TNTRODUCTICH TO NUMERICAL METHODS
Lecture FHo. 1, Juns 3, 1954 -

E. Gilchqist_

The intention of the plamers nf this Horsahcp waa to keep the lect:.u‘ea

as free from methematica ae possible. The subject is, however, oms .. -

uhieh egsentlally iovolvesz a great deal of mathematics 28 no doubt the -

leeturss have already demonstrated. The purpoas of this lecture is to

indicate very brisfly some of the more importent mathemetical aspects, .

a kmowledge of which 1s almost essentlial to any understanding of numeri-
cal weather prediction.

The fundemental mathematical assumption underlying all phases of mmerl-
cal weather prediction is that we c¢an replace /a continuous derivative by
its Tinite difference eguivalent. Thus, considering the curve ABCDE in
Fig. 1, we agsume that the continuous derivation (slope of the tangent)
at C can be replaced by the slope of the chord BD. If EF, CG 2nd IE are
rerpendicular to the x-axis, the finite difference is said to be centered
when FG = GH. In general we try to use centered differences whenever
possible. The accuracy with which the finite difference equivalent will
approach the true derivative clearly depends on the shape of the curve
end on the location of the pointa B and D. Assume now thet FG = CH = A x.
The centered finite difference approximations to the First and second
derivatives at C are thevefore (yp - yp)/24Ax and (yp + ¥5 - ZyoHlax
respectively. The errors introduced by using theae finite differences
instead of the contimmous derivatives are lnecwn as "truncation” errors.

Consider now a function [ of both x and y for which we requive the
centered finite difference approximation to the horizeontal Laplacian
fi at a point C. Tsing the notation given in Fig. 2 it follows
dirsctly from the one dimenaional case that ﬂ-rin approximation, indi-

cated by ¢ 2 rL, is
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Since the horizontal Iaplacian cf the pressure field is proporticnal to
the geostrophic relative vorticity, & quantlty used considersbly in nm-
merical weather prediction, it is of interest to estimate the magnitude
‘of the srror intrcduced by using the finite difference Laplacian in place

of the copmtirmous cne. If we assume §] 1o have the form
; Tl + - 20X 2
f? = AL ——— A ""“_Tj%_
_ o b o A
iy el _— i, 2 =t :
wa can evaluate directly both EE‘? /c"and E-/_ /7 ¥ % shows the graph
of the percentage error in \J £ 'as comparsd %o 2 for various

murbers of grid points per wave lemgth of fZ . It will be seen that to
keep the error below about 1% we have to have at least five or aix grid
points per wave length. ; i ] : e

The grid interval usually met with in numerical weather prediciion ls
300 km arnd therefore we can only expscht to get an error of less than
104 in the sstimation of the geostrophic relative vorticity for wave -
lengths longer than ebout 1600 km. This result should be remembered
when looking st mumerlcel forecasts 2a mede at the present time. The
grid size alopme, Independent of physicel assumpiions, 1limits the amount
of smell scale detail which can be accurately forecast. BSimilar errors
"ean also be expected when we replace continvous time derivatives by
finite differences. .

When we introduce time as well asz spatial Tfinite differences in our
computations we meet another problem, the sc called "computatieonal
stability problem". Space and time truncation errora of ihe type already
considered can alwaye be mede as small as required by reducing the re-
apective intervals over which the differences are taken. However, irre-
apective of how emall these intervals are, a further condition mat be
gatisfied if the solution of the finite differsnce problem iz not to

- diverge exponentlally from that of the contimmcus problem aa the time
increases. In our tresent forecastling modsls the most sensitive equation
in this respect is the one uzed to advect thes poltential vorticity. This
is an equation of the form ; C 5]

__g,@z_z.z;@

where 9 is the potential vurt.iﬁtm ¥ the horiz.rmtal wind a.zﬂ'vﬁ the
horizontal del-operator. Mezking the geostrophic assumptlon this equation

becomes -. ,
: !
“a_;?“'. S \J (Q“J ?5
where f is the coriclis .pE-Lram'ater, # the geopotential and
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Using centered finite differences J(Q , ¢) becomes

4;533)2 fr(@u 0.4 ~Q- ‘J)/@Mﬂ 26 J-1 ) Qwﬂ- "{J->(¢’:+FJ"¢HJ

and g &L / 3T becomes 2&1’(@{-}.&.. Qtrﬁ e thue a‘uta.in an aqua.t:.on
in which errors arising from both the epace “apd tims finite difference

approximations will be present. It can be shown that these errors will
not grow exponentially with time if the i‘ollmring con:lition is EE:LtiBf‘.‘.Eli

Ass 7 Ivlax

_wherefv’ f W A X 1s the meximm particle spee.ui in tha region umler conaid.ar-

gtion. Thils conditlon states that the time interval, A, mmst be

chosen sufficlently small =o that a particle camnct tra‘rel for more than
YT times a grid interval &ming the time :,ntsrml.ﬂf

If after a time AT we edjust the 4 and § fields so as to be in agreemnt
ve can of course procesd For a further time AT . Thais is in fact uﬁiﬂﬂl
of the way we meke our precent numerical predic:til:ms

The question of a.u,;uating the $'a to ngree with the Q'a lea.ds us t:a our
next problem. With the more complicated medels thls can involve the
~aoluticn of very difficult differsntial equations but the principles of
the methodes used can be demonstrated by congldering the type of eguation
which we have to solve 1n ths harotrcmic model. This iz a Polgson :

equation, i.e.,
7P b f;’b

axx T P _/J(}"f)

vhers ¢ is the U ToWn and f? {}', v) is 2 function of tha "ururtlc:ity &n&.
ig ¥mown 8t each grid point. On the houndaries of thﬂ racta.ngu_lar ;
i‘a‘reuast regian we mssume that we. lnow both ¢ anﬁlﬂ

In tinite ﬂ_iffarew:e Torm, using the nr;-u..a‘t-:l.nn of Fig. 2, the Pmsa:n
equaticn becomss

Bty -+ B + B+ B g1 — 98 =Pif”

If 1 and j vary bah;een 0and I and O and J respectively tn's Eq_ua.tiﬂn
willhold for 1 & 1 £ (I -1),1 £ j < (J ~ 1). Thus, since wa
know the values of r,fr on the boundevies we have a set of (I - 2) (J - 2)
simltanecous non—hcm.cf‘enﬂm..s linear algebraic equations for (I - 2)

(J - 2) unknowns. If T and J ers very small thess equations can be
solved very simply by the elimination method. Such a method, however,
beccomes Trohibitively long for the large values of I and J met with in
the mumerical prediction problem. Variocus methods similar to Southwell'a
"relaxation” process havs therefore been developed to reduece the amount
of worlk imvelwved in obtzining the soluticn of this set of squations.
Theas mothods will now be described.

o



The finits difference Polsson eqﬁﬁtion can be rewritten in the form

_ 1

S d L | ' 2 k. ] --.-'-.‘_ = __'_' -‘* : ‘_-}#. .
A:;J = Sé{;"—ﬂjhf_gﬁ{’__.:d"!" st;JT!'f:-?ﬁg.jJ-f ""4—‘?{”{"GJ = O
B e e

and the troblem cen be regarded as ‘thet of Finding & set of ¢; 4 such

that, for a given set of g 43%, the "realduals", R4 are zero. Since
in sctual practice we. only‘require the #1j to a certain accuracy it is
pufficient to reguire |Ryj| to be smaller than f where § depends on

the acouracy to which we require the ¢ ;.

' If order fo start the relaration process we Tirst guess the ¢4y aod then
compute the setl of veaidnals Ri.,j- Ve then correct the ‘Fi,j so as to -
reduce the |Ryjls Prom equation” (1) we.see that by increasing ¢y j by ome
unit we can reduce Ryj by b wnits. A% the sams time, however, R; ., 4
Ri-1,3, By, 1,7 204 Ry . ) eve each. increased by one unit if they cof=?
respond 1o’ Internal péin-ﬁs. * Bince we lmow the corrsct gﬁj_ ] on the
bounderies the residuals there will always remain zero. Thus for points
{1,]) adjacent o 2 boundary the average. resldual the 5 polnts ccacernsd
© can be reduced by altering the giy. We can thus see that there 1s at
least a possibllity that this correction process, if applied a suffdclent
mumber of times to a sufiicisnt number of points, will eventually reduce
tae | R; 4| to the required size. The process can, ‘in fact, in normal -
circumstances, be shown to converge to the correct solution. i

In the original Southwell relsxation process the firat ¢, jil}' together
with the corresponding iy \1) are written down for each g.o’d point.

The grid is then inapecte& to Tind the largest t By 3 | and the correspond-
ing @3 changed so as to reduce this ;31'3:1;0 zerc. The resultant changes
in the surrounding B's are then caleulated a2nd written down. The grid -
is then again inspected for the largest | Ry4jand the procesa repeated.
This 1s continued until the |Rijlare B0 smza:}.l that changes in them do not
sigoaificantly alter the ¢ 5. '

Southwell's "over-relaxstion” process is similar-to the one. Just described
except that now instead of reducing Rij to 0 it 1s chengsd to - Ry j
where of lies between O and 1, che exact value used usuelly being chosen by
judicious inspection at each point. With experience. over-relaxation can
considerably increase the rate of convergence of the process,.

Somthwellts two metheds are very ugeful for hand computaticns but are
not direetly suitable for machine computations because of their reguire-
ment that the grid be continuwally searched for the largest Iﬂijr ; &8
proceas which ia elmple for the human eye but which Involves the machine
locking at each gquantity. The cover-relaxetion proceas also involves the
_very gubjective cholce of & . More systematic meihada have lhscelure
been developed for use with computing wachines,-



The simplest method adaptable to machine use is due to L. F. Richardaon.
Tn this method, znd those following, the grid is scanned aystemstically
.and the value of ¢ at each point changed sccording to a definite rule.
We say that one iteration hes been performed when each point in the grid
has been scammed once. Suppose that after the V' -th iteraticn we have
a set of 1.54"' 31 and a corrssponding set of residuals RY 13- In gensral
R "’:T. will not be zerc. The Richardson process is to corresct ?".yij by
-adding one-fourth the reeldusl to it, i.e.,.

This has the effect of reducing the residual at the point 1, J to zero,
provided one leaves undisturbed all the other ¢ V;4. Since, however,
211 the 9"}-"13 1a are simultansously corrected by the formmla (€] the
resulting residuals R P{g- will not necessarily be zero. It can, however,
te shown rigorously that the ] v 13 's wlll converge to the correct
solution with increasing V. In actual practice the process is stopped
when! pPHy - ¢ ‘QiJ[iE sufficiently mmall. 2 .

-

in improvement on the Richardacn mathed is due to Liebmarn., Tn his
methed the ¢ V3 5 ars not all altersd simultanecusly accerding to formula
(2). Instemd, as each mew $ V'l 4 j is caloulated it replaces g V34 in
‘the computation of H ¥ 11 for succeeding points. Thus, if we ecan

grid from left to right starting with the bottom row, we will ns=e two
valunes of $¥ and two of $¥"in the computation of R V 14, ‘then usually
written X *Y Vi , since corrections will already have Been at the
points (i ©'1, 3) =od (i, j - 1), 1.e., -

Yiad v g o =
Rif = Fu S Bt -

S r.;.jH
The correctlon formla ia then exactly similsr to that of Richardson,
Tiz. P
Y Yyt

Y+1 ?5 = " e
¢ TritEe g

| . S
Since in Southwell's method it was found that "over-relaxation” was
-mdvantegeous, Frankel applisd the same principle to the Liebmann procesa,
the only difference being that the amount of over-relaxation was kept

constant over the whole grid. This method ia called the "extrapolated
Liskmann method® and 1s charsctsrized by the corrsction equation

VI R Y
ve =0 8 e — F?"* / i
¢ _Ld ;G

where o7 lies between O and 1, the exact value being determined by the
grid size and the type of errors expected in the initial guess @°fj ;
For our present prediction models this last method has been found to glve

the fastest eonvergence and therefore Lo vequive the lsasbk munber ol .

iterations.



A further source of error which is important both in hand as well as
machine computations is known as "round-of £ srror. This arises from

the fact that after we perform such pumerical eperations as mmltipli-
cation and dlvision we only write down or otherwise record the answer

to a finlte number of digiis. For instance, 1f we heve room on our

paper or in our machine to write cr to store ten decimal digits per )
mumber and we multiply two such numbers together etoring the result

to ten significant digits we will introduce a possible error of +5 in
the eleventh dscimal place. If we now add together the results of two
such operations we will introduce a maximum possible error of + 1 in

the tenth decimal place. We can thus ses the sericus: possibility of ;
the growih of such errers if the computation involves numsrous operations.

In the example given above the maximum possible error has besn used for
purpose of emphesis. On the average, of course, the errors will not

. grow anywhere near aa fast. -In fact, if we have m operations each with
a maximum poasible errcr € the probable error st the complstion of the
computation will bey/Z¢ provided the round-off errors are random.

It is-Important that round-off errors should not be confused with errors
dus to inaccuracy of the initial data. Round-off errors can aluways be
minimized by storing a sufficient number of digits, whereas 1o compu- .
tation can ever glve an answer more accurate than the initial data. For
© example, consider a computation 4n which the initial data ia the height
of a glven presaure surface accurats to the neereat ten feet and From
vhich we require a forecast of ths height values twelve hours later.
Assuming that our forecasting syetem is entively correct, we can never
expect to gel an answer mors eccurate than to within ten feet. We can,
- however, always remove the poesibility of round-off error producing an
even larger error by keeping a sufficient ruwber of digita in the
computation, i.e., if the initial data ie 100 feet we might atore it
during the computation as 100.00C00 feet and then the round-off erraor

€ at each stege would only be + 5.10 =6 feet as compared with an
obssrvational error of 10 feet, . ' ;



