal throughout the Pacific (Fig. 4).

During the period 1990-1992, the low-level equatorial easterlies have been weaker than
normal (westerly anomalies) (Fig. 4), convection has been enhanced in the western equatorial
Pacific (Fig. 3, bottom) and SST has been anomalously warm in the central equatorial Pacific
(Fig. 2, bottom). Throughout this period, negative (positive) sea level pressure anomalies have
dominated the eastern (western) equatorial Pacific, and the SOI has been predominantly negative
(Fig. 11). The most recent warm episode featuring a similar prolonged period of negative values
of the SOI was 1939-1941. A more comprehensive comparison between that period and the
present warm episode is not possible due to the lack of SST data during World War II.
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Fig. 11. Standardized Southern Oscillation Index (SOI). Monthly (five month running mean)
values are indicated by the bar (line) graph. ;
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2. ATMOSPHERIC CIRCULATION
a. General Circulation

In the tropics, positive zonally-averaged 200 mb height anomalies (Fig. 12) were observed
between December 1991-April 1992, with negative height anomalies observed thereafter. This
height anomaly pattern reflected mature ENSO conditions in the tropical Pacific during the first
part 1992, and a weakening of ENSO conditions during May and June. The persistence of
negative height anomalies after May also reflected continued above normal temperatures in the
tropical lower stratosphere, associated with the eruption of Mt. Pinatubo during July 1991..

Prior to 1992, negative 200 mb height anomalies were observed throughout the tropics
during much of 1990, reflecting lingering cold-episode effects that had dominated the tropics
since the 1988-1989 Pacific cold event. Positive 200 mb height anomalies then became
established in the tropics during January - August 1991, as tropical conditions trended toward the
1991-1992 ENSO event. This transition to positive height anomalies occurred coincident with
the development of below normal tropical lower stratospheric temperatures during January 1991,
A rapid transition to negative height anomalies then occurred during September 1991, two months
following the sharp increase in Jower stratospheric temperatures associated with the eruption of
Mt. Pinatubo. These negative height anomalies persisted until December 1991, when mature
ENSO conditions became established in the tropical Pacific.

In the extratropics, negative 200 mb height anomalies were observed throughout the
subtropical and lower mid-latitudes of both hemispheres during much of 1992, Previously,
positive height anomalies had generally dominated these latitudes since January 1990. The
transition to negative height anomalies occurred during October 1991, in conjunction with
increased lower stratospheric temperatures associated with the eruption of Mt, Pinatubo, and with
an increased trend toward mature ENSO conditions in the tropical Pacific.

At higher latitudes, positive 200 mb height anomalies were concentrated primarily in the
Southern Hemisphere, while negative height anomalies were concentrated in the Northern
Hemisphere during 1992. This anomaly pattern in the Southern Hemisphere had persisted since
April 1991, and began to dissipate during the second half of 1992, During this period, two
prolonged blocking episodes (May-July 1991 and March-June 1992) were observed over the
southeastern South Pacific, which contributed to the pronounced maxima in zonally-averaged 200
mb height anomalies near 65°S. The 200 mb height anomaly pattern in both hemispheres during
1992 is also consistent with enhanced sub-tropical westerlies, and weaker than normal mid-
Jatitude westerlies. This wind anomaly pattern is opposite to that observed during much of 1990
and 1991.

Negative height anomalies tended to be concentrated over the polar regions of both
hemispheres during 1992. In the Southern Hemisphere, this circulation pattern reflected a
particularly enhanced polar vortex throughout much of the year, with maximum anomalous vortex
strength observed during the cool season.

15



Over the Northern Hemisphere, the 500 mb mid-latitude circulation during December
1991-February 1992 was dominated by persistent positive height anomalies over Europe and the
western United States and Canada, and by negative height anomalies throughout the eastern North
Pacific and central Russia (Fig. 13a). During March - May (Fig. 14a), negative height anomalies
were observed throughout the middle latitudes of the central and eastern North Pacific, while
positive height anomalies were observed over the high latitudes of the North Pacific. Farther
east, positive height anomalies remained over the eastern North Atlantic and central Europe.

The 500 mb circulation during June-August (Fig. 15a) was dominated by positive height
anomalies over northwestern North America and by negative height anomalies over central
Canada and the north central United States. Weak, but persistent, positive height anomalies
remained over Europe. At higher latitudes, negative height anomalies were observed throughout
the polar region and Greenland during the entire December 1991-August 1992 period. In
contrast, the circulation during September-November (Fig. 16a) was dominated by negative
height anomalies over Europe and northwestern North America, and by positive height anomalies
over the polar region.

Over the Southern Hemisphere, the 500 mb circulation during December 1991- May 1992
was dominated by positive height anomalies over the high latitudes of the eastern South Pacific,
and by negative height anomalies over portions of the mid-central and mid-eastern South Pacific
(Figs. 13b, 14b). This height anomaly pattern then weakened during June-August (Fig. 15b),
and completely dissipated during September-November (Fig. 16b). Farther west, negative height
anomalies were observed over the high latitudes of the central Indian Ocean throughout the entire
December 1991-August 1992 period. This overall anomalous circulation pattern was associated
with enhanced westerlies over the mid-central Indian Ocean, and with reduced westerlies and a
strong spilt-flow/ blocking configuration over the high latitudes of the central and eastern South
Pacific.

16
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Fig. 13. 500 mb height anomalies for December 1991 — February
1992 for the a) Northern Hemisphere and the b) Southern Hemisphere.
Anomal ies are computed from the 1979-88 base period.
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Anomalies are computed from the 1979-88 base period.

19



Meters

180

® 150

120

90

Fig. 15. 500 mb height anomalies for June — August 1992 for
the a) Northern Hemisphere and the b) Southern Hemisphere.
Anomalies are computed from the 1979-88 base period.
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Fig. 16. 500 mb height anomalies for September — November 1992
for the a) Northern Hemisphere and the b) Southern Hemisphere.
Anomalies are computed from the 1979-88 base period.
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b. Specific Circulation Events

The mid-latitude circulation during two periods in which height anomalies were
particularly persistent over both North America and Europe (December 1991 - February 1992 and
March-August 1992) are described below. Each of these episodes was associated with highly
anomalous surface temperature and precipitation patterns, and with a well-defined pattern of
lower stratospheric temperature anomalies.

December-February (DJF) 1991-1992

The Northern Hemisphere flow pattern during DJF was dominated by extremely persistent
and long-lived circulation anomalies throughout much of the middle latitudes (Figs. 13a, 17, 18).
Persistent positive height anomalies were observed primarily throughout both the northern United
States and western Europe. Persistent negative height anomalies were observed throughout the
polar region and Greenland, over virtually the entire eastern North Pacific, and throughout the
eastern Mediterranean Sea and Caspian Sea sectors. The positive height anomalies throughout
Europe were associated with strong negative lower stratospheric temperature anomalies (Fig.
19a).

"T'he anomalous circulation over North America was dominated by a pronounced split-flow
pattern over the western United States, and by a strongly enhanced subtropical jet, extending
eastward from the eastern North Pacific to the southeastern United States. This enhanced jet, in
association with mature ENSO conditions in the tropical Pacific, produced above normal
precipitation totals over much of the southwestern and southern United States (see Sec. 6).
Farther north, anomalous southwesterly flow was observed throughout the Pacific Northwest, the
northern Great Plains and Canada, and over large portions of southern Alaska. These regions
experienced well above normal surface temperatures during the period (see Sec. 3).

The circulation over the North Atlantic and Europe during DJF was dominated by an
anomalous wave pattern extending southeastward from Greenland to western Russia, and by a
major blocking anticyclone over Europe. This wave pattern was associated with well-above
normal surface temperatures throughout Europe, and with much below normal surface
temperatures throughout the eastern Mediterrancan and Middle East (see Sec. 3).

May-August 1992

The Northern Hemisphere flow pattern during May-August was dominated by persistent
negative height anomalies throughout the eastern United States and eastern Canada, over the polar
region and Greenland, and throughout the eastern Mediterranean Sea sector (Figs. 14a, 15a, 20,
21). Persistent positive height anomalies were observed primarily over the eastern Gulf of Alaska
and over central Europe. Each of these regions experienced above normal surface temperatures
during the period. The overall height anomaly pattern (Fig, 15a) is also strongly negatively
correlated with the pattern of lower stratospheric temperature anomalies (Fig. 19h).

Over North America, the highly amplified wave pattern was associated with anomalous
northwesterly flow throughout central and eastern Canada and the Great Lakes region. Individual
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low-pass filtered height analyses indicate that the northwesterly flow originating over eastern
Siberia and the Arctic Ocean region dominated the entire period between May and mid-August
(Figs. 22, 23a), resulting in a continuous influx of arctic air into central and eastern Canada. The
southern extent of this anomalously cold air then reached well into the central United States, in
association with the persistent negative height anomalies over the region. The anomalous wave
pattern began to dissipate during early August, and had completely disappeared by late August
(Fig. 23b). This major circulation transition was associated with the flow being directed from
the eastern North Pacific (instead of the Arctic) to central Canada, and with a return to
near-normal surface temperatures throughout central and eastern Canada and the United States.

Analogs to the above persistent circulation over North America, along with the
corresponding pattern of well-below normal surface temperatures, can be found in 1950, 1951,
1958, 1967, 1972, 1982 and 1985. Clearly, this circulation pattern is not necessarily associated
with volcanic eruptions such as Mt. Pinatubo. In confrast, the opposite phase of this circulation
pattern, characterized by negative height anomalies over the Gulf of Alaska and by positive
height anomalies over the eastern United States and eastern Canada, is associated with well-above
normal surface temperatures throughout the central and eastern United States and Canada.
Analogs to this opposite flow pattern can be found during the summers of 1952-1955, 1959,
1980, 1983, 1987, 1988 and 199].

Over the European sector, the highly-amplified wave pattern was associated with
anomalous southwesterly flow over much of Europe and southern Scandinavia, and with
anomalous northwesterly flow over the eastern Mediterranean sector. This wave pattern was also
associated with a major blocking anticyclone over Europe (10°W-25°E) between mid-May and
mid-June, and with a well-defined trough amplification farther downstream (Fig. 21). This
downstream trough amplification was associated primarily with well below normal surface
temperatures over central Russia, and with a reinforcement of the negative height anomalies and
below normal surface temperatures over the eastern Mediterranean sector during the period.
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Fig. 17. Percentage of days during December 1991-February 1992 in
which daily low—pass fltered 500 mb height anomalies greater than 15 m
and less than —15 m were observed. Cutoff period of low pass filter is
30 days. Anomalies are computed from the 1979-1988 base period.
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Fig. 18. Daily low—pass filtered 500 mb height anomalies (m) from

December 1991-February 1992 averaged over the 10 deg latitude band
centered on 50 deg. N. Cutoff period for filter is 30 days.
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Fig. 19. Lower stratospheric temperature anomalies (deg. C)
derived from satellite Microwave Sounding Unit (MSU) observations
for a) December 1991 — February 1992 and b) June - August 1992.
Anomalies are computed relative to the 1982-1991 base period.
(Data provided by Spencer and Christy)
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Fig. 20. Percentage of days during Moy — August 1992 in which

daily low-pass fltered 500 mb height anomalies greater than 15 m

and less than —15 m were observed. Cutoff period of low pass filter is
30 days. Anomalies are computed from the 1979-1988 base period.
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Fig. 21. Daily low—pass filtered 500 mb height anomalies (m) from
May — August 1992 averaged over the 10 deg latitude band centered
on 60 deg. N. Cutoff period for filter is 30 days.
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Fig. 22, Low-pass filtered 500 mb height anomalies (shaded) and
low pass 500 mb mean heights (contours) valid: a) 17 May 1992 and
(b) 14 June 1992. Cutoff period of low pass filter is 30 days.
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Fig. 23. Low-pass filtered 500 mb height anomalies (shaded) and
low pass 500 mb mean heights (contours) valid: a) 10 July 1992 and
(b) 22 August 1992. Cutoff period of low pass filter is 30 days.
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3. TEMPERATURE
a. Surface

Global surface temperature anomalies exhibited two distinct patterns during 1992. The
pattern during the first three months of the year (Fig. 24a) was strikingly different from the
observed temperature anomalies during the last nine months (Fig. 24b). Large positive
temperature anomalies (> 4.0°C) covered most of Asia, western Canada and the United States
early in the year, while large negative anomalies were observed over Greenland and the Middle
East. The positive temperature anomalies over North America during this period were associated
with the 1991-92 ENSO, as were the positive SST anomalies in the tropical Pacific and along
the west coast of South America. Positive temperature anomalies also engulfed much of the
southern half of Africa during this period. Since April, however, the observed pattern of
temperature anomalies has been significantly different, with negative anomalies dominating most
of North America and northern Asia. Smaller positive anomalies remained over only the west
coast of North America , central Europe, and to a lesser extent, east-central Eurasia.

During the year as a whole (Fig. 25), the largest negative surface temperature anomalies
were observed across northeastern Canada and Greenland and over the Middle East. The
negative anomalies across Greenland were reminiscent of the pattern which occurred during the
decade of the 1980s (Halpert and Ropelewski, 1991). Positive temperature anomalies were
observed across western North America, Eastern Asia and most of Europe. The positive
anomalies across western North America and Siberia have also occurred frequently during the
past 10 years. Positive SST anomalies were also observed across the tropical Pacific ocean in
conjunction with the long-lived ENSQ episode. Across the Southern Hemisphere, most of the
temperature anomalies over land were small, except for the positive anomalies across the drought-
stricken regions of southern Africa.

The estimated global surface temperature anomaly over land for 1992 (0.2°C) indicates
that the past year is the 8th warmest year since 1951, but the second coolest of the past six years
(Fig. 26a). A longer time series of estimated global surface temperature anomalies, this time
over land and marine areas (Fig. 26b), shows that the past year was the coolest year since 1986.
Both time series show the predominance of positive anomalies during the past 20 years. The
longer time series should be viewed with some caution as values early in the record are less
reliable than later anomalies. The temperature trends were similar in both the Northern (Fig. 27,
top) and Southern Hemispheres (Fig. 27, bottom), although the cooling in the Southern
Hemisphere was less pronounced. Much of the global warmth over land during 1992, as detailed
above, occurred in the first three months of year. Global and Northern Hemispheric temperature
anomalies averaged about 0.8°C above normal during the January through March period.
However, temperatures fell to below normal levels throughout much of the Northern Hemisphere
by July and remained below normal for much of the rest of the year. This continues a tendency
in recent years for a warm first half of the year and a cooler second half of the year (Fig, 28).
The early warmth during 1992 can be at least partially attributed to the ENSO episode (Fig. 6)
and the later cooling to the volcanic shading effects of Mount Pinatubo. These cooling effects
are strongest in the summer, as wintertime temperatures are effected more by circulation.
However, whether the recent sequence of years with warm first halves and cooler second halves
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is related to any long-term changes or is simply an unusual sequence of events remains to be
determined.

A time series of estimated monthly global surface temperature anomalies over land (Fig.
29) shows that the return to normal global mean temperatures was accompanied by a return to
normal median temperature anomalies as well. January through March temperature anomalies
were similar to the past years (see Halpert and Ropelewski, 1992), with about 70% of the land
areas having positive temperature anomalies. However, as noted above, the spatial distribution
of negative and positive anomalies was much different from April through December, with
approximately half of the land areas experiencing below normal temperatures.

Seasonal temperature anomalies changed quite dramatically throughout 1992 (Figs. 30-31).
The temperature pattern during the December 1991 through February 1992 period (Fig. 30a), was
quite similar to the January - March period discussed previously. The pattern of positive
anomalies weakened during the March - May period (Fig. 30b), and by the June - August period
(Fig. 31a), negative anomalies dominated North America and western Asia. Significant positive
anomalies were only found over Europe during this season. Finally, most of the Northern
Hemisphere experienced normal to below normal temperatures during the September - November
season (Fig. 31b). Across the Southern Hemisphere, positive anomalies were observed across
southern Africa during all seasons except for the June - August period. Temperature anomalies
over Australia were quite variable during the year, with positive anomalies dominating the
country during March - May, and negative anomalies occurring over the southern half of
Australia during the September - November season. Also evident in this sequence of maps is the
slow decay of the positive SST anomalies across the equatorial Pacific associated with the ENSO
episode.

Temperature anomalies across North America mirrored those that occurred around the rest
of the Northern Hemisphere during 1992. The first three months of the year were dominated by
temperature anomalies which were more than 6°C above normal in an area across the northern
Great Plains extending into western Canada (Fig. 32a). The rest of the year was strikingly
different, with negative anomalies dominating the eastern two-thirds of the United States and
Canada (Fig. 32b). Temperatures across the Far West, however, remained well above normal
throughout the entire year. Averaged temperature anomalies across the United States was
estimated to be the 21st warmest year in the 98 year record, but the second coolest of the last
seven years (Fig. 33). The variability in temperature anomalies across the United States was
quite pronounced, with more than 50% of the nation experiencing much above normal
temperatures during February, while more than half of the country had much below normal
temperatures during July and August (Fig. 3d).

Surface temperature estimates are always held suspect because temperature anomalies may
result from a variety of sources, e.g. urban heat island, instrument location changes. Estimates
of the monthly average surface temperature anomalies for the U.S. can also be obtained by a
statistical technique known as specification, which calculates the expected temperature anomalies
based on monthly mean 700 mb height anomalies (Klein, 1983). The coefficients developed for
this technique incorporate information about the relationship between U.S. surface air temperature
and quasi-hemispheric 700 mb height field determined from a training data set for the 1948-81
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period. In a given year, it is likely that observed and specified temperatures will differ from one
another, since other processes not accounted for in the training data set can influence the
observed anomalies. Extended periods of differences of one sign may indicate the influence of
a single process, or a set of processes which produce the same bias, that did not occur during the
training period.

During 1990-91, the difference between observed and specified temperatures (Tobs - Tsp)
was positive (0.3-0.4°C) (Fig. 35). This may indicate that the surface temperatures from which
the coefficients for the specification equations were developed were cooler for the same upper
air height anomaly pattern during the training period than they are now. During 1992, observed
U.S. surface temperature anomalies were almost 0.5°C warmer than those specified from the
concurrent 700 mb height. While the positive bias in 1990-91 might have been atfributed to the
unprecedented high temperature during those years, it is noteworthy that the same results
occurred in the much cooler year of 1992, In fact, given the 700 mb height, the specified U.S.
surface air temperature was slightly below the 1951-80 average, while the observed temperature
was 0.45°C above average. However, this recent warm bias in U.S. annual average surface air
temperature has not lasted long enough to be statistically significant, nor can its cause be
determined from the current analysis.
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GLOBAL SURFACE LAND TEMPERATURES

ANOMALY

YEAR
Fig. 26. Annual estimated global (land only) surface temperature (°C) anomalies computed
from the 1951-1980 base period (top) (Source: CAC), and annual estimated global
temperature anomalies (°C) for the land and marine regions (bottom). (Data provided by P.

Jones and D. Parker.). Land and marine anomalies are computed as departures from the
1950-1979 base period.
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N. HEMISPHERE TEMPERATURE ANOMALIES
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Fig. 27. Annual estimated temperature anomalies for the land and marine regions of the
Northern Hemisphere (top) and the Southern Hemisphere (bottom). Anomalies are computed
as departures from the 1950-1979 base period. (Data provided by P. Jones and D. Parker.)
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GLOBAL (LAND) TEMPERATURE ANOMALIES

JANUARY - JUNE
0.8
0B == e e e e e
L h R RS S———— B ]
L
g -3 EEEE SECEERECEEE | CUECETPETTETEETETERPERPERTRRERRPES] TEECRIES CELERPES TEE SEREE
&
<
&
Rl o B e D 8 e i ]
055t T T udse ' deT T ' 1968 ' ' MS7T T T 1d7d T ' Mdel T 'ided 1991
YEAR
GLOBAL (LAND) TEMPERATURE ANOMALIES
JULY - DECEMBER
0.8
O e R .

ANOMALY

OBder ™ T dsg T " %67 ' T 1des T T 977 ' ' 1974 T " 9] ' T "ided ' 'idor
YEAR

Fig. 28. Estimated Northern Hemisphere temperature anomalies (°C) over land for the
January - June period (top) and the July - December period (bottom). Anomalies are
computed as departures from the 1951-1980 base period. (Source: CAC)
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Fig. 30. Surface temperature anomalies (Deg. C) for a) December 1991—February
1992 and b) March — May 1992. Analysis based on station data over land

ond sea surface temperature (SST) over the water. Anomalies for station
data are from the 1961-1990 base period, while SST anomalies are computed

as departures from the COADS/ICE climatology. (Source: CAC)
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Fig. 31. Surface temperature anomalies (Deg. C) for a) June — August 1992
ond b) September — November 1992. Analysis based on station data over land
and sea surface temperature (SST) over the water. Anomalies for station
data are from the 1961-1990 base period, while SST anomal ies are computed
as departures from the COADS/ICE climatology. (Source: CAC)
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Fig. 32. Surface temperature anomalies for January - March 1992 (top) and for April -
November 1992 (bottom). Anomalies are computed as departures from the 1951-1980 base
period.
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OBS & SPECIFIED SFC TEMP ANOMALIES
ANNUAL AVERAGE
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Fig. 35. Annual average United States observed surface temperature anomalies (yellow),
specified anomalies from observed quasi-hemispheric 700 mb heights (light blue) and the
difference between the observed and the specified anomalies (dark blue). (Source: CAQ)
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b. Troposphere/Stratosphere

Below normal temperatures were observed during 1992 in the troposphere as measured
by radiosonde balloon-borne instruments (Fig. 36) and by satellite-derived measurements (Fig.
37). The temperature anomaly for 1992 (-.19°C) is the lowest since 1976 (Fig. 36, top) and is
a decrease of more than 0.5°C from what was observed during 1991. This sharp decrease in
mean tropospheric temperature is thought to primarily be due to the shading effects of the
aerosols from the Mt. Pinatubo eruption.

The effects of the 1992 ENSO event on tropospheric temperature anomalies can be
estimated by linear regression (Angell, 1990). 1If these estimates are used to adjust the
tropospheric temperature record (Fig. 36, bottom), 1992 temperatures equal the previous coldest
year in the record (1964), which followed the Agung eruption. The adjusted temperature
decrease between 1991 and 1992 becomes an even more impressive 0.75°C. This shows the
probable effect of volcanic eruptions overwhelming the influence of global warming.

Lower stratospheric and mean tropospheric temperature anomalies are provided
respectively by channel 4 and channel 2 of the Microwave Sounding Unit (MSU) (Spencer and
Christy, 1992). A time series of these temperatures shows that aerosols ejected by major
volcanic eruptions (El Chichon, 1982 and Mt. Pinatubo, June 1991} are associated with large
lower stratospheric temperature increases (Fig. 37), and large mean tropospheric temperature
decreases (Fig, 38).

In the lower stratosphere, temperatures in the tropical belt increased within the first two
weeks following the eruption of Mt. Pinatubo (Fig. 37a), peaking during August 1991. Lower
stratospheric temperatures also increased in the middle and high latitudes of both hemispheres
following the eruption (Fig. 37b, c), although a distinct warming trend in these regions, possibly
associated with the change in sign of the quasi-biennial oscillation (QBQ), appears to have begun
prior to the eruption. By mid-1992, temperatures in all three zonal bands began returning toward
normal.

Following the eruption, lower stratospheric temperatures remained above normal
throughout the subtropical latitudes in the Northern Hemisphere until June 1992 and until
September in the Southern Hemisphere (Fig. 39). In contrast, large positive temperature
anomalies persisted over the equatorial region for only four months following the eruption, before
weakening as mature ENSO conditions developed in the tropical Pacific. Although positive
anomalies increased early in 1992, these larger anomalies only lasted until April. As expected,
this pattern of anomalies in the tropics and subtropics was strongly anti-correlated with the
pattern of 200 mb height anomalies (Fig. 12). In the extratropics, the largest positive lower
stratospheric temperature anomalies were observed over the South Pole during the Austral Spring
in both 1991 and 1992, when the polar vortex climatologically weakens, and volcanic aerosols
may have been advected into the region.

In the troposphere, global mean temperatures did not show a distinct decline until nearly
two months following the eruption (Fig. 38a). Temperatures in both hemispheres then decreased
at approximately the same rate (Fig. 38b, ¢). In the Southern Hemisphere, the decline in mean
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tropospheric temperatures ended during the Austral spring (September - November) of 1991,
although temperatures remained consistently below normal through the end of 1992. In the
Northern Hemisphere, mean tropospheric temperatures decreased until about June 1992, after
which temperatures rose rapidly for the remainder of the year, although remaining below the
long-term mean. Consequently, the global mean temperature variability during 1992 is dominated
by the large temperature variations in the Northern Hemisphere.

Following the eruption of Mt. Pinatubo, the mean tropospheric temperatures decreased
in the tropical and subtropical latitudes of both hemispheres (Fig. 40). This is well correlated
with the 200 mb height anomalies (Fig. 12), and anti-correlated with the lower stratospheric
temperature anomalies (Fig. 39). However, mean tropospheric temperatures in the tropical belt
rose to above normal between November 1991 and June 1992, a period during which mature
ENSO conditions dominated the tropical Pacific. Negative temperature anomalies subsequently
returned to the tropical belt following the weakening of the ENSO episode.
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GLOBAL TROPOSPHERIC TEMP ANOMALIES
OBSERVED
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Fig. 36. Annual global tropospheric (850 - 300 mb) temperature anomalies derived from
radiosonde data (top) and anomalies derived from radisonde data with the influence of ENSO
statistically filtered out (bottom). Annual values of global tropospheric temperature
anomalies are based on a 63 station radiosonde network and computed from the 1958-1991
base period. (Data provided by J. Angell.)
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Fig. 37. Lower stratospheric temperature anomalies from the Microwave
Sounding Unit (MSU) channel 4 for the a) tropical belt (30S - 30N),
b) northern extratropics (30N — 85N) and c) southern extratropics
(30S - 85S). Anomalies are computed from the 1982-91 base period.
(Data provided by Spencer and Christy.)
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Fig. 39. Time—latitude cross section of zonally averaged lower
stratospheric temperature anomalies (Deg. C) from the Microwave
Sounding Unit (MSU) channel 4. Anomalies are computed from the
1982-1991 base period. (Data provided by Spencer and Christy.)
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Fig. 40. Time—latitude cross section of zonally averaged mean
tropospheric temperature anomalies (Deg. C) from the Microwave
Sounding Unit (MSU) channel 2. Anomalies are computed from the
1982-1991 base period. (Data provided by Spencer and Christy.)

50



4. AEROSOLS

Mt. Pinatubo in the Philippines erupted many times in June of 1991, the maior event
occurring on the 15th. Sulfur dioxide gas injected into the stratosphere combined with water
vapor in the first few months to form sulfuric acid particles, which increase the amount of
sunlight reflected back to space. The greater the concentration of particles in the atmosphere,
the greater the reflectivity, and the larger the aerosol optical thickness, (AOT). Typical values
of AOT are less than 0.1 except where wind-blown dust, smoke from bio-mass burning, or haze
from industrialized regions are present in the troposphere. However, since the eruption of Mt,
Pinatubo, AQOT values have exceeded 0.1 over most of the Earth’s surface.

On the average, every increase in AOT of 0.1 corresponds to an increase in the Earth’s
albedo of 1%. Since the average albedo of the earth is about 30%, an increase in AOT of 0.1
corresponds to a 3.3% increase in the amount of energy reflected back to space. As a result,
volcanic dust in the stratosphere has a cooling effect on the Earth’s climate,

The weekly zonal averages of AOT values (Fig. 41) shows the increase in AOT in the
tropics starting in week 24, 1991, associated with the major eruption of Mt. Pinatubo that same
week. The AOT peaked in weeks 33-36, gradually diminishing to the end of 1992. Beginning
around week 32 of 1992 (mid-August), AOT values increased south of 40°S, as a result of the
transport of Mt. Pinatubo aerosols from the tropics and from particles produced by the smaller
(1/10th of Mt. Pinatubo) eruption of Mt. Hudson in Chile in mid-August 1991. The AOT values
reached a maximum in week 48, and then diminished to the end of the year. The increase in
AOT northward of 30°N from week 50 of 1991 to week 18 of 1992 (mid-April), was associated
with the northward transport of the Mt. Pinatubo aerosol, as well as from wind-blown dust from
the Asian continent. By the end of 1992, diffusion and fall out of aerosols with time have
returned the AOT observation in the tropics to approximately pre-eruption conditions.

The difference between monthly mean AOT values after the eruption of Mt. Pinatubo and
monthly mean values observed for two years prior to the eruption for three different latitude
bands (tropical, mid-northern, and mid-southern) is an estimate of the concentration of volcanic
particles in the stratosphere (Fig. 42). Only in the 40°S-60°S band does AOT not appear to be
gradually decreasing in particle concentration from the time of maximum: August 1991 for the
tropics, November 1991 for the mid-Southern Hemisphere, and April 1992 for the mid-Northern
Hemisphere. By the end of 1992, stratospheric particle concentrations had dropped to well below
half of their peak in the tropics (15% of peak) and in the mid-Northern Hemisphere (40% of
peak), but remained relatively high in the mid-Southern Hemisphere (60% of peak). Barring any
future volcanic eruptions, predictions based on these observed decreases in stratospheric particle
concentration indicate that the volcanic particle cloud should dissipate (AOT departures will be
near zero) by the end of 1993,

The regional evolution of the volcanic cloud during 1992 is shown in Figs. 43 and 44.
In January, 1992, particles from Mt. Pinatubo first begin to be present in high concentrations over
large areas north of 30°N. By April 1992, they had clearly made their way to the high northern
latitudes. At the same time, AOT anomalies in the tropical band had been diminishing in
concentration until, by December 1992, much of the tropics returned to near pre-eruption
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concentrations. Interestingly, AOT in the mid-latitude Southern Hemisphere band, which
appeared to be diminishing in March of 1992 (cf. Figure 42; AOT values cannot be derived over
high latitudes in winter), remained well above normal by December 1992. This suggests that
particles from the tropics have been transported to these higher southern latitudes by the
winter/spring circulation patterns of the Southern Hemisphere, consistent with the observed
decline of AOT in the tropics during 1992.

Another measure of atmospheric aerosols is the "apparent” transmission, or transmission
ratio (Ellis and Pueschel, 1971), which is derived from broadband (0.3 to 2.8um) direct solar
irradiance observations at Manua Loa Observatory, Hawaii (Fig. 45). The relative effect of three
major volcanic events over Manua Loa can be seen in 1963, 1982, and 1992, Of particular
interest 1s the smaller maximum but longer sustained effect of Pinatubo relative to El Chichon
(in 1982). This is indicative of the larger overall global presence of aerosols injected into the
atmosphere by Pinatubo and the greater potential for global climate effects such as suggested by
the AOT (Fig. 41) and the time series of global and hemispheric lower tropospheric temperature
anomalies (Fig. 37).
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Fig. 41. Weekly zonal averages of the aerosol optical thickness (AOT) from 70°S to 70°N for
the period June 29, 1989 through December 31, 1992. (Data provided by L. Stowe.)
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5. TRACE GASES
a. Ozone

Observations indicating that the Antarctic region undergoes a major depletion of column
ozone during the Southern Hemisphere spring season has led to major international efforts to
regularly observe and to explain this phenomenon. Enhanced ozone depletion is now recognized
to be due to chemical reactions associated with polar lower-stratospheric clouds in the very cold
winter.

Ozone over Antarctica reached record levels of depletion during September and October
1992. The rapid decrease of total ozone from late August through late October as observed from
the NOAA-11 TIROS Operational Vertical Sounder (TOVS) is shown in Fig. 46. The evolution
of the ozone hole is illustrated first on August 31, when a small area of low ozone developed
over the Antarctic Peninsula. The continued development of the area of low ozone over the polar
region is apparent by September 7. By October 5, an area of severely low ozone values
extended over the tip of South America. The area of low ozone continued to expand, covering
almost the whole Antarctic continent by October 11, with extremely low values near the South
Pole. On October 22, the area of low ozone was displaced off the Pole toward the Indian Ocean,
with an area of relatively high ozone encroaching toward the polar region, on the Pacific side of
the Antarctic continent. By December 6, the area of low ozone had diminished considerably.

Monthly averages of total ozone values over the polar region, 70°S to the South Pole (Fig.
47), show the decline in ozone amounts over the south polar region in 1992 and in recent years
since 1979. The monthly average minimum values in the Austral Spring (September- October)
has decreased from about 275 Dobson Units (DU) in 1979 to under 200 DU in recent years. The
maximum monthly average values for the high-latitude Southern Hemisphere also show
substantial decreases from 1979 to 1992, indicating that the ozone decreases have not been
limited to the winter and spring seasons.

The daily extent of the ozone depleted area, defined here by the percent of the area of the
Southern Hemisphere where TOVS data indicate values below 212 DU (Fig. 48), shows the
magnitude of ozone depletion over the Antarctic region. Ozone values below 212 DU of total
ozone are not generally observed outside the polar regions, and were not observed in the polar
regions before the early 1980°s. It therefore represents a convenient threshold value for depicting
the "ozone hole". An area of strongly depleted ozone was seen by the beginning of September
1992, about 10 days sooner than any previous year. In late September to early October 1992,
the area of the ozone hole was at its largest extent, and was almost 50 percent larger than the
maximum value previously registered in 1991 and 1987.

The vertical extent of the fully depleted region over the South Pole in 1992 also increased,
extending over the 14 to 18 km region. Some of this enhanced ozone depletion may be
associated with increased ozone destruction in the presence of aerosols from the Pinatubo
volcanic eruption. The low stratospheric temperatures during August 1992, and other factors
attendant with the increasing westerly phase of the QBO, may also have been contributing factors
in the enhanced ozone destruction. These factors add to the depletion due to reactions of chlorine
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-species on polar stratospheric clouds. As chlorine and bromine abundances continue to increase
in the stratosphere, further gradual decline of ozone is anticipated.

b. Carbon Dioxide

Carbon dioxide is the most important gas associated with global warming other than water
vapor. It has been measured continuously at Manua Loa Observatory, Hawali, since the late
1950’s. Monthly mean values for the period are shown in Fig. 49. The data through 1973 are
from Keeling et al. (1982), while data since 1973 are from the NOAA program (Thoning et al.,
1989). The record constitutes the longest carbon dioxide measurement series in the world and
clearly shows steadily increasing concentrations with time,

Manua Loa Observatory, located at an elevation of 11,000 feet on the flank of Manua Loa
volcano, is an ideal site for carbon dioxide measurements. There is no nearby vegetation and the
prevailing nighttime downslope winds give a representative sampling of mid-tropospheric air
from the middle of the North Pacific Ocean. As such, the record is a reliable indicator of large
spatial scale long-term carbon dioxide growth. As an example of the recent trend, the average
concentration increase at Manua loa between 1986 and 1991 was 1.6 ppm per year. While data
for all of 1992 have not yet been fully processed, it appears that the growth rate for 1992 will
be something less than 1.0 ppm per year. The reasons for this relatively small increase have not
yet been determined, but a possible contributing factor is the coincident ENSO episode, which
is thought to provide the major variability associated with trends in atmospheric carbon dioxide.

¢. Methane

Methane, the third most important greenhouse gas, is measured in air samples collected
approximately weekly from various sites in the NOAA/CMDL cooperative air sampling network.
Air sampling sites are distributed over a wide range in latitude: 90°S to 82°N. The average
increase in the globally averaged methane mixing ratio over the period 1983-1991 is about 11.4
ppb per year or approximately 0.7% per year when referenced to the middle of the sampling
record (Fig. 50). The long-term growth in methane has decreased from about 13.5 ppb per year
in 1983 to about 9.3 ppb per year in 1991 (see Steele et al., 1992).
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Fig. 46. Total ozone from NOAA 11 TOVS for August 31, September 7, October 5, October
11, October 22, and December 6, 1992. The color scale shows areas of lowest ozone in dark
blue and highest ozone in red. (Source: CAC)
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Fig. 49. Monthly mean carbon dioxide concentrations (ppm) measured at

Manua Loa, Hawaii, 1957-1992. The data through 1973 are from C. D.
Keeling at Scripps Institute of Ocean. (Data provided by NOAA/CMDL.)
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Fig. 50. Globally averaged, biweekly methane mixing ratios in
parts per billion by volume determined from the NOAA/CMDL
Carbon Cycle Group cooperative air sampling network.

Solid line (red) shows growth with seasonal cycle removed.
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6. PRECIPITATION
a. Global

While a significant part of the 1992 temperature structure and evolution can be associated
with the climatic influences of the aerosols associated with the Mt Pinatubo eruption, there are
no widely accepted hypotheses relating volcanic aerosols to global and regional precipitation
patterns. However, many of the precipitation patterns observed during 1992 can be interpreted
in terms of typical patterns associated with the ENSO phenomenon. Several of the ENSO-related
precipitation anomalies are discussed below.

In the southwestern U.S., extremely wet conditions characterized much of the period
between December 1991 and May 1992 (Fig. 51). Persistent ENSO conditions also helped to
provide above normal rainfall in the southeastern U.S. starting in the fall (Fig. 52, bottom) and
continuing through the end of the year. In southern Florida and Louisiana, these rains added to
the precipitation totals associated with hurricane Andrew, one of the strongest hurricanes to hit
the United States.

Elsewhere in the U.S., the ENSO-precipitation relationships are not as consistent from
episode to episode. Nonetheless, the ENSO-related circulation patterns helped to keep the
northwestern U.S. dry during its normal rainy season (December 1991 through May 1992, Fig.
51), continuing a multi-year pattern of drought. However, much heavier than normal
precipitation along the west coast of the United States during the early winter of 1992/93 may
significantly ease the impact of the long term drought.

Both the summer monsoons in India (June through August 1992, Fig. 53, bottom) and
Australia (December 1991 to March 1992, Fig. 54, bottom) had below normal rainfall, as can be
expected during ENSO conditions, The ENSO-related precipitation deficits persisted through
virtually the entire Australian monsoon season. Likewise, extremely dry conditions also
characterized many of the western Pacific Islands during 1992. However, the precipitation
deficits were not as extreme during the Indian summer monsoon, perhaps reflecting the
weakening of ENSO conditions during most of the Northern Hemisphere summer season.

The ENSO-related precipitation deficits in southern Africa for the November 1991 through
May 1992, exacerbated long-term drought conditions (Figs. 51, 54, top). South Africa, in
particular, suffered its 5th driest June through July yearly totals in 70 years. These extremely
dry conditions were comparable to those associated with the great 1982/83 ENSO event.
Fortunately, the 1992-93 rainy season got off to a relatively good start, with widespread moderate
to heavy rains falling on much of this region during late October through December.

In South America, heavier than normal ENSO-related precipitation was evident in
southern Brazil and Uruguay (Fig. 51). Heavy rainfall continued to occur well past the seasons
that are statistically related to ENSO (November to March), causing local flooding and mud
slides over large areas in the region.

64



Not all of the precipitation anomalies experienced during 1992 can be related to the
current ENSO episode. In particular, much of Western Europe experienced a much drier than
normal winter and spring, but wetter than normal conditions in the summer and fall (Figs. 51,
52). Further to the east, in Central Europe, precipitation anomalies showed a contrast between
summer drought and fall precipitation excess (Fig. 52).

In northern Africa, drought not directly related to ENSO was experienced in the Sahel
(Fig. 53, top), continuing a multi-decade shift to dryer conditions in that part of the world. This
long term shift is making it difficult to characterize the contemporaneous rainy seasons in a
meaningful way. Thus, while the 1992 rains were clearly below normal, the same can be said
for 24 of the past 30 Sahelian rainy seasons. It is perhaps more significant that early estimates
place the 1992 Sahel rainy season as the 3rd consecutive season to be dry with respect to the
mean rainfall during the past three dry decades.
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Fig. 51. Precipitation percentiles for a) December 1991—February
1992 and b) March — May 1992 based on a gamma distribution fit to
the 1961-1990 base period. Analysis not done in areas with
insufficient data.
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Fig. 52. Precipitation percentiles for a) June — August 1992
and b) September — November 1992 based on a gomma distribution
fit to the 1961-1990 base period. Analysis not done in areas
with insufficient data.
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Fig. 53. Precipitation index (average gamma percentiles of station precipitation within the
region) for the western Sahel, June - September (top) and India, June - September (bottom).
Index computed relative to the 1951-1980 base period. (Source: CAC)
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Fig. 54. Precipitation index (average gamma percentiles of station precipitation within the
region) for southern Africa, November - May (top) and northern Australia, December - March
(bottom). Index computed relative to the 1951-1980 base period. (Source: CAC)
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b. Satellite Estimates

Anomalies (1986-92 base period) in tropical rainfall during 1992 (Fig. 55) were estimated
using the GOES Precipitation Index (GPI) technique (Arkin and Meisner, 1987), which was
applied to geostationary and polar orbiting infrared data provided by the Global Precipitation
Climatology Project (Janowiak and Arkin, 1991). The GPI uses a cloud-top temperature
threshold to estimate convective rainfall over reasonably large (2.5° latitude/longitude) areas, and
hence, is best suited to tropical regions where rainfall is primarily convective and where surface
temperatures are relatively warm. The technique erroneously depicts rainfall in regions of
persistent jetstream cirrus since temperature is the only information used.

The rainfall anomaly patterns for December 1991 - February 1992 (DJF) and March -
May 1992 (MAM) reflect the warm ENSO episode conditions that prevailed during that time in
the central tropical Pacific. During DJF, a large region centered at the equator and east of the
date line experienced positive anomalies exceeding 150 mm. Conversely, a region west of 170°E
of similar size experienced rainfall deficits of about the same magnitude. An eastward shift of
the South Pacific Convergence Zone (SPCZ) was also observed during this period. This
estimated pattern of rainfall anomalies is consistent with warm episode conditions (Ropelewski
and Halpert, 1987).

During MAM, the rainfall anomaly pattern in the central Pacific was quite similar to DJE.
The Inter-Tropical Convergence Zone (ITCZ) in the eastern Pacific was stronger than normal,
as ENSO-related rainfall anomalies propagated eastward toward the South American coast.
Rainfall deficits of more than 100 mm were experienced in Northeast Brazil, which is also
consistent with ENSO conditions.

In June-August 1992, the magnitude and extent of the rainfall anomalies in the tropical
Pacific declined substantially, and near normal conditions prevailed in most other regions of the
tropics. However, estimated precipitation over the Arabian Sea and Bay of Bengal was greater
than normal. This observation is contrary to the expected rainfall anomaly patterns in this region
since, in general, the summer monsoon rains in the Indian region are less than normal after warm
ENSO episodes (Ropelewski and Halpert, 1987). Ground-based observations (Fig. 53, bottom
and Fig. 58), show that the Indian sub-continent, as a whole, experienced a slightly drier than
normal monsoon season. However, much of this dryness occurred in central India, where the
satellite estimates imply near normal rainfall. Observations in India along the Arabian Sea and
the Bay of Bengal show that these regions did experience above normal rainfall (Fig. 58).
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¢. West African Summary

Precipitation totals across western Africa are highly variable, with amounts ranging from
over 1200 mm to under 200 mm during May through September 1992 (Fig. 56). This time
period is especially critical to the Sahel (regions north of about 8°N latitude), since more than
90% of the annual rainfall occurs in this 5 month period. During the month of May, which
marks the beginning of the rainy season in the Sahel, precipitation was near normal at most loca-
tions. However, during June, when significant Sahelian rdinfall traditionally commences,
widespread dryness gripped much of the Sahel. Monthly rainfall amounts were among the lowest
10% of the 1951-1980 climatological distribution in the far western Sahel. Also, very little
precipitation has fallen in the countries bordering the Gulf of Guinea. Little or no seasonal rains
had fallen across northern Senegal, southern Mauritania, and adjacent Mali through early July.

Rainfall increased during mid-July and continued into August across much of the Sahel,
bringing seasonal totals closer to normal in some regions. During early September, generous
rains (between 75-200 mm) fell on northern Senegal and southern Mauritania, easing dryness
there. Elsewhere, rainfall amounts and coverage followed it’s normal seasonal decline, except in
Niger, where the ITCZ withdrew prematurely. Overall, May-September precipitation was highly
variable as most areas recorded subnormal amounts (Figs. 57). Less than 75% of normal rainfall
(with respect to the 1951-1980 base period) occurred in northern Senegal, Mauritania, and along
the Gulf of Guinea, while surplus seasonal precipitation fell on parts of southern Mali, western
Burkina Faso, southern Niger. The rainy season in the western Sahel (Fig. 53, top) exhibited
dryness similar in magnitude to both 1990 and 1991.
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Fig. 56. Total precipitation for West Africa for May - September 1992. (Source: CAQC)
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d. Southwest Asian Monsoon Sunumnary

Despite an early start to the monsoon in southern and eastern portions of the subcontinent,
much of central and southeastern India experienced an abnormally dry June and first half of July,
with many locations observing totals among the lowest 10% of the 1951-1980 climatological
distribution. Rainfall in northeastern India was enhanced by Cyclone 3B which swept into India
near Calcutta around mid-Tune, generating flooding throughout the coastline of Bangladesh.
Farther north, near to above normal rainfall fell on northern Pakistan, Kashmir, and Nepal.

In mid-July a resurgent monsoon finally produced widespread and abundant rains over
much of central, northwestern, and southwestern India, and across much of Pakistan,
Unfortunately, heavy late July and early August rains caused flooding in western India’s Gujarat
state and southern Pakistan’s Sindh province. During mid-August over 150 mm of rainfall fell
in 12 hours on Karachi. Elsewhere, widespread and generous rains fell across the remainder of
India and Pakistan through much of August, with the exception of light rains across southern
India’s Tamil Nadu state. According to the India Meteorological Department (IMD), the
June-August 1992 rainfall was only 92% of the normal monsoon average. During the first three
monsoon months, 27 of 35 meteorological divisions in India received normal (between 80-120%)
rainfall, two had excess, and six had deficient rains. The IMD stated that the spread of the
monsoon was uncharacteristic, with heavy rains in arid regions, while typically wet areas were
drier than normal.

As the month of September progressed, torrential downpours inundated sections of
northeastern Afghanistan, northern Pakistan, and northern India, producing catastrophic flooding.
Farther east, heavy rains in September in northwestern India and northern Pakistan continued for
several days, also resulting in widespread flooding. All told, this was the worst flooding in
Pakistan since the country was founded in 1947.

Precipitation diminished in mid-September across much of the region. However, despite

heavy rain in the Northwest, the 1992 was still below normal across much of northern, central,
and eastern India, Bangladesh, and Nepal (Figs. 58 and 59).
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e. Western United States Summary

Precipitation falls in a very distinct pattern across the western United States, with the bulk
of the annual total usually occurring during the November - March period. Below normal totals
have been observed across large portions of the Far West through each of the last six "wet
seasons” (1986/87 - 1991/92). Precipitation deficits of 1000 - 1800 mm have accumulated across
much of the Sierra Nevada, Cascades, northwestern California, and the western halves of
Washington and Oregon during this period.

October 1992 brought an early start to the wet season in most of the Far West, although
totals were small compared to those normally observed later in the season. November, however,
was quite dry at most locations. According to the California State Dept. of Water Resources,
only 20% of normal November precipitation fell statewide while somewhat larger amounts were
reported farther north. Beginning in early December, however, a series of storms brought heavy
rains and snows (depending on elevation) to the Far West, especially the Sierra Nevada and
Cascades. Figure 60 compares the precipitation totals that were measured from the beginning
of the 1992/1993 wet season through December 5 with those reported December 6, 1992 -
January 10, 1993. The precipitation was very beneficial because a larger relative proportion of
it fell as snow. Figure 61 shows the percent of normal precipitation and the percent of normal
snow water equivalent reported in selected river basins across the Far West as of January 8,
1993. Most locations outside of Washington have received abundant precipitation, and snow
water equivalents show even larger surpluses. In Washington, state year end precipitation totals
were below normal at many locations, but snow water equivalents were at or above normal,
reflecting the unusually large proportion of the precipitation that fell as snow. Across the Sierra
Nevadas, snow water equivalent was 140%-145% of normal at the end of the 1992.

The 1992/1993 wet-season precipitation totals through January 1, across California’s
primary water storage regions are the largest of the past 8 seasons, including what has been
termed a "flood year" in 1985/1986 (Fig. 62). Despite the recent heavy rains and snows,
reservoir storage at California’s primary reservoirs remain very low (below 60% of normal with
little change from January 1 of 1992). An accurate assessment of the expected improvement
in the state’s water supply provided by these storms cannot be made until the snowpack begins
to melt and the water flows into the reservoirs in late spring.

The large December 1992 precipitation total reported statewide is not unprecedented (Fig.
63). Similarly large amounts have fallen at other times since the commencement of drought
conditions, but the wet spells did not continue long enough to provide complete relief. Through
January, however, 1992/1993 is the first wet season since the beginning of the drought to bring
above normal precipitation to each of California’s ten hydrologic regions (Fig. 64). This has
resulted in widespread benefits and provides the possibility of significant improvement in long-
term conditions, should ample precipitation occur during the remainder of the wet season.
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7. CRYOSPHERE
a. Snow Cover

During the period of satellite observations (1966 to the present), Northern Hemisphere
snow cover area has generally been anti-correlated with Northern Hemisphere surface land
temperatures. This relationship also held for the year 1992, which was characterized by slightly
positive temperature anomalies and below normal snow cover extent over the Northern
Hemisphere.

A slightly more complex picture emerges if the year is split in two. The. first half of the
year, January through June 1992, represents snow cover conditions at the end of the 1991/92
snow season (Fig. 65). The 1992 January through June period was the seventh in a row to
exhibit below normal snow cover area for North America and fifth consecutive snow-deficit
season over Burasia. Thus, this pattern is consistent with the observed tendency for anti-
correlation between surface temperature anomalies, which were slightly above normal, and snow
cover anomalies.

On the other hand, even though the global land surface temperatures for the second half
of 1992 were slightly negative, above normal snow cover for the July to December period was
present only over North America (Fig. 66). Eurasian snow cover remained slightly below normal
during the relatively cold July through December half of the year.

b. Sea ice

After exhibiting a period of extreme variability early in the record, the fluctuations in
Antarctic sea ice area have been extremely small over the past several years including 1992 (Fig.
67, top). Examinations of the sea ice areas in the "ice factories" of the Weddell and Ross Seas
(not shown) show some tendency for increased sea ice area in the Weddell Sea and Jess than
average ice area coverage in the Ross Sea during 1992.

In contrast, the Arctic sea ice has continued to show relatively large year-to-year
excursions in area (Fig. 67, bottom). The largest relative variations in area tend to occur during
the latter half of the year. In general, the Arctic sea ice area has been below average for most
of the past two years prior to mid-1992, when the anomalies became positive. This suggests a
slight tendency for anti-correlation between Arctic sea ice area and Northern Hemisphere surface
temperature over the past two years.
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Fig. 65. Time series of normalized North American (top) and Eurasian (bottom) snow cover
area for the January - June period derived from satellite data. Snow area values are
normalized by the 1973-1992 base period.
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normalized by the 1973-1992 base period.
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Fig. 67. Time series of normalized monthly Antarctic (top) and Arctic (bottom) sea ice area.
Sea ice area is normalized by the 1973-1992 base period.
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8. MAJOR SURFACE CLIMATE ANOMALIES
1. Western North America: MILD AND DRY WEATHER DOMINATES

Exceptionally mild conditions prevailed across much of western North America, especially
the Pacific Northwest and southwestern Canada, during the first five months of the year. Below
normal precipitation totals established a sixth consecutive year of drought across northern
California, southeastern Oregon, and portions of Nevada during the 1991-92 rainy season.

2. North America: UNUSUALLY COLD CONDITIONS

Temperatures were unseasonably cold in eastern Canada beginning in February, especially
along southern Hudson Bay. Unusually cool conditions became more widespread around
mid-year, covering the eastern half of the U.S. and much of southern and northwestern Canada
and Alaska during the summer and fall.

3. Northern Bahamas, southern Florida, southern Louisiana, and western Hawaiian Islands:
INTENSE HURRICANES CAUSE MUCH DAMAGE

During late August, Hurricane Andrew intensified into an extreme Category 4 storm before
tracking through the northern Bahamas and southern Florida. The storm then moved into the
eastern Gulf of Mexico while maintaining most of its strength, making a second U.S. landfall
along the south-central Louisiana coast. In early September, Hurricane Iniki made landfall on
Kauai, Hawaii, the strongest hurricane to affect Hawaii this century.

4. East-ceniral South America: ABNORMALLY HIGH RAINFALL

Heavy rainfall produced severe flooding in portions of northern Argentina, and downpours
caused flash flooding and mudslides in the western and northern suburbs of Rio de Janeiro in
early January. May proved to be an exceptionally wet month, with rainfall exceeding 400 mm
in northern Rio Grande do Sul and central Santa Catarina, Brazil.

5. Western South America: UNUSUALLY WARM; HEAVY RAINS IN CHILE
Unusually warm weather, with temperatures averaging as much as 5°C above normal,
prevailed along the immediate Pacific Coast of northwestern South America during January-June.
Rare heavy rains caused flash flooding in the desert regions of northern Chile.
6. Central and southern South America: TEMPERATURE EXTREMES IN AREA
During July-September, temperatures averaged around 2°C below normal in central South

America, with departures reaching -7°C in southeastern Bolivia. In sharp contrast, weekly
temperature departures up to +7°C occurred in late August in southern South America.
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7. Burope, Middle East, southwestern Asia, and northern Africa: VERY COLD WINTER

A very cold Winter (December 1991-February 1992) in southern Europe and the Mideast
was characterized by repeated invasions of cold air and heavy snow. Farther east, southwestern
Asia also experienced a very cold winter. Well below normal temperatures also affected northern
Africa,

8. Europe: HOT AND DRY WEATHER ENVELOPS CONTINENT

Unusually dry conditions affected Europe during summer. Much of the continent received
less than half of normal late Spring and early Summer precipitation. During mid-August, weekly
temperatures averaged up to 7°C above normal, with highs up to 39°C in parts of Germany.

9. Europe and northwestern Africa; AUTUMN STORMS AND EARLY-WINTER COLD

A series of strong storms in late September and early October brought heavy precipitation
and hurricane-force winds to much of southwestern Europe and Great Britain.  As autumn
progressed, bitterly cold weather overspread northern Scandinavia and northwestern Russia in late
October and persisted through mid-November.

10. Sahel Region: DRIER THAN NORMAL RAINY SEASON

Despite widespread abundant rainfall during late July and August, precipitation amounts
over the Sahel were generally lower than normal. The driest conditions occurred in the far
western part of the Sahel, where less than 75% of normal rainfall fell.

11. Southern Africa; WORST DRQUGHT THIS CENTURY

A severe drought affected much of southern Africa during the 1991- 92 rainy season. The
year began with an intensifying drought across the region, and brief late January rains failed to
ease long-term deficits. Hot and dry weather persisted from February until May when the normal
dry season commences,

12. Pakistan and western India; A DELAYED MONSOQON ENDS WITH FLOODING

Although the early part of the monsoon season was abnormally dry, heavy late-season
showers dropped widespread, abundant rains on much of central, northwestern, and southwestern
India and much of Pakistan, easing early-season dryness, but causing severe flooding in portions
of the aforementioned areas.

13. Sri Lanka and southern India: SEVERE DRYNESS ENVELOPS REGION

A severe drought affected Sri Lanka during the first three months of 1992, with moisture
deficits approaching 360 mm by the end of March.
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14. Eastern China and western Japan: HEAVY RAINS CAUSE WIDESPREAD FLOODING

Moderate to heavy February, March, and early April precipitation soaked much of eastern
China, Taiwan, the Ryukyus, South Korea, and western Japan. Heavy rains caused severe
flooding in Jiangxi, Guizhou, and Zhejiang provinces in southeastern China from mid-June to
mid-July.

15, Interior southeastern China: PROLONGED SPELL OF VERY DRY WEATHER

Well below normal rainfall affected interior southeastern China during late summer and
autumn. Much of Jiangxi, Hunan, eastern Guangxi and Guizhou, and southern Hubei provinces
recorded under half of normal rainfall from mid-July through early October.

16. Southeast Asia: TROPICAL CYCLONES AND HEAVY RAINS PREVAIL

Between July and October, numerous typhoons and tropical storms brought heavy rains
to parts of Vietnam, southern Japan, Taiwan, the northern Philippines and eastern China.

17. Western Pacific, southeast Asia, and the northern Philippines: VERY HOT AND DRY

Very hot weather dominated much of southeastern Asia and the northern Philippines
during the spring, with temperatures averaging as much as 4°C above normal in parts of
Myanmar and Thailand. In addition, tropical shower and thundershower activity was unusually
quiet across the western Pacific and the Philippines during the first half of the year.

18, Northern and eastern Australia; EARLY DRYNESS, THEN HEAVY RAINS

The 1991-1992 rainy season in northern Australia started slowly as abnormal dryness
covered northern and eastern portions of the continent. By February, however, heavier rains
began to fall on the east-central and northeastern sections of the country. Unseasonably heavy
rains fell across the region in mid-May, particularly in western Queensland and the eastern
Northern Territory.

19. Southern and western Australia; UNUSUALLY WET, THEN UNSEASONABLY COLD.

Abnormally high precipitation dominated much of southern Australia from August through
October. Between two and four times the normal amounts were measured in northwestern
Victoria and much of southern South Australia during the period. During November and
December, southwestern Australia experienced much below normal temperatures.

20. New Zealand: VERY DRY CONDITIONS REPORTED.

In New Zealand, four months (mid-February to mid-June) of abnormally low precipitation
(45-85% of normal) created deficits of 75- 250 mm throughout the nation.
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SIGNIFICANT ABOVE NORMAL TEMPERATURE ANOMALIES DURING 1992
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Fig. 68. Significant above normal temperature anomalies (top) and below normal
temperatures anomalies (bottom) during 1992. (Source: CAC).
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SIGNIFICANT ABOVE NORMAL PRECIPITATION ANOMALIES DURING 1992
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Fig. 69. Significant above normal precipitation anomalies (top) and below normal
precipitation anomalies (bottom) during 1992. (Source: CAC)
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