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Abgtraet

The prcblem of smoothing out. nensystematic errors In & g~dimen~-
slonal field of measurements has been studied from the standpoint of
minimizing the RM® difference botween the true field acd an arbitrarily
weighted ares sversge of the field of observations, Tor {islds whose
smce-autocomlati.on funeiions are invariant with rotstion and have a
simple and m;uher typical form, the cptimam weighting functicn i3 a
linear combination of Bessel functions, whose nondimensional rate of
decay depends partaa,.’y on the so-cal led "signal-to-ncise” retio, byt
primarily or the ratic of the scales of “the true field ard eryor fz.e}.d
A comparison of optimum averaging witk the analyst's subjective process
of smoothing indicates that tne former is Fignificent ¥ superior in its
" ability to distinguish betwecen rapdom small-seale fimctuations and
minor synoptic features of only siightly greater seale. Finally, the
mipisus RMS error of ?,.1near.ly smoothed Pields is expressed in terms
of the statistical properties of the true fields and the observing

gystem itself.

1. Intrcdu.ction-

One of the main functions of synoptic map analysis is that of
smoothing out nonsystematic errors in obgervations taken ai & wore or
less dense network of discrete puints or, possibly(in the view of some

meteorologists), of smoothing out real fluctuations whose scale 1s so



small that they cannot be reconstructed in detail.¥# At the present time,
the analyst's process of smoothing 15 rather subjective srd ill-defined
-~-=- geperally beiag cerried out "by eye"” and with no definlite weignt
eesigned to each piece of data. Where data coverage is adaguate, this
process usuaily consists in drawing continuous iaepleths on a horizon-
tel projection (e.g., contowrs of an isobaric surfuce}, in such a way
that they fluectuate as littls as possible, but “fit"” the data within

the tolerances of the probgdle nensystemstic error of reported meagure-
ments . .Loosely speakirg, the lsopleths "fit" the date if the reported
megsurenents are interpolated roughly linearly beiween the two neurest

isopleths in the direction normal tc the iscpleths. The fact that the

spacing of the isopleths depends on their local direction means that
the isopleths are not positioned by two-point lineasr interpolation in
any fixed direction and, accordingly, implies thet the valus of the
smoothed distribution st any single point depends on reported pesg-
urements at & number of neighboring poicts.’

In an earlier paper, the author (1954) has pointed out ,tha'i". the
analyet's smoothed distribution is, in the ebove and other respects,
very similar to & rumning area .gverage of the field of reported

measurenents, in which each piece of data is weighted less snd less

with increasing distance from the peint whers the avermge epplies.

¥Jn fact, If the data were to be used exclusively for purposec of
numerical weather prediction, and if the observations were taken
at a sufficiently dense network of evenly spaced points, this would
be the only Tunction of synoptic analysis. Under these comditions,
the function of interpclation would be unnecegssry.




Tre mathematical properties of a special type of welghted ares averasge.
were developed in considerable detail, and it was shown that such area
averages have certain advantages (inherent in the form of the physical
equations) over time averages with analogous properiles. The whole
qgestion of smocthing out nonsystematic error, nowaver, was pecsed over
with the rema;rk that "...to minimize the error... without sacrificing
what little resolving power we do possess, the observed state must be
averaged in guch a way as to sup-pfesa fluctuations whose scale 1s
comparable with the distance htween neighboring observation stiaztiocns,
but lesving distﬁr‘nances o much larser scale essentipily intsct”.

Put more precisely, the real prevlem is to choese the weighting fac-
tors so that they bring about the vest compromise botween obliter-
sting the smell-scale fluctuations complietely and partmliy removing
the large-scale Qisturbances of somewhat greater amplitude. The re-
meining questions center around the criterion for the “vest! com-
promise.

The purpose of ‘r:}.iis paper, to state it"briefl;.r, is to find the
weighting function vhich is “"best” in the sease that the meen square
error of the smoothed disiribution i's the least. To do so0, we shall
extend Wiener's methods for smoothing functions of one-var.iahle to
“statistically igotropic” fields or functions of ts\.'o variables, whos.e_
euto- and cross- correlation functirc-ns do not depend on the direc-
tion in vhich the fields are shifted. The condition that the RMS
difference between the true field aud the mean observed field be
minimized is expressed in an integral equation, which relates the
optimum weighting function to the autocorrelation functions for the

true field apd the "error" diztribution. Por Gaussian autocorrels-



tion functions, the weighting functio:; 1s found to be & linesr com-
biration of Begsel funcitions. Tue optimun nondimensionsl radius of
the effective dommin of averaging is determined bty the relaiive vave-
lengths and amplitudes of the "errors™ amd the large-scale disturban-
ces, and its absoiute size is fixed by the distance between dbaerva-
tion points.

The optimum zveraging pfﬁcegs 38 coupared with the “smoothing”
process of & ."ql;iiled gynopiic analyst in & case vhen the epectrum of
disturbances was fairly btrosd. ¥inally, the minioum RS ercvor of the
smoothed fi.eid is expressed ay a function of the RS exror of repirted

meagurements and the distance heiuzen aedghboring observation stations.

2. The Condition for Optirum Smcothing

Tnhe problem of aversging or smoothing owt munaysiematic srror
ard small-scale {luctuations on the thresncld of deteciability will
be recognized as ess&n_tially equivalent to thet of filbering the
"noise" .from the outp;ilt of & communications systes ---- a protlem thatl
iz familiasr to the electr-icﬂ engineer apd wh:‘sch' hag bheen trested ex-
tensively by Wierer {1949) in his theory of staticnary time series.
Following Wiener, we sh_all take the minimization of the BE difference
between the true field and the smoothed ficld of obsgrvaiions as the

_eriterion for optiwmizing the sm;-oti.:ing process.

We begin by considering a "true” field %{x,t\a) and the corres-
ponding field of observations ¥(x,&) , which consists partly of ¢ *n)
and partly of a superimposed "error” € (x,q4) . The latter need rot

be interpreted s genuine error, bui msy be thought of es auny small-



scale fluctugtion that iz rendcm with respect to disturbances of larger
scale. We shall also consider a weighted sres averuge ;: (x,.%) 5 con-
structed by applying an integral operator to the observed field 4 (‘K,n.&) .

That is,

“F(x,n%) = gg K(Q) ¥ (x—?,na—w} J.E.d.vl

in which X and A} are curtesian horizontal coordiamnmtes, § snd W are
the ccrrespoﬁdi.ng dummy veriables of integration, aud ¢ is the distance
from the origip to the varisbie point { 5,11 ) wm—-de,, €1= Etf' v‘.z .
The indicated area integration generally extends over the entire ( E, " )
plane. The weightirg function K g xmtspeciﬁed, eyeept that its area
integral i1s unity. Under sowe conditions, for éxample, K may turn out
to be & deltaﬁgfunction, in which case the integration actuelly sxtends
over only one point in the { &, ] )-pl:me.

The mean square difference I between the true field %(x,mb)
end the swoothed field of chservations £ (x, .\3) , when teken over

the entire ( X, 0 )} plare, is

i

. f¢ |
I(x) = xnmsg };‘-’i(x,p&} - Y) K(e)“”x-—?, “%"'*1} &Ed_.y{] olsc:ut

where the symbol " A.i.m. * stauds for the limit of the area average as

the periphery of the area spproaches irfiniiy in all directions. Bx-

panding the square of ( q- ¥ ) and inverting the order of integration,

we may regrite the equaiion above as



o

XX = y(o0) - 2 Sg K(’s',»i) X{En) &5 ¢y
+{f wnn axax [ ReEn § G-%y n-Vagay

vhere X and }’ ers duemy variables of integration eorresponding to

f end | , and where®
¥{¥n) = Lim, SS ﬂix,mp %(K'_’ g dx doy

CXCER) = Rim Sggfw.np_f(x- Fog-m) dedey

¢ (k) ,u_,m.)f\ Flt, ) £ (4=} rp-n) dedy
The functions %~ end ¢ vill be redognized s the autoecrrelation
functions for% and < , respectively, and % is the cross-corre-
lation between (3 a.nd + . For simplicity, we shall now supposc
that the corrélstio;: funetions depend only on tzw;e mapgnitude of the
ghift from (0,0) to ( f \ i’\) ; end not on its dirsetion ---- an
assumption that is very nearly fulfilled in reality. With this
simplification, Y(f‘ ny = Y(P) : ete., and Eq. {1) reduces

to:

¥FEach of the tields in guestion mey be rezprded ss the deviation of
the given field from s linear function of ¥ end Y , whose deriva-
tives ere the wreighted average derivetives of the given field.
Since the smoothing opersticn, when applied to a linear funmeiion,
ylelds the same linear function, this interpretation involves mo loos
of generzlity. _ ) '



) [}
I(k) = t)—‘!wSK()‘X() d
[ : -
@ - ra’é {d-ﬂ'_
s av{ K gag | K(®) RaR XISE
© o o

in which R is the distance frow ihe origin to the variable poizt
(X,7) , ~ is the distunce between the variable points (X, Y)
and ( § nl---- t.e., Ats R g"—zkg 05 8 ~— pud @ g the aagle
betueen redil from tre origin to the points (€, Y) wa (F,0) .

1t s‘nox.xld be ncted that. according to Eg. (2), the wesn square
difference between itne true 1214 wnd the smoothed field of obvservaticns
does not depend on the detaile of thoee fields, but isc determined en-
tirely by their correlation functions . As will be seen later, these
statistics can be expressed in terms of '%;h;e autocorralatioa functicns
for the true field and the "error” field ---- the former of which
probably does not change merxedly from one dey Lo the next, and the
latter of which (in the case of noasystemsiic errcrs of measurement)
depende only on the_f;haracte_ristics of the observing system.

Stated concisely, the mathematical preblem is to find the fune-
tion K for which T (¥) is the lemst, given the correlation functions
V(E) » XCp) , und d;(@, and the condition thut the arsa ;ntegm:-:
of K is unity. JIet us suppose that K(Q) is, in fect, the weighting
function for which 1(K) ic the least. Then T{K+3M) must ve

greater ther X {(K), for acy choice of the constant & arnd for any

unspecified function M(p). That is to say, substituting & + &M
)

for K in Eq. {2), transposing terms end factoring,



o o {2‘&'
: 2{ _
T{kdM)-T(x) = Iod }M(Q) quwwmms ¢in) 49

o ° °

oo oo ar
+ 4«88 Mfe)eif.‘; gmmmﬁgcpm 46 _x'fe}} >0
o “ e 5
We next assume tentetively that the expression in square brackets 1s
different f;eum 2800 . Ifl this is the cese, then the integral over ¢
" in the second term on the left hand side of the ineguality is aiffer-
ent from zero. Suppose it ile greater than zerc. Now, it can be eas-
ily shown thst, owing to the nature of an sutocorrelation funition 3
the firet term on the leii"!':. hand side is alwaya greater than zerd.
Thug, under the conditions ausumed avcove, there existe o sufficient-
ly bmall negatiive value of ) for which the ineguality is not satis-
filed. Converaely, if the integral over e in the second ter: on the
left hend side of ti_}:a ineguality is legs than zerc, “hers u:us.. exist
a sufficientf.ly smelil positive value of § for which the inequality ie

violated. Accordingly, it must be conciuded that the quantity in

sguare birackets is serg ~--- i.c., R
ot r :
r { .
) K(RIR 4R \ §lrr a8 = X (3)
/
. /

‘This equation expresses the necessary condition which K must satas-

fy, in order that the mean square difference between the true field



and the smoothed Tield of observations be winiwized. Xt ig appar-
ent that this conditicn, taken together with the given correlation
functions X =nd ¢ , completely determines the optimun welghting

function if it exists at zil.

3. Solution of the Faustion for the Optimum Welghiing Fancticn

The remsining provlem is o solve the integral equation {3) for
K(R), regnrding @ {n)ant ;Yfe) 25 ¥nown.. It 1s convenien: to be-
gin by considering F(M), ‘the Pourisr-Bessel iransiorm of ? (n)

vwhich is dafined as
' ]

- f )
Fluw) = g%lm..,) ¢ (n) nedns
o
whers J‘, iz the zero-order Bessel function of the Piest kind with

real argument. Now, according to the Pourier-Bessel thesrem, tlhe in-

verse transfornm is

ad
. s
G =\ T, Couse) Flawd au dan
-0

for all erdinary functions ¢ ond their trensforms F . Thus, sub-

stituting the trensform of F(wm) for ¢ (A)and inverting the order of

integration,
Lo
SCP(NJAG = S E(u)nd.mgJ“(ujﬁl-i-gz-:lﬁemsS) 46
'y o 0 '

The integral over & is discussed by Watsca (1922). It is equal to



21 J, (Rw) JJQ”-}- Introfucing these results into Bg. {3), and

agnln inverting the order of integration,

o B .
2‘&'5 Ju({”‘") Flandamdan S Jufﬁm) K(ﬁ)gdﬂ = }f%::‘
o [

The integral over R wiil be recognized as K (u), the Fourier-Bessel

transform of K UIR). Thus, the integral equation avove reduces to:
o
'X(Q) = A S J’.(?u.) Flad E(w) nodo
° .

But this equation simply stetes 3hat X( e}is the Pourier-Bessel trens-
torm of 27 Fl{a) K (), wience {in view o5& the Pourier-Bessel Sheorem )
21 Flu) K{w) i3 the Fourier-Bossel transform of X((’}‘ In other

words,

where X (m)ie the Fourier-Bessel transfors of X { p). Finally, we cb-
tair K{R) vy applying the inverse transform 0 K {w), with the re

sult *hat

&
KRy = & { J(Re) Rilud | ()
Zw Flw)

N

o



in which, as ncted before,

80

X () =§J,(¢u,} X (o) p dp
Flw) = S J';(em) ?(el gdp

Formally, at least, Eq. () gives the optimum welghting funciion
corresponding to the known correlation functions X end ¢ .

A more revealing form of Eg. (4) may be obtained by normeliz-
ing the correlation functions X =nd @ , c-md by introducing the
fact that the true field a('x,ns) and the “error® field €( x',na)

are sssumed to be uncorrelated. By definition,
'X(e] = R.a S( %(x,ns) %fk-f, nawl) dwdﬁ%

+ Liom. Sg qlxn) €0x=f, -q) dxdy

. Since 1 and € are wncorreluted, however,

Similsrly,



-

(e) = R g; 3l o) 4 x5, ) dx dy
4+ i 2 Sg %(y,‘n.‘;,} e x-¥, ng-'v;.) -:ixdr.a
+ i.i..mx.Sg € (x,nﬂ e{x-§ "‘}"‘1) Aud.na

Again, since 1 and € are uncorrelated,

$ple) = ylp) + Elp) = ya’o}l Yip) + Elo) Ef ]
LY {o) Y(o) E(a)

vhere E t(:) ig the autocorrelation Function for the “"srror” field

e( x,A‘) . Substituting these expressions fur ¥ esd @ into Eq.

(&),

kcm=—!-( (Ru) - ' o das (5)
ax )
[»)

|+ &> Bl
y ()

in which E (a) am § Car) are the Pourier-Bessel transforms of
the normelized autosorrelation functions for € and q , respective-
l-y, ana k* 1z E€0)/ y(od . The constant R is the ratio
of the RMS amplitudes of the "errcr” field ant the true field ----

or, in the language of the electrical engineer, the "noise-to-signal”



ratio.

To place the gencral result stated im Eq. (5) ip a fesilisr
setting, we shall consiler two specisl cases. First, if there is no
€rror, & .vanishes ard the weighting funetion raduces to:

! . .
KR = == S T ( Ru) se b
(4]

The integral ebove is zero except vhen R=0 , and b‘-e.cames infinite
as R spproaches zero. Thus, since the ares integral of K iz unity,
K tbehaves likes g delta-function. .This implies that, if there is
no error, unit weight should be given to the point ;.mhere the average
applies and none o any other pcint, verifylng that an error-fres
£ield of observations should not be smoolbed av all. A Jess obvious
cenclusion applies vhen the scele of the true field ic the same as
that of the error f:ielc'l. In this case, E_(M_.‘) end jf(n»i sre sensibiy
the same, and K{ Riagaic becomes a delta-function. This mesns that
“noise" cannot be Tiltered out of n "signal” §f the same (or smaller)
scale by sucothing, siuply because the gigrs) amplitude is reduced in
the sews proporticn &s the error amplitude. It may, nf course, e
possible to Filter out the moise by differentiation ---- rather than
by intepration or averagiang ----- provided ihe "noise-to-signel” ratio

is small encugh.

L. The Optimum Smoothing Procese for "Caussian” Correlation Func-

tions.

Althougk Eg. (5) vielde the optimm weighting function for any

13
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type of "true" field ard asy unccrrelated "errcr" field of smaller
scale, it is readily appreciated that numerical calculaticns or the
transforms of the correlatisn furctions and the weignting {unction
_-itseli' are .,extremel:.r Inborious, if the correlation fuxnetions dc ant
have @efinite anmlylic forms. Accordingly, in order to gelin s gszner-
a) uwrderstandicg cf the wenger in 'which the optimum smocthihg rroCess
deperds on the statisticel propertles of ithe true {ield ard error
field, we shall a;ssigza gimple and rether realistic emalytic forms to
the sutocorrslation functivas E( Q) and y( {:} . Bv its natwre, the
normalized autocorrelation function attains & maxiium value of unity
at g2, end has zero siopd el @ =0. Mlcreo:f.rer-, .ainc.e the fielde
under consideration are not perisdic, one wouid expect that ube cor-
relation functicn decrauces mendonicelly to zero with increasizg @ -
e rate at wiich it decreases will depend, of courbe, on the “scale”
of the fiéld' -- i.e,, & vypical distance over which the field has

the same sign. These consideretions suggest that the “shapss" of
the normalized sutocorrelation functions might be closzly approxi-

mated by that of the Gausaian error function. Theti is,

_ mgez- . _ sz 2
E{ﬂ = R ) Y.(.f..} = A
Eto) Yio)

where & and b are inverse wessures of the gcale of the ields
€ (x,ag) ond %(u,ﬂf, respectively. The corresponding Fourier-Bessel

#rangforms are (watson, p.39%):
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% 2
- A -
= F g ke 4o - ; i g
Ela) =25 2 yl= as
Bubgfituting thede expressions ia By. {5),
80 -
_ rﬁ)
5o & - » ’ ! \
KER) = -‘L'(Jsiﬁnﬂ' e VIR ST
il ‘; I + 'J‘s"e:(F { %,zwz

is whieh A khi&am_¢ (o &“ )/ 4a™%" | ris
éguation dsfifics the process of optimua swoothing under feiriy
general cendifiens, snd ;crm?i&e-s the bazis for most of lie remaining
disdugaien: | |

A 8118 aid Pairly mccurate method for applying ch:z swdething
pioeess t& vBlués av discrete points consists ln (1) regarding the
entive Pplbre &3 & nested gei of ring-sfmped regions, &1l ceabtersd

o the erig.eh f"j everaging the vslues et il diccrete points in

¢ach ¥iag; (3) miltiplyiag sach everage by the integrel of the weight-
ing funeti6s tHkEA over the corresponding ring and (4) summdag the
' isi'e‘ilgiiﬁéﬁ HVEFAESE Hver all rings. Sipce the weighting function de-
pends cbly en thé distance from the origin, step (3) of this ;proce-

diupe léads BuE 0 consider ar utegral J(rnm ed to Eg. 6) of the

Poriii
E rg 20
J Sk’(,n,),r\,im z _.'....")J,,dj\,g;_r(wy an doars
o o o { -+ 'Xzexr (-{;“‘J‘]
Ju Ju {nan) div
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‘The integretion with respedt to Ju can De carried cut by making use of

the recursion formulae for the Bessel functions, with the result that

ab
R AT " E— @
T e i+lz€w?{t£—} '

vhere A = Rer. L
e nmar consilder the behevior of the function-i {-s-'Alexp { Jel iy gt ){

Under qr&ina.ry conditicas, the “mise-ﬁw-siml" ratio is smll apd )

‘cﬁe ratio of the scales of the true {ield to error field is large ----

iee., Ml and &P . Trus, siace ?«z«‘ and “at/ £ % |

the function [_ i + ')\1'91;9(?":::/ R‘)j! iz nearly unity ett ‘ﬁr-_» 0, re-

maing near unf_ty until 4, approaches Ridm i/ 9.‘“")“:‘—' /'JJ?

{ihe inflection point for smell B }, thes decreases sharply, apd rapid-

iy approaches zero beyoud the inflecticn point. In' these circumstan-

ces, therefore, the integrsi (7 umy be approximated by

)

J:(%,) d'n!f

-

v . L
J AT

O e

The integral above is readily evalusted. According o another well -
krown recursien formulz, it is stmgply

14
- s Ll -y X
J § K{ndndwn 2.1!'[ 1 Jo( > _%}' )1 {&)
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The veighting function K(R)cen now e found by differentiatiug

Bg. (8) with respect to R p

K(m—(—ﬁ)'-—'“T( )2 Z (3 af) 4 3 ur] @
Naw ) ZR °’~R~:,;;[3ﬂ°‘-'ua.(‘“} &

. . .
in vhich « = (I 1/ 22)%/ k. mnis formils gives the upproximate
weighting funetion for the ‘typas of fielde ncrmeliy encountered. It
does notildéviate from exact results obtained from Eq. {7) by more
than & few percsnt ip the n.eighbcrhor;d ol Az 4 and o fircd, ex-
cept when R is lmge wmv= in ;rhich case the weighting function has
already Decome negligidbly small.¥* It also r-xppma;ehes the .correct
limiting form when the scales of the true field and the error field

become comperablie.

#he approximetion discussed sbove is not, hovever, valig if A ap-
proaches or exczeds unity. When tbe “noise-to-signsl" ratio is very
large, Bg. (6) degenerates to :

< o« _prfmz.
K{R) = 2‘;:"{1 {) \I&( Ru.} e s daa
9

This type of integral hss been mentioned previovsly (Watson, p.394%}.
When properly nornalized, the weighting funciion for high nolse-level

tokes the Torm ?z
' t - :‘;i;'
(R) = —— =
K ‘lnf"

The recult mbove shows thet the optimum degree of amoothing is in-
dependent of noise level when the "noise-to-signal" ratio i3 very
large. As is intuitively evident, the best sivetegsy in this casze
iz to swooth very strongly---provided, of course, that the scale of
the true field is greater than that of the error field,
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5. Dependence of ihe Degree of Smoothing on 3cals and "Noise~toe
Signal’ Ratic.

Sinca the precise forwm of the welghiing function 1s probably
not criticsl, the greatest interest centers on the optimum degree
of zwoothing. Tue latier depands on the scale paramster « ; which
is inverseiy proporvional to the effective radius of the domain of
averaging. The manner in whicl the degree of smocthing depends oa
thne charseteristics of the true field and error fleld is ehown in
Fig. 1, cn which S«d (as cofputed from Bg. §) is plotied as a
function of the signal-to-noise ratio and the ratio of the scales
of the true field esd error field. (Toe length & is a tfpical
distance betwecn sdjacent obgarviag stations). This diag.‘;-.-am illug-
trates the points that were made esrlier ---- namely, that the
field of observations should not be smoothed 1f the signal-to-noise
ratio is extrewely large (i.e., if the errvor is very small), or
when the seeles of the true field end the error field are comparsbile.
Othervise, the ﬁbst striking feature df thege results is that the |
optimum degree of emoothing depende very surongly ou the scale ratio,
the effective radius of the domain of averaging veing & times as
great for a scale ratio of 10 as it is for & scale retic of 2.

With reference to meteorologicai variables, the vatio of the
scale of the true Pield to that of the error field probebly ranges

from 3 to about & over areas of good data covers ard from 1 to
2

cver the oceans. The signel-to-noise ratio pirobebly varies from

gbout 10 for the long plsnetery waves to about 3 for minor synoptic

features of shorter waveliength. The regicn ¢f relstive scale and
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noise level delineated by these ranges is the sheded a.rﬂ;a in Fig.

I. It is realily seen that the oplimim effective radiuz of tht;
domain of avereging way vary by & factor of 3, a fact that should
be teken into sccount in the analysis of meteorologiscal deta. IU
is also likely, of course, thatl e skilled asalyst iztroduces guali-
tative considerations -of a similer nature in deciding how much
veight is to be assigned to any single plece of date in an irvegu-
larly spaced networi of obserfzra‘c.ions. It i3 o meiter of some inter-
est, therefore, to cogpere the résuits of oplimum smocthing with

those of the subjectiv: smoothi racticed by an experienced analyst.
(] P o o

- 6. A Comparison of Optimur Smoothing With Subjective Smoothing.

| In order toc compare ‘;.hel supjective and optimum processes of
smoothing from the stanfipnini of minimizing the REMS difference het;
ween the true field and the swoothed dota field, both procesmes were
applied to the same synthetic field of- "observations”, consieting of °
an artlficially constructed “error" field superimppsed on a specified
true field.‘ For purposes of isclating differences due to z&ithod alone,
it ig sufficient to deal with an sssumed true field that is more or
less typical of resl meteorologicsl conditione, Accordingly, a set
of height valuesz at thé pointy, of o square grid, inzerpclated to the
nearest 10 feet between the contours snowa in Fig. 2(e), were re-
garded as correct. The contours had been drswn to fit resl dats
Por 15002, 22 Ax;ril 55 ---- & cese that wss deliberatsly selzcted
as one in which the spectrum of wave cowmponents wes fairly breed.

The "error" field was comsbtructed by matching 3 random sequence












of errors 1o e vredetermined sequence of gridpoints, spaced avout
200 miles apart. The ceguence of errowwas formed by letting each
two-diglt group in & list of random numbers determine the magnitude
and gign of each error in the sequence. The correspopdence between
the sequences of eYTOr's and random numbers was arranged in such &
way that the frequency distrinution of errors is normel, with an
RM5 error of 100 feet, The "error" field ro formed is fairly typi-
cal of the combined Tields of irsirumenial, reading, height evalua-
tlon, end roundof? errecrs, although sosevwhat exaggerated ioc accentu-
ate differences of method . ¥ .
The “"observetions” at the gridpoints were obtaired £imply by
adding the "error" field to the agsumed true fleld. The resulting
field of cbeervstions was then anzlyred by an experienced meteorclo-
gist, who wvag informed that the field contained random errors with
a normal frequency distribution and RM3 error of 100 feet. bul .who
414 not have access o the true field. The seme field of obsem-l
tions was also subjecied to the process of optimum smoothing, by
computing the weighted average for each gridpoint as a weighted
sun of the “obgerved' heights st that peint and at the 20 points
nearest to 1t. The weighting ractors were calculated from Eq. {7),
the computed autecorrelation functione for the amsumed true field
and the artificial error field being used %o estimate the scale

ratio end signai-to-ncise ratioc.

¥The wean square total error ie approximately the sum of the mean
squares of the individuel types of error, rrovided differsat types
of error are not highly corz'glabeﬂ.'
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e regults of this experiment are svmmerized in Figures

2(v) and (c), which show the subjectively swoothed and "cptimun”
averaged fields, respectively. These are to be compared with
Figure 2{a), vhick shows the corresponding “true® fizld., In gen-
erel, it appeurs that the subjective process of "amaljysis” and the
optimun averaging process perform the function of swoothing in ap-
proximetely the seme way, since the subjectivel smoothed and opti- '
mum éverag.at‘z fields ar: more similar to each otuer than zither is to"
the true field. . Fach of them remuves fiuctuations vhoze wave lengths
are comparable with wice the distance betwesn owservation puints
(e.g.; the component with wwe?i.emﬁt:n about 900 kiloweters, associaved
with tre rather "square” trougn sud ridge over the uorthwssterh G.8.),
but retains the large-scale Teatures of greater awplitudé. Both pro-
duce about the same degree of smootimess.

| -IO\rer mst of the sres considered, there is 0o sigaificant and
systematic difference Letween the two smoothed fields. Over the
southeastern quadrant, however, the subjectively smoothed fie.‘u_i_s; is
hoticeahly smoother than the optimum aversge ---~ too smooth, in
fact, to reproduce the very weak trough in the southwest flow over
wastern U.S. {where it sctuslly shows anticycloniz contour curvae-
tafre), or the shallow trough along tae east coast. The optimum
average, on the other hend, doss veflect these minor synoptic fea-
ﬁure:s y though with somewhat reduced amplitude. The most chvioug
reagon for this difference is *uet thé scale of the features men-
tioned above iz considerabiy less than that of the .lar'ge-scﬁle-

pattern, but 1s etiil somewhat greater than twice the distance ha-



twesn observation points. Even & skilled analyst probably finds it
difficalt to distiogulsh qualitatively between rancom small-grale
fluetuations and renl disturbances of only giightly larger scale and,
for this reason; thirks in terms of the scale of the rredominant wave
band in the spectrum. The opilmuaw smocthing prucess, hm.fevér, doeg
&isf;:!.ngaish between random and real fiuctuaiicus ~--- provided the
segle of the lstier is greeter than thet of the error field, and if
the dzistence of sarli-scaie dlisturbances ip retflectsd iu the suto-
correlation function for the tree fMeld. I shori, whatever differ-
ence thers i3 betwser ihe sublective and opiixay processes of sswoth-
ing is probably duz to differccces in the Fidelity with vhich ibey

reproeduce fluctuztions whnope seale ls interuediate batween that of

b

the error fi=2id and the meior synoptic features of the true paitern.
That there is & signdficant difference in performsnce is revealed in
the BMB errors of the smocthed fields ---- 52 feel in the oas2 of

subjeciive smoothing, snd 42 feet for optinum smoothirg.
»

7. 'the Information Value of a Network of Deta in Smoothing Qut Mon-

systematic Rrror.

It was erphesized esriier that the mean squere error of the
smoqthed field iz expressible i terms of the sutocerrelation funcw
%ions ---- which, in the cgseg stadied here, are assumed to have
the fore of the Geussian errcr fuaeiiou. Since the optimum weight-
ing funciica for thir type of sutocorrelatiorn function is now known,
it 45 possiblie Yo calculate the minplmum RMS errcr l'&ttaina‘ale by

" "linear" smoothing, yhich is & measure of the mexinum amount of iaw
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formation about the true field thet cen be extracted from en errdy-
contaminated field of observations. Substituting from Eq. (9, into
Eq. {2}, we may write the minizum pesn square erior Im-m of the smocti-

ed fi=ld as:

.o S 1a
. -4e
Im;“ = y(od ¢ | - leLS -3': (ocg) 2 JAQ {16)
- o '
% * ’ﬁw '.— jrn.}bz 2 = a.ﬂ'l'vz )
Z_S:rmg).u{\ P )49}
] Iy -] .

The first integral in the curly brachets is one of tne types meptioned
vefore (Wetson, p. 394). The triple integral can be simplified consid-

erably by noting that:

An A

S ¢ (~) &b = S J (R J (Qu‘) Flan) a dan
g

e

where F(n)is the Pourier-Bessel transform of ¢ {(An) . introducing
this identity ané inverting the order of integration, we find that the

third term in the curly brackets of Eg. (10} takes the form:

® ® 4

(o 18
“1) [ ) :j" (d_e) Je(g»-) d..QJ Flundindw = S Flaw)d an dan

6 o



The integral. in sguare brackets above is one of the so-called dis-
continuous integrals {Wateon, p. 408), Finally, we subetitute all
of these resuits into Eg. (30) to obiein the meen sjusre orryor of
the smoothed field ss & function of the scale ratio S eand the
noise-to-signal ratie k.

<

2 . " —;512—-;—1 (12)
BN S -t . 1y -~ [ -
Iwm x(o)t\s + R Ll (“é;) |

in whick S =a/)r. It has beea shown previousiy that there are two
cases in which thé data field should not be smocthed ---- namely,
vhen there is, no errcr, or when the true field and the arror Tield
ars cf the same ccaie. In the Tormer case {k=¢) , Bg. {11) veri-
fies that the mean square error of the . smoothed field (or, more pre-
cisely, the unsmoothed field; is zero. | In the latver case { S<=/) )

Eg. (11} vreduces to:

I = Mytes = ERIXPN L o
¥io)

This simply shows that the minimum mean square error of the “"smoothed"
field in the csse when 3= ! 1s the mean squexe ervor ¢f the reported
mengurenents.

The general way in which the mirimum RMS error of the smocthed
field depends on the spgcing of obszyrvation stations is 1llustrated
in Figure 3, on winicn tae RMS error (expressad as & fraction of the

RMS exror of reporied measwrements)} is plotted as & function of the
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scale ratio. Since the cptimum weighting function does not change
markedly with verying noise-to-signal ratic, the calculations were
carried out for a single typical vaiue of ¥ » equal to one-tenth.
Figure 3 shows that. the minimm RS error is reduced only 51igbtly
by increaring the density of tne observing staticns if. the scals
ratio is greacter than © , but indicstes thet & considersble gain in
accuracy is vo e mede by increasing ‘L.L" scals ratis from 2 e sbout 5.
In interpreting these results, it should be borme ip mioad thet
the Toregoing auslysis has Zdeall sutirely witlh am_._:_a_:;_j._x_’:_o_q.z true field
and an error field that is simiisted by o conbinuous tield, wihose
scale 16 determined by the distance between discrete coserving points.
Ap poiasted out zarlier, sprlication ol the smouthing eperation to
deta at a petwork of discreie poiats requires thav the weighted aver-
age of continuous obgervations over & ringss haped regioa of finite
width be approximabed by the vnweighted aversge of the observations
at discrete points in the ring, mudilplied by the integrel of the
walghting feacticon taken over the ring. This approximstion is clesr-
ly best when the number of observatlons in tre elffeciive §omgin of
averaging is large encugh io vonstitute & repreuentative sawple of
nonsystematic errors, and when the width of the ring iz muen less
then the scale of the true field. - Both of these conditious, of
course, are enhanced by & iarge scale ratio. Morecver, it is avi-
dent that the discref,e' polint approxiration ls most rearly valid when
gpplied &t the observation pointsz, where bone fide date Tiguwre noei

heavily in the smoothed fisld. This simply weens that the use of the

88982



26

smoothing process as & combined operat'i.an of smoothing and iater-
polation doee act resuly iz any wore real information about the
detel) of the true field than is revealed in the origimal cbser-
vations.* In chort, onc must distinéuish betveen the value cf 2
network of observations ez o weans of resolving the defailed
sﬁmcture of the true field, and its value as 8 weans uf reduclng
ronsysteratic error at cach point of the network., Al present, ;>f
course, we are concernad solsly witn the lstler.

Pespite these cruticasry remerks, it turns out that the ré ~
sults of an anzlysis of c.ozxtiﬁuoua smoothing mey be used ioc ceti~
wate thz gain of irformation {1“3&\.16‘61,0151 of error} that can be ex-
pected from averaging data et discrete pointe. Acccrding to
Pigure 3, a good compreaiss batween accuracy end economy is atialn-
ed when O is about 5 , which corresponds to a linear densitvy of
about 15 stations spread over a characteristic wave lengii of tae
true field. For typical wavelengths of digturbances in tone flow
eloft, a reasonzble spacing of stations is around 200 miles. It
should bg pointed cut, however, that it is probally more gcoucmicsl
to reduce the errors of the smoethed field ty raducirg the arrors of
. reported measurement, rather than by smcothing over a very dense net-

work. P

Wihis 1% especisliy obvious in the case of no error, when the weight-
ing function is zero everywhere, except at the origin.
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The remaining problem -~=-~ that of estimating the information
velue of a network of essentially error~free observations ---- clear-
ly involves the details of the use to which the data gre put. For
exarple, If the observations are o be used as initial dutie w“or 8
numerical forecast, the information value of the network depends on
the errcors of approxirating derivailives by finite differences over a
typical digtance vetween nelghboring Owservation stutlons. Suea con-

siderations are teyond the scope of the present paper.

8. Sunmery end Conclusions.

This paper has deslt exclusively with the problem of emotthing
out nonsystematic errors of reported messurements or other swall-scsle
fluctuations that ere random with respect ito fieids of larger scale.
By extending Wiener's methods for smoothing steticasiy time series to
two~dimensional fieids Whose autoeorrelstion Munctions are invariant
with rotation, it has been found poseiblie ito define e.nd. analiyze an
"optimum® linear smoc;t.hing process ---- "opbimum” in the sense that
the RMS difference between the true and smoothed fields is the least.
The optimum sioothed fielid 'J:s esgentially a weignted area average,
whose weighting function is determinéd by the “signal-to-noise" ratio
and tlaé autocorreletion functions for the true field and “erzor®
field.

The forw of thepptiﬁzum welghting function hes beer invésti.-‘

gated in detail for fields whose sutccorrelation functions have the
shape of the Gsussian error function ---- & type that is more or

léeps characteristic of eperiodic fields. In this cese, the optimum



welghting furiction is & linear combination of Bessel functions, whose
rate of decreaée awvay from the origin depends on the signal-to-noise
ratic, the ratio of the sceles of the true field and “error” field,
and the distance beuwween nelgbboriag observation staticne. The manner
in which the radiuva of *i'.‘.'né fszec;tive domain of gveraging depends on the
scale ratio and the signal-to~-nnise ratio substantiates wwo conclueions
that were previously- estavlished undsr more general conditions ----
namely, that the field of cbservatiaﬁsr should net bz swoothed &t all
if the noise-to-sigral ratio is very gmall {in which case there is ob-
viously nothing to gain by g_ux:-a’th{ng,) or if the scale of the true
f£ield is the same or ies3 thar that of the "errcr' fisld {when reduc-
tion of error cannot be attaiaed by smoothing, wit:hcgt ﬂimitanequsly
reducing ihe emplitude qf the trve field in the same or greater degree).
When the signal-tc-nolse ratic s very smsll, the cpbimun degree of
smoothing ap;groa.chée & linit thfs£ is independent of nolse level; in
- this r;ase , the best strategy iz to sverage over a2 vary lerge region,
whose effective rwii&s is determined by tm; relative scales of the
true field arirl error fieid. In the normel range of si g;.ﬁ.a,l—tounoi.;se
ratic, the cpf.imum radius of the effective domain of averagiixg de-
pends most sirongly on the scsle ratin, verying by a factor of 3 or

L from one eéxtreme to another. Although s pkilled arelyst probably
introduces qualitative conaiderations of & éimilar natwre in smooth-
ing obgervations cver an irregulerly spaced network of sztations, it

is suggested that the objective and quantitative chavacter of the
cptimum linear smoothing process may prove edvantageous from the

standpoini of maintaining consistentliy high verformance cover s
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variety of ordinary éitua’cions.

The subjective and "optioum" processes of smoothing have been
appiied to the same syntinetic field of "ousgervations™, consisting of
an artificia.i field of randem errors supcrimpoced on an sssumed {dut
fairly typical) “true" field. Comperissns between the tvo smoctned
Tields, and between each smootned field end the "true” field show
that the two diffevent procesgecs af;f::c:;:ylieh ghout the swmwe type and
degree of s;néothinv. In the cne case2 pres2nted here, the cnly sig-
nificant differsnce waes a reflection of the fant that the optimum
smoothing process is more capable of d.istinguishiﬁg smmil-sealie
random fluctuations from mivor synspiic f{‘eatu.res_ of only siigntly
grester scale. The RS errors of the subjectively smoothed field
and the optimum average were 52 and 42 feet, r-':.sptctively y indica-
tifxg that the optimum linear smoothing process cdn prebably maieh
the performsuce of g skilled enslysi, and may exceed It.

Pinally, the minimum RMS erveor of iinearly spoothed fields ras
been expressed in t;rms ol the 'signal.;tm‘noise ratio, ithe standard
deviation of the "true" fieid, and the scale ratio (which, in turn,
depends on the spacing of obsarvaifon stations}. This result shows
that the infermation veliue of e network of observatlions can be en-
hanced considerably by :anruasing:t.he lipnear deusity of observing
stations frow 6 to aboubt 15 per wavelength, but is not substantisl-
ly iricressed beyond e linear density of 18 ststicns per waveleogth.
It is 1o be emprasized that this conclusion applies only to the



Y
information value of e networx from the standpoint of smoothing out
nopsystematic error, end does not besr élrectly on the problem os

interpoletion or of reducing truncation error.
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