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ABSTRACT

A method is developad for the design of finite-differenoe amoothing nod Alicring operntors which moeek pro-
detormined speeifieations, and which are applicgble to automatio eomputing machinery, The general teehnigue ia ta
Build eompliented operatera from the simplest typea.  The necessity for smoothing predieted fclds of stream funetions
before Inverting the balanes eguation for heighte of izobaric surfaces is brought out.

1, INTRODUCTION

&8 Numerical wenllier prediction, meking use of finite
& differences and digital computers, has invariably led Lo
- wplification of high frequency components in the final
4 product—amplification beyond physical reality, An ex-
8 rss of short-wavelength components detracts [rom the
% sppearance of the product, is annoying to analysts, and
ctan be downright misleading to the uninitisled. A
& method of constructing filtering, or “smoothing®, oper-
cetore was devieed by the suthor [1], which hawve been
8 successfully employed in operational practice to eluninate
| short-wavelength components from fields of meteorologieal
§ vuriables. In one aspect of operational numerical weather
§ prediction, it has proven necessary in Lhe interests of
@ wecurncy to filter out the short-wavelenglh components,
4 Swetion 6 will deal with this,

2, THE SMOOTHING ELEMENT

W First of all, let o smoothing element be defined. The
b smoothing element will be the building block of mere
i complicated smoothing operators. 'We shall 1ake as the
Lomoothing  element the simplest of one-dimensional
4 symmetrical cenlered finite difforence operators which
© 'For Turl T sen Mondhly Weather Rtepiers, Octobar 1257, pp. 125-102  ‘The thind, and
at, part I this smies will appsese oo (ot kaoe,

iz —s—1

does not aflect the mean value of a feld of infinite extent,
nemely,

Bi=ntydy (1—p) Grork-201) ®
where 2 15 the field to be smoothed. The subseripts refer
to points equally spaced in the independent variable, x,
and gonsecutively numbered wilth inerensing z.  For
imminent conceptunl convenience, we will rewrile equa-
Lion (1}.

x|

baf =

vz —22 - 2000) (2]

=2}
where
= I- _#l

The parameter » which is twice the weight given tho two
outer points, will be ealled the smoothing element index,
since it completely defines o given operator of form
{1) or (2).

It will be eonvenient to think of the dependent variable,
2, within the region of interest as consisting of the sum of
trigonometric (cosine, say) functions of varying ampli-
tudes, phases, and wave numbers. According to this
concept, the wavelengtha need not be restricted to multi-
ples of tha finite-difference increment in z, nor need the
number of waves for 8 given component within the region
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Fraves 1.—The ficld of smoothing element index in {z, cos EN)-
space. o I8 the ratio of amoothed te unsmoothed smplitude,
& ia the wave number, b is meah length, L is wavelength.

of interest be integral. Adopiing this concept, we will
investigate the effect of a smoothing element on individual
cosine components. For example, consider the com-
ponent

gi=042 cos k(x,—T)

where ¥ is an arbilrary constant related to the phase and
k is the wave number; 1. e., k=2 =/L, where L is the
wavelength of the component. Trigonometric identities
yield

gep=094 cos bz, —F)=C-1A cos k(z,—Z+h)
=(C4-A cos kh cos k(z—T)—A ain kh sin k(z,—%)

2o =04 A cos bz —7)=C-F4A cos k(z,—F—h)
= cos kbl coz B{e,—Z) 4+ A ain b ein k(z—7)

where & is the length of the finite dilference increment
in z. If these identities are substituted into equation (2),
we have, after some rearrangements,

2y=04[1—»(1—cos k)] cos k(z,—T)

Thus, the smoothing clement (2) changes neither the
wave number nor the phase, but changes the amplitude
of each component by the [actor
A

-J'=A=l—1r{1—ﬂ:)s 0y {3)
where A and A are the amplitudes of the field before and
after smoothing, respectively.

Figure 1 shows the field of » in (s, cos kh)-space,
It is to be noted that an index of zero does not change
the field, and negative indices lead to an increase in
amplitude of all componenis. Positive indices lead to an
algebraic decrease in amplitude of all components,
although indices greater than unity lead to amplifying
ogcillations. Wo thus have a coneeptual basis in the sign
of the smoothing element index for “zero” smoothing,
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“pogative’ smoothing, an
to be noted further that a smoothing element is not
highly selective, so would be a poor filtering operntor by
itsell. Tor example, if we were to filier out of a field
components of wavelength 2% (cos Fh=—1) by means of

one smoothing clement, components of length 104 (cos
Eh=0.8) would be reduced by as much as 10 percont (see

the ling corresponding to v=0.5),

3. THE DESIGN OF MULTL-ELEMENT OPERATCRS

In order to improve on the selectivity of the 3-point
smoothing element, a smoothing operator must be in.
venbed which involves more points.  The problem in tha
design of such an operator is to it il Lo stated spocifien-
ealions. The approach to this problem set forth in this
article is based on the use of more Lhan one smoothing
element (2).  Successive application of several smoothing
elemenits, with indices w, »y, w0, m, . . ., ¥, vesulis in the
final ratio of smoothed amplitude to unsmoothed ampli-
tucle of

s ___mﬂ”p —in(l—cos kh)] (4

me=i]

E=oayrcars - -

according to equation (3). IEquation (4) is a polynomial
in (cos kh), with n4-1 degrees of [reedom, represented by
the arbitrary constanls wy, #y, ¥y, o o o rg I principle,
one could specily a single-valued curve of = against

(cos kh) and express it in terms of & product of factors of 8

form (3). One would then know precisely how to ne-
complish the smoothing desired.  In practice, however,

this would present a formidable task and furthermore, one 3

is not usually coneerned with a procise distribution of 2 in
(cos kR). A great deal of improvement, in terms of the
desired smoolhing end-product, is oblained by combining
only two smoothing elements. At the Joint Numerical
Wenther Prediction (JNWP) Unit, we have not found ib
necessary a8 yeb to go beyond a combination of thres
smoothing elements. Our most frequently used multi-
clement operntor will e described in section 5,

4, SMOOTHING IN TWO DIMENSIONS

Tixtension of the theory to two dimonsions may be ae-

complished in two ways, TFirst, one may smooth in each
dimension, independently of the other dimension. It

can be shown that the final result is independent of the %
dimension in which one first smooths, and is also inde- 3
pendent of the order in which one applies the smoothing 3
Adopling the view that such an extension of o ."
smoothing element to two dimensions is really the applica-

elements.
tion of two smoothing clements, one in each dimension,
the two clements may be combined into a single 9-point
operatlor.

= 1
= Zu+§ pil—p) (-t ot a—da) 4

ip*(s,:—zﬁeﬁzw&aﬂ (5)

“positive’” smoothing. It is
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The subscripts refer to mesh points in figure 2, » being the
index of the two smoothing elements, one applied in each
dimension,

If, for convenienee, we consider the funclion z (x, 1) Lo
be composed of the sum of two-dimensional triponomelbric
components of form

2{g,y) =044 cos #(a~T) cos sly—9), (6)

the ratio of smoothed to unsmoothed amplitudes is

e=%= [1—w{l—cos rl)][1 —e(l—cos sh)].

{ Since each of the two [netors is of the form of the right
hand side of equation (3}, each factor may be evaluated
by means of figure 1.

The second way of extending the theory to (wo dimen-
sions is through the 5-point operalor,

= 1
go:E'u'[-i rlaat 2t —4z) (7)
An analysis of ihe effoct of such an operator on a eompo-

@ nent (6} reveals that the ratio of the smoothed to un-
- amoothed amplitudes is

crzj—ii= 1—p [1 —%(cus ri4-cos sh-}:l

Thus, if we were to replace the ordinate (cos kA) in figure
& 1by %(GDH rh--cos sh), the figurs would then apply to the
A i-point oporator (7).
.' - If the component (8} represented a Hwigele™ in one
= dimension only, {e. g, #=0, s=2+/2}) the 9-point operator
& (5) with »=0.56 would eliminste i, treabing it as a one-
. dimensional element would treat it, The S-poink operator
4 (7}, on the other hand, would reduce it by only one-half
8 ireating it as n one-dimonsional operator would treat n
% romponent of wave number k=2gx/4k. Beeause of this
W tharncleristic of the S-point operator, we have found
W little use for it.  We use almost oxelusively combinations
8 of 9-point operators.

. The extensions Lo two dimensions deseribed hers have

| obvious analogues in extensions to spaces of more than
- two dimensions.

3. COMPLEX SMOOTHING ELEMENT INDICES

% There is nothing in the theory which rules out complex
4 indices. A combination of two smoothing clements is
# cquivalent to a single 5-point one-dimensional smoothing
& operator, II the two smoothing elements have conjugale
& omplex indices, the weighis at the five points will be real.
Conversely, any 5-point one-dimensional operntor s
§ cquivalent to o combination of two smoothing elements.
¥ Acceptance of complex indices into the theory merely
b allows this converse to be perfectly goneral.
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Fraune 2. —The D-puint mesh. X

The multi-clement operator in most frequent use ab
the JNWE Unil consists of an element with a real indesx,
and two elements with conjugale complex indices; 1, e,

wp=[.49045
yi=—1{).22297 --0.64240i
= —1{.22227 —0.64 240

(8)

A-3-element operator allows the specification of thves
characteristics of the curve of 2 ngainst (cos dh). In
praclice, we have specifications which are not precisely
slated, so cannot be handloed ensily by rigorous mathe-
matical methods,

Tor example, we want our operational simoathing opor-
ator to soverely suppress the short waves while refaining
cesentially unchanged the longer waves, By combining
algebraie and graphical techniques, we have arrived at
the three clements whose indices (8) are recorded nhova,
and whose effecls are displayed graphically in ligure 3.
Figure 3 shows the result of both one pass and thirky-two
passes, the latter to bring out elearly the form for the
longer wavelenghs.

Complex indices always appesr in conjugale pairs,
otherwise the mulli-eloment operstor would resull in
mmaginary components. Conjugato complex  pairs  of
9-point operators require smoothing on the boundary for
the sumne reanson. We apply tho corresponding  one-
dimengional cloments to the boundary, so that in the
case of o reclangular grid only the four corer points
remain unchanged,

When one comes to programming for aulomatic com-
puling machinery, the question nrises as to whether to
perform one scen for ench element in a mulli-eloment
operator, or to combing the elements inlo one larze
smoothing operator. Tn the case of the operator ciled
above, if the clements wers combined inlo one largn
aperator, it would be applied to a 7 x 7 mesh of 40 points.
More mmportanily, there would be 10 glasses of contreal
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Frovne 3.—The watio, =, of smoealled to unamoothed amplitude
after ¥ smoothings with the mulfi-clement operstor whose
smoothing clement indices arc m=040965, »=—022227+
0.642404, pg== —0.22227—10.042404,

points, cach requiring different treatment. IFor this
reason we believe the advaniage lies in performing one
scan for each element, the one utility program then
handling all multi-clement operators for & given grid.

Txamples of the application of the semoothing operator
represented by the indiees (8) will be given in the next
zection.

6. INVERSION OF THE BALANCE EQUATION FOR THE
GECPOTENTIAL

The one aret in which we have found smeothing man-
datory in the interest of accuracy is in connection with
the inversion of the balanee equalion (Shuman [2]),

{‘&:3‘]‘ 1r‘!:’r;' _!_,f:]!_% {'ﬂ['n-'_ ':t";‘:r:]'z‘_gﬂi':rg ‘|‘ U’:f: “']‘ '»E'yfy'_
(getgontyst)=0 O

b3 =t
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Frovae 4.—The prodicted ficld of o~ 72 hours alter 0300 our,
April 26, 1956, smoothed 3 tlmes with bhe multi-element oper- -

ator (8. Contours are labeled In tens of feeb,

.. tach Longlhes 'L_.":I"'- ._'--. PRSI

Frawas b—The predicted field of & 72 hours alfter 0300 anr, Apl

26, 1956, inverted rom the balance equalion and the amecthad
field of ¥ depicted in fgure 4
foct,

where z is the height of the 500-mb. contour, ¥ is the stream
function for the winds at 500 mhb., ¢ is gravitational

acceloration, £ is the Coriolis paramater. Iigure 4 shows
o T2-hr. barotropie predietion of the y-field made wilh
wind fields which satisly the balunce equation. Figure 4
iz the predicted -field after being smoothed three times
with the operator (8). The y-ficld before smoothing i
not shown, but the differences between the smoothed and
nonsmootled fields are portrayed by the lighter curves of
fi;ure 6. Only the zero isopleth is shown. 'The sense
(plus or minus) of the differences is not indicabed, sinece it
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Contours are labeled in tons of
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:'-F:GLTHE f.—The light corves are the zero {sopleih depicking the

L choppy field of the differences befween the -ficld of figure 4

| before and after smoothing, The heavy curves depiet the

¢ locge-genle clfcet of smoothing the W-field, on the z-ficld implicd

| by the balance cquetion. The smoothed yefield Implics a

- z=field generally higher than the unamoothed fefield, Contours
are Inbeled in bons of feab,
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is of no particular interest. The important character-
istics of tha difference ficld Lo be noted are its ragredness,
or choppiness, and its lack of consisteney in the sense
that its mean value is not different from zero.

Figure 5 is the solution of the balanee equalion (9) for 2,
with ¢ laken ss the smoothed field of ¢ (fig. 4). The
balance equalion was also inverted for & with ¢ token as
the ¢-field before smeoothing, The latter resull i3 not
shown, but the dillerences botween the two zfields are
shown by the smooth heavier set of curves in figure G,

Figure 6 shows that a high-frequency change in the
w-field implics a very low-frequency change in the z-field
through the balance cquation (at least through our finite-
difference version of 1),  This result must be due to the
non-inearity of the balance equation in .
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