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ABSTREACT

This papar conalders the problem of nnnierically Integrating the primitive cquations correspanding to o 2-[aval
model af the atmosphere boundad by two sonal walls on o spherical enrbl, Inertio-gravitational motfons of the
Exttrnal type are fillered a prior) for sueh a constealnl it iz pogsible o define o stream funetion earresponding to Lhe
verlieally [mtesvaled motions, A syatem of integrotion iz developed for initisl conditions which specily the alcar
wind vactar, the specifis volume, and the vorlicity of the verbically integrated Tow.  Moebthoda for radueing truneation
ereor and fur incressing the rate of convergenes of the elliptic part are discusapd.

The rgqueslion of bowndery conditiong is diseusszed ot length, Tt iz shown that the wannl central difference mekhacds
¥ield independent solutions ab albernmte points, thus providing o souree of computational instability to which the
primilive squations are particularly sensitive The solutions may be made eompatible by suitable compatational
boundary eonditions which oon be dedueed ag gullicient conditions for inzuring thal the numericnl solutiong Possesa
eeact integrals,  The application of those eongiderations Lo viscous flow is nleo diseussed.

1. INTRODUCTION The particular system of equations, and the domuin of
integration to be discussed, has been designed in essence
The object of this paper is to diseuss some of the prob- {4 form the hydrodynamic framework for tmmerieal
- lems of ewploying the primitive equations as o framework  gyndies of the dynamies of the general civeulation. How-
i which to study lorge-seals tlmospheric processes. ever, those physieal considerations which do nol directly
These problems are to a large extent connected with the or erucislly bear on the present objective of establishing
deduction of a stable and rational mesns for numerically g stable mathematical and hydrodynamic frameworl will
integrating the primitive equalions, Tt lins hean CONMMON b omitted here. At the time of the preparation of his
- experience that the npplication of tha primitive squations manuscript, stable numerical inteerations had been per-
to large-scale motions has suffered from the delicate bal- om0 over periods in excees of 50 atmosphere days within
ance between the Coriolis and pressure-gradient forces  the context of the system and methods to be deseribed.
resulting in relatively small accelerations aud horizontal 7y, physical considerations directly bea ring on the con-
divergence. Therefore, aitempts to integrate the primi-  gpetion of this general circulation model, together with
tive equations numerically can be successful only if the  the resulis of the intogrations, will form the gubjecd of n
problem stated in numerical lorm is properly compatible g0 repord.
with the systom of continuous (dillerential) equations.

Slight incompatibilities (e.g., incorrect boundary eondi- 2. NON-LINEAR BAROCLINIC FLOWS

tions) in eystems which are nob sensitive in Liis manner, o, DIFFERENTIAL EQUATIONS

e, those ndmitting only gravitationnl motions or only The equations of motion in sphierical coordinates with
Rossby wave solutions, apparently de nol produee a very height as the vertical coordinnie are {see for instance
rapid degenerney. IMaurwils [6]):
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L 5p2Gr 9)(-;7—mo)= _m —+Fx (1a)
ri-+210+72 A(\-+20) = ~L °p+F, (ib)
. T 10p
r—r(0)2-—W >\(>\+29)--—— ——-g+F (1¢)

in which X\ is the longitude, positive eastward; 8 is the
latitude; 7 is the radial distance from the center of the
earth; m=sec 6; a=sin §; @ is the angular velocity of the
earth’s rotation; p is the density; p is the pressure; g is
the acceleration of gravity; F=i FA4-j Fy is the horizontal
component of the frictional force vector, F, its vertical
component, and i and j are the unit vectors in the X and 6
directions; and ( ) =d ()/dtis the time change on a material
particle. The effect of the ellipsoidal shape of the earth
in balancing the centrifugal accelerations has already been
taken into account.

The kinetic energy equation for non-hydrostatic motions
is obtained by multiplying (1a), (1b), and (1c) by r\/m,
76, and #, respectively, and adding the resulting equations:

T[S I N

— gi’—}—% PrtrbFy+iF,.  (2a)
If we constrain the motions to be quasi-static, then (1c)

becomes
1 0p

0=—= L

- or (2b)

In this case, the individual change of kinetic energy of the
horizontal motions calculated from (1a) and (1b) no longer
only depends on the work done by the pressure gradient
and external forces. A correct kinetic energy equation
consistent with the quasi-static approximation can be
derived if:

(i) the terms 2(A+Q) #/m and 2/ are dropped from
(1a) and (1b) respectively, and
- (ii) wherer appears undifferentiated in (1a) and (1b),
it is replaced by a, the mean radius of the earth.
The kinetic energy equation for quasi-static motions
then becomes

2l o163

Furthermore, the quasi-static assumption permits us to
transform the resulting horizontal equations of motion and
the hydrostatic equation to a coordinate system in which
P is the vertical coordinate (Eliassen [2]):

2)1q (%‘erm).(zc)

m O¢

L 5—20a(it+)0=—" 2 @)

(x+2sz)>\_—-— +1’, )

MONTHLY WEATHER REVIEW

DECEMBER 1958

0.1
0=, ®)

where ¢ =g(r—a) is the geopotential and

O=| G+ gt gto o | (s o=
Differentiations with respect to ¢, A, and 6 are now in a
constant pressure surface.

The continuity equation is

D+32-0 ©
where . -
_ON, d 6
=atm &(m) @)
The thermodynamic energy equation is
. 1.
(In 0)=_=x¢
where ’ ®

In ©6=const+ (1—«) In p+In (%)

and © is the potential temperature; 7" is the temperature;
(1—k)=c¢c,/c, is the ratio of the specific heat of air at
constant volume to that at constant pressure; ¢ is the non-
adiabatic heat added or removed per unit mass per unit
time.

Anticipating our ultimate needs for the numerical
integration, we will conformally map the sphere onto a
Mercator projection. We denote the map coordinates by
z and y, positive in the easterly and northerly directions,
respectively. For this projection the map scale factor is

m=sec 6, so that
dr=ad\ } ©
dy=amd?@

T=a)\
y=a In tan (%-f—%)} 10

It will be convenient to deal with the map velocity com-
ponents:

and

V=iu-+jv
usa‘::aj\ (11)

v=y=amb

where the earth velocity is V/m. The following scalar
and vector transformations will be useful:

e LB (Rn ) )
VB~ St ;25) (g;e+g;ﬂ)
V-B=%‘ %l)\ix _}_algz/m maag, mz%_m - (12)
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lIare. V.B has been defined as a 2-dimensional operator

in the x—y plane and eurl B is a sealar which has been do-

fined as the vertical component of the usual v xB vector,
Equations (3), (4), and (7) beeome upon being mapped :

—2a (3’4- 51) p=—m? -E?-‘L mF. (13)

( e F20 Jum— EE'I_ mb, (14

where s (” ¥ Em a?gg{? (29)
()= [ar +'1 (3 (16)

We now construct n 2-level model in the fashion of
Eliassen [4]. The atmosphere is divided in the vertical
imto 4 equal pressure intervals Ap/2, such that Aps=

sri— - and £=0, 1, 2, 3, 4. We take Ap=2500 mb.

The upper boundary condition must he

(17)

We exclude external gravitational propagation by requir-
g that w=0 al the lower boundary which is taken to
eoincide with the pressure coordinate surface p=1000
mb. Therefore, applying (8) at k=1, 3, we have that

w=0 at k=0.

— = IJ';.— ap

andd {18)

l'-ﬂt—w‘:]__‘!_ _E';t'i

m which @ and « have been lincarly interpolated from
the neighboring levels.

Applying the equations of motion (13} and (14) at
k=1, 3, wa have

%=?ﬂﬁ=- ey,
(19)
G.t:"'rk"l"'Ft
where
ml=j u%—l— av—'!rﬂ-l-w '—'—ai'.i'( -I—?ﬂ)]
+i [ a”-|—m E’”’f i +¢m ( +zrz):| (20)
It will be useful at this point to adopt the notation
=00 MY =0—a (21)

The vertical momentum transport in (20) is ealeulated by

evaluating the vertical wind shenr non-centrally, and
applying the r_:untinuity equalion (18);
) ( v fD\-"" (22)
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The viseosity will be discussed in Section 2h.

The thermodynamic encrgy equation (8) is applied at
ft=2. The horizonial wind in {16) is evaluated by the
arithmetic mean

2V9=V14‘Va=?-

Henee (8) becomes, upon applying the hydrostatic and
gas equations,

1“:1$ wa o
ot 2::’u+zay¢' "f"f“r Q

(23)
in which 2+7= (Ap)® (24/0p) (® In 0/op) = !-]fEl'g is taken
a8 o constant and f)=gap/p,. We shall not specify the
naturs of the external heat source, ¢, sines it iz not
germane Lo the present diseussion,

Upon substituting (22) into (20} then the system
(19) and (23) provides 5 sealar equations in 8 unknowns:
Upy Uz, e The sixth equation is provided by the roquire-
ment that the mean motions remain nondivergent. Form-
ing 2 Dot from (19) according to (15) and setting it to
soro we have e

V=v-G (24)
which is the “divergence” equation corresponding to the
vertically integrated flow. We shall refer to this system
na Srvatem T.

Alternatively we may define a stream funetion ¢ for tha
vertically intogpratod fow:

" o
— b -Fant o
H=—um aﬂ' (2 EJ
e '
o

Hence ihe stream function tendency $*=2a¢/d¢ in the
equations of motion (19) gives:

o% = D5

F T —m? 5 ~—=m{,—m!? = (26)
e Ei'?’
a3y 2 1
Eii mi == mG m (27
Taking the curl of (28} and {27) yields
vip*r=curl G. (28)

This of course is the vorticity equation governing the
vertieally integrated (low. If we now form the equations

of motion for the shear wind "-.n" from (19)

L
-@E—mﬁ mwr

& @9

then equalions (23], (28), and (29), which will be referred
to aa System IT, coustitute 4 scalor equations in the 4
unknowns *, fs. 0, b @ is proportional to the spocifie
volume. Becsuse the history of the vertically inte-
grated flow in this system is carried in ¥, $ never is caleu-
lated explicitly.

Hence the constraint of filtering the external pravitational
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solutions, which dictates the elliptic balance condition (24)
in System I or (28) in System II, yields a system of
equations which is a combined marching-jury problem.
Without this constraint, the primitive equations are
completely hyperbolic. and constitute a pure marching
problem.

b. PHYSICAL LATERAL BOUNDARY CONDITIONS AND THE
VISCOSITY

We take as the domain of integration a zonal strip
bounded by two latitudinal walls at y=0 and y=Y. The
walls are taken to be perfectly smooth. In the z direc-
tion we assume cyclic continuity so that all dependent
variables and their derivatives are continuous. At the
walls we must impose the kinematic boundary condition

2=0 at y=0, Y for all ¢ (30)

which by (25) and (27) requires the boundaries to be a
streamline at each level for all ¢, giving the corollary
physical boundary conditions

¥, ¢* independent of z on y=0, Y. (31)

It will suffice for our present purposes to postulate
only a lateral viscosity of the Navier-Stokes type.
Physically it is. desirable that the form of this viscosity
be such that the walls do not affect the total zonal angular
momentum nor the total energy (through the kinetic
energy). This smoothness condition will provide us
with a second physical boundary condition. Such a form
is

et ([2 (522 (32)]
ME GRS

where K is assumed constant. We will now demonstrate
that this form does indeed possess the above properties.

The change of the total relative zonal angular mo-
mentum per unit mass is

COESE S

Hence the contribution from F can be calculated from
(19) and (32) to be

L 2u)

m? Ox

YR _ _rr D
aj; émd:tdy—aKj; § [bx
O/ 1 du

oy \m? dy
The first term on the right side must vanish due to the
cyclic continuity condition, leaving

%Pl

dxdy

(33)

+ :Ida:dy. (34)

(35)
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The change of total kinetic energy is

I HORE I e

(36)
so that the contribution of F is '
11§ oot ()

50) H(3p) | 5[ § [ G
gy (2 e 30 aety 0

where we have integrated by parts. The first term on the
right side represents the energy dissipation within the
atmosphere and is negative definite. The second integral
becomes, upon applying the cyclic continuity condition
and the kinematic boundary condition (30),

au V"Y
2P
m? vy 1/-0
Upon comparing (38) and (35), we observe that to prevent
lateral boundary influence on both the total angular

momentum and total kinetic energy we must impose the
physical boundary condition

1 ou
K (W a—y)—o on y=0, 7Y,

i.e., the lateral stress must vanish on each boundary
individually.

(38)

(39)

c. INITIAL CONDITIONS AND TIME INTEGRATION

It will be shown in the discussion which follows that a
sufficient set of initial conditions are:

A en

0,9, given everywhere (40)
where the vertical component of relative vorticity is
¢==curl (V)-— Zm/ m (41)

From (25), the vertically integrated vortlclty may be
written as

F=v¥. 42)

By virtue of the two physical boundary conditions (30)
and (39) we have the corollary condition
- 92 2

a a,bynyoy

(43)

Hence (42) and (43) constitute a Neumann boundary
value problem. ¢ may thus be determined everywhere to
within an arbitrary constant. System (42) and (43) may
be transformed into a Dirichlet problem since ¥ must be
& constant on y=0,Y. - Taking ¢=0 on y=0, then inte-
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grating (42), we have

'HFJ'=—%(2%E§ -ﬂ%{f’.&)phn i
+- fjf J;y I;J;v(g; ;i : rSn:) rz‘y] dy - (44)
LE§5 dr.

u and ¥ may therefore be enleulated on the interior. Note
that eince ¢ must be independent of = on y=0,¥, then

. ¥
[ (ufmf)dy must -be independent of z; i.e., zonally
o I}

syminetrie.  Furthermoreeyelic continuity requires that

gsEd:::mU. ISquation {42) need only be solved initinlly

since the ellipticity condition (24) or alternatively (28)
solved at each time inaures that O remain zero.

With % and ¥ thus obtained everywhere and o and #
having been prescribed everywlhere initislly, one can calou-
late the wind components at each lovel from the identitios
(21). The complelion of the set of initinl dala necessary
to integrato timewize will depend on whether we employ
Syatem I or [T,

For System I it is necessary to solve {24), subject to an
appropriste boundary condition. This is provided by ro-
quiring that (30) be satisfied for all time in (27), resulling
in the eorollary condition

ﬁ=—_' on y=(), ¥. (45}
Hence (24) and (45) constitute a Neumann houndary
value problem for which @, and v. G must be known on
the boundaries. With & found as a solution of (24) and
# having been given initially, ¢, may be calenlated from
(21), so that the six dependent varinbles w,, v., ¢, are
known initially. V: and & may then be caleulated at the
next time from (19) and (23). The new V. ficlds are
ihen used to invert (24) giving 3 and hence ¢, at the now
time. Thus ull of the initial dependent varinbles have
been reconsirucled.  System I is in essence the one pro-
posed by Klinssen [4].

To proceed by menns of System II, we nesd first to
determine the corvollary boundary conditions for (25).
These are obtained by integrating (26) over the entire
region and then applying the eyclic continuity condition:

O v O=—1 [P & gay (19)
Ll it

Since ¥* is independent of z on y=0, ¥, we set the arbi brary

datnm

¥* (0)=0 (47}

g0 thint,

¢*(Y}=l—lfr % gty (48)
Lo J m 0
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Since the initial ¥ has been set to zero on y=0, then ¥
must remain zero on y=0 for ull time.

Therefore, System I requires the solution of & Dirichlat
boundary value problem.  The field * togethor with the
initinl ¥ then permits us to caleulato W at the next time.
Koquation (29), which depends on & but not on 3, gives
us the now V. As before ¥V and W together yield V,.
Finally (23) gives tho new ¢. The dats have therefare
been reconstructad.

It will be useful at this point to digress for the purpose
of diseussing some of the computational stability charae-
teristics of the system of equations with which we are
dealing.

3. COMPUTATIONAL STABILITY

The Courant-Friedrichs-Lowy (CFL) stability eriterion
is for the most part governed by the speed of Lhe internal
gravitational waves relative Lo the mesh (Elinssen [4]);

W nny g g ]
(E.Ez "ETT)}'IE i:ﬁ%

where As is the horizontal grid distance on the carth, and
Af the time increment, Supposs we take Ah to be 5°
longitude, then at the equator As=555 km. If wa tale
the zonal channel to be 17 prid lengths wide, with y=0
ab the equator, then y=¥ corresponds to 64.4° lalitude.
Therelore As has its smallest valus, 240 km,, at the north
boundary. For an nvernge value of the stotic stability,
ye=60 . zoe,” Then for M=20 min. tho criterion s
fulfilled when

(49)

E—Lm“ Z80m. sec,!

Henee one would presume that if (49) were sntislied, the
numerieal integrotion should remain stable under the
customary fochniques of centered differences. The ex-
perience of a number of research worlers in the past & or
7 years has been Lhet attempis at numerieal in legration
of vory simple physical systems (such as non-viscous
barotropie flows) in the framework of the primitive sgua-
tions, have resulted in spurious mertio-gravitational oseil-
lntions which obscured the meleorologicnlly rignificant
molions sven when the CFL eriterion was satisfied. In-
vestigations by the Princeton group (Charney [1]) disclosa
that one cause can be an incorrectly specified initinl
velocity field. In the present ease this corresponds to
V which is never gpecificd independently but is derived
from the initially specified vertically integrated vorticity,
T, through equation (42). Another possibility offered by
Charney for the apparently spuricus oscillalions is com-
putational instability due to incorrect boundary condi-
tions. Tt s this labler source of instability that will be
dwelt upon here. The nature of the instability will be
demonstrated in less rigorous [ashion than is normally
possible by an analysis of the amplifieation of small-
gcale motions.

As 8 matler of convonience we shall refer to instubility
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resulting from incorrect boundary conditions as com-
putational instability of the second kind (in contrast to the
CFL instability which may be considered as that of the
Jirst kind). As it turns out this instability is already
possible in the linear zonally symmetric equations cor-
responding to the model described in the previous section,
This is rather fortunate since such a simple system lends
itself to a rather clear-cut analysis.

Let us consider zonally symmetric perturbations on
a vertically integrated flow which is at rest. At first we
will deal with non-viscous, thermally inactive motions.

Assuming for the present that « and m may be replaced
by their average values, then equation (23) becomes

L )
2t "ay

(50)

and the equations of motion for the shear flow (29) become

ga 2005 (51)
o_ 208
5 20Qi—m Sy (52)

We take the domain as before to lie between two latitudinal
walls so that the physical boundary condition is

=0 on y=0, Y for all ¢. (53)
The initial conditions are ¢, 4, 9, given everywhere, the
latter subject to (53). Also, to satisfy (52) and (63),
2a9u+m”b¢/by =0 on the boundaries initially as well as
in the interior of time. Hence the time-dependent equa-
tions (50-52) constitute a complete set and we have a
pure marching problem.

We form the difference analogues of the three first-
order equations (50-52), employing central differences
over intervals At and Ay where t=7At and y=jAy,
0<i<(J—1).

$r+l_¢j—l
2At = 2A2/ (ﬁli-l b;—l) (54)
121+1_,ar—1 .
’—2—51—=fv; (55)
f+l f] - m2
, 2At ! —fd; 2A (&;‘Fl.——ég—l)' (56)

It will be instructive to form a single differential equa-
tion in % from (50-52)

0%

At 24

ayz
where f=20Q, I'=my. Then differencing (57) centrally,
we have

Dyi—2074d3"!
(a8)?

(57)

2
—fzb;+({y?@;+,——2a;+a;-o. (58)
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TaBLeE 1.—Compatibility of three dependent variables 3, &, and 3

Is phystcal
boundary condition
satisfied at—
Jj=0 [fj=(J-1)
{Solutlons for 3, % at odd Jand $ ateven f. o.oeoanao.ol No Yes
EvenJ Solutions for vA, wat even f and 3 at odd J. .. ocmaiiein Yes No
) J{Solutlons for 3, wat odd f and 3 ateven j. . ..o.oceeaneooon. No No
Odd Solutlons for 3, uat even j and 3 atodd j....oooooail. Yes Yes

If we use (56) initially to obtain % v, as 8 function of 97
terms of the initial conditions,d 9, 43, 99, given everywhere,
then (58) may be solved as a marching problem with no

difficulty in satisfying (53) at both boundaries j=0, (J—1)."

This process will proceed stably provided the CFL condi-
tion is met. However, if we form the difference equation
in 9 from the ﬁrst-order difference equations (54—56)

T+2__ T -2 2
O I it s Braam 250 6D
we find it exactly in the form of (58) except that (59)
applies to double time and space intervals.
the ratio At/Ay is preserved and the CFL criterion remains
the same. We now note that in (59) § is linked only at
alternate values of j as well as of .* Consider the case
when Jis odd. Then (59) applied at even j satisfies (53)
at both boundaries. On the other hand, application of
(69) at odd j cannot directly satisfy (53) at either boundary
since the finite difference equivalent of d5/dy is required.
Alternatively, consider the case of even J. Now the
application of (59) at even j will satisfy the physical
boundary condition at j=0 but not at j=(J—1), whereas
solutions at odd j will not satisfy (53) at j=0 but will at
j=(J—1). Therefore, neither solution is compatible with
the physical conditions at both boundaries. That is,
solutions at even j require 95 /dy at j=(J—1), and solutions

Therefore,

at odd j require 33/dy at j=0. Returning to the system j
of first-order equations (54-56), we can also see the con-

sequences on % and ¢ for even and odd J. The com-

patibility of the three dependent variables is summarized *

in table 1.

It is clear that corollary boundary conditions can be
deduced from the system of differential equations (50-52) -

and the physical condition (53). From (51) we see that
d/dt=0; differentiating (52) timewise yields bzq&/btby 0;
differentiating (50) with respect to y yields bzv/by’—o
These, however, do not provide the conditions for 95/y.

The condltlon on d7/dy must be such as to yield com- -

2

patible solutions at adjacent points and hence must‘i,;‘
depend not only on the differential equations and the -

physical boundary conditions, but also on their form .

when differencing is performed and on the method of
differencing. We will refer to such conditions as com-
putational boundary conditions.

*During the preparation of this manuscript the writer’s attention was drawn to s paper

by Platzman {7} which also points out this property of central differencing techniques. -
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| s exoct and known.

Heuristically it appears ressonable that numerical
integration between the boundarics of the difference
analogue of the quantity for which a computetional
boundary condition s required must correspond exactly
to the integral of its continuous form.

Let this guantity be denoted in genernl by ax/ow,
where x iz known on y=0,Y a3 a physical condition or
88 o corollary. Therefore the intogral of 9x/oy:

¥
};%@FME—MM {60)
The finite differenee sum over all
points equivalent to the left side of (60) 1s

2 Gyt @) 1 (3.
[2 a.'_n")ﬂ + 2 o} Ay (61)
In the case of central differonces
N X=X -
dyty 24y o

Bubstituting (62) m (61} and equating to the right side
of (607

] % [ —%- 1+ [x:“x.r—z}]+%§ (X —Xm) =X — Xy
{63}

. Upon cawrying out the indicated summation we have
Hr—2% X = — 20X (4]

| which iz the difference analopue of the condition that

2% x/0y* be equal al the boundaries. A syfficient condition
to salisfy (64) is Lhal the left and right aides wanish
individually so that

( Eﬂy

) 1
& E:iy

Equations {(65) are the |'e.quir.'ud computational bound-
ary conditions. They are equivalent to the requirement

1
—X-) 2"—"-_.? (=)
(5]

— X5 3:'_' [x.-r —1—Xrog),

~ that 2x/3y be caleulated at the boundaries by menns of

- one-sided differences over o single grid interval.

This
result 35 intuitively acceptabls and might have beon
arrived ot without the & priort requirement that the exacl
integral condition be satisfied. It is of interest that
Phillips, in a recent suecessful intepration of the bare-
tropic primitive equations for & fluid with a free surface
in & hemispheric domain bounded by an equatorial wall,
applied anti-symmetry conditions on the wind component
normal to the boundary.* This may be deduced s o
eonsequence of (64). The exact integral condition has
provided a sullicient condition for deriving the computa-
tionsl boundary conditions. The sufficiency has only
been established empiricslly; 1. e. through extended period

*Thesa pesults ars as ol unpabllshed,; Bt nopelerenee to this conditdon i glven In an
earlior paper by Thillips [6].
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integrations. It s not as yet clear what the necessary and
sufficient conditions must ba.

Itis to ba emphasized that the computational boundary
conditions will depend on the form of the differcntinl
equalions which are differenced and the differsnce tech-
nigue; for inatance, whethor derivations of products are
cartied out before differsncing.  In particular (58) does
nob reguire any computetional boundary conditions at all.
The case of aystem (54-56), a3 we have seen, reguirss

oifoy.  Applying the physical condition (63) to (63) we
have

) _b

ay/e Ay

(66)

J-3
(El:r; J= ]_ ﬂy’

and the problem for zonolly-symmetrie linear motion is
completely stated for numerical integralion.

Let us now proceed o a somewhat more complex cose—
hat of viscous Mow wilth external healing fi6fe,, which
will assume & given function of y.

We will now consider the elfect of o Interal viscosity

and heating in the linear sonally symmeliric system. The
gyalem of equalions iz then
El&_ Em ..
E__ + Q 67
E}r:. )
K — G5
—{f8+m o (68}
-uﬁ- il = -| i -ai-- 69)

ot
From the considerntions of the non-symimetric syelem in
Beetion 2, we have two phyeical boundary conditiona

t=0on y=0,% (70}

-~

on
E:_y_“ on y=0,F,

71}
The initinl conditions are the soine ns belore: :?ia, if-! &
given everywhere subject to (70}, and we still have o
pure marching problem. On the houndarics Emfﬂ# is
lnown from (70), and 2¢/2¢ in (67) is known if o8/0y is
caleulated from the computational boundery condition
(66}, as befora, Tor 2u/dt in (68) we need an additional
:,umpubﬂ.LmnnJ condition on 2* HIE}y’ This ig obtained by
Laking E]u'JEh for x in {65} and applying (71), then the
exnct integral condition yields:

CAY ) ()
ot Jy Ay oy ﬂ{x'u“ ’
(72)
DL 1 faumy, .
T ay) zmyr {fr-r—tis-a)s

It should be pointed out that central time and space
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differences applied to (68) and (69) will, due to the
viscosity, give rise to equations of the form

A A
ujtl—ujl=, |

~ —%f‘) . (73)

Hence a spurious computational solution is introduced
that is unstable when the coefficient K>>0, which it is in
this case. One means for avoiding it is to evaluate %, on
the right side at (r—1). We may refer to this as compu-
tational instability of the third kind, which is thoroughly
discussed by Eliassen [3] and Richtmyer [8].

4. NON-LINEAR BAROCLINIC FLOWS (CONTINUED)
a. COMPUTATIONAL BOUNDARY CONDITIONS

We may now proceed to complete the discussion of the

numerical integration of the fully non-linear, zonally
- asymmetric system described in Section 2.

It is appropriate at this time to compare the merits of
Systems I and II. Perhaps the most important considera-
tion is their relative stability under numerical integration.
The purpose of the elliptic equations is to insure that
9D/dot=0. System II does this directly by regenerating
the stream function. Hence by definition, truncation
and round-off errors cannot introduce divergence into the
V field computed from it. On the other hand, by work-
ing through ¢ in System I, there is no way of avoiding
degeneracy (i.e., the introduction of spurious D#0) due
to truncation and round-off except through periodic re-
balancing by means of (42), assuming ¥ to be essentially
correct. One further advantage in favor of System IT is
that the numerical solution of Dirichlet problems by
relaxation methods seems to converge more rapidly than
that for Neumann problems. This may be due only to
the fact that we have far greater experience with Dirichlet
problems. Nevertheless, it is an important economical
consideration where extended-period calculations are con-
templated. Therefore, we will confine ourselves to con-
sideration of System II.

It is desirable that the form of the continuous equations
to be differenced be such that time changes of zonal
angular momentum and temperature possess exact
integrals over the entire area. That is, we wish to avoid
spurious sources of angular momentum and heating due
to truncation error in the non-linear terms. It is clear
that the potential and kinetic energy integrals will not be
exact. Furthermore one should avoid terms of the form
(73) from appearing in non-viscous terms if there is a
possibility of computational instability of the third kind.
Thus applying (18) to (23), and (18) and (22) to (20),
we have

2% __02(u)_ ,2(d\_,~ R
i b:s(2 ™ Sy m)‘*’Dﬂ“z;Q (74)
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LN

oul |, d fuw Di_
h:i[ﬁ msy ﬂmﬁ;)—T“ 2nav,]
. 2 A
LR TORANEON
|a=i[%lj m‘% %?)-y%%—znavs]

B d [\ Dp 1‘3)

L (75)

J
It is clear that because of the cyclic continuity condition
in , computational boundary conditions may be necessary
only on the zonal boundaries. We have seen in Section 2¢
that the boundary value problem to construct the initial
¢ field everywhere is completely stated for numerical
integration, without need for a computational boundary
condition. This is also true for the initial V field.

In the time integratioil of the geopotential thick-
ness, ¢, in (74), we need D on the boundaries, and also
m?d(¢v/2m?)/dy. Note that the latter would not have
been necessary had we used the form in (23) since 7
vanishes on the boundary. Applying (65) we have

A (ou mi .
(D) 1,0= a)l'o—i"m @)1

A U mi_, (76)
Ori=(5;), .. Do

and

d [ ¢7 mé -

2.~ X7 _— 0
[m oy 2m2>]t.0 2miA (@)
(77

d (47 myy .-
2 9 ( 9V L
I:m oy 2m”>],,,_, 2m2_,A (69)1.5-2
where we have taken A= Az=Ay.

To calculate inertial terms, I, on the boundary from
(75) we need in addition:

O [ uw mé
[ 55 ()] = oo

: 78
[m‘——a—— l‘ﬁ)] — M (u) “
oy\m?*/ s, mi; A by
o/ md
[ 55 ()]~ .
' (79)

9 [ v? md;_
3 ¥ f .Y _— J=-1 o
l:m oy m3>:|t..r—x mi;_,A ®1.-2
The frictional force (32) requires
0 /1 du md
3 _ (2= =0 __ _—
[m dy (m ay)]t,o mig# (a0
m3
J—1

s O (1 Ou .
" 3& ;%—255 t,J—l_—W (W g=1—t0.7-9) ‘
’ (80)
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and
[mai LE)] __mj _‘L’l_-_ﬂ__@?@l’ﬂj
oy h\mf oyt |, A [ 2mia mi

3 1 o Mi [ (OO ermy |, Prry
e L i = A T T I S
[m a‘.’f )] 1,01 a |: +2

m® Oy mi_y mi.pd |
{81)
In (81}, &0y on the boundury must be evaluated con-
sistently with the ealeuladion of the divergence on the
boundary. For example, al j=0 and relerring ta (64)
and (76) we have that

0 s ] i
Fr T Sl mt o)

 therefore

9w y m?2, :
ﬂ_yllnl_'j!_ﬁ (] o mi ) P (82)
Bimilarly on the other boundary
il alk, 1 ':I‘J‘LE- ,
(al" o E(J +m}_,) iy reg (81

| Hence Gg is known everywhers and the stream function
tendency may be caleuluted from (28) and (48).

b, COMPUTATIONAL ASPECTS OF THE ELLIETIC PART

We may use the customary extrapolsted Lisbmann re-
. laxation technique to caleulate the initial ¢ from {42) and
© * from (28). The first guess for  may be obtained by
- integrating (42) with boundary condition (43}

vr=ifria=—4 (5P T ae)

Al L (L) av e 0

The anterior superseript denotes the iterative index .

Equation (84} may slse be emploved to hasten conver-
gence.  As ench row iz relaxed within o civen sean, p, the
~ meon value of "¢ ; over oll 4 must saiisfy (84). The s
are then adjusted aceordingly before going on to the
nexl row.

In the ense of ¥* we have the source of o better gless
through extrapolation:

=0 : W* =
P R B
T:}]_ : ﬂib*ruyy;*f—:_\b*r—'sr

We may accelerate convergence of the relaxation of {28)
by again adjusting the mean value of o newly relaxed row
to the integral of (26):

=2 {.—I.I
e[ ()

(85)

(86)
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‘I'his tochnique should be applied for only a fow scans
since the crror due lo adjustment quickly becomes com-
parable to the iterative error during the process of son-
vergence., Such inlegrations have been performed on a
grid of 18 x 72 points with a relaxation factor of 1.25 and
8 criterion |[P*— st o (15/64)m, where g=9.81 m.
sec™  The application of (86) was stopped when [*Fp*—
¥ g (75/64)m. The number of iterntions NOCosSAry
for convergence varied between 2 and 6.

c. CONSTRUCIION OF THE « FIELD

Although tho @ and ¢, fields never enter explicitly
inte System II, it may be of interest to examine thess
quantities during the course of the ealeulation. This can
be accomplished through integration of equations (26-27)
by simple quadratures. In deing this numerically, care
must be taken to aveid accumulation of systematic
truncation erver. That js, the numerical solution of
equations (26-27) should be independent of the path
tuken for the numerical quadratures. Consider the
scheme

= Al Al {6 .
(87)

o - " e, i
Brp gy~ P -1 =— 00— ) +§= [(ﬁ. )f+1. :+(H:':)l. J:I-
(88)

Upon elimineting @ batween (87) and (88), we have

Vo bl el R — 4
= i, T Fi
=EE I:‘_I gf):.j-r:+(%)l.J—l_[_ gf)ﬂ-f-l.il_(!;_:!)E—j.J]

which i precisely the difference snalogue of {28). Belling
an arbitrary dotom ot o point, say EI%__%={!, then one
P41 : (J—1) from (88).
Binee i=1+41, then with (87) we can obtain $I+1§|I+%
for i=0, . ., (T—2); §=0,. .., (J—2). Finally,
we employ (88) again to caleulate B 11 and &5‘_% -3
for i=0, ..., (7—2). We now have $:+-} e for
i=0, ...,{I-1);j=—1,01,..., (J—1). This
is suflicient for an interpolation of § a4 the boundaries
with a correct representalion of 93/8y at the boundaries,

con caleulnte $%- for j=0, ...

5. CONCLUDING RIMARES

We have developed a scheme for numerically integroting
the baroelinic primitive equations over a domain with

closed boundarics, In actual application, the moethods
deseribed have yiclded an snslogue of the primitive
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equations which is stable when integrated numerically
"over extended periods. At a time when it appeared
unclear how numerical integration of the primitive
equations could be made free of spurious gravitational
instability, J. von Neumann proposed the inclusion of
a compressional viscosity in the equations of motion
to suppress the amplitude of gravitational disturbances
of wavelength comparable to grid size. Since such a
viscosity has no physical counterpart, one would expect
a systematic distortion of the evolving motions. How-
ever, it appears (empirically) that the method discussed
here for formulating the computational boundary condi-
tions precludes the occurrence of spurious gravitational
instability. Hence the use of an artificial compressional
viscosity may be removed from consideration.

The exact integral condition for deducing computa-
tional boundary conditions must apply as well to the
form of the baroclinic primitive equations which also
admit external gravitational motions. Those mete-
orological studies for domains where flow through the
boundaries is permitted present a special problem. The
reason of course is that a correct statement of the appro-
priate physical boundary conditions is not clear. The
investigation of Platzman [7] is a significant contribution
in this direction.

Experience has demonstrated that a consistent use
of the geostrophic approximation can yield great insight
into the large-scale atmospheric processes in spite of the
obvious limitations wrought by the restrictive approxima-
tions. Historically, linear techniques have played a
similar role in providing a fundamental understanding
of dynamical processes at the expense of relatively little
mathematical effort. It appears that the step to com-
pleteness from linear and geostrophic investigations is
most profitably made by going directly to the nonlinear
primitive equations. The fundamental simplicity and
self consistency inherent in the primitive equations,
together with an assurance of stability under numerical
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treatment, would seem to suggest this as the logical
course. The use of the balance equations as an inter-
mediate step offers questionable diagnostic gain. This
conclusion is based on the dubious increase of uunder-
standing gained in return for considerable computational
complexity.
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