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Abstract
"The non-linsar balance equation ig replsced by sn infinite gysteﬁh \
- of linear differentisl equations. | This system renders a series of
"solutidns which unc’-s:r c‘erta:fh conditioﬁs converge toward the solution
_: of the balance equation. o | _
| It is ghown that these conditions coincide with the conditions for
ellipticity of the balence eg‘uabion. | _ |
| A slie;htly different method is shown to d.iverge. Thi;a is 11lus~-
'_l';':i;_a.ted.-byfa_-_case where thae sequence of approxima.‘c_,e _solutions Is com-

parcdwith 't"h.'e'___solution of the balance equation.

Commerce-Weather Bureau, Washington, D. C.



1. 'Introduc’cion
Past experience in the fleld of numeyical weather predicticix has meds
it increasingly proboble that an apprecieble part of the forecast errors
can .be aﬁtributed to the quabi-geostréphic wind sssumpticn. In this re-
spect the tendency for over-intensifying enticyclones ("biow-up" highs),
go often displayed in the products of numerical forecasting, bas particu-
larly been under suspicion. Recent work et the Joint Numericel Weather
Prediction Unit in Suitland, Mc.l.., has shown that thege po-called "'blow-up“ :
‘highs are generallyl) elhniné.ted vhen geosfrophic wind and geostrophic
{forticity'a:ée replaced by a ﬁind and a vorticity obtained from the "balance
equation”{1,2]. Tﬁia 1s a diagnostic equation arrived at by epplying a
two-dimensional {in a pressure-surfmg) divergence _operator to the
primitive eqﬁe’.tions of motion and in the resulting equation retaining
only the dlvergence-free part of the wind. This implies that both wind
and vorﬁicity cen be derived from e single'_ scalexr quantity, the stream-
: f\mc‘giop» | '. _ e
_ As yeb _the‘differex_mce between this type of non—geostmphic wind _
:_a.nq the geostrophic one has nbt beén studied in detall. It 1s -cleai-,
however, that the former much resembles the gradient wind. Thus » b&th
the wind- and vorticity derived from the balence equation ere smaller in

a region of cyclonic curvature than the corresponding geostrophic

1) This does not epply to "blow-up" highs resulting from incorrect

Jboundaxry conditions,



vquantities » vherees the reverse is {rue in & reglon of anticyelonic curva-
tﬁrel)lil + A numerical solution of the balance equation shows intersection
between streamlines and isohypses in reglons where the kinetic energy |
~changes along & streamline. The crogss-contour wind component 1s in accord-

ance with the dynamic energy equation.

The balance equatioﬁ mey be written as follows:
£y 4200 oV -V 2] +VE W - Po = 0 . 1
LR VAL AR W | (1)

where ¥ 1s the streamfunction, f the Corlolis paremeter £ocixxy ¢ the geo-
~ potential, and |

Va'\y = Wx’x '+ xyw = %Ez‘it + ﬁ = vorticity

oy

" In 2ddftion to the fact that eq. (1) 1s a non-linear partial differential
equation and, as such, does not direetly yleld to methods eppliceble to the
- solution of a linear differential equation, additional difficulties are en~

countered due to the hybrid character of this equation. By hybrid it is

" T Tt follows fram equation (1) that, except for the contribution of the

‘Vxx + wyy is algebraically smaller than the

geostrophic vorticity whenever ¥ 'Wyy - nyz > 0 {elliptic points). The

effect of the term V£ W 1s to increase the vorticity in a westerly cur-

term V€ « W, the vorticity { =

re#t and to decrease it in en easterly flow (in relation to the geostrophic
vorticity). Moreover, & purely hyperbalic point W:é: . vw - \yxy?— <0, ¢t =0)
of the y~field does not coincide with a purely hyperbolic point of the’
o~Tield,



meant that wnless restrictlons are inxposéd upon the ¢¥field',' cquation (1)

- may be elliptic In cne paft of the domain, parsbolic in ancther and hypere
bolic in the third. There ig no theory availsble for solving eq. (1) in

| general, but at present the scale of pressure systems dealt vith:in mmer-
iéa.l waather pfedict‘ion is such that a slight -smoothiﬁg_ of the enalysis
rénders (1) elliptic over the entire map. Thus, the problem is reduced to

“one of findmg a solution of (1) when V¥ is known on a closed boundary curve.

. Another problem which still iemaina is the question of wniqueness. As we
will see below, there are two solutions to eq. (1) for given boundary
'véiues- ,' 6ne of vhich has to be rejeéted as meteorologically irrelevaht.

| The criteria for ellipticity and how to distinguish between the two

| ‘solutiona are discussed in the second section.

" In the third and last section, a method is presented by whic.h the
non-lincar balsnce equation is repleced by & aystem of linear differential
equations the solutions of vhich rbnder a sequence of ﬂm\.tions w‘zich. wder
. certai.n condi iona converge towe.rd +he solution of the baleance equa.tion. It
lm shovn that ‘chese condi‘cions coincidxa with the condi‘bions for ellipticity

of the balance equation.

' 2, The Ellipticity Criteria
Let

F(r, 8; L, P L X, ¥ ¥) =0 | (2)

be & second order differential equation, linear or non-linear, in the two
mdependent va.ria.blev p 4 a.nd Yo Here ¥ is the dependent varisble and T, 8,

| t, p, and ¢ have the following neanings:

r= g 6'=\lrw;€=\érwx p=Vs a=V

=3



' The condition that cg. (2) be elliptic is

)y & H nl2
bF_-F -F2>0 (%

where the subscﬂpts indicate diffecrentiotion, l.e., Fr o g% ete. This

condition zpplicd to equation (1) leads to the inequality |
£ +2 C o+ 2 -ky 250
(£ 420 )5 42y ) - by (a)

‘as & conddtion for ellipticity of the belance equation. As discussed by
Bolin [2], this Implies a restrictlion on the second derivatives of the
streomfunction y. Of particuler interest is the fact that £ + 2y end
£ 42y, both must heve the same sign throughout the domaia of integration
and, 88 shown 'bj Rellich (4], this implies two distinet solutions of (1)
for given boun;'lary values of {. For one of the. solutions both these
quantitics o.ré negativé end for the other both are positive., Since we - |
observe that,-e.s a rule, the absolute vorticity Vo *+ WW + £ 1s positive
for the scale of motlion presently dealt with in pumerical weather predic-
t1on » ‘the positive branch of the solution to eq. (1) is the one of intez;est._ _
In order to investigate further the'conditiéns under which the balence
equation is elliptic, the inequality (3z2) is cambined with eg. (1), the
result of. vinich iz an ellipticity criterlon of the form
v3¢-'+-4f§--vnw>o (0)
The edvantage of (3b) over (3a) is thot both V¢ and £2 ere mown over the
entire domain of integration and we can therefore test the extent to which
" the balance equation ie elliptic- when applied to e large end medium (migrat-

ing ¢yclones end enticyclones) scele of atmospheric motion. The last term

=



in {%b) implies the knowledge of the streamfunction itself but as 1t is
small conmared with tile other two terms, it can, for practical purposeé ’
be replaced by a conservative estimate or possibly neglected altogether.
Experience shows that for the scales of motion mentioned ebove, (3b) holds
true over by far the éreater part of a weather map and c,x?.n‘_b.e {mposed upon
thé_ remainder by éh&nges in. the ¢-field comparable in size to errors in
d'ﬁservations and analysis. Accepting the legitimacy of sz;ch changes 1n the
analysié , we have ascertained the elliptieity of eq. (1) end can thercfore
golve 1t as & boundary value problem provided a suiteble (mumerical) method
is avallable. |

The cholee between the meteorologically relevant and 1rre1eva.ntleolu-
tions ‘is made [2,5] by imposing the condition Vaﬂr(n) + £ > 0 durlng suc-
cessive steps of a numerical procedure leading up to the solution ¥ of
eq. {1). The notation w(n) refers to & sequence of approximate solutions
waich for increasing n approach y. Although the inequality Py +r> 0. is

necessory it may not be sufficlent. Thus, the particular method used moy

produce a sequence of approximote soluticns vhich themselves do not satisfy

the ellipticity criteria (3b) and (3c) and for thet reasen msy not converge

to the true solution. A method to wvhich this statement epplies will be
discussed in the next secticn. |

It 1s therefore suggested as sofer that the conditions
n n
£+ 2\3:(0() > 03 | £+ 2w§y) >0 (3c)

together with (3a) be imposed upon the system of approximate solutlons
W(O)’ \'r(l), sana W(n) besldes Initicdly lmposing condition (3b)

A question of considerable intcrest , although 1its treatment is not

5.



within the .scope of thls paper, is vhether the ellipticity critc—;rie; (3a),
(3b) and (3c) ere purcly of mathcmatical nature or whether they elso may
have a physical significence. An indication that the latter may ot least-
api:roximately-'be the case is the remorkeble fact that the synoptic mops
are in a cloge agreement wiﬁ (30). The differcnce between the ¢~field as
~ emelysed end the cne upaa which (3b) has been imposed is, es mentioned
above, welll within the margin of error in analysis. It is pointed out
that in the case of the siationary circular ;rortex, the motion of which

is governed by the gradient wind equation

Caglr-v,) =0 I (4)

. physlcal considerations lead to inecgualities vhich resemble thé ellipticity
criteria. First, the requirement that the wind speed v be real renders the

two lnequalities

2+—L£>0; f+-2p1’-_>,o | o (5)

vhere vg is the .geostrophic.wind speed and p 1s the radiu‘s of curvafure ’

considered positive for cyclonie cwrvature and negative :t"or-anticyclonic-
- ) curva.‘curel). Second, the dynanie stebllity eriterion (based on conservas
tion lof ‘engular momentum) reguires the absolute vorticity n = § + £ to be

positive; this may be expreésad as follows:

tr2Y¥se+250 - (6)
P Sp

1Y As in the case of the balence equation eg. (k) hes two distinct solutions,.
the one of meteorologicel relevance being required tb approach to geostrophic
one for stralght streamlines. The inequalities (5) apply to the latter.

. n -6- .



This is to be compared with (7%a) which for this particuler case ;educes to
(re2)(r+2 >0 | B

The ellipticity criterion (7) restricts the aﬁea.ring vorticity g—v‘; more

' then (6) does (inequality (5) taken into sccount) and (5) restricts the geo=

strophic curvature vorticity more than required by the 'ellipticity eriterion

(z0). |

- These elementary consideratioﬁs do not, of course, answer the qﬁestion
redsed sbove, but merely suggest that a thorough investigation of the dynamic
.a‘cability of a non-divergent flow may provide & physical ip'_oerpretation of

the ellipticiﬁy criteria.

3, An Iterative Method for Solving the Balance Equstion.
' In order to solve eq. (1) as & boundary value problem, . we partly re-

place its non-linear terms by a "guess'-function v(o) 88 follows:

fV‘?“F(l) + Vi:g) . W}(D];) + ,SQ(:) . Wg;) o 2\;,2(3) . \y’(é) + W¢W(l) o P =0 (1&)

_.where. v(l) is the solution to the linear differential equatibn {1a) eatiafy«
ing the same boundary conditions as ¥. Having solved for 11r(1) s W8 replace
w(o)"m (1a) by W( :.") and replace \!r( 1) by & third function 41'(2) foz_' vhich e
‘solve eq. (18). Repetition of this procedure leads to & sequeucs -'Df. funns
ticus, w(o) ’ v(l), \(r(g) g "t \lr(n), which we will consider as epproximate

solutions to equation (1). We observe that (la) is elliptic 1

(£ ey 2B - 2E>0  meo, 1,2, 0 (8)

Moreover, if the sbove sequence of approximate salutions to(;lfa,} does con-

verge at all, it will converge towvards the solution ¥ of eq. (1).»- This .
Yy o



 follous fram the fact thot when the dlfference bebween two successlve solu-

tions of (1a), ¥ end \pn'l

eq. (1).
For the purpose of investigzting the conditions under which the series

opproachcs zero, edq. (la) becomes ldentieal with

w(o), \:r(l) ’ w(E), ver w( n) does ccnverge, we introduce the notations

; e(n+l) . ‘V(n+1) - q'r(n) (9)

G(n).; w(n) - w(n'l)

end apply (1a) succeésively to \Lr( ntl) and W(n). Subtraction renders the

following “error" relation:

fV‘°§(n+l) +' Wg,;)(E(nﬂ) + e{m)):Kx + ‘]’;(;)(e(m’l_) . G(n))
-2 qr}(c;) (elotd) “'(n))xy sveevel®) g | (10)

It in t0 be observed that fér.a.u n e(n) is lzero along the boundaries of
the damnin of integration which we, for the szke of simplieity, will essume
to be rectméﬂw and have the side lengths a and b, A further simplifica-
tion is introduced by treating, for the time being, the quantitles f, qf:(cx) ’
gf;) , and \y( n) as constants which reduces the differential equation (10) to
one with constant coefficients and without the term VI . Vé(n+l). Under
thece conditions we 'may expand both e(n) and e(n+1) in a series of sine

functlons:

(@) . & (n) % . gin o
€ = 5 2: sink :sinm-ﬁy

k=l m=l "
(11)
e(n+l) = Z (n+l) sin kg x 8in m% Yy
k=1 m=l

and replece eq. (10) by the integral eq;uation :
_ N



C a8 b '
o - L[ ettt (5 4 By o ) 4
. 2‘,]!(&::)(6(“4'1) + é(n))ﬁﬂ] dﬁ‘h (12) |

B -whe.'re‘, K(x,¥,t,n) is the Green's function for the boundary value problem
| Relmt) o o, (841} . o on the rectangular boundaries. The Creen’s
" function K has the form

. ' [ T ) ] . ' . .
_ K(X:Ygﬁx‘l) = h,nz Z E LS sm-kg- x *sin n% ysin kg-' g+sin xn-g 1 (13)
: k=l m=1 ".«:’ = . o , _

‘ Because of the special character of K, the method for solving (13) is
| .,lntraightforward we substitute for X from {(13) into (12), utilize (11) to
" lobtain expressions for the derivati'ves of (e(nﬂ‘) + e(n)) and :Lnterchange
| ammnation and integration. Ica.ving out’ the detaile of camputing the
_ | double sums anﬂ double intee;rals involved, we arrive at the following solu-
" tion of (12). | -

n+l)af 9 ';A.in*l)sink-’ix.smu%y-
. k=1l mel OF & -

el

S "m e | N Bab ,‘,( )
ey kg (n) 2200
k=l m~1ta.2m3 + 'baka ( Pl ) ﬂa(aamz + 'bakz)

- (n+1) + (I:n)i) sin k-g x sin mg-_:f (12a)

.. where k' end m in the W(n)-term can. 'only teke on odd velues; for k and m

. even this teym is zero. Eg. (laa) provides a relaticd between the ampli-

(n+l) n

tudes Ai ) as follows



)

Mo == T Ao | ()
where
£e ,,_,_________ (n) _&m (n) .Bab- w(n) .(15)

2m2+'b2k2 Yy 2m2+b?k2 Yo't EEE 4 vR) Y

This expression for x is substituted in (14%) which renders

a2m2 l‘,(n) + b2K2 \V(n) 8_33 (n)

(ns1) _ _ Yy () (16)
gx a®u(f + vg:)) + baf(f + *3(,?)) + B;b ‘l',(;) B

In & reglon where the vorticity of the epproximate streamfunction W(n) is
c_yclonic x is generally positive end an erbitrary wave component of the
e(n+1)-f1e1d.is smaller than the corresponding amplitude of' the e(n)—field.
The negative sign of the amplitude ratio - x/1 +x implies that the two
components dre 180 degrees out of phase. In the case of & negative x
(aﬁticyclonié reglon) the corresponding wave ccmponents ere in gl_mse and
the amplitude ra.tio. will exceed unity when the magnitude of ¢ 1s greater
than 0.5. A necessary and sufficient condition for tﬁe convergence of |
_this method for solving eq. (1), as outl.ined above, is that 0.5 +x > 0,

or, by virtue of (15),

(£ + 2wi:)) e’ + (£ + 21:5;)) VE + 1—523’- qrf;) >0 (17)

We campare (1T) with the inequalities (3a) end (3c) and point out, that
~ when the latter is satisfied end gpplied to v(n) , the two first terms in
(17) are positive, Furthermore, let &, and 5, be two positive quantities

and £ + 2\11:(;) = E end £ + 21][5;) = Eb, it then followas from (3&) that -

-10- 35009



. . !.- . :
WS:;)I <% () 8,)%. Vmen this is utilized (17) may be written os
8%m2 s 5. + b7k . B .ﬁ—(s-s)‘li>o : (172)
1 o " E N0t Bt 2P AR
. 8ince v}(élr) moy be negotive. The left hand side of. (172) 1s minimum for
- m=k=1and (17) and (17a) are therefore certainly satisfied if

825 +b2

YN SRU S. S BY. (s 52
1+ 05y - ~z (8, +8,) 5(a51 - b5,°) +(2 - ?)a'.'b'(bl.:_sa) >0

" which otﬂdusly holds true since 2 > —-ﬁa.
| Thus the 1terative method described above will furnish a Set of
h approximaté solutions, 11?(0) v(l) ces 'W(n) oo £0 CQe (1) which for in-

- creasing n will eonverge toward its solution y, provided all the anproxmate

. solutions satisfy the ellipticity eriteria (32) and (3c).

It follows from (16) that the ra.te of convergence may va.ry considerably
" from one part of the doma.in to ano»her, d.epending on the ma.gni‘cude of the
o second derivatives{ of \}r( ) Where these are small compa.red with the

COriolis ?arameter £ the convergénne is so rapld that a pra.ctically correct

o _solution is obtained efter & fev iterations. The éonvergencé 1s consider-

ably slower, _however, where the second derivatives ere comparauively 1a.rge
and in particular when the relative vorticity is nega.tive. In "uch arcas &
good i‘irat guess may be important in speed.ing up the mmerical procedure by
' which the solution w{! is arrived st. ' o

It may seem thet th.e method described. shove , by which the conv\.rgence
of the iterstive scheme Por solving the balance equation was studied, lacks
_ in generelity becauss 1t treats the cceffictents ¥, (n) w(n) - and w(“) in

" eq. (10) 8s constants. We point out, hovever, that the damnin of integra.tion

. -n‘



' may be divided into sub;damains small enough to allow eq. (10) to be

treated as en equation with constant coefficients. In evéfy uﬁch,(rec-
téngtllar) sub~domain the results presented gbove are therefore velid.

Consequently if the theory indicates divergence in one or more of the |

: mb-d@m, ‘the iterative method will._ not in general rén’der the solution
" of (1) when applied to the whole domain. Similarily we expect the method |
" .toi-:' converge if the theory predicts convergence in every sub-domain. This

- reasoning is edmittedly of heuristic nature rather than a strict proof,

5 'but similar heuristic erguments sre frequently relied upon end have proven

| auccessﬁll One example is the application of J. von Neumann 8 method for

o deriving eriteria for computetional stability in connection with numerical :

solutions of parsbolic and hyperbolic equetions with variable, coefficientrs |
'[‘5]. Another 1is the use of comrergence criteria and optimum relaxetion

coefficients (for instance, in mmerical wea.ther prediction) obtained for
‘stuple elliptic differential equations in the trestment of more compli-
cated equations to uﬁich the theory does not strietly epply [7,8].

There 1is ob\;iously more than one way of linearizing the balance
equation (1), by mitially replacing its non-linea.r terms by & combination
'of a "guess" and & funetion to vhich the resulting linear differential
_'equation a.pplies. An iterative method of the type described above in
| connection with €q. (1a) will produce a series of functions for vhich the
convergence conditions ma.y be investigated by the method just deseribed.

" As an example,..we will treat the series defined by the system of linea;i'
equations | |

f?"‘y(n*l) + 2,#(11) v(n) 2(‘#(!1))2 + U o w( ) ng = 0} (n - O, 1’ 2
(1v)



where the non-linear terms in eq. (1) have been replaced by an approximate
solution. 1) Equa‘cion (1b) 1s & Polcson's equation and therefore uncondi-
tionally elliptic., In preparation for obtaining an "error" relation we

observe the identity.
- . )
Uy o Vyy T (PN -G, - | (18)

(n+1)

Successive application of (1b) to V and w(n) and A subsequent sub-

traction rénder the relation

rReB1) (), NN (B4 )y eg;)' |

- o4 & W(n'l))xyv ei;) . V2. w®) ao . (108a)

(n+1)

" where ¢ ! and e(n) are defined by (9) and use has been made of the

1dentity (18). |
The mei_:hod used ebove _fOr_éolving eq. (10) 1s directly applicable to

eq. (10a) and the detailed steps will therefore not be repeated. The re-

sult 1s the following relation between the amplitudes Akn"'l) Ak
(n+ 1)

‘the corresponding wave components of the € and e(n)-fields-

ey, S AT 2270

: Ak,m -2 (A 'bzk‘) p Ak,m (161)

1) Thia method has been tested empirically at the Joint Numerical Weather
Prediction t?nit by L. P. Carstensen, who found that after a few iterations
(n = 4 and 5) the sequence of approximate solutions did epproach the true
solution of (1) in most parts of the map, but clearly shoved divergence in

regions of strong cyclonic vorticity.

-13-



whare

e . 2"'1; - w(n) + w(n’l) }

' The condition that the amplitude A](‘"i decreases with increasing n may be
: . L . . -

R written a3

(£ - 2[F ) a?-mz s -l h e - ER R I>0 (M)

" For negative values of v y V. iy end W (1) 1s essentially identical
.vith the inequality (17), vhereas it is much more restrictive for positive
!valuea. The interpretation of (1Tb) 1s that in & region o:r strong relative

- ,vorticity of the streamfunction ¥ the set of finctions defined by (1b) can-
not be .expected'to converge. This conclusion is aupported by empirical
'evidence (see footnote p. 13). Fi(_:,ure 1 shows & case uhere the method

does not leed to the solution of the balance equa.tion but to a seguence .

of divergent &pproximations" The charts lsbelled A, B, C, D, and E show

the successive differences ¥ - qr(n), where W(n_) is the solution of eq.(lb)

| and er the solution of the balence eq. ‘The chart labelled. A corresixonds to |
_n=l , B to n=2 etc. The deep low with centre near Chicago is associated

...;'.' -with rela.tive vorticities in excess of the Coriolis pa.rameter, a.nd the

'_method of solution diverges rapidly in the central part of this _low. '_

We point out that outside this restricted area the method. is either
convergent or slowly divergent (Gulf of Alaska). In a.ccordance with -
: "‘theory, the differences alternate in signs in low-pressure a.reas and re-

tain their signs in high-pressure areas for successive approximations.

TR
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Figure L The charts AB,C,D, and E show the successive differerices Y-y, where  is the solufion of the balance eq. and ™’ the solution of eq. {1b), page 12.
A corresponds to n=I, B ton=2, etc. The sequence of "approximate solutions” diverges. .



