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ADBSTRACT

The small-scale "noise’ disturbances of the atmasphere create difficu]tHes for the numerical integeation
af the cquations of motion. For sxample, their existenes demands that very small fime diferences be wsed
in the integration of the finite-difference cquations, To eliminate the noige, & fltering method s devised
which consiste essentially in replacing the primitive kydrodymamical equations by combining the geastrophic
and bydrestatic equations with the conservation equations for potential temperature and potential vortic-
ity. In this way a single equation in the pressure is obtaiied Jor the motion of the large-scale systems. A

method is suggested for its numerical integration,

The spread of data required for a short-period forecast is discussed in torma of the rate of spread of ine
fiences or signal velocity' in the atmosphere. 1t is chown that a small distucbance 1= propogated both
horizonlally and vertically at a finite rate, Estimates are gbtained for the maximum eignal-velocity com-
ponents in order to establish bounds for the influenes region. It is found that numerical forecasts for periods
ef one or perhaps two days are now possible for certain areas of the earth but that forecasts for longer periods
require a greater spread of cheervation setions than ls availahla,

A method is given lor redirting the three-dimensional foreease problem ta a two-dicnensional one Ty coeni-
atruction of an "equivalent-baratropic™ atmesphere. The methad (s applied 1o the caleslation of the S00-m

height tendency, and the resulis zre comparcd with

observation. A rule is derived for determining the

positions of the isellohyptic conters from the feld of e absolute-varticity advection.

1. Introduction

A fundamental need in weather prediction is a
mathematical or statistical apparatus capable of deal-
ing with the laree number of parameters required for
describing the meteorolopically significant motions of
the atmosphere. For want of such an apparatus, the
theoretical meteorologist is constan tly forced toreduce
the number of degrees of freedom of the motion
by imposing kinematic constraints in the form of
symmetry, periodicity, and stationarity conditions,
and by reducing its dimensionality. The synoptic
meteorologist, who must also reduce the | recdom, does
it by substituting for the actuzl motion the ‘pestalt’
consteucts: pressure system, ridge, trough, air mass,
front, wave, jet stream, ete, As the success of a weather
prediction depends upon the number of relevant par-
ameters the forecaster has at his disposal fram which to
draw statistical or dynamical infe rences, it is not
difficult to understand the disappointingly slow Do
ress made in the field of weather prediction.

It is for this reason that recent developments in the
design of large-scale digital computing machines have
revived the interest of meteorologists in the problem
of numerical weather prediction. Promise is given that

. This paper was begun by the author as a Nationa] Rassarch
Fellow at the University of Oxlo and completed at the Institute
for Advanced Study on & meteorelagical project sponsored by the
Oiffice of Maval Research of the 11, 4, Navy. A summary was pra-
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eentad at the New York meating of the American Meteorologial
Society, 28 January 1940, " i

the purely mechanical difficultics connected with the
handling of great quantities of data can be overcome
g0 that the computational time factor will eventually
cease to be the unsurmountable obstacle to the prac-
tical realization of a program of numerical forecasting.
The role of the enormous weather factory envisaged
by Richardson {1922) with its thousands of computers
will, it may be hoped, be taken over by a completely
automatic electronic computing machine.

This note of optimism must, however, be tinctured
by the sober realization that there are serious obstacles
other than the time factor that still stand between the
hope and it fulfillment, There still remains to be
answered the basic question: Do we actually know
the laws governing the motion of the atmospherer
In the last analysis this question ean be answered anly
by deducing consequences from hypotheses and sub-
jecting them to experimental vertification. Since it is
practically impossible to experiment with the atmos-
phere on a large scale, and sinee an adequate similarity
theary or technique is lacking for model experiments,
a theory describing what the atmosphere will do under
a piven set of circumstances can be tested only by
integration of the appropriate equations of motion. In
this connection the fundamental importance of high-
speed arithmetical devices iz ceadily appreciated. By
reducing the mathematical difficulties involved in
carrying a physical train of thought to its logical con-
clusion, the machines will give a greater scope to the
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making and testing of physical hypotheses and so lead
to a wider use of inductive methods in meteorology.

The motions described most accurately by the axist-
ing observations are the large-scale disturbances of the
atmosphere. Just as we achicve a degree of certainty
in predicting the motion of a gas by transferring atten-
tion [rom the individual molecules to certain space
and time averages, 5o by restricting ourselves 1o the
major weather-producing motions of the atmosphere
whose horizontal scale is of the order of 1000 km, we
minimize the random effect of the micrometecrological
motions. For the formee the laws may be assumed
known to a first approximation and to be expressed
by the nonviscous hydrodynamical equations and the
arlinbatic equation. No douht modifications in the laws
will be required as forecast periods are extended and
as inadequacies are revealed in the existing equations
by comparizon of prediction with observation.

An introduction to an important aspect of the nu-
merical forecast problem is afforded by the following
gimple example. Consider the motion of small per-
turbations in an incompressible atmosphere of height
H moving with constant translation U over a plane
earth which rotates with the angular speed ©. A motion
of this sort could concelvably cceur near the poles of
the carth, If the motion is assumed not to vary across
the current, then, in a rectangular coordinate system
with x directed along, and ¥ normal to, the current,
the perturbation equations bhecome

filT: L anh ; "
e AR v,
at ax e ()
dr + Uc'.ltr i # 5
FE L nan et @
akh e fU du
— — oy = J— (3)
at d g Fiin

where k is the perturbation height. Let us solve these
equations numerically by calculating the successive
time increments in «, ¥, and k Using centered space
differences and uncentered time differsnces we re-
place da/dx by

[eelx 4 34x) — aly — daa)]/Ax,
and da/dt by
[eix + At — afx)] AL

Then if the values of «, v, and & are known at the
points . . . x — §dx, %, x4+ 3w, . . . along the
base AR of the grid triangle of fig. 1, their valoes
can be determined at the apex P by iterative applica-
tion of the finite-difference analogues to (1-3). It
might be thought that the degree of approxdmation of
the finite-difference solution to the actual sclution of
the equations of motion would increase with diminish-
ing Arx and Al independently of the manner in which
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these increments approached zero, hut this is not the
case. To demonstrate we eliminate « and o from {1-3)
to abtain

3 4 3 R
(o e B i ik
(a:+ ax)[(a:'i'yam) &
- #h o ah 6 W
ER ot 'Fa.:_ ¢

an equation which governs the motion of both gravity
waves and the meteorologically far more important
large-scale disturbances. Mow it can be shown by a
reneralization of Riemann's method for hyperbolic
equations (Holmpren, 1904} that the solution of (4)
at the paint (¢, 7) is determined by the initial values
of k on that part of the x-axis which is intercepted by
the characteristic lines & — § = £ ¢ft — r), where
¢ = VgH. If Ax and Af are so chosen that the salution
depends on data not covering at least this much of
the x-axis, it is obvious that the finite-difference ap-
proximation will not converge to the correct zolution
for Ax, A#— 0. From the figure it can be seen that
the condition for the grid triangle FPAB to contain
the characteristic triangle PCD is 3AxfAf > ¢, or
At < TAxfe [fH is taken to be about @ km, the height
of the homogeneous atmosphere, ¢ becomes 300 m
sect, and if Ax = 400 km we must have Af < 11
minutes, Richardson chose approximately the wvalue
400 km for Ax but the value 6 hours for AL His compu-
tations would not have yielded a correct forecast even
with the best possible data.

This situation illustrates a basic shortcoming of the
primitive equations; the meteorologically important
solution of (4), given to a close approximation by
h=1%k{x— U00),u=0andv = ¢ 6k/dx, ie., by
a peaztrophically balanced lateral current advected
with the ronal wind, can be found only by taking
into account the entirely irrelevant gravity motions if
the solution is to be obtained by numerical integration.

2. The geostrophic approximation

In an article entitled *‘On the scale of atmospheric
metions'™ the writer (1948} presented a method for

Fig, 1. The initiaf values of 4, ¢, and A are given at the points
along the x-awis (¢ = 0). The Rnitedifference computation gives
the values at the remaining P:-int!. in the grid triang[e FAB. As

%Csl:nted. the grid triangle lies within the characterstic riangle
D, and the computation fails,

* A mathematical proof of the corresponding theorem For hyper-
bolic equations has beea given by Courant, Friedrichs,” and
Lewl_yI {1928). ;

8 Hereafter referred. to by {S).
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filcering out the meteoralogically insignificant “'noise’
motions from the primitive equations. This method
permits a simplified treatment of certain theoretical
problems and is also useful for numerical forecasting.
By replacing the primitive equations by the simplified
equations presented in (3}, a methed of integration
was developed whereby the difficulties encountered
in the application of Richardson's method can be
overceme, We shall now turn Lo a discussion of this
method,

In a rectangular coordinate systemn the Eovlerian
equations of motion for o nonviscous fluid may be
written .

i 1ap

— = — ~—— 4 20 sin ¢, 3

at podx R (5)

du 1ap

— = = —— — 0y sin g, i

= Sy 1 sin g ()
1 44

ﬁ;_"'_""gs (7
o de

where the z-axis points east, the y-axis north, and the
z-axis vertically upward. To aveid unnecessary peo-
metrical complications, we assume the earth plane.
We also assume that the hydrostatic approximation
holds and that the x-component of the Corlolis force
involving w is negligible,

[t was shown in (S) that the orders of magnitude of
the horizontal acceleration and the herizantal Corlolis

force satisfy the relation
heorizontal acceleration

C/8
horizontal Coriolis foree ¥

(8)

where f is the Coriolis parameter 20sing; Cis a
characteristic mean speed of propagation of the hori-
zontal streamline pattern, and 5 a characteristic hori-
zontal length parameter, The ratio £/ is a kind of
characteristic frequency of the motion, and f is the
frequency of a horizontal inertial escillation, The rela-
tion (8) states that the winds are near-geostrophic
providing the characteristic frequency of the motion
is small compared to the horizontal inertial frequency.
For the major pressure systems of the abmosphere £/S
is of the order 10-% se¢l, whereas f is of the order
10 sec~, Hence the fractional deviation of the wind
from the geostrophic is of the order 10-%, and the
large-scale wind systems are quasipeastrophic.

This property of the wind implies a corrgsponcling
property of the horizontal divergence. If the varia-
bilities of f and p are ignored, elimination of # from
equations {5} and (6) bv cross differentiation with
respect to x and ¥ gives

E(d’ﬂ') d r:’-a.',) Ifau &ﬂ_u g
de \ dt ay \ dt £+'fa_g,-_ » 9
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and it lellows from (3), (6], and (8) that the magnitude
of cach of the first two terms in this equation is one
order less than that of the last two. Hence the sum of
the terms #4/0e and dv/8y must be smaller by one
crder of magnitude than the terms themselves. As
shown in {3), the inclusion of terms arising from the
variability of f and p does not alter this conclusion.
We may therclore state that the horizontal divergence
is small to the same extent to which the winds are
geostrophic,

The near-geostrophic and near-incompressible prop-
erties of the motion have the following deslructive
consequences. If it were desired to determine the local
time derivatives of 4 and v from the fields 2, ¥, w, and
#, it would be necessary to measure % and » with an
ercor no greater than one per cent in order to obtain
du /8t and Ju/8 with an error not exceeding ten per
cent. But such accuracy is unattainable, not only
hecause of the inadequacy of present measuring tech-
nigues, but because the values of the geestrophic devi-
ation associated with Lhe smaller scale motions, for
which 5 is small, may be as large as those pertaining
to the major motions or even larger, Whereas the first
difficulty conceivably can be overcome by a refinement
in chserving techniques, the second cannot, A similar
difficulty is encountered in the application of the
tendency equation where an accurate evaluation of
the hovizontal divergence is required. Here again the
noise level is far too high; the small-scale divergences
are as great in magnitude as the large-scale or greater.
Thus, constant-level horizontal divergence charts show
that the scale of the predominant horizontal diver-
gence pattern i perhaps one-fifth that of the major
pressure patterns, and in congequence, the large-scale
horizontal divergence patterns are largely ohscured.

The hydrodynamical noise effect may be further
illustrated by an example from another branch of
hydrodynamics. Suppose it were required to determine
the two-dimensional tidal motion of an ocean. Since
all except sound motions may be regarded as incom-
pressible, the natural choice of dependent variable is
the stream function. A computational scheme requir-
ing a knowledge of the divergence du/éx + dw/ds
would be uwnsuitable because this quantity is more
sensitive to sound waves than, say, to surface gravi-
tational waves. In practice, therefore, one filters out
the zound waves by substituting the derivatives
—dfdz and M /dx for 4 and w respectively in the
vorticity equation.

In a similar way, the knowledge that div, v is small
should be used as a directive for substitnting the
geostrophic wind components for u and v respectively
in the equation for the vertical vorticity component,
taking care first to eliminate the horizontal divergence.
It is mecessary to perform this elimination because the
geostrophic wind components can be used to evaluate
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thehorizontal divergence no more than the expressions
— &/ 3z, d/ 82 can be used to evaluate 3u/3x + dw/dz.
For the purpose of eliminating the horizontal diverg-
ence we suppoze that there exists a conservative quan-
tity, o, in the atmosphere depending only on # and p-

de/dt = 0, (10)
With the aid of this law we may eliminate the hori-
zontal divergence hetween the vorticity equation

a
S+ T X8+ 2a+IX )T

=(2Q 4 T ¥ 0)-Vo+ Vi) ¥ ¥p, (11
and the continuity equation,

dp du o dur

—= - — S —_, 12

di 4 dx + dy Az ) £
to derive the conservation equation

d

= [riWe-(2 4+ V¥ )] =0, (13)

where 2@ is the earth’s vorticity. If, as a fArst approxi-
mation, isentropic motion is assumed so that ¢ may
be the potential temperature £, we obtain essentially
Rossby's equation for the conservation of “potential
vorticity” (see Rossby, 1040). Since the isentropic
surfaces are quasi-horizontal in the large-scale systems
(13) may be written
GL]

z[z2e+n]=0 (14)
where {' is the relative vertical vorticity Component
dofox — ou/0y,

It is now permissible to introduce the geostrophic
and hydrostatic approximations for %, », and 5 in
terms of p, If then w is eliminated between the equa-
tion of conservation of  and (14), the following equa-
tion in the pressure results:

[ Sl e el iR
dxt ;

gyt 5 _
a & af
b4 (-ﬂ§+ ﬁra—s'-l'- ﬁ)]a; T (13}

where s = g d(ln #)/3s and e, 4, and ~ are functions of
# and its space derivatives, We assume

1 (é@p_i_ﬂ

Bty ] G e

an approximate expression for the geostrophic vor-
ticity derived in (3}, Fram the fact that (15) is of the
first order in the time, one may conclude that the
motign is determined merely by a knowledge of the
isiitial pressure field. Further, from the manner in
which it was derived, we can expect that it will be

' (16)
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insensitive to the small-scale noises of the atmasphere
and therefore suitable for numerical computation.
Thus it was shown in {3) that all motions whose period
i= not greater than a pendulum day are filtered out by
this equation.!

A necessary attribute of a meteorological theory is
that it express thoze factors which are consciously or
unconsciously used by the forecaster, since his skill is
essentially positive. The lact that such terms as diva &
and di/d! are never considered by the forecaster may
be taken as an indication that they are not representa-
tive of the motions with which he deals. One might
have predicted, solelv on the basis of the behavior of
the forecaster, that an equation governing the motions
of only the large-scale systems would have the prop-
erty that its solution is determined by the initial
pressure feld alone,

Equation (15) has certain disadvantages. Some of
these are ¢asily eliminable by an appropriate modifica-
tion of the underlving assumptions, whereas others
are more basic. It was not necessary, for example, to
assume the metion adiabatic. To provide for condensa-
tion effects the law of conservation of wet-bull poten-
tial temperature could have been usad for (10}, Other
nonadiabatic energy changes, such as radiative trans-
fer, could also have been taken into account by a suit-
able modification of (10). However, in a first attempt
at numerical forecasting of the present sort, it has not
been considered advisable to deal with effects which,
from the available evidence, appear to be secandary.
Among these are included eddy viscosity. In support
of the view that the role of friction is secondary, we
may cite the work of Haurwitz (1941) who, on the
assumption that virtually all the frictional dissipation
of Linetic energy takes place in the friction layer,
showed that the kinetic energy of a hypothetical
atmosphere moving with a uniform speed of 10 m sec,
equal to that of the wind at the top of the friction
layer, would be dissipated in 72 hours, It is now known
that the actual kinetic energy of the atmosphere ex-
ceeds that of this hypothetical atmosphere by a factor
of 4 or more. The dissipation time is therefore closer
to two weeks, and it appears that surface friction may
be safely ignored for forecast intervals of a day or twa.

What is of more concern is that in applying the geo-
strophic approximation, all metiens whose periods are
smaller than or of the order of a pendulum day are
filtered out of the eguations as noise. In doing so,
mations of considerable importance for forecasting
small-period weather changes may be excluded. For
the present, it appears that one can only hope to fore-
cast the major pressure patterns and to use these as
steering currents lor the smaller motions, The filtering

* Other means of oliminating the noise sensitivity which invelve
arithinetical smoothing processes are also being investigated by

the writer and his colleagues, However, the mothod given here
appears to be phyeically the most natural.
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procezs then results in a certain distortion in the large-
scale motions owing to the fact that the small- and
large-scale motions are not Iinearly superposable. This
amounts, as Reynolds has shown, to the intreduction
of a get of turbulent stresses. The tentative assumption
is that these stresses will not be important for short-
range forecasts aince the smaller scale motions are
confined to a relatively thin surface layer of the
atmosphere, ]

3. Method of integration and initial-dats requirements

We note that (15) is a second order partial differ-
ential equation of the elliptic type in ap/far, since
{f 4 1/5 15 positive for large-scale motions, If at any
moment, {, the held of $ is known, itcan be determined
for the time & -+ Af by solving for #p/96 An n-fold
iteration of this process then gives the solution for the
time £ + nAé

It would appear from the elliptic character of (15)
that the initial pressure field must be known through-
out the atmosphere, since the only surfaces where the
boundary conditions are known as functions of time
are the surface of the earth and the top of the atmos-
phere. Motwithstanding this there is, for praciical
purposes, a fnite rate at which influences propagate
in the atmosphere, 4.2, a point forecast can be made
with a knowledge of the initial pressure field within a
limited region surrounding the point. This will be
demonstrated in the next two sections,

4. The horizental signal velocity

The concept of the speed of propagation of a hydre-
dynamical infuence, or “signal velocity,” in the
atmasphere is an important one for meteorology. [t is
uzed to determine the dimensions of the region through
which the initial data are needed in forecasting for a
prescribed area, and more generally, it enters in any
investigation of the causal connection between one
part of the atmosphere and another.

A limit to the speed of propagation of a hydro-
dynamical influence, or “signal wvelocity,” would be
the velocity of sound were it not for the fact that the
use af the hydrostatic approximation filters out pure
sound waves and therefore introduces an infinite speed
of propagation in the vettical. Although horizontally
moving sound waves are also eliminated in this process,
the horizontal signal velocity remains finite because of
the possibility of vertical accommadation for a hori-
zontal displacement. In this case the horizontal signal
velocities would be limited essentially by the speed of
gravity waves, but the introduction of the geostrophic
approximation as an additional artificial constraint
climinates pravity wawves as well and canses these
velocities also to become mathematically infinite. This
is the explanation {or the obzervation that the solution
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of equation (15) for #p/8¢ is mathematically deter-
minate when only the initial pressure field is known for
the whole atmosphere.

If one is concerned enly with the horizontal propa-
gation of effects in large-scale atmospheric systems,
it is sufficient to study the propagation in a barotropic
atmosphere with velocity independent of height, be-
cause’ such an atmosphere can always be chosen to
approximate the mean horizontal motion of the real
atmosphere.® A set of filtering equations equivalent to
(15} for a barotropic atmosphere was found in (S) to be

f’;(ﬂ) g

d\ p 4

1000 W e iy s C1
- afay’ pfdx’

where p and p are the surface values of pressure and
density. The earth is assumed plane and the motion a
small perturbation independent of » on a constant
zonal current of strength {7, We then obtain

a'p ' ap di
L —nZaata0 (18
PWEY ax a Py {18}

where p is now understood to be the perturbation
pressure, § = df/dy, and X! = f/RT with T the mean
surface temperature, It ia convenient to take the day
as the unit of time and the radius of the latitude circle
as the unit of distance. In these units 9 = 2¢ and
B = 4w cos? @ At 45° latitude, § = 2x and A = 2.5,
Unless otherwise stated it will always be assumed
that » = 45°,

For greater simplicity the problem is reduced to one
in which IF = 0 by referring the motion to a coordinate
system moving parallel to the x-axis with the speed I,
Il we neglect the small error arising from the fact that
the earth's surface deviates slightly from a geopoten-
tial surface in this system, an approximation equiva-
lent to the assumption that the ground has the
(negligible) slope of an isobaric surface, equation (18)
takes the simple form
g =) ap  ap

p— —‘l"ﬂﬂ-;“ﬂ.

1
dx? at (13)

The exact equation in the meoving system is farmally
the same as (19} if 8 is replaced by & = g + 21/
For If = 15 m sec™ the correction AL is only 10 per
cent of @ and can be ignored. We shall, however, take
it inte account in caleolations in which UF is in the
vicinity of 15 m sec™! by increasing 8 to 1.18—from 2=
to 7.0 at 45° latitude.

Equation (19) has the wave solution
F = s“,kr—-rl: Ezﬂ}

b See section 6,
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r =

— BRj(E + A%, (21)

where k is related to the wave length L by the formula
£ = 2x/L. The phase and group velocities ¢ and ¢
are given by the formulas

¢ = wfk = — B/ 4+ M), (22)
de  BE -0

ik ot )

and are represented in fAg. 2 as functions of &.*
Gy (243 o)

20 5
La]

b l/::4: B T-Fk

F15. 2. Phasze and proup velocity in 2 resting barotrapic atmos-
phere represended as a function of wave nomber & The leogth
1nit 1z a radizn of longitede at latitede 457 z0 that & = 1 corre-
spods to a wave ]engl'J:L equal to the circumberence of the 45°
laticucde circle.

Let us consider the disturbance emitted by a point”
source alt a certain instant of time This disturbance
will consist of a series of waves spreading out from the
point along the positive and negative r-axis, preceded
in each direction by o non-wavelike forerunner con-
taining but little of the total energy. Within the main
body of the disturbance, & and » are slowly varying
functions of distance satisfyving (21) and for which the
group velocity (23) can be defined. It can be shown
(see, for example, Jellreys, 1944, p. 482) that the
kinetic energy contained between two points each
maoving with the local proup velocity is constant; hence
the maximum velocity of propagation of a point dis-
turbance is effectively limited by the maximum group
velocity, and the minimum wvelocity by the minimum
group velocity. Since an arbitrary disturbance can be
regarded as a collection of point sources, the resuolt
follows that the pressure at a given locality will remain
virtuai]}f unaffected 1‘1}' a disturbance whose distance
away is either greater than the maximum group ve-
locity times the forecast time or less than the minimum
group velocity times the {orecast time.

The mathematical argument is based on the mechod
of stationary phase (see JelTrevs, 1946, p. 474). Write
the initial function $(x, 0} as the Fourier integral,

1 -1 o=
b 0) = — [k [ oo 0 da, 28)
T Y

#The importance of the proup-veloci
atmospheric motions was first recogniz
also Yeh (1949,

 Brricdy, a plane source.

v i
concept for dispersive

by Roeshy (1943); eea
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whence, in virtue of (13) and {14), the pressure dis-
tribution

1 M o

Pl ) = 2 f = f B, O)eittl—st—rl dg (25}
T il

satisfies both the initial condition and the equation of

motion (19). Now subtract (24) from (25) and inter-

change the order of integration:

Lo

e, 8= plx, 0) 4 Iz — o, Hip(n, 0} da,

—r

(26)

where

1 (0]
T s}-EJ‘ (et — et=dh,  (27)

In case U # 0, the formula corresponding to {26) is
plx, 8 = plx — Ut 0)

+ Tz — Tt — o, Opla, 0) de.

Equation {23) states that the pressure may be re-
garded as a sum of sine waves of varving length each
moving with the wave speed given by (22). In contrast
{26) states that the pressure may be reparded as a sum
of point-source disturbances.

The lunction [ plavs the role of a Green's function
and is called the “influence function” since it deter-
mines the influence of an initial disturbance at a given
point at the time t. Physically, I{x — o, i) is the
change in the value of $ at the point x in time ! which
is causcd by a unit point disturbance originating at
the point ¢ at the time 0.2

The principle of stationary phase states in applica-
tion that the integral I will annihilate itself by de-
structive interference except for those valuss of x — o
for which the phase k(x — a) — ot is stationary, 4.e.,
except where

*—a =gl
Hence, if « satisfies either of the inequalities
¥ —a > (max o, x — e < (min g,

the phase cannot be statignary, and I iz negligible,
We may therefore replace the lower and upper limits of
integration in (26) by & — (max ¢z)f and x — {min ¢}

4The noticon of a meteoralogical influence function has been
used by Ertel (1941 ; 194) to prove the dnpossibility of forecasting
for a limited region of the abmesphere, He arguea that breause the
influence Tunchion 1s generally different from zero over the whele
parth there will he a basic indeterminacy in the forecast if the
initiel data are known for only & patk of the atmosphere, This
reasoning s formally comrect, providing sound sigmals are ex-
cluded, just as it s correct to say {Raﬁeigh (1209)) that a dis-
turbance of the surface of an ocean is propagated instantancousky,
if the prekn i incompressible. Bue for praciisel par there iz
ed of propagation of a disturbance in
both cases, and this limit is glven approximately by the maximum
group velocity.
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respectively, so that the pressure at a point x is de-
termined by a knowledge of the initial disturbance
between these two limits alone.

Fig. 2 shows that max ¢, (= §/8M) = 19.8 deg day-!
aid min g (= — 8% = 15384 deg day at 45° larti-
tude. The excessively large magnitude of mine; is
contrary to forecasting experience and can be dis-
counted as the discrepancy arises only from the arti-
ficial assumption of an infinite plane carth. If one
takes account of the fact that the maximum wave
length at latitude 45° iz limited to the circumference
of the latitude circle (& = 1), it i3 seen from fig. 2 that
the minimum group velocity tales the more reasonable
value —49.3 deg day~L Moreover, even this negative
value may be discounted, for negative group velocities
occur only in a small range of &, corresponding to
waves with [engths greater than 18,000 km, and these
are asspciated with little of the total encrgy. Thus it
may be anticipated that I{x — a, ) will be appreciable
only between the limits & = xand & = 2 — (max )t

However, too much confidence cannot be placed in
these values, first becanse the method of stationary
phase gives only an asymptotic approximation for
large ! to the integral T in (26), and ! = 1is not “large,”
and second, because the application of the method pre-
supposes A continuons variation in &, whereas in fact
k can only assume Integral values, correspanding to
wave lengths equal to integral fractions of the circum-
ference of a laticude ciccle, We therefore turn to a
more accurate methed for getting at the values of the
signal velarity.

In accordance with the requirement that & have only
positive integral values the motion will be described
in a ¢ylindrical coordinate system with x measured in
radians of longitude at the Jatitude @ and ¢ in days.
To solve (19) it is then necessary to use Fourier series
in place of the Fourier integral. The solution analogous
to (26} becomes

25,0 = p0,0) = [ Il — 0, 0p(a, 0) da, (29)

=

wherp

1 4=
Lz ) = Z_E it e B (299

The form analogous to (27) for a nonzero zonal
current ig

pla, f) = plx — L%, 0)
+ f " Tl ~ Ut — @, Dpla 0) da (30)

As no analytic expression for the influence function
12 could be obtained, the series (29) was evaluated
numerically for f = 1. The rcsulting function is
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graphed in fig. 3. We note that fi2 is small outside the
region 0 < x < 27° longitude with boundaries corre-
sponding to the signal velocities 0 deg day—t apd 27
deg day—! respectively. These walues are to be com-
pared with the values 0 deg day=! and 19.8 deg day~!
for the effeclive group velocities given previously.

g [sid
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e e
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F16. 3. The influence Tenction S2(x, &) for § = 1 day. This
function represents the 24-hour change in ¢ at the point z pro-
duced by a unit point disturbance at the origin at i = 0,

As a check on the accuracy of the signal-velocity
determination, the influence fynetion I was used to
forecast the actwal distribution of v, the meridional
geostrophic wind component at 45°N measured from
the observed height profile at 500 mb,® uging data
taken from the U. 8. Air Force Air Weather Service
Historical Map Series. The actual map is shown in
fig. 4. Since v also satisfies (19), the forecast equation
is identical to (30) with » substituted for p.

The v distribution was calculated first by integrating
aver the entire range of x and next by integrating only
from 0 to 27° longitude. The mean zonal speed at 45°N
was measured as 15.6 deg day—, The results are shown
in fig. 5. Curve I is the observed distribution for 0400
GCT 12 January 1944, curve II is the twenty-four
hour [orecast obtained using the entire range, and
curve I1l by using the restricted range. Curve 1V
represents the observed distribution of v for 0400 GCT
13 January 1946. The fact that curves Il and III
coincide practically within the limits of ohservational
error is & verification of the conclusions concerning the
finiteness of the signal velocities.

The correspondence between the forecast and the
observed distributions has seemed sufficiently close,
particularly over North America and the Atlantic
Ocean, to justily a further investigation with a view
toward practical application. The discussion of these
results has appeared in another publication (Charney
and Eliagsen, 1949}, In this work it was found that the
lateral variation of a disturbance has a significant

* Tke choice of the 500-mb level is justified in secton 6.
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Fro.4, The 500-mblrhare for 0400 GCT 12 _Ts.nua?r 1946, The letters R and F ore located reapectively at the points of maximum
and minimuwmn-height change for the 12-hr period following Ehe time of the map, The letters B and B have o correspanding
meaning for the instantaneous computed change, and the crosses oeate the extrerme points in the Geld of the vorticity advection,

effect on its motion, especially if the scale of the dis-  hecomes
turbance is large. To complete the discussion of the »*  n ap ap
zonal elgnal velocitics we shall now take up the effect ( ) — 4 g—=10 (31)

af these variations. dt dx
If we reintroduce the y-dependency, equation (17)  ina coordinate system translating with the mean zonal

+ lm il

...l::i 1
e | LELE)
i1 (e—
-40 b —

Fiz. 3. Observed and predicted 500-mb distribution of v at 43°N, Curve I is the distribution observed 0400 GCT 12 January 1046,
Curve [T i3 the distribution predicred for 0400 GCT 13 January 1946, using initial data covering the entire latitude circle at 45°N,
and curve 111 s the prediceed distribution iging initial data covering only the caleslated influence (nterval {x — 07t — 27° to 2 — (I8
Curve IV is the disteibution observed 0400 GCT 13 January 1945,
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wind. Assuming a solution of the form

f—l’ — gl:f#-‘l'i-#l‘—hﬂ:l

we find
v = — BhS(E 4 pt 08 (323
and
fhe B — b — Kt
—— T ] T—————— 13‘3
“Ta ey &

These formulaz become identical to (22) and (23}
provided 32 is replaced by p? + 3% [n the aforemen-
tioned article the most representative wvalue of
af = u* 4 A was found to be about 18 corresponding
to a lateral wave length of about 7200 km, (We note
tor future reference that the quantity A? is no longer
important, since its value (2.5) is small compared to
a?, This means that it is possible to introduce the non-
divergence assumption since this is equivalent to
setting A* = 0.} The maximum and minimum group
velocities now assume the much smaller wvalues
8/8a* = 2.5 deg day~' and — §/a* = — 20 deg day—',
respectively. (The difference between Fand 8'( = 1.15)
ia here iFnored.)

Turning again to the question of the distinelion
between group and signal velocities we replace 1 g
by —u in (31}, so that equation of molion becomes
identical to (17) with A* replaced by e, The solutjon
can therelore be represented in the same form as {28):

Pl ) = p(x, 0) + f Lol — a, Hple, 0) da,  (34)

where 7,* has a meaning analogous to A5 The funetion
Loz, £) has been computed by the method described
in the article by Charney and Eliassen for ¢ = 1, 2, 3,
4,5, 6, Tdays and is tabulated in table 1. The values of
s used to evaluate I for ¢ = 2, 3, and 4 were caleu-
lated from data given by Forsythe in a paper referred
to in this article. The values af Ieforf = 5, 6, and 7

Tavre 1. Values of the infuence function faled) at latitade 439 for t=1,2,3, 4, 5 6, 7 days;

G. CHARNEY

379

were caleulated from the formulal®
Iﬂ‘ [:r |!1 'l" iu:] = Iﬂ! I::':r “!.:I + It! ['fl :i]

f, T (x — a, ) Lo (o, 8e) do.

To arrive at a rational means for determining where
It can be neglected, 1.6, to calculate the signal ve-
locity, we suppose that Is(2) is identically zero for
—TEXE —nand ¥ = & = £ and eall the resulé-
ing function J(x). The error incurred by replacing
I by 122 s then, from (34),

ol = f " Chate = e — Fae = a) b 0) da.

-

Let us define the quantity 02 by the equation

@ = f_:q*{x:l i/ :pf{x. 0) dz

50 that * measures the ratio of the mean square
deviation of # from its true value to the mean square
value of p itsell. The criterion that I(x) shall be an
acceptable approximation to J#(x) is that (® be less
than some definite value, determined by the kind of
accuracy desired for the lorecast. Making use of the
inequality

J: [J:G['t = ajple, 0) iﬂrdx

= rjir Px, ) da f' Fx) de,

which helds for arbitrary periodic [unctions Gix) and
#(x} when one of their mean values is zerg, we find

F=r f i (L2 — Fa(z) ] ds.

9 Tlis formuts has been obtained

independently by C. C. Koa
{personal communication).

£ is expreesed in degrees lonpitude.

E Tale 1} Dl —m1] Jaled) ful =2 Talrdb Pl =230 Faled)

0 =301 1.000 =10604 1007 —L5.021 0.7&F =25 RAS
5% —5.4U5 =7.51% =T, 983
10 = L300 1.23% —1.549 1.5 =344 1.04% =1.08Y
15* =Lz =36 1.056
H —{L539 03Ty =078 1.358 018 1417 L1659
754 ={1,134 0,345 I3 B5
3a =167 NAEY O, Hp PR L3353 1240 0,538
a0 =iL48 1275 0.0 1655 L 0&1 1061 0,152
50 —0.06 0161 LLL Y] LGSR 0ART Q517 =008
&l 0,002 Q.08 AR kL) TS (hale —ia1z
i — LN 0.0n587 iHN L ) =0 0455 =00
=0 {hiHED 0,28 (LA oI35 O0Hy 0312 —1LEHKS
S0 =001 00,124k LLLATE o] o ORG =0.002 0(.230 LTI
100 (LML 0.00R =il,001 o043 —0.0U5 0,144 =007
110 0,001 AhiHrT 0,00 RIEFE] LR LR TR [ 0,011
120 —0,002 (kM =00 D03 =005 GUOEs KT
13 iz 0,00 L.N05 LI SORT 3,044 B
i40 b L1114 1.0 =004 L] =04 0051 —ih0on
153 D2 (k002 0,003 00 QU3 0014 2,005
1 i =0AH] L XT3 —DoaL LI LEL 1] R T FRTIT
170 O~ =000l —az Q000 0,001 0,005
1080 0. 0,00 o003 0,003 000 e o024

Tal—a4)  To(e§) Ial—x3)  Jalsb6] ol =) Tule,7) Jul=z2T) 5
—0.688  —33100 —1.508 39035 1533 —-44.831 —OIi0 o
=533 —3.5M 0,447 5
LU 1577 =732 4344 —1.274 HdZ]  =1.12% 1]
Ly 03 J460 15
0.m LG43 0048 1482 —(.T25 DA —1.065 0
0850 .235 1} 605 25
1.082 0,359 0,541 —=LIT2 ~—M215 —0,923 =007 30
1.159 —0.a7 ] o014 0,310 aTs —0411 =043 40
La3s =111 00 =i, 148 oL6a3 =0,070 0033 50
0.a98 =009 eoto —h0 0.5 AG5] 0386 &
0729 —0.z7 LRIV — WS L] IR ek} Do 70
551 LELIE TRY d.a1s 0.50% O34 0. T4 8O
0.43% =01 {rang D2 (LE52 a0bd 0867 40
0.3 —iAN] 0,522 =iLiMa 0110 000s 08534 100
(XL 000 0425 oms o617 GO 0773 Lo
0157 —HEG 0300 =006 050K 0.013 O.6is 120
0115 D 0.xg LT 0392 DG 568 130
0.07% 003 174 2 0316 Dp 2 431 140
048 RN TTT S T BT ] 0037 0.223 QTH n3TL LS50
Q.04 0.5 0100 LILIEES 1846 o7 DI 16D
0015 D025 0us) G 1dd QL 0233 17D
4 004G MY 0.10% 0,003 0192 0402 jEp

*The values of Ehe influence function for x = 4 §% +15% and +25° are included in order to give a better definition of the fumc-
ticss, a5 the variation is particularly rapid in the range 0° to 4 30°
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The right-hand expression therefore serves as a means
for placing a bound on the fractional mean squate
error incurred by “cutting off" the influence function
at the poins x; and —x. For a given value of {* the
points x; and —xe are chosen to give the smallest
influence region consistent with the above inequality,
The results of the computation are shown in the graph
in fig. 6 where z; and xa are plotted as functions of ¢
for different values of (2
The curves are extended to { = 0, since there is a

finite influence region for the pressure tendency. To
see this differentiate (34) with respect to £ and set
¢ = (1, One obtains

d T

L0 = J' K(x = a)p(a, 0) da,

where
id = ket sinhalz —|x])
Kz} ma —% = — M —_—— T,
() T—L;bkz-l-w* b sinh ax

The error made in cutting off K(x) at the points
% = == 5 is measured by the quotient

[y
“:rpu 0) dr”j [K(z) — fc[x;]hax}

i (=, CI:I) i

i

K(x),
0,

ar

IE{:J;} =

As one may show that

L4 T a ]
f Hx, &) dw and f (-—-—I:x !}) i
are invariants of the motion, the bound on ¢ is de-
pendent solely on

f [K(x) — E() ] de.

These integrals are determined empirically from an
observed distribution of £{x £ at any time & Epe-
cifically, the data for 0400 GCT 12 January 1046
were used,

The straight lines in fig. 6 are the group-velocity
curves:

(8/827)¢ and x = |min ezt = (B/a®L

x = (max et =
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Fie. 6. Group- and signal-velocity curves for F = 18 and I =0,

The signal-velocity curves approximately parallel the
group-velocity curves for large values of & Thiz con-
ferms with the notion that the group velocity ap-
proaches the signal velocity for large & However, far
small ¢, say ¢ < 2 days, the group velocity gives a very
inaccurate estimate of the sipnal welocity, and for
{< 1, in particular for £ = 0, it gives no indication
whatsnevr:r, since there is a finite influence region
fort = 0.

The last remark may at first seem paradoxical, but
the following consideration will indicate that no basic
physical principles are violated, While the instantane-
our pressure change becomes a local property of the
motion as scon as sound waves are permitted, the
change that one obtains in this way bears no relation
to what one means by the meteorolopical pressure
tendency. The ideal barograph, wiz., one that records
all pressure wvariations, traces a continuous but vir-
tually nowhere differentiable curve: a series of ex-
tremely small-scale microbarographic fluctuations are
tound to be superimposed on the uniform macroscopic
pressure curve, among which are included the sound
fluctuations. Thu5 even if an “instantanecus" time
derivative of the pressure could be measured it would
give no indieation of the meteorologicalty significant
trend. [t is clear then that one is never enncerned with
the instantaneous change but only with the change
during a time interval that, while small, is large enough
to permit the high frequency Auctuations to be aver-
aged out. But in such an interval there will be time for
the effects of disturbances at finite distances from a
point to make themselves felt, for these effects signal
their arrival with the velocity of sound. If the flow s
in quasigeostrophic adjustment, the effective region of
influence for this time interval must be precisely the
une alreadly determined from K{x).

It is possible to obtain an estimate of the laferal
signal velocity by again using group-velocity con-
siderations, although in view of what was found in
preceding paragraphs the estimates can only be rough.



DECEMEBER 1949 J. G, CHARNEY 331
If a plane wave disturbance of the tvpe integral,
ﬂiﬁﬂiﬂw—lﬂ ( J 1 L] = = o { J
i 2 il et =""""j f f J‘?ﬂfa'}'uﬂ
oxists, where » = vfk, )}, we define the quantities drtd_J o o d
cge = op/0k and ¢, = dp/dp to be the group-velocity X pilste—altute—si=vl] doy dy gk die.  (35)

components in the x- and y-directions respectively.
These guantities have the kinematic and dynamic
properties of the one-dimensional group velocity, Thus
it can be proved by a methed similar to the one used
by Jeffreys (1946}, employing the method of stationary
phase, that the kinetie energy E of a point-source
disturbance obeys the conservation law

AE  Beglt 1 T
i i &y

This law states that the enerpy of the disturbance as-
sociated with a given area in the x, v-plane dees not
change when each point of the area mowves with the
local group velocity. If the group-velocity components
gz and g are bounded by max ¢,. and max ¢, respec-
tively, we may assert that the energy cannot spread
atz rate exceeding that determined by these maximum
values, Since any two-dimensional distyrbance can be
expressed as a sum of point-source disturbances, we
obtain the general result that the propagation of
energy, and therefore the propagation of signals, is
limited in speed by the maximum group velocity,
By differentiating (32) with respect to p we find
cqy = 2Fku/ (R + u® + A3

If & and i are not restricted the extreme wvalues of
cgyare £3/40 or £ r/5 radians day—. These oceur for
p? = 43* corresponding to a lateral wave lenpth of
23,300 km, which iz unrealistically large. But here as
before one must place some restriction on the kine-
matics of the motion. The chserved wave-like pertur-
bations in the atmosphere can be said to have a nodal
line just north of the subtropical high cells, about
25°N in winter, and a nedal point at the pole, Hence
one may say that the lateral wave length cannct
exceed 2 ¥ 63 = 130 degrees of latitude, which means
that u cannot be less than 2, For a given p the maxi-

mum value of g is 23V38u(e? + M)~ and occurs for
k2 = {u® 4 MY, This expression has a maximum at
p? = 33 and therealter decresses monotonically with
increasing u. Mence its maximum value, compatible
with the condition g = 2, ocours for g = 2 and is equal
to 0b48 rad day— or 28 deg day~. The corresponding
minitum value is — 28 deg day. [t should of course be
mentioned that the approximation of taking § and f
constant it the two-dimensional case is very crude, so
that the computed signal velocities can be considered
only as very rouph estimates,

We note that identical results are achieved by apply-
ing the method of stationary phase directly to the
general solution of (31) expressed by the Fourier

One has here to consider the stationarity of the phase
function E{z — a) + u{y — ) — o, and is thereby
led to consider the equations

S PR mom fop — me)
Brfdpn = ¢ = (3 = FI/L

The generalization from the one- to the two-dimen-
sional case is obvious,

Eecalling that the zonal speed U must always be
added to the caleulated zonal sipnal velocities and
taking this to be 18 dep day—?, we may pive a rough
estimate of the size of the influence region surrounding
a point for a one-day forecast. Fig. 6 shows that the
distance ta the west is about 35 4 18 or 53 degrees and
the distance to the east about 50 — 18 or 32 degrees.
The distance north and south, estimated from the
group velocities, {s 28 degrees. [t is probable that these
estimates are somewhat too Jarge. This is because no
restriction has been placed on the scale of the motion
except that 2 =1 and u = 2, whereas the energy
spectrum of the traveling disturbances of the atmeos-
phere shows a maximum for disturbances having a %
value of between 6 and 9 and a value of g between 4
and ¥. For such motions the proup velocities are legs
than those calculated; one may presume the same to
be true for the signal velocities, The estimates never-
theless serve to establish a safe margin for error in
first attempts at numerical forecasting. The experience
gained from such attempts will undoubitedly lead to
better estimates.,

With the present estimates one may say that the
horizontal extent of the existing network of meteoro-
logical stations is adequate for predicting the motion
over certain areas ol the globe, vz, for the eastern
United States, the Atlantic Ocean, and Europe in
middle latitudes. For periods much in excess of twenty=
four hours, howewver, it is likely that influences spread-
ing from uncharted areas will render accurate forecasts
impossible.

5. Wertical sipnal velocities

[t is important to know how influences are propa-
gated vertically as well as horizentally, A forecast is
possible only if disturbances ahove the regions in
which data are available produce negligible effects at

. lewer levels. This may be because of the small energy

available at great heights or because the vertical signal
velocity is so small thar iafluences do not propagate
into the forecast area within the forecast time interval,
We shall investigate the latter possibility.
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While it is true that the hydrostatic assumption
implies mathematically infinite vertical signal veloci-
ties—just as the geostrophic approximation implies
mathematically infinite horizontal signal velocities—it
is by no means necessary that significant changes be
propagated instantzneously. It cannot be arpued, for
example, that an increase or decrease of mass above a
given level causes an instantaneous pressure change at
the ground, Such a change can take place only if com-
pensating changes do not accur simultaneously helow
the level to annul the effect; the hydrostatic approxi-
mation does not necessarily imply a rigid connection
between one part of a vertical column and another.
We shall show, in fact, that appreciable effects are
prepagated slowly in-a statically stable atmosphere.
For this purpose the following simple baroclinie madel
i5 adopted.

We consider a resting!* incompressible atmosphere
with mean density decreasing exponentially with
height at a rate corresponding to the decrease in a com-
pressible atmosphere with a constant mean tempera-
Lure Tm; thus, p = psexp (—s/H), where i = RT . /e
At the same time, to simulate the stability character-
istics of the actual atmosphere, we suppose that the
static stability —3(ln p)/dz, where it occcurs in
the process equation, dp/dt = 0, may be pgiven
the value 1/k, corresponding to a constant aver-
© age value of the observed stability, 8(ln 8)/32. This
procedure has the advantape of mathematical sim-
plicity and at the same time leaves the motion, in its
essential agpects, similar to the motion in a stable
compressible atmosphere with adiabatic changes of
state. The motion is also assumed to be independent of
the v coordinate.

A stratified atmesphere peemits a doubly infinite set
of plane internal wave motions, corresponding to a
doubly infinite set of horizontal and vertical wave
numbers, An arbitrary initial disturbance can be re-
garded as a linear superposition of such internal waves.
For a given x, waves will be propagated in the vertical
direction and will be teflected by the ground, A ver-
tical group velocity can be defined in much the =ame
manner as the meridional group velocity for the baro-
tropic model. The demonstration that this group, or
signal velocity, is limited will now be given.

The equation governing the motion is derived from
the two conservation laws

d [ Idp "
E[;a(i’*kﬂ]—ﬂs (36)

dp;dj = {;':

topether with the hydrostatic and geostrophic rela-
tions, On the basis of the assumptions concerning the

* Az before, the results to be obtained permitan easy generaliza-
tion to the case of constant zonal motion.
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stability, we obtain
AT & 131’?] a _
er[ax=+ g \ aFf +I-Iaz Tl =t 0

The surface boundary condition in $ is found by
setting w equal to 0 in the second equation in (36). The
resulting equation states that the density at the

ground is advected with the wind, or, since the mean
wind is zero,

(38)

at the ground. At the upper boundary of the atmaos-
phere we must have ¢ = 0.

The system (37, 38) can be solved as follows, Intro-
duce the dependent variable, p = — g~1ap/ 8z, and

nake the substitutions

p= gE—JfEHI

7 = (g/ )

The equations bhecome

g fdg g ag
=] =4+ —— ) — =0, 349
ar \ ox ant e +'Br]:c )
dg/ot = 0,
where w® = i fdgli*
Equation (39) is satisfied by the two plane-wave
scelutions exp [#(kx &£ gy — #9)], provided
v = B/ (E 4 p® e,

The general solution is expressed by the Fourler
integral

gl 0, 8) = #J:J:dkdu f:f_iqia.y.ﬂ}

b gilkle—al-balg—rl=rd] J. -I'I"r-

n=m0 (40}

(41)

If we define glx, —q,0) = — g{z, n, 0) the boundary
candition is also satisfied.

We may now apply the same consideration to {41}
as to (35), with n corresponding to v. The vertical
greup velocity is found to have the extreme values

8H?

dz  dsdn TH 8 =
A R i O e
# dnde ¢ 4o fh

If % is taken as 10° m so that the stability —a(1n p}/8s
corresponds to a mean lapse rate of 7C km!, the
extremne group velocities are ==4.5 km day—! at 45°
latitude. Thus influences above 16 km, the maximum
height at which data are available, will not reach the
ground within a 48-hr perind. From this point of view,
it is likely that the extent of data now at our disposal
will be adequate for the preparation of low-leve! fore-
casts for periods of from 24 to 48 hours,

The emallness of the vertical signal velocity is not
the only reason lor expecting that upper-atmosphere
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conditions will not influence lower level motions for
short periods. Sinee the initial function

alx, 7 0) = p(x, 2, Q)eu2®

damps out quickly with height, we have an additional
reason for replacing the infinite -limits of integration
in (41} by finite values within the region of available
data.

6. The equivalent-barotropic atmosphere

The amount and the quality of data are not the only
factors that must be considered in the preparation of
a numerical forecast. The methed of integration iteell
is af the highest importance and may mean success or
failure, Since there does not exist any adequate theory
tor the numerical integration of the nealinear equa-
tions encountered in meteorology, one must proceed
by performing a serics of numericat experiments, Wich
respect {0 the order of these experiments, it was de-
cided that the greatest economy of labor could prob-
ably best be achieved by treating in turn cach of a
hierarchy of models embadying successively more and
more of the physical and numerical aspects of the
general forecast problem. The one- and two-dimen-
sional emall-perturbation models have already been
discussed ; we shall now turn to the next step and treat
a nonlinear tao-dimensional model.

The choice of a suitable, yet practical model was the
firat problem. In view of the success with which Rosshy
and others had applied small perturbation theory in
the barotropic model to explain a variety of atmos-
pheric phenomena, 1t was deemed worthwhile to ex-
tend those studies to finite amplitude swotions.
Rossby's studies and that of Charney and Eliassen
(1949} strongly indicated that those aspects of the
ohserved motions which involve horlzontal dispersion
—rather than vertical transport—al energy could ke
explained as essentially barotropic phenomena. Fur-
thermore it was felt that the procedurat experience
gained in this study would provide an excellent
preparation for the eventual attack on the baro-
clinic case.

The basis of the correspondence between the baro-
tropic and baroclinic atmospheres lies in the notion of
the “'equivalent-barotropic atmosphere,” a barotropic
atmosphere in which the horizontal motion approxi-
mates the actual motion of the atmosphere at a par-
ticular level, called the "equivalent-barotropic level.”!
In a previous article (1947), the writer gave a rationale
for the choice of the equivalent-barotropic level in the
case of small-amplitude perturbations in a bareclinic
zonal current. In the [ollowing discussion, the concept
of equivalent-barotrapic atmosphere will be extended
to apply to finite-amplitude motions, Qne essential
feature making it possible to define such an atmos-
phere is the observed fact that the winds in the large-
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scale systems vary little in direction with height above
a rather shallow surface layer. This property may also
be deduced from the thermal wind equation asa neces-
sary consequence of the fact that the horizontal izo-
lines of pressure and temperature nearly coincide in
the large-scale motions. Another feature i3 that the
variation of wind speed with height is similar along
all wverticals. These two properties are expressed
through the equations

u = A(p)u'(x, y)
v = A{pv'x 4.

Let us insert these expressions for ¢ and o into the
horizontal equations of motion {5} and (6} and, after
multiplying by —pg, integrate with respect to £ from
the top to the bottom of the atmosphere. IT the small
terms involving = in the convective parts of the ac-
celeration components are ignored, we get

it di g% L ag
—+Ef—+ Kb—=——-Z 4 7
EMT dx dy gimﬁ\:i_f
i by a |
~+ Kd— + Ev— = ———Q-—fﬂ,
l X dy tho d

where

Q= l[:pdz. K= J:m:rp/( J;:,{ dp)!,

and 4, 7 are the values of %, v at the level 7 where 4 ()
is equal to its vertical pressure average, 1.e.,

bod (5) = fdcpn dp.

Denoting the vorticity of the How @, 7 by £, we get by
crose-tlifferentiation

af af af  df
= L K=+ Ko — 4 —35
at TR e

3 & of
+U+ KD (o+5)

ay
1 £ap30  ap0d0Q
S
1 v rdpap pedp
il )

ds = [,
dy dx

dx oy

The right-hand side is set equal to zero since the
assumption ol horizontal barotropy implies that
the isobars are parallel at all levels, This equation may
e combined with the tendency equation,

dirn T F Ao a,:.a,r'
P e ol
L EJ:. s ay) :

f,("ﬁ+aﬁ)
Naw "oy’
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to yield
1 af at  df
R R R
dfn
+F{| i_Pﬂgﬂrﬂ)ﬁﬂr

which is equivalent to Rossbyv's potential-vorticity
equation for & barotropic atmosphere,

2l )
e o
provided the geostrophic approximation % dpe/dx

+ § g/ dy = 0 is made, implying

dpy A

s P .,
Wy = — — .
A At g Rt

and provided X = 1.

This last assumption was tested empirically. The
rativ of 4 to its maximum value 4* was found to be
quite well approximated by the empirical formula

A =4 *agl—#'r

whete e« is the ratio of # to its value at the level whepe
A = A* This fwmula gives K = 5/4, =0 that no
great crror is made by setting K = 1. The formula
also gives the value 350 mb.for @, the pressure at
the equivalent-barotropic level, if the tropopause is
taken at 250 mb and the ground at 1000 mb. This
value aprees faicly well with the walaes 570 mb and
610 mb obtained in the previous article {1947) from
two different mean zonal wind profiles. In a particular
weather situation {0400 GCT 12 January 196) a
small systematic variation of § with latitude was ob-
served, but none with lengitude. The over-all mean
for some 40 points selected in the range 20°-00°E,
25°-65"N, was 602 mb, with a standard deviation of
78 mb. The pressure at the equivalent-barotropic level
would thus appear to lie between 530 mb and 600 mb,

In the following we shall suppose that the surface of
the earth is horizontal and that 8p4/8 is negligible,
The latter assumption is equivalent to the non-
divergence assumption which, as indicated in section 4,
is probably valid for motions whose scale is not too
great. Using the geostrophic approximation, we may
then wrike

(@/dt + v VL. + f) =0 (42)

for the equation governing the motion of the squiva-
lent-barotropic atmosphere,

The numerical solutions of the corresponding
equivalent-barotropic equation for a spherical earth
can be obtained in the following way. On a spherical
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earth we have

1 dr 18u

t
St e A g,
Teosedh ocdep o

where g is the latitude, A the longitude, and o the
radius of the earth. Since it is now common to operate
with constant-pressure maps it will be convenient to
introduce the height 7 of an izobaric surface as the
dependent variable, The geostrophic relations then
take the form

g Oz g dsz
"_ﬁmcwwﬂ}u

iy =

fode'

Whenee, upon ignoring small terms arising from the
horizontal variation of f,

£
e = }.ﬁ'nf"
E 1 g as 1 s
:_[ _-(“_Umw + __}’
FlLa'cos pde \ de 2* cos® ¢ dAl

where A, is the expression for the Laplacian aperator
in surface spherical coordinates. Equation (42) may
be written

Addsfat = Jo(fe + f 2),

where J, is the Jacoblan operator

1 ( g a d 4 )
afoos g \Ohde g ok
In accordance with the general integration pro-
cedure outlined in section 3, we regard (43) as a par-
tial differential equation in the height tendency dz/at.
The solution can be immediately written

% )
at L=

(43)

- ff Galo)Jule, Mi ', M)aP cos o' di' dof,  (44)

where o is the great circle distance between the
fixed point w A and the variable point &', A", and
Galr} = ()~ In 2sin $o (Courant-Hilbert, 1931), the
double integral being extended over the entire sphere.
Since f vanishes at the equator the right-hand side
ceazes to be defined. We can escape this dnfﬁmity by
arbitrarily assigning some constant value to J, in the
vicinity of the equator. Since a finite time is required
for effects to propagate from this vicinity to nocthern
latitudes no errors in the computed motion at these
latitudes are introduced provided the forecast time
interval is not preat.

The nature of the Green's function G, illustrates
clearly the dependence of the signal velocity on scale.
G decreases so slowly with increasing o that appar-~
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ently the motion over at least an entire hemisphere
muzt be taken into aceonnt in evaluating the tendency
at some fixed point. This seems to contradict the con-
clusions already reached regarding the smalloess of
the influence area {or the pressure tendency, but it
must be remembered that a certain limited scale was
predicated in arriving at this area lor the nflucnce
region. It appears that the effects of small-scale circu-
lations at large distances cancel themselves out,
whereas those of the large-scale circulations do not,
The task of numerical integration is somewhat
simplified if {(43) is transformed into a differential
equation in the plane by conformally mapping the
spherical earth onto a plane, say by a stereopraphic
projection from the south pole. The equation becomes

Vidg/at = J(msfgVs + f, 2), {43)

where st is the magnification factor sect (3x — 3¢,
while J is the plane Jacobian and ¥ the plane La-
placian.

For hand computation (45) can best be solved by
the method of relaxation (Southwell, 1946). Using
this method, the 500-mb height tendency was com-
puted for the map shown in fiz. 4. The solution was
obtained for the interior of the indicated polygonal
area on the assumption of constant z along the
boundary.

It would hawe been interesting as a check on the
barotropic model to compare the caleulated with ob-
served tendencies {or the entire area. Since upper-air
tendencies are not measured we have recorded the
position of the centers of rise and fall in the height
change from 0400 GCT 12 January to 1600 GCT 12
January by the letters R and F, and, for comparisen,
the calculated centers by the letters R and F.. The
comparison can only be made from 130%%W to 20°E
longitude since the 1600 GCT map extends only over
this region. The apreement of the observed with the
calculated positions haz seemed sufficiently good to
warrant a continued effort to expleoit the barotropic
miedel. The results of this work will be presented in a
later publication.

Finally we show that the location of the centers of
maximum and minimom height tendency can be de-
duced sclely from the properties of the field of J, 1.¢.,
cf the field of absolute vorticity advection. Let us
consider the height tendency at a point where Jisa
maximum, Since 35/8¢ iz effectively determined from
a knowledge of the values of J within a relatively small
circular area surrounding this point, its values on the
periphery may be chosen as constant. Then (45) may
be interpreted as the cquation for the dizplacement
(32/8t) of a stretched membrane acted upon by the
normal force field J. If the membrane is fixed along a
level, nearly circular curve, and J has a maximum at
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the center and is symmetrically distributed about the
center, it {s physically evident that the displacement
will be 2 maximum at the center. We may therefore
state the rule that the centers af rise and foll are located
approximolely where J lakes on ifs mindmum and maxi-
mum values respectively, or, what is the same, where
the absolute wvorticity advection »-%{f 4 f) is re-
spectively a maximum or a minimum. To {llustrate
this rule the positions of the maximum and minimum
pointa in the feld of F have been entered in the
map of fig. 4 as crosses. The rule seems to be well
substantiated.
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