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Statemsnt of the uroblewm.

Consider the balasince equation in iscbaric coordinmies.

A RN

P .
¥ Txx g;y' = a (1

]
r

Hexe }" is the streem funciion, /t the Coriclis paramweter, and & the
geopotentiel. (1) may be derlved by taking the divergence of the hori-
zontal equations of motion, omitting terms involving verticel motdoen,
and assuming non-divargence by expressing the horizontal veloeity in
termg of the stream«funétipn, ¥ . The problem touched upon in thnis
raper is the solution of {1}, treated ms a boundary-value problem, for

¥ when ?5 is given.

A Conditioﬁ f'or Exlstence of Solutinns.

A vital question, which must be angwvered before an attempt is made
at sclving'(l), is whether it is fundamentelly hyperboliic in nature. IF
il is, it cannct be treamted as a boundaxy-valu&'prabl&m;. This question
may be attacked in weys otler than that presented here {e.g., see For-
svth, p. 498}, buv the Tollowing developmeat is Lrlef and to the point

in question.



We will begin by assuming a particular sgolution, and invegtigate
solutions in the neighborhcod of the assumed soluticn. In particular

let us look for the infinitesimal change, d ¥, in ‘;b which correspends

3,

to an iufinitesimsl change, J ¥ 5, In ¢ The variations, then, must
satisfy the following equation, which is obtained by werely differen-

tiating (1), and gathering coefficients of the veristicns.
o i - n’ ’, b4 i ‘v e

4 }ﬁy y%x}y -(2){!/’)’ + ) oYk “{2){‘{" 'ﬁc)cj:’fﬂv ‘f&lféx +‘7/ér" C {2)

N'ow', the characteristic, {3‘-?,'_, of {2) is
— / :
which, after expanding terms and re-&franging » becomes
/ 1 . .
A = 5/[1 u'r;"'f/"b y)}“‘?"i‘: (3)

After a gubstitution from (1) into (3), we see that the cheracteristic

for the equation {2) in the veristicns 1s precisely

e i L s ' .
CL = ~F(Hh + B L FY) )
Thus, urless
. A SN ' 5
L, * qé,), +4 £ 20 (5)
the equaticn (2) in the variations is byperbolic, end cannct be

treated as a boundury-value problem. The significance of this is that

golutions in the neighborhood of a given solution in whick conditicn



(5) is not setisfied, cannot be found by arbitrarily essigning bound-
ary veluess a.xd integrating. This, however, is tantemount to saying
that condition (5) is pecessary for sclutions of (1) to exist which
satisfy arbitrary boundery values of Y.

Thus, if condition {5) is not everywhere eatlisiied iu the geo- -
poténtia.l field, the dasin oust be pre-preparad by imposing (5) arti-
ficially. This could most directly he Cone by computing

(&, + c;é;y + 44 2) in the dats Tield, incressing to zero

thope valueg wiich were negative, and fitting the field of % to the

) o2
+<P},’v 5 F

3

by solving a Poisson equa-~

M

changed field of (f% M

tion using relaxatics meihods.

A;gplica.tion of Relnxetdon $rocedures to the Nen-linear Eguation.

A more counvenient form of (1) for the purpose of this discussion

is

;{"( # % *{) /75 ‘é z) 2;(,v z(nt f’)’)z o (6]

A

Fquation (6) is full‘{ equivalent to (1), being merely a re-arrengement.

The advantag: of (&) over {1) is that, wheo transformed into central
Pinite differences, the central value of Y appears cnly in the first

term. Consider the finite-difference trensforwstion of (6).

) - () -2 = RS @

where

P = q—(?‘i +)?— +‘;€+>€’/)_>1; "'“;T"ﬂgdszf



z'._.__’_f'-z & o & Iy - )
So =M= 5 R) L (A o )

? P /
z, =mlas” (%, 08,04 Fi)-4

and 77 is Lthe mep-scale factor and 4% ig the umesu length. The sub-
scripts reter to values at pointe in the mesh of tvhe geccompanying

figure.
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Figure. fhe 9-point mesh.

The supecascript { )v refers to munber of relaxation sweeps performed,
and is attached for imminent convonience. R is the yreszidual, and van-
ishes ip ihe goliution. Buppose tiat we attacked the numerical solution
of (7) by & straightforwvard extension of the Liebmann process to the

non-linear equation. ILet us teke tne superseript ( )V , when atinch-

ed to 7, A, and R; to indicate precisely the velues of those quantities



Guring the ¥ B sweep arter pagsing over the immedictely preceding
roint, but before =mny compuitation is performed sa% the poiny in ques -
- . ) - . : s 4 \g" *I

tion. We will similarly define the superscript { ) ; Wien st-
tached to ? , A, and B to indicate precisely thelr values during

the V""hw swWeep al'ter pessing over the woint la gusstion, but before

any compuiation is done on the imsedlately succecding poiat. ‘Then R

- (R

{8)
e / g8
A, = /2‘;
Substituting these values into (7)), we have
) i - . " s Bl
il s o B LWt ui ) I - o
(™) a I (£ ) e W R =0 g

§

: . . . SRy 2
(9} 1s the besic relsxation equation to be solved for ( ¥ - % /
&t each point successively during sach sweep. Tis being guadratic
introduces problems not otherwvise encountered.

FPiret, under what cooditions are th2 roots of (9] complex?

This is essily anevered hy locking et jis cheractesigtic P _L:?‘;i .

; 4 iz Y e '
) 3 ]
CE = 1/(%/ - %’(f\’o - A, /} {r0)
he condition for reslity of +the roois ie

CL =0 {(11)

We may subatitute (7). .into (10), snd fird that the condition (1i) Le-

cores .



z - ’
POk = () ez o R so

v\ ) ;
( N )2 1s positive definite, and in view of ccendition {5 impnsed
on the data,c is not negative. A sufficient condition, therefore, for .

reality of the roocts of {10) is

P S )
K720
o
In view of the fact that during the relaxarzion process- }ﬁ:/ may be

either positive or negative, over-relazation is not iadicated. Thus,
we will get

]?vw :0' (12)

-]

It is of interest to note that with no overureléxationj_the condition
(5) for the non-hyperbolic characﬁer of ‘the Gifferential egustion (1)
is a sufficient cconditlon for non;complex roots of thé basic relaxation
equation (9).

Second, because n square-rcct routine is not Euilt into cur machines,
we mus£ devise a method for solving (9). Two fundamental classes of
methods are available, tabvle-look-up methods snd iterative wethodes. We

will here propose the iterative method indicated by

X, = ?(.{f;?r (13)
)fr‘” - y‘,’/o— 4 xoa-’ (14)



o= - (57- A7)
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(17)

It cen be shown that (17) follows trom {13), {i4), (15), and {15),

which are merely definitions. Ia fect, the above set of equations

results from eppliceticn of the Rewton iteration to ihe radical in

the roots of (9). To demonstrate the truth of (17), let us first

Yy .
form Ky ag follows.

(18)



and from (16), {19), and {23},
o+ p - A
R, = (x7) =o

Thue, (18} vecomes

A o
Ke . Ao
- g T .y
Ko A ﬁi -2 X,
Oz, according to {13):
o= J
Ko e A /
S - 3 ; 2
X ~ Al
° < ( fo z/ .
e
/%y

in view of {16), and (5},

- < ﬁjoam ‘:-5 f’

Therefore,
/
- < 0 e .
o= (P97 /
(%)

(22) implies the following two possitle ranges. Elther

- 2
/) & h(_fii}é_#(ﬂo

AT

(2_?0')

(21)

3]



fmn } '
77
- £ {7 / % 0 (2)

xR,

~

Applying the ranges {23) ard {2h) tc {21},

R "Jq:f" P F
— % < -—--’-,—%—:'~’_~-4- 4 -:-% (25)
X, '
From (19), (i3), and {16},
. {:} P -~ v) 2 =
o 4 ‘:’70 / ¥ (‘Ap ; -~ s -
% = P T (2€)

27

. Tz §
(26), (20); and (13) imply that X, may be positive or negative,

o= : - &=/
Ko may agree or not egree in sign with X, , but reguire all

o>q . _ Lo = 2 g 4 s
X, to agree in sign vith ,'-‘l'.ﬂ,c . Prus {25) lemds to

o= oo PR B nIer m : =
f}: x:’l = % IA{ 2 =.;x;" 4! (27)
o=2 H=!

(27) is & sufficient condition for the summation in {17) to be finite

o=/

1T X, is finite. (25) ismlies that

o - X2

which, in view of the definition {13), implies that



. . d—
[
g T 0
. . O o wE
which in tura wmeans that ¥4 = W3 , according to foye-

going definitions. Thus, we have proven that the lterative schene

represented by (13) and (17} ccnverges to one of the rooue of (?), sub-

Ject to the further condition that

o

W o

=

' /
for all & . The last condition is realized if 370 # O , as

shovn by {26).

| The third problem arisiag from thé quadratic charscter of the
basic relaxation equation {9) is that of deciding between two roots.
(26) contains the solution to this third problem. It shows that un-

leas

27" > o0 - (28)

the quedratic-sclving procesgs convergss to ihe solution in which the
absolute vorticity is negative, which may in all probability be re-
jected in view of the restriction (5) on geostropghic vorticity.

In the event that 7‘00-.:’ < O , one could follow the
process through to the improper root, for the proper root may easily
be computed from the improper root by the Tollowing relatlon, where

(,z;*.- )%"’) vefers to the improper root of (9).

88978
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% (57 - %) (29)

(29) msy easily be derived, efter roting thet sceording to (1), ke
lmproper root mist imply vorticity aoual and opposite n sign to the
vnrticity Irmplied by the proper root.

A fsmrﬁh problem whilch eriens in ouwr ifterstica achcme is sealing

when % in small in (13}. We may conclude trom (25) thet we need ouly

-y - a‘-” -
be concerned with sealing p / . Mo,
P 74
L=/ /{ o yy ¥ fant
X = -"“"{; Y fe L3014
2 A%e 7"

sccording to {12). {20}, {11), amd (12) shov thal

(7] = 7

K4

Thus, :!.f

A0 (21)
then

7, ] (32)

Condition (31) con bhecome satisfied by succeesively gubtractipg in-
K2
crements Ifrom 7“:,’ , O “a_y sorputing the eent;*al valug of ¥ which

ccrrésponds vo %, =/ ; and eterting the iterstion from there.
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The discussion iﬁ'thé preceding section is not concarned with
proofs of convergence of relaxation methods applied to tne particulsr
equation at hénd. Rather, it indicstes e way of handling problems
which erige from the aquadratic ngture of the equation.

A for convergence cf the relaxestion process, a simdlar proce-

dure hses besn successiuliy applied to a sloliler egquatiun (shuman, 1955).

Referencer

Forsyth, A. K., 1933: A Trestise on Diifsrentlal Equations, 6ta Ed.
Macmiilan and Co., Ltd., London.

Shuwan, F. G., 19551 DNotes on Work Done at the Instituise or Advanced
Study, 19%3-Gk. (Unoublished).



