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ABSTRACT

The energy conversion between the vertical shear flow and the vertical mean flow has been computed using

atmospheric data from the isobaric surfaces: 850, 700, 500, 300, and 200 mb.

In comparison with earlier calculations

based on a smaller vertical resolution (2 levels) and a smaller sample, it is found that the new calculations give larger
numerical values in better agreement with the results of numerical experiments concerning the general circulation of

the atmosphere.

The energy transformation has been computed in the wave number regime, and it is found that

the medium-scale waves are responsible for the major portion of the transformation.
The amounts of energy in the baroclinic component (the vertical shear flow) and the barotropic component (the

vertical mean flow) have been computed as a function of wave number.
barotropic component is about 2.6 times the kinetic energy in the baroclinic component.

It is found that the kinetic energy in the
The partitioning of the

kinetic energy between the zonal flow and the eddies is such that the eddies contain more energy than the zonal flow.
This result applies for the vertical shear flow as well as the vertical mean flow and is in contrast to the results obtained
from numerical experiments regarding the general circulation.

The present computations include only the energy calculations which would be present in a quasi-non-divergent

model.

1. INTRODUCTION

A few years ago one of the authors (Wiin-Nielsen [10])
made a pilot calculation of the energy conversion from the
kinetic energy of the vertical shear flow to the kinetic en-
ergy of the vertical mean flow. The study which contains
the derivation of the basic formulas for the energy conver-
sion was based on data with a very limited vertical resolu-
tion (2 levels) and on data from a single winter month
(January 1959).

Since then Smagorinsky [8] has published his basic ex-
periment on the numerical simulation of the general circu-
lation of the atmosphere. He uses the same energy conver-
sion to investigate the energetics of his model. The
original idea to divide the energy conversion from avail-
able potential energy to kinetic energy into the energy
conversion from available potential to the kinetic energy
of the vertical shear flow and the conversion from this
form of energy to the kinetic energy of the vertical mean
flow was, as a matter of fact, proposed by Smagorinsky.
Although there is agreement with respect to direction of
the energy conversion in question between the results of
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Later calculations will provide estimates of the remaining term of the energy conversion.

Smagorinsky and those reported in [10], there are differ-
ences in the order of magnitude. The observational study
[10] gave a time-averaged value of 3.810™* kj.m.™% sec.™!,
while the numerical study resulted in a value of 16.1
X107* kj.m."2 sec.™, or more than 4 times as much.

It was pointed out by Smagorinsky [8] that one of the
reasons for the low value found for January 1959 from
data at 850 and 500 mb., could be that only data from
the lower part of the atmosphere were used in the eval-
uations. For this reason alone, it is worthwhile to extend
the calculations to a larger vertical resolution. In addi-
tion, data from a single winter month may not be very
representative for the general circulation of the atmosphere
and it becomes important to extend the calculations to
other months selected from different seasons and different
years. It is one of the purposes of this paper to report
the results of such calculations.

In {10} it was necessary to give a crude first estimate of
the amounts of shear flow kinetic energy and mean flow
kinetic energy in order to estimate the energy decay times.
No estimate of the two forms of energy has been made
from observations to the knowledge of the authors, al-
though results from numerical experiments (Smagorinsky
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[8]) have been published. A second purpose of this paper
is to describe the results of such observational studies.

It was shown in [10] that the kinetic energy conversion
from the vertical shear flow to the vertical mean flow
may be written as a sum of two integrals (see equation
(3.12) of [10]). The evaluation of the first integral re-
quires a knowledge of the velocity divergence in the
atmosphere, while the second integral can be evaluated
from the vertical component of vorticity and a reasonable
approximation to the horizontal wind field. While the
second integral readily is estimated from standard data,
it is as difficult to evaluate the first as it is to compute
vertical velocities from atmospheric data. Estimates of
the first integral will not be given in this paper, but com-
putations of vertical velocities from a quasi-balanced
five-level model of the atmosphere are under way and
will be reported later.

2. THE CALCULATION OF THE ENERGY CONVERSION

Since the basic derivations were given in [10], it will
not be necessary to repeat them here. It suffices to
point out that we have computed the integral

Cro B, Ko =22 [ (X, esVe)_dd (21)
g Ja M
in which K, is the kinetic energy of the vertical mean flow
and K the kinetic energy of the vertical shear flow.
V is the horizontal component of the wind vector, { the
vertical component of the vorticity vector, k the vertical
unit vector, p, a standard value of the surface pressure,
and ¢ is the acceleration of gravity.
A means the total area over which the integration is
carried out, while dA is the area element. In spherical
coordinates we get:

dA=0a? cos eded\ (2.2)

where ¢ is the radius of the earth, ¢ is latitude and X is
longitude.

A subscript M means a vertical average defined by the
relation
1

( )M=p (2.3)

opo( )dp

4}

while a subscript S is defined by the relation
( )5.:( )—( )M

The integral (2.1) was evaluated using data from the
isobaric surfaces: 850, 700, 500, 300, and 200 mb. The
original data consisted of height data analyzed by the
National Meteorological Center (NMC), U.S. Weather
Bureau. A streamfunction, ¢, was computed for each
level at each observation time by solving the balance
equation

(2.4)

v2¢=} \72¢—1§ Vf-Vo (2.5)
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All quantities in the integrand of (2.1) can now be
expressed in terms of the streamfunction derived from
(2.5).

The vertical mean of the streamfunction was defined
by the following weighted average:

Var=0.25¢(20) +0.15¢(30) 4-0.20 ¢(50)

+0.175¢(70)+0.225¢/(85)  (2.6)

where the number in parenthesis refers to the pressure at
the isobaric level, measured in cb.

The shear flow at each level is then defined by the
relation

¥s(0)=¥(p) —¥ur 2.7)

The fields of the streamfunctions defined by (2.5),
(2.6), and (2.7) were obtained on the grid used by NMC.
The six fields ¥, and ¥s (p) were next obtained in a grid
of spherical coordinates using a grid size of 2.5° in latitude
and longitude, ie. AN=Ap=2.5°. The interpolation
procedure was carefully checked by first interpolating to
the spherical grid and next, interpolating back to the
quadratic NMC grid. It was possible to regenerate the
original field with a very high accuracy.

It is the purpose of this investigation to compute the
spectral distribution of energies and energy transforma-
tions. We have used a technique very similar to those
employed in earlier investigations (Wiin-Nielsen, Brown,
and Drake, [11], [12]). Each streamfunction is written
in a Fourier series of the form

V=) +23 { An(e) cos () + By(e) sin ()} (2.8)

The Fourier coefficients, 4,, 4,, and B,, were computed
by standard procedures for each level and latitude with
N=15. The lowest latitude was ¢=17.5° N., while the
highest latitude was ¢=87.5° N. The total number of
Fourier coefficients for the 6 fields at 29 different latitudes,
each characterized by 31 coeflicients is therefore 5395.

The integral (2.1) may also be written in the form

1 (*?0 (*2r [*e2

Crno (K5, Kar) =5 j; fo f $s(Uavs—usvar)a? cos ededhdp
#1

(2.9)

when it is expressed in spherical coordinates. The term
in parentheses in the integrand may also be written in the
form J(¥y, ¥s), when the wind components are expressed
by the streamfunction. We may therefore write:

1 Py 27 ey )
OND(KS,KM)=§L L f Cs (Wi, U o) a? cosp dedhdp
1
(2.10)

which shows that the contribution from a given level to
the total energy conversion depends on the correlation
between the vorticity of the shear flow and the advection
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of the streamfunction for the shear flow in the stream-
function for the vertical mean flow. It is the form (2.10)
which was used in [10] to evaluate the energy conversion.
The relative vorticity of the shear flow and the Jacobian
were expanded in Fourier series, and Cyp can then be
expressed in the Fourier coefficients in the two series. In
this investigation we have preferred to work directly with
the Fourier coefficients for the streamfunetions. Under
these circumstances we are faced with the problem of
finding the spectrum for an energy conversion which
depends on an integral of a triple product, of which two
factors depend on the shear flow while the third factor
depends on the mean flow. The problem can be solved
by forming the sum of all the terms from the shear flow
which contribute to a given component of the vertical
mean flow. The general derivation is given in Appendix
A of this paper.

When' formula (2.1) is expanded, and we write the
contribution from a single level representing a layer of
pressure difference Ap we get

. Ap (P (te2
Ca (K81KM) =—g‘f0 f ?S(quS_uS”M)a'Q cose ded
. €1

(2.11)
The contributions from the different layers are added to
form Cyp (Ks, Ki). The values of Ap for the levels 850,
700, 500, 300, and 200 mb. are 22.5, 17.5, 20.0, 15.0, and

25.0 respectively.
The Fourier series are written:

N
=480+ 33{ Ak ()e0s @)+ B¥()sin o) }
(2.12)
and
N
ba=A800ip)+ 23 A%o.p) cos () +Bile, )sin () }
(2.13)

The series expansions for the shear vorticity and the
horizontal wind components are easily derived from (2.12)
and (2.13) by using the relations

1, 1

Tade @ cos ¢ ON (2.14)
and
[ Sy o
f—af"l:cos“pb)@ O‘V—t (pao] (2.15)

The notations used in these expansions are summarized
below:

ua=U () + 23 UCH(e) cos (m) +USH(g) sin ()]
(2.16)
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o=V ()4 Z: [VC¥ (o) cos .(n\)+V S¥(p) siti (n\)].
- (217)

and similar expressions for us and vs in which M is replaced
by S. The expansion for shear vorticity is written:

{s=2Zi(o)+ Z [ZC7(¢) cos (n\)+ZS3(e) sin (nN)]

n=]1

(2.18)

The contribution from the layer gl\'en in (2 11) is now
written in-the form ’

(K s, o) = (- zl o (2.19)

By applying the results from Appendix A, it is then
possible to find the expressions for €% and C3. These
formulas are given below, converted to energy conversions
per unit area:

0_% 1 f¢2
3= g 5 er—sim el Jo Ty(e) cos ¢ de  (2.20)
in which ¢, and ¢, are the southern and northern latitudes
determining the boundaries of the region (¢,=18.75° and
(P2:88.75°) and . -

Tyle)= U’Z (VOS. 2054V SS. zsg}

n=1

(2.21)

In the calculations we replace the integral in (2.20) by
a finite sum.

The expression for Cf,
in the form

n==1, 2, . . ., N may be written

=2 e Jo (CTE TP =T cos o dy
+qu ml—n—wl_—sm (TO—T9) cos pdep  (2.22)
in which
TO_US(VCH - ZOSHVSY - ZSH) (2.23)
TO=Z5UCK-VOHUSY- VS  (2.28)
TO=Z5VOY - UCSH+VSY-USH (2.25)

The three expressions (2.23) to (2.25) represent the
contribution from the waves of wave number n in the
shear flow and the mean flow in their interaction with
the zonal flow. The contributions from these terms are
included in the analysis given in section 5 of [10], in which
the energy conversion was analyzed for the quasi-non-
divergent, two-parameter model. The remaining two
terms, 7@ and T, represent the non-linear inter-
action between components which combine to contribute
to the kinetic energy of wave number n of the vertical
mean flow.

The expressions are:
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T =3 {UCHVOHZO t Z03-) + VS ZS e

m=

—Z85_ HUSHVCHZS i+ 28]
~Z03-,)] I+Z{U0M (VOXZOint+205-0)

+VSAZS it ZSn-)IHUSHVOZS s n—
- VS S(Z0m+n ZO,‘?,_") ] }
and

TO =3 (VOHUCHZOS nt- 205 ) YU SHZS S
m=1

-m) —VSa(ZC3sn

ZSm-»)
(2.26)

—Z85 W+ VSMUCS(ZS 5 mtZSE-
—Z05-m)] }+Z{V

+US (ZSm+n+ZSS—n)]+VSMUOS(ZSrrH—n ZS;sn—n)
—USZC3 1 n— 205 )]} (2.27)

m) _US (Zon-i-m
MUCS(ZOE  ,+2C5_))

The following conventions have been incorporated in
the formulas for 7¢®, and 7T®:

1. If (m~+n)>N, the corresponding Fourier coefficient
is zero.

2. If n—m=0, the corresponding coeflicient is zero.

The first point is equivalent to the fact that the Fourier
expansions are truncated at n=2N, while the second point
is necessary because these components are accounted for
in formulas (2.23) to (2.25).

Formulas which in many respects are similar to those
just developed have been used by Saltzman and Fleisher
(4].

The formulas described in this section were used to
compute the energy conversion Cyp (Ks, Ky) in the wave
number regime with N=15. For each calculation we
have also obtained the contribution from each level to
the total energy conversion. The results of the calcula-
tions will be described in section 4 of this paper.

3. CALCULATION OF THE KINETIC ENERGY SPECTRA

In order to estimate the decay times for the different
forms of energy in the atmosphere, it is necessary to
know the amounts of energy in the different reservoirs.
In our case we must know the amounts of kinetic energy
in the vertical shear flow and the vertical mean flow.
Some preliminary estimates of decay times were made
in [10], but the partition of kinetic energy between the
shear flow and the mean flow was estimated from an
extremely simple assumption about the vertical structure
of the atmosphere. The estimate was, as a matter of
fact, based on an integrated two-parameter model.

It is possible to compute the amounts of shear flow
and mean flow kinetic energies from the same basic data
which are used in the energy conversion calculations.
The procedures used in these calculations will be described
in the following paragraphs.

Vol. 93, No. 2

The kinetic energy of the horizontal motion in the
atmosphere per unit area may be written.

1 [P0 1
K== f f 5 (W40 dAdp 3.1
g Jo 42
When we write u=wuy+us, v=vy,+vs we may also
divide the integral in (3.1) in the following way:

2 [ irosgdds [7 [ aarondadp 2

The first term in (3.2) is the kinetic energy of the
vertical mean flow while the second is the kinetic energy
of the vertical shear flow. They will be denoted K,
and K, respectively, and (3.2) may therefore be written:

K=K‘11+Ks (3.3)

K, and K have been computed by the assumption
that the wind components are non-divergent (see equation
(2.14)). The streamfunction for the vertical mean
flow and the vertical shear flow were computed using
(2.6) and (2.7). The Fourier series are unchanged; see
(2.12) and (2.13). The spectra for K, and K are written:

N
KMngl_I"’;Kﬁ{;

N
E=K$+3 K (3.4)

With these notations we find by substitution of (2.12)
in (3.2) and (3.3):

M__ Do 2] aAg[ 2
Ko -—‘2.(](1,2 (Sin (Pz_SiIl (Pl) L‘ ( a(P ) CcOS ¢ ng (35)
Po
K= 4ga’ (Sln po—sin ‘Pl) f [COS @ <(AM> +(BM)2>
M M
+cos ¢ { DA OB > }:I do (3.6)

The contribution to K from a layer of pressure difference
Ap may be written
Kos=52 [ +opaa (3.7)
g .Ja

Substitution of (2.13) in (3.7) results in the following
formulas:

s Ap J‘ﬁf’z (O_A_0>2
K3, 2ga? (sin ¢;—sin 1) o, \ e cosp dp  (3.8)
and
3= 2p ” l: i3 52 Sy2
Kix 4ga® (sin g;—sin ¢,) f co { (42 + (B}

DAE

+cos ¢ { DBS> }:l de (3.9)

The contributions from the diﬂ“erent layers computed
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through application of (3.8) and (3.9) are added to obtain
K$ and K5. The derivatives in (3.5), (3.6), (3.8), and
(3.9) were approximated by central finite differences,
while the integrals with respect to latitude were approxi-
mated by finite sums using standard procedures. The
spectra were computed with N=15. The results of
these calculations will be described in section 5 of this
paper.

4. RESULTS OF CALCULATIONS OF ENERGY
CONVERSIONS

The calculations of the energy conversion C(Ks, K,)
have so far been carried out for five different months:
January, April, July, and October, 1962 and January 1963.
The vertical resolution has been the same in all cases.
In most cases we have made one calculation per day
based on the data from 0000 cmr, but the calculations
have been repeated using 1200 amt data for at least one
month in order to verify that one calculation per day is
sufficient.

One of the main results of the calculations is summarized
in table 1, which gives the mean wvalue of the energy
conversion C(Kg, K, for each month and the contri-
butions from each of the five levels. The unit for the
numbers in table 1 1s 107 kj.m.=2 sec.™

By comparing the results in table 1 with those given
in [10], which were based on data from January 1959 and
from 850 and 500 mb. only, it is immediately apparent
that the new results for the two winter months are about
one order of magnitude larger.

It is naturally always possible to disregard such
differences by pointing to the fact that there may be
large differences between the circulations and energetics
of two winter months in different vears. However, it is
worthwhile to try to gain further insight into these
differences. We observe first of all that calculations
based on data from 850 and 500 mb. indeed will give an
underestimate of the energy conversion. We may
verify this statement by computing the value which we
would get by using the contributions from only these
two levels. In that case we would have to use Ap=32.5
cb. for the 850-mb. level and Ap=67.5 cb. for the 500-mb.
level. For January 1962 we would therefore get 26.4 X
107* kj.m."? sec.”?, and for January 1963 we would get
26.4 X 107* kj.m.7*sec.”!. These values are considerably
smaller than the values found in table 1. The under-
estimate is about 37 percent in both cases.

Second, the calculations in this paper may be too large
because of the assumption that the 200-mb. flow is
representative for the upper 25 percent of the mass of the
atmosphere. Third, there are differences in the numerical
procedures used in [10] and the present study. In [10]
we computed the thermal vorticity and the temperature
advection in the grid points of the quadratic grid. The
values were then interpolated to the spherical grid. It is
quite likely that a rather serious reduction of the maximum
and minimum values was made by this procedure.

759-602—65——3
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TaBLE 1.—Monthly mean values of C(Ks, Ku) and the contributions
Jrom the different layers. Unit: 107* kj. m.72 sec.™!

p, (mbd Jan. 1962 | April 1962! July 1962 | Oct. 1962 | Jan. 1963

850 e 18.3 1.5 4.2 11.5 16.6
-- 5.4 3.2 1.4 3.3 4.7

0.9 0.2 0.2 0.4 0.7

6.9 4.5 1.4 4.4 6.0

15.2 9.4 5.2 10.1 13.7

Total .. 46.5 23.8 12.4 29.6 41.6

Finally, the much greater complexity of the formulas in
this paper increases the probability for programing
mistakes, especially in the evaluation of expressions like
(2.26) and (2.27). Although the programs have been
checked and rechecked, it was found desirable to make a
special control caleulation in which only the basic formula
(2.10) was used without any reference to the wave number
space. The vorticity of the shear flow and the Jacobian
were in this case calculated on the spherical grid in order
to avoid serious interpolation errors. 'The results of such
a calculation will not necessarily agree exactly with the
previous calculation because the former contain all wave
components while the latter has only the contribution
from the first 15 components. However, the order of
magnitude should be the same. The results of this test
calculation which was carried out for only three days
indicate general agreement with respect to orders of
magnitude although our calculations in the wave number
domain seem to be larger by about 20 percent. The
only explanation for this discrepancy is that the smaller
scales In the vorticity and advection fields have non-
negligible amplitudes, which combine in such a way that
they give negative contributions to the energy conversion
Cvo(Ks, K.  Although it is difficult to understand why
there should be a systematic negative contribution, it
should be pointed out that this contribution is not neces-
sarily real because of its small scale.

In summary, we can state that the values of the energy
conversion Cyp(Kg, K, are large compared with earlier
estimates. Several reasons have been given for the
differences, leading to the opinion that although the
new estimates appear too large there are reasons to
believe that the pilot calculations definitely gave under-
estimates.

Tt should also be remembered that we have only
computed the part of the energy conversion which would
be present in a quasi-non-divergent model. If we apply
the results of the pilot calculations in [10], it is to be
expected that C(Ks, K,,) will be reduced by the integral
depending on the divergence of the wind field.

If we accept the indication from test calculations that
the contribution from the first 15 wave components
overestimates Cyp(Ks, Ki) by about 20 percent, we get
the corrected total values of Cyp(Ks, K, reproduced in
table 2. The values given in table 2 represent the most
likely values of the total energy conversion Cyp(Ks, Ky)
which we can obtain based on our present calculations.

The annual mean value obtained as an average of the
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Tanue 2—Corrected monthly mean values of C(Ks, Ky). Unit: 10~*

k. m.7? sec.”!

Month Jan, 1962 | Apr.1962| July 1962 Oct. 1962 | Jan. 1963

C(Ks, Kar) oo 37 23 10 24 33

figures given in table 2 is 23X107* kj.m.=? sec.™® This
value may still be too large because of the probable
negative contribution from the second integral in the
total energy conversion. If we apply a 10 percent
correction as indicated by the pilot calculation in [10],
we obtain 213107* kj.m.”? sec.”!, which then should
be compared with the value of 16X10~* kj.m.”? sec.™!
obtained by Smagorinsky [8] in his numerical experi-
ments. It is seen that the agreement now is fair.

A further check on the magnitude of our results muay
be obtained by a comparison with the values obtained by
observational studies of the energy conversion from
available potential energy to shear flow kinetic energy,
CA, Ky).

Several estimates have been made of the energy con-
version C(4,K;) by different investigators. These esti-
mates have been summarized by Oort [3]. In order to
give an estimate of an annual value of C(A4,K;) we shall
make use of monthly values obtained by Wiin-Nielsen [9],
Saltzman and Fleisher [5], and Krueger, Winston, and
Haines {2] which have made use of vertical velocities
from numerical prediction models. The numerical values
are given in table 3. In these comparisons we do not
divide the energy conversion into the contributions from
the zonal flow and the eddies. This division of the
energy conversion will be treated later when we consider
the wave number space.

A weighted mean value which is the most likely annual
value of C'(A,Kj) can be obtained from table 3 by weighting
each value according to the number of months it repre-
This value turns out to be 21X107* kj. m.™?
sec.”! which is equal to the lowest value which we can
obtain for C(Ks, K,). Since the estimates are based on
different sets of data, we cannot expect any closer agree-
ment although it leaves us with the impression that our
values of C(Ks, K,;) are too large.

If our values of Cyp(Ks, K,) are not reduced in any
appreciable way by the contribution from the divergent
component of the wind, we must conclude that the fric-
tional dissipation D(K5) is quite small. Such a result

sents.

TABLE 3.—A summary of computed values for C(A,Ks) by different

nwestigators.  Unit: 1074 kj. m.”2 sec.™!
Time periods C(A,Ks) Investigators
Jan. '59___ 16.0 ) Wiin-Nielsen [9]
Apr. '59__.__ 10.1 | Wiin-Nielsen [9

Saltzman and Fleisher [5)
Krueger, Winston, and Haines I‘_)}
Krueger, Winston, and Haines [2

6 winter months *62-'63_ -
6 summer months '62-63________..__
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TABLE 4.~—The energy conversion belween the zonal components,

C(Ksz, Kuz), and the eddies, C(Ksg, Kug), in C(Ks,Kuy). Unil:
10— kj. m.72 sec.”!

Jan. 1962 [April 1962 [ July 1962 | Oct. 1962 | Jan, 1963

C(KS#, KM#) eoome oo 2.7 0.7 1.5 3.1 0.0

C(Ksg, Kaotg) oo 43.8 28.1 10.9 26.6 41.6

would be in agreement with those obtained by Smagorin-
sky [8] who found that the contribution from the surface
skin friction to D(K) was negligible in his model.

The next problem is to investigate the energy trans-
formation in the wave number space. We shall first
restrict ourselves to the division into the conversion
between the zonal components C(Ks;, K,z and the
eddies C(Ksz, Kyp). The calculation of C(Ksz, Kiz)
is based on equations (2.20) and (2.21) of this paper.
The contribution from a single layer was denoted € in
(2.19) and (2.20). The energy exchange C(Ksw, Kuz),
on the other hand, is based on equations (2.22) to (2.25)
of this paper. For a single layer we have that

N
Ca (KSE, KME) _];1 OI:
as given in equation (2.19). The results of the cal-
culations of CO(Kg;, Kuyz) and CO(Ksg, Kyr) are sum-
marized in table 4.

It is seen from table 4 that the energy conversion in
both cases goes from the shear flow to the mean flow.
The energy exchange between the zonal components is
small compared to the energy exchange between the
eddies. There is a marked seasonal variation in C(Kgy.
K,x) with large values in the winter and small values
in the summer.

It should be noted that a direct comparison with
the results of Smagorinsky [8] is difficult because of his
more detailed breakdown of the energy conversions.
However, one can show that the energy conversion
O(Ks;, Kuy;) in this paper corresponds to the energy
conversions C(Ksz, Ky;) and C(Ksg, Kuz) n his paper,
while our energy conversion C(Ksy, Kz 1s equal to
his energy conversions C(Kgz, Kug), OKsz, Kuu) and
O(Kgr, (Ksz), Kup) of which the last conversion is the
catalytic energy conversion. In this interpretation our
annual average value of C(Ks;, Kiz) of 2X107 kjm.™?
sec.”! should be compared with Smagorinsky’s value of
3.6 X107 Kkjm.™? sec.”!, computed from his tables.
QOur annual average of 27.1X107* kj.m.”? sec.”! for
C(Ksg, Kui) corresponds to his value of 12.6X107*
kj.m.7* sec.”’. While there is reasonable agreement
between the two values of O(Ks;, Kyz), we find that our
value of C(Ksz, Kunr) again appears large which, as
mentioned earlier, may be due to the missing contri-
bution from the divergent part of the wind.

We turn next to the spectral distributions of C(Kj, K,)
for the different months. These are given in figures 1-5
which show the spectra for the months of January, April,
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July, and October 1962 and January 1963, respectively.
The figures show the spectra for wave numbers 0, I,
2, ..., 15. All the spectra from the year 1962 show a
tendency for a maximum at wave numbers 6-8. This
result (figs. 1-4) is similar to the result obtained in the
pilot calculation in [10] where a maximum was found for
n="7. The maximum is apparently due to the baro-
clinically unstable waves in the atmosphere. Another
result, consistent with those found in {10], is the rather
large values found for the small wave number (1, 2, or 3).
The month of January 1963 (fig. 5) turns out to be very
different from the other months. It shows a marked
maximum for n=3. The same month was included in
the study of energy conversion between the zonal flow
and the eddies for available potential energy and kinetic
energy (Wiin-Nielsen, Brown, and Drake [12]). It was
found in this investigation that wave number 3 played a
dominant role in the kinetic energy conversion from the
eddies to-the zonal flow. There is consequently agree-
ment between the two investigations which show that
wave number 3 is dominant in the vertical mean flow of
the atmosphere during January 1963.

The spectra for the different levels giving C(K,, K,,)
have been investigated for each month. They are in
agreement with the numbers shown in table 1. The major
contributions come from the lower and higher levels with
an almost negligible contribution from the 500-mb. level.

The results which have been presented so far have been
monthly mean values obtained as averages of individual
daily values. It is naturally possible to compute standard
deviations which will give some indication of how repre-
sentative the mean values are. It is perhaps even better
to reproduce the daily values of Cyp(Ks, K)r) as a function
of time. This has been done in figures 6 and 7, of which
the first contains the curves for January, April, and July
1962, and figure 7 shows the curves for October 1962 and
January 1963. It is seen that although there are con-
siderable variations, we find a positive value of Cyp(Kj,
K,,) on each day. There is no apparent regular behavior
in the variations. An inspection of similar curves (not
reproduced) for all five months giving the contributions
from the five levels shows that there are positive con-
tributions from all levels at all times,

Although the pilot calculations in [10] indicated that
Cp(Ks, Ky) only amounts to approximately 10 percent
of Cyp(Ks, Ku) it will nevertheless be important to com-
pute Cp(Ks, Ky). Such a calculation will be possible
when vertical velocities are available, because we can esti-
mate the divergence from them. Calculations of this
nature are in preparation.

5. RESULTS OF SHEAR FLOW AND MEAN FLOW
KINETIC ENERGIES

The calculations of Ky and K, in the wave number
regime were performed following the formulas developed
in section 3 of this paper, in particular equations (3.5),
(3.6), (3.8), and (3.9).
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TABLE 5.—Monthly mean values of the kinetic energy in the vertical

mean flow, K. Un't: kj. m.~#
Month Jan. ’62 ’ Apr.’62 | July ’62 J Oct. ’62 | Jan. '63 ’ Average
Ky ] 2752 ' 1832 891 ! 1678 2814 i 1796

TaBLE 6.—Monthly mean values of the kinelic energy of the vertical
shear flow Kg and the contributions from the different levels. Unit:
kj. m.~#

Month Jan.’62 | Apr.’62 | July ’62 | Oct. ’62 | Jan.’63 | Average
361 244 112 198 343 226. 50
125 84 44 72 119 80. 50
24 16 13 17 30 18.25
140 106 49 90 138 96. 00
393 258 155 226 382 256. 63
1048 708 373 604 1011 78

We shall first consider the total amounts of the energies.
Values of K, are reproduced in table 5 for the five months
for which we have computed C(Ks, K,). Table 5 also
contains an estimated value for the annual average, given
in the last column.

Table 6 contains the values of K for the same five
months, the annual average, and the contribution from
the five levels to the total value of K.

The values given in tables 5 and 6 for the annual aver-
age may be compared with the mean values obtained by
Smagorinsky [8] in his numerical experiment. The mean
values obtained by him are K,;=2060 kj.m."? and Ky=
1016 kj.m.72. Omne observes that the energy levels in the
numerical experiments are somewhat higher than those
found as annual mean values in the observational studies.
The ratio K¢/K, in the numerical experiment is 0.49.
The corresponding ratio computed from the observational
studies is given in table 7, which shows that the ratio is
almost invariant through the year with a somewhat lower
annual value, 0.38.

The fact that the energy in K is somewhat higher in
Smagorinsky’s numerical experiment might be due to the
fact that we have included only the energy contained in
the non-divergent motion, while his estimates naturally
contain the total energy in the horizontal motion. The
same argument cannot be applied to the energy K,
because the vertical mean flow is essentially non-divergent
in both calculations.

We shall next turn our attention to the partitioning of
the kinetic energy in the vertical shear flow and the
vertical mean flow between the zonal flow and the eddies.

TABLE 7.— The ratio of Kg/K u for the different months and the annual

average
Month Jan. '62 ’ Apr.’62 | July '62 ‘ QOct. ’62 | Jan.’63 | Average
Ks/Ky-ooo } 0.38 i 0.39 ' 0.42 ’ 0.36 } 0.36 0.38
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Figure 1.—Speetrum of the energy conversion C (Kg, Ky) in
the average for January 1962 as a function of wave number
n. Unit: 107¢ kj. m.72 sec™?,
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Ficure 3.—As figure 1.  July 1962.
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Ficure 4.—As figure 1. October 1962,
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Ficure 5.—As figure 1. January 1963,
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Fiaure 6.—The energy conversion C (Ks, Ky) as a function of
time for the months of January 1962 (solid curve), April 1962
(dashed-dotted curve) and July 1962 (dashed curve). A circle
indicates missing data. Unit: 10~* kj. m.~2 sec™1.

The notations for these quantities will be: K,,=K?7,

N N
Kus=> KY Ko =K and Kg;=>, K.. Table 8

n=1 n=1
summarizes the results of the observational studies, with an
arrangenient similar to the previous tables.

It is seen from table 8 that the partitioning of energy
between the zonal flow and the eddies is such that we
always have more energy in the eddies of the vertical mean
flows than we find in the zonal flow. The same result
holds in the average for the vertical shear flow although
there are exceptions as seen in the results for January 1963,
where Kg; and Kgg are about equal. The partitioning of
the energy between the zonal flow and the eddies found in
the observational studies is in sharp contrast to the re-
sults obtained in the numerical experiment. These re-
sults have also been included in table 8, where it is seen
that the kinetic enerey in the eddies for both the vertical
shear flow and the vertical mean flow is considerably
smaller than the kinetic energy in the zonal flow. A
similar result was found by a comparison of the partition-

Tasre 8—The monthly mean values, the annual average and the
mean values from Smagorinsky [8] of Kz, Kug, Ksz, and Kgg.
Unit: kj. m.~2

Jan ’62 | April '62 | July "62 l Oct. 62 | Jan, ’63 ‘ Aver. / Sinag.
1240 732 310 648 1338 745 1842
1512 1100 580 1030 1476 1051 208

515 313 110 218 515 289 884
532 395 263 386 496 390 132
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Ficure 7.—The energy conversion C (Ks, Ku) as a function of
time for the months of October 1962 (solid curve) and January
1963 (dashed curve). A circle indicates missing data. Unit:
10~+ kj. m.72 sec™1.

ing of available potential energy between the zonal
average and the eddies in Smagorinsky’s experiment [8]
and an observational study of available potential energy
made by Winston and Krueger [13]. One therefore
arrives at the conclusion that Smagorinsky’s experiment
has been designed in such a way that the available po-
tential and the kinetic energy in the eddies is too small.

The spectral distributions of the kinetic energy in the
vertical mean flow are shown in figures 8-12 representing
the mean spectra for the months: January, April, July,
and October 1962 and January 1963. It is seen from
these figures that the amount of energy in the zonal flow
(wave number 0) always is larger than the kinetic energy
in any other component althoagh, as seen from table §,
the total amount of energy in all eddies is larger than
the energy in the zonal flow. During the winter (figs. S
and 12) we find comparatively larger amounts of energy
in the low wave numbers. The waves with wave numbers
2 and 3 are especially well developed during January 1963
(fig. 12). During the other seasons (figs. 9, 10, and 11)
the low wave numbers are developed to a smaller extent,
and there is a tendency for a maximum at higher wave
numbers, but this tendency is not very marked. Only
small amounts of energy are found in the waves with
wave numbers larger than 10.

The spectra for the kinetic energy of the vertical shear
flow are shown in figures 13-17. Everything, which has
been said about the spectra for the kinetic energy of the
vertical mean flow in the preceding paragraph, can also
be said about the spectra for the kinetic energy of the
vertical shear flow.
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Ficure 8.—Spectrum of the kinetic energy, Ky, of the vertical
mean flow in the average for January 1962 as a function of wave
number. Unit: kj. m.72
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Fraure 9.—As figure 8.  April 1962.
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Ficure 10.—As figure 8. July 1962.

Numerous studies have been made of the kinetic energy
of different components of the atmospheric flow. Most
studies have been restricted to the meridional component
of the wind. The most extensive study of this nature has
been made by Shapiro and Ward [7] who also give a table
of previous studies. Another very interesting study of
the kinetic energy of the meridional component of the
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Fraure 11.—As figure 8. October 1962.
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Frecure 12.— As figure 8. January 1963.

wind has been made by Horn and Bryson [1]. In most
of these studies, the spectra show a maximum kinetic
energy around wave number 5—6 depending on the lati-
tudes at which the calculations are made. That we do
not find this maximum in our calculations is apparently
due to the fact that we have included the kinetic energy
of the zonal component of the wind. It has been shown
by Saltzman and Fleisher [6] that the kinetic energy of the
zonal component of the wind has a maximum at wave
number 1 with the energy decreasing with increasing wave
number. The sum of the kinetic energy of the zonal and
meridional component will then result in spectra as shown
in our study. Our spectra for the vertical mean flow
agree, as a matter of fact, quite well with those obtained
by Saltzman and Fleisher [6] for the 500-mb. level.
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6. DISCUSSION

The relatively large values which have been computed
for the energy conversion Cyp(Kg K,) indicate that the
earlier results obtained in [10] were too small, partly
because only two levels were used, and partly because of
the computational procedures. The new results based
on a greater vertical resolution and on a larger sample of
atmospheric data show a better agreement with the nu-
merical experiment performed by Smagorinsky (8]
Although our new results are larger than his, we have
computed only the conversion due to the quasi-non-
divergent motion. Adopting the results from the pilot
calculations in [10], we would expect that C(KsKy)
should be reduced when we add the contribution from
COp(Ks,Ky). The new spectra show reasonable agree-
ment with those obtained in [10] with a strong tendency
for a maximum at intermediate wave numbers except in
January 1963 which is known to be a most unusual month
(Wiin-Nielsen, Brown, and Drake [12]).

Although the calculation of Cyy(Ks, Kip) only is in-
complete as far as the energetics of the atmosphere are
concerned, it is nevertheless believed to be a major frac-
tion of C(Ks, Ku). Furthermore, Cyp(Ks, K,) is the
energy conversion which would be present in a quasi-
non-divergent atmospheric prediction model. According
to our present results, we would therefore expect a com-
paratively large amount of energy to be converted into
energy of the vertical mean flow which in turn seems to be
closely approximated by the 500-mb. flow. The fact that
the quasi-non-divergent models, frequently used in the
past for short-range numerical predictions, over-predict
cyclogenesis might be explained by the large values of
COnp(Ks, Ku).

The amounts of the vertical shear low and vertical mean
flow kinetic energies have been computed in the wave
number regime. The energies of both the zonal and the
meridional components have been included in the calcula-
tions. The total amounts of energy found in the two com-
ponents of the atmospheric flow agree reasonably well
with the results of Smagorinsky’s [8] numerical study,
although his energy levels are slightly larger. The par-
titioning of the energy between the zonal flow and the
eddies in the observational study is in sharp contrast to
the numerical experiment. Our study shows a larger
amount of energy in the eddies than in the zonal flow for
both the vertical mean flow and the vertical shear flow
while the opposite is the case for the numerical experiment
performed by Smagorinsky [8].
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APPENDIX A

It is the purpose of this appendix to derive the general
expression for the integral

1= [ 7090900 (1)

when each of the three functions of £, g, and h are expressed
as Fourier series in the following forms

fO\):ao—iﬁi:i la, cos (n\)-+b, sin (nA)]

GO =63 L6, cos (nh) +d, sin (n)]

n=1

h<x>=ro+§l [y cos (n\)+s, sin (nd)) )

The following derivations are carried out in a more
convenient way if we express the Fourier series in a
complex form as follows:

n=4w
f()‘)=a0+ % Anein)\; An:%(a’n_ibn); A—n:%(an_*_ibn)

N=—®

n=+o
!}O\)zco‘i‘ Z?;{) Onei")\; On:%«:n'—?:dn); O—n:%(cn—l_idn)

=0

n=+w
hN=rot 2, Bae™; Ro=3(ra—is,); Bon=3(rat1s,) (3)
n#

n=—w

The integral (1) can be evaluated by introducing the
series (3) in (1), multiplying term by term, and inte-
grating. Collecting the terms which contain at least
one zero-component, we get:

27

T—=2raotorota ﬁ (3G e { S Ry vei™ Jh
27

40, fo (S A 1 S R YN

+T°ﬁ)q{ 24, e { S50, e N FdN

+L;7r{ZAn,ein’)\},{ZCIn”ein”)\},{ Rure™ ™ dh (4)

in which »/, '/, and »’’/ are dummy indices. The three
first integrals, containing a product of two series in the
integrand, are straightforward to evaluate. In general
we get:

ﬁ{ 2 Pye™ }{Z Qo™ }d%=~r§{Pp-Q_,,} (5)

The product P,-@Q_, can easily be expressed in the real
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Fourier components. When this is done, we can write

(4) in the form:

1 =27I'(L0 Co'r0+ﬂa0 i (cnrn_l—dnsn)
n=I1

] @

+1I’Co 2 (a'nrn_*— bnsn) —{—’ET'O 2 (ancn+bndn)+l’ (())

n=1 n=1

where I’ is a notation for the last (triple) integral in (4).
The general term in I’ is evaluated to be:

2 bt BN _{27rAnC,,,R,,, n+m+t+p=0
[0 AuCuRermmmin={ TrenCn e T @

By using the integral (7) of the general term, it is pos-
sible to express I’. In so doing, it is mathematically
necessary to select one of the indices n, m, and p as the
primary index, and the next as the secondary index, while
the third index is determined by the relation n-+m-p=0.
We shall select n as the primary index, m as the secondary
index, giving p=—m—mn.

The physical quantity which we try to evaluate is the
energy conversion as expressed in (2.11) of the present
paper. Two of the three factors in the integrand are
related to the vertical shear flow, while the third factor is
determined by the vertical mean flow. We shall identify
the primary index with the vertical mean flow and the
other two with the shear flow. This means that we eval-
uate the amount of energy which appears in the component
of wave number n in the vertical mean flow due to non-
linear interactions between different components in the
shear flow.

With this convention we may write / in the form

n=+w m=+w

=27 > | 4,2 OmR_m_n:I (8
7540 m#=0
n=-—0c m=—

In the terms appearing in the first sum in (8), we shall
consider the contribution from the two specific terms
with indices >0 and —n. We may write this contribu-
tion as follows:

m=-+4w m=+w
Ay 5 OnlBemont2rdey > CuBRucw (9
m#=0 m#=0

In each of the two sums in (9), we consider the contri-
bution from the specific term with indices m >0 and —m
and obtain

TZZWAn[CmR—m—n+ C. mRm—n]
+27"A—n[0mRn—m+ O—mRn+m] (10)

The expression (10) may now be expressed in terms of
the real Fourier coefficients. The evaluation depends on

759-602—65 4
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the relative magnitude of m and n. If we first assume that
m<n, we obtain the following expression for (10):

T:g [an(cmrn—{—m‘l_dmsn-{—m) +a’n(.cm7'n—m_dmsn—m)

+ bn (Cmsn-i-m_dmrn-f-m) + bn (Cmsn— m—l"dmrn— m) ]: m<n (1 1 )
In the other case, where m>n, we obtain:
T:% [CL” ( Omrm-}-n +dm8m+n) +am(cmrm— n +dm8m— n)
+ bn(cmsm—{—n_‘ dmrm+n) - bn(cmsm—n_dmrm-n)]) m>n (12)

It is easy to show that the case m=n is included in
(11) if it is understood that r,_,,=s,_,==0 for n=m.

Making use of the expressions (9) to (12), we may now
rewrite the expression (8) for I’ in the following form:

I, zgg 7%;/1 [an{ cm(.rn+m+rn-—m> +dm ('S'n+m_8n——m) }

+bn{ Cm (3n+m+3n—m) —dn, (Tn+m“__7"n—m) }]
'I" i [a/n{ Cm (rrrz-i—n—]"rm—n) +dm (Sm+n+8m—n) }

m=n+1

+bn{cm(8m+n_8m—n) _dm (Tm—i—nhrm—n) }] } (13)

The only step left in the derivation is now to write the
original integral (1) in the form

I=§O I (14)

where we have:

10:27"@0607'0—}_71'“02.:\!1 (Cmrm+(lmsrn) (15)

and
In=7rco (a’nrn—i_ bnsn) +7TT‘0 (ancn+bndn)
+7_r2 { Ay [cm (71n+m+rn—m) +dm (8n+m_sn—m)

m=1

+bulcn (8n+m"“'8n—m) —dn, (rn+m_rn—-m)] }
+E m=in+1{ (223 [cm(rm+n+rm—n) -I_dm (Sm+n+8m-—n)]
+bn[cm ('9m+n_8m-—n) _dm (rm+n_rm~n)] }

When the formulas (15) and (16) are used in the calcula-
tions, we have truncated Fourier series at n=N. We
take care of this fact by setting the coefficients equal to
zero if (m+n)>N, and also if n=m in (16).

(16)
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CORRECTION

Vol. 91, No. 6, June 1963, p. 299: In table 1, in column headed
“Actual day, Total”, and row “Autummn, Dry”, change “518” to

Vol. 93, No. 1, January 1965, p. 49, col. 2, 16 lines from bottom:
In the wind shear term V should be in boldface type to indicate a




