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Abstract
This article deals with the predictability of the atmospbere or, more
exactly, with the gradual growth of "1nh_erent" errors of prediction,' due
to errors in an initial state that is reconstructed fram measurements &t 6
.finite number of points. By invegtigating the initial timé-derivatives of
the error arising from rendom analysis error, it is found that the increaﬁe
of the RMS (root-mean-square) wind error in predictions over periods of &
few dajrs depends on;
1) the period of the forecast
2) the initial RMS vector wind error
3) the difference between the characteristic scale of the ini.tie.i
error field and the scale of fluctuations in the true initiel =~
flow pattern.
4) the area average of the vertical wind shear between 250 and 750 mb.
5) the RMS vector deviation of the wixid at about 500 mb from its aree
average, ami

6) the average static stability of the atmosphere.

The_ Joint effect of these various fectors is given explicitly by a single
equation, relating the increase of inherent error to the statistical proper-
tieé of the initial error field and true initial flow pattemn.

In meny winter situstions, end for initial error Plelds whose scale is
typical of- the present observational network, the inherent RMS vector. wind
error may double its .initial value after two days, and rise to the error of
sheer guessing in about a week. Doubling the overall density of regular
reporting stations would virtually eliminate the increase of inherent error
in forecasts over a few days. Tt is also found thet zonally-averaged wind

fields are inherently more predictable than unaveraged wind fields, et



least in cases of predawinently barotropic flow.

The results outlined above are interpreted in the terms of a variety
of practicel and administrative problems, in each of which a dominant
factor is the predictability of the atmosphere., Examples are the problems
of estimating limits of confidenee iIn forecasts, deciding on the most- econam-
ical density and distribution of regular reporting stations, fixing the mexi-
mum range beyond which detailed "forecasts" have lost essentiallf all pre-
dictive and economic vslue and, finally, that of establishing the point of
rapldly diminishing returns in the development of more complicated and

costly methods of prediction.



I. Introduction

One of the most far-reaching questions in meteorology concerns the
"predictability"” of the atmosphere --- i.e., not merely the extent to which
its behavior is predicted in practice, but the extent to which it 1s possible
to predict it with a thgoretically complete knowledge of the physical ;aws
that govern it. On the purely scientific side, it is an important point
of doctrine to know whether or not our uncertainty as to the atmosphere's
futu.re_ state is aéc_:ounted for by economic (or; ultimately, human) incapacity
to observe and compute, or whether it is essential and due to some irreducible
minimm of indeterminacy that lies beyond human limitation.

On the practical side, common experience indicates that incomplete data
coverage leads to a rapld and widespread decay of predictdbility over periods
of more than a day or two, and it is generally granted that increasing the
density of regular reporting stations would result in & qualitative increase
in predictability and in the economic vélgc of prediction. The cost of
(say) doubling the density of upper air stations, however,_vould be enormous
--= certainly on the order of hundreds of million U. S. dollars. Thus, the
question of increasing data density 1s an economic problem of gatibnal or
international proportions, and it is hardly surprising thét national weather
services in the past have been reluctant to double their budgets_fofua
problematical return in the accuracy of forecasts. Until one can quantita-
tively predict the predictebility that would result from increased datae
coverage,'it is impossib;e to establish the point of rapidly diminishing
réturns, beyond which further outlay would be unprofitable. That, of course,
is the real problem.

Another related and equally mundane question is whether or not it is
ugeless to try to predict the state of the atmosphere in detail over periods
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longer than several dsys. It is often asserted, but nok definitely known
that the predictability of the atmosphere decays so rapidly that a week-
long "prediction” is po better than a sheer guess. Whatever is actually
the case, it is important to esteblish the maximum renge of predict.ability,
- beyond which the detalls of the state are essentially unpredicteble, In
this seme connection, Nemias (1947) and others have suggested that certain
statistical characterizations of the state of the atmosphere might be
inherently more predictable than the details of its state. Again, the
practical question will remain unresolved until it is definitely known
whether or not such statistles are in fact more predictable, end (if soj
how much more predictable, and whether or not the possible gain in pre-
dictability is more than ;Jverbalanced by the attendant loss of det;a.il
or information content of the prediction. |

St111 another problem is that of estimating the probable error or
1imite of confidence in predictions, a question that bears directly omn
the gradual growth of error toward the level of complete "unpredictability” ,
and one which is frequently brought up as an objection to any deterministic
approach to prediction. That such cbjections are valid is sametlmes
edmitted even by dynamic meteorologists (who have borne the brunt of
. eriticism); they have not; however, been too ready to injéct a Jerring
note of probebility into what is otherwise & pleasingly deterministic
theory --- a course that 1s nevertheless inevitsble if the existence of
error is fully recognized. |

| Between the extremes of theory and practice lies the problem of

detecting when the development of more and more general, complicated, and
costly methods of dynemical prediction, and more and more refined computing
techniques will not produce a significant increase in the ovez_-all accuracy
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of predictions. It ie conceivable, for example, that we are already
approaching the point where the total error of prediction'ia comparable

in magnitude to the error due to uncertainties of initial state alone.

If and when this 1s the case, it would be pointless to channel precious
scientific manpower into such narrow avenues of purely technological
dgvelopment, or to spehd addiﬁional funds for more powerful and costly
computing facilities. At that point, the only hope of improving the
quality of prediction will lie in reducing the uncertainty arising from
the one remaining gontrollable source --=- namely, the uncertainty inherent
in ignorance of the actual state of the atmosphere at eny given time.

The problems outlined above are certainly not a complete catelog,
but they are sufficient to indicate that a great number and variety of
problems === thgoretical, practical, and administrative --- bear more
or less directly on the question of predictability. These seme problems
will be reviewed later in the light of subsequent results.

Turning to more general questions of predictability, it should be
noted that, if one accepts the universal applicability of physical law,
one must also concede that the future state of the atmosphere is (in a
certain sense) determinate and sbsolutely predictable. That is, the
principles of conservation of momentum, mass, and energy imply that the
cheins of events following two identical states of the atmosphere are.
slso identical, provided equal amounts of heat energy are absorbed at
eqpivalent times and places, This is, in fact, one of the fundamental
ténets of the recently developed methodology of numerical weather pre-
diction, The distinction between this view and the pragmatic view of
predictability is-simply that we camnot really say when two states are

jdentical.
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For the sake of illustration, let us adopt the plausible hypothesis
that the behavior of the atmosphere is actually described by the hydro-
dynamical (Navier-Stokes) equations, which simply express the genefa_l con-
servation laws in mathematical form, and which have been successfully
applied in the analysis of a wide variety of hydrodynamical phenomena.

'Now, it is possible to Integrate those equations by approximate numerical
methods with a mathematical error that is less then any preassigned value,
no matter ﬁow emall, Imagine, for example, that we first reconstruect the
initial state of the atmosphere by drawing isopleths (of isobaric height,
say) on a very large chart for contour inteﬁals of ten feet or one foot,

or whatever the sharpness of one's pencil allows. The Initial height

valueé will be interpolated to the nearest foot or inch at a reguler net-
work (or grid) of points speced 100 kilameters or perhaps even 10 kilameters
apart, Still in imagination, we next integrete the hydrodynamical equa-
tions by the finite-difference method, starting with the interpolated initial
values at the points of this very fine grid, and approximating derivatives
by differences between values at neighboring points in the grid. 'The sig-
nificant fact is that Leray (19‘31) has shown that, by making the grid finer
and finer; one can make the truncation errors of such an integration arbi-
trarily small. Moreover, by carrying more and more significant digits in
camputing mechines of greater and greater storage cepacity, it is possible
to make roundoff errors as small as desired, and so to remove the ane re-
maining type of purely mathematical error.

This is not to say, however, that solutions of the general hydro-
dynamical equations camputed in this fashion would agree with the future
state of the atmosphere to within-ccimparably narrow limits, Even if

meteorological data contained no instrument, reading; roundoff, or
wle



transmission errors, and even if the analysts' isopleths fitted the avail-
able data perfectly, & reconstruction of the initial state fram data at a
finite number of points will not be the same as the true state. At various
points it will differ from the true state by an amount that depends on
distance from the point in guestion to the nesrest reporting station and
vhich, on the dverage, depends on the distance between reporting stations.

A typicel distribution of the difference between reconstructed end
true isobaric height fields is shown in Fig. 1 (¢). This pattern was ob-
tained by subtrac@ing & hypothetical "true" height field, illustrated in
Fig. 1 (a), from the réconstructed height field shown in Fig. 1 (b). The
latter was constructed as objectively as possible by lipear and quadratic
interpolation between the circled points, where the "true" height values
were given, It will be noted that the distribution of the difference be-
tween the true and reconstructed height fields, hereafter called the "enaly-
sis error", displays a cellular sppearance. On reflection, one sees that
this'structureﬁis typical, because the lines of zero error must pass through
the circled points in this case and, in actuality, must pass close to the
- points where data are given.* Thﬁs, the distribution of the analysis error
has a characteristic scale or "grain-size", closely related to the distance
‘between observing stations. As indicated earlier, the analysis error also
has a charactefistic magnitude, which generally incresses as the distance
between stations is increased.

Another important property of the anelysis error stems from the fact
that the large-scale transient weather disturbances are, on the average,

located at randam with respect to the observing stations, and vice versa.

% In general, the analysis error is greater in average magnitude than the

errors of measurement.
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Thus , 8ince the "phase" {e.g., zero lines) of the pattern of analysis error
is essentially fixed by the locations of the stations, the analysis error
tends to be uncorrelated with the true state and,; In this sense, may be
regerded as a random varisble,

Relturning to the main thread of argument, let us now suppose that the
general hydrodynamical equations are integrated in fhe manner cutlined
earlier, but starting with two different initial states. In one case,
we ghall begin with the true state and, in the other; with the reconstructed
state, consisting of the true state plus a field of analysis error that is
random with respect to the true state. -In the first cé.se s the prediction
mist be correct by hypothesis. In the second, the prediction is incorrect
initiail , and will generally differ from the correct one at all later
times. The amount by which it differs at various times after some specified
initial instant is, of course, a measure of unpredictability or error. 1In
fact, according to our present view; the ocnly element of uncertainty which
cannot be removed by bigger and faster cbmputing machines is that due to
the snalysis error. Thus, the difference between two solutions of the
hydrodynamical equations, starting with two initial states that differ by
a random error field, is a measure of the essential unpredictability of
the atmosphere. In particular, if the average magnitude of such differences
at some later time approaches the average error of guessing, the atmosphere
has become essentially unpredictsble beyond that time. The rema'.iﬁing
problem is to find out how, on the average; the unpredictabuify grovs
over an increasing period of time after an arbitrarily specified i.nitia.l'
instant, and on what statistica]t properties of initiael error and true
state the growth rate depends.

The probl'em Just posed, with certain idealizations to be introduced
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later, is substantially the question that will be subjected to mathematicel
analysis and exemined in some detail in the remainder of this article. To
state the results of this study in rather general terms, it will be found
possible to express the area-averag%SRMS* vector wind error at any time as
a function of:

1) the initial RMS vector wind error.

2) the period of the forecast.

3) a statistical measure of the characteristic siz; of transient
disturbances in large-scale atmospheric flow paiterns.

4) a statistical measure of the scale of the "énalysis error" ---
which, in turn, depends on the distance between adjacent observing
stations.

5) the RMS vector deviation of the wind at about 500 mb from its
aréa average.

6) +the RMS vector deviation of the vertical wind shear between 250
and 750 mb from its area average.

7) the area average of the vertical wind shear between 250 end 750 mb,
and |

8) the average static stability of the atmosphere.

That these are important (if not the dominant) factors in the prediétability

of the atmosphere is consistent not only with the results of numerous

stﬁdies of atmospheric instebility, but with intuition and general experlence.
Aé might be expected, the growth rate of M8 error is proport;onal to

the initial MS analysis error, and is very nearly proportional to the MS

* In what folléws, "RMS" is used as an abbreviation for the "root-mean-
square" value taken over a very large area. Similarly MS stands for "mean-

square"
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vector deviation of the wind from its average --- & measure of the rate of
interaction between error snd true state. The growth of MS error also
‘depends critically on the relative scales of the initial analysis error
and the macroscopic fluctuatlions in the true flow pattern, the error in-
éreasing rapidly if the distance between adjacent observing stations is
appreclably greater than the characteristic half-wavelength of the true
disturbaﬁces, end even diminishing.if it 1s appreciably less. In general,
the increase in the MS vector wind error over periods of a few days is
proportional to the square of the period.

The results Just describved apply gqualitatively to both quasi-barotropic
and baroclinic initial states. In cases of strongly beroclinic flow, how-
ever, the effects outlined sbove are considerably modified by thermody-
nanmic processes, the growth of RMS error lncreasing markedly with stromger
vertical wind shear (horizontal temperature gredient) and smaller static
stabllity. TFor initial error fields whose scale 1s representative of the
existing observational network over the western half of the northern hemi-
sphere, and under conditions of only moderately strong average vertical

wind shear, the MS vector wind error arising from analysis error only may

increase by 25 percent of its initial value after one day, double its
initial value after two days, end so on.

It is, indeed, found that the zonally-averaged wind field is inherently
more predicteble than the unaveraged wind field, at least in the case of
nondivergent barotropic flow. This result stems from fhe fact that the
: p;rcentage increase in MS error of the average wind after a specified
period is proportional to the fourth power of the period, rather than the
second power. Thus, since the base of the exponent (a nondimensionel mea-

sure of time) is about the same in either case, the growth of error in the
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averaged wind is initially slower than in the unaveraged wind. Ultimately,
this difference is due to the fact that zonal averages are not éoﬁtaminated
“initially by random anslysis error.

m even this bare s@m, it may be seen that the results outlined
above have direct bearing om several aspects of predictability. In sec-
tions III - IX, we shall discuss the main results of the mathematical analysis
in more deteil, end interpret them in thé terms of the practical and admin-
istrative problems raised at the begimning of this introduction. As much
as possible, the discussion will be kept free of sustained mathematical
argument, referring only to necessary definitions and final results. .The
mathematical development will be relegated to three appendices, The first
will deal with the predictability of nondivergent barotropic flow =-= on
exercise that contains all the essential mathematical ingredients of an
analysis of more general and couplicated problems, and which is a valusble
preliminary to the study of baroclinic flows. The second is merely en
outline of the key points in the analysis of predictability in a simple
" (but fairly general) type of barcclinic flow, emphasizing the analogy to
the case of barotropic flow. The last is & very brief analysis of the

predictability of zonally-averaged barotropic flow,

II. Problem and General Approach

The problem that will be dealt with here falls short of the very
general question'posed. éarlier in several noteworthy, but probably not
erucial respects. In the first place, the equations we shall integrate

ate not the hydrodynamical equations in their most general form, but the
equations for a mathematical 1deaiization or "model" of the atﬁoaphereo

This model is very similar to the familiar qué.si-geostrophic nodel originally
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developed by Charney (1948), which has been tested extensively and spplied
to routine numerical weather prediction in the past few years, and is even
more closely related to the "quasi-nondivergent" model proposed by Kuo {1956).
The virtue of the quasi-nondivergent model, aside from its evident
mathematical simplicity, is that it reproduces the behavior of the very
large-acale slowly-moving disturbances in the true atmosphere, without
exhibiting all of tﬁe latter's meteorclogically irrelevant behavior ---
the exlstence of which would be implied by the general hydrodynamical
equations. It has been shown (on t};eoreticai grounds) by Charney {(1948)
and others, and falrly well verified by nmumerical experiment that the
approximations of this simple model exclude solutions corresponding to
sound and gravity waves, but Vlea.ve those corresponding to the large-
scale weather disturbances essentially intact. It is true, of course, that
those approximations also exclude convective ingtability, Soundary-layer
turbulence, end other small-scale phencmena that bear on the predictability
of the atmosphere to some extent. It is hardly concelvable, however, that
theée effects could mcréa.se its predicf.ability. This suggests that the
estimated predictability of the guasi-nondivergent model should be taken
as an upper limit on the predictability of the true atmosﬁhere.

We shall deal, specifically, with two variants of the quasi-nondiver=
gent model., One of these is a two-level model whose state 1s characterized
by'the streamfunctions at the 250 and 750 mb surfaces, and whose equafions
are easily derived by approximating vertical derivatives by cente;ed finite-
differences taken over 500 mb intervals between O and 500 mb, 250 end 750 mb,
and 500 and 1000 mb. The other, a degenerate form of the quasi-nondivergent
model, is simply the well-known nondivergent barotropic model. Ite state

shall be characteriged by the streaafunction at the 500 md surface,
10~



Let us now coneider two different initial states of the model. One,
the true stete , shall be characterized by the streamfunction vo;. the other; .
the state reconstructed -frcm dat:é. et a finite number of points, by the
‘gtreamfunction (vo + Ro). The function Ro is the analysis error. It will
be left unspecified in detail, but will be assumed random with respect to
*o’ and will take on the statisticel properties of real analysis error.

For simplicity, it will e.léo be assumed that Ro vanishes at all times
a.rou_nd the edges of’ a very large reglon A, wilth the aésurance ‘that this
restriction cannot nmch effect average conditions over the whole of the
region. We next imagine that the equations for the quasi-nondive;-gent
model bave been integrated by the usual method of extrapolating over suc-
cessive short interva.ls of time. In one case, wé start integrating from
the true initial state ¥ , to obtain the "correct" state ¥ at time t. In
the other case, we begin with the reconstructed initisl state (V, + R_),
and incorrectly predict the state (¥ + R) at time t. Thus ,.at__ga.ch point
and at time t, we comit an error R.

Now, consider a statistical measure of error E, defined as the MS
value of the gradient of R taken over the whole of the area A. Owing to
the relation between wind and streamfunction, E is the MS vector wind error.
We choose this particular measure of error partly because we are primarily
interested in predicting the wind (gradient of streamfunetion), rether than
the sbsolute size of the streamfunction, and partly because the form ‘of
the equaticne implies that the absolute size of the streamfunction 1s phy-
sically irrelevant and, for that matter, unpredictable.

The quesﬁion is this: How does the MS vector wind error E vary with
time? | On what statistical properties of the initial state ¥ o does the

growth of E depend, and in what way? How does the growth of E depend on
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the statistical properties of Ro. == €.8ey a.veré.ge distance between observing
" gtations, and FMS analyeis error?

The most direct approach to these problems, of course, would be to
carry out comparative numericel integrations of the equations for the quasi- -
nondivergent model, That is, one numerical prediction made from a recon-
structed initisl state over a reglon where upper air date are actuslly quite
dense could be compai-ed with another made fram an initial state independently
reconstructed from a fraction of the actusl data. It might even be suffi-
clent to compare forecasts made from recomstructed initisl states with fore-
casts made from the seme initial states, but to which random initial error
fields (with tl;e correct stetistical properties) have been added. There
are, however, two disadvantages in this approach.l The first and most
obvious is that the difference between pairs of comparative forecasts would
be due partially to roundoff and truncation errors, end wduld not lsolate
the essential unpredictability due to analysis error. The second, and
probebly more important disadvantage is that the error E would not be ex=-
pressed as & function of the relevant statistical parsmeters, but as a
-.collection of numerical values., Thus, unless one carried out an enormous
mumber of integrations, it would be extremely wnlikely that he would dis-
~ cover the correct combination of factors on which the error depends. It
seems desirable, therefore, to devise éome analytic approach to the problem,
if only as a supplement to numerical experiment. '

The procedure that will be followed in the detailed mathematical analy-
‘8is of the problem is this: We begin by calculating the first time-deriva-
tive of B, vhich is related, by definition, to the first time-derivative of
the error R at each point. The latter is then expressed in terms of space- '

derivatives only by making use of the equations for the quasi-nondivergent
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: model; Bimilarly, we form the second time-derivative of the error E, an@
‘again eliminate the first time-derivative of R by substitution fram the
equations for the model. In this way, by successlve dirfgrentiation and
substitution from the equations for the quasi-nondivergent model, all the

© time-derivatives of E at any time can be expressed. in terms of the values

. of ¥ and R current at that time.
The next step in the basic procedure is to evaluete the time-deriva-
tives of the errcr E at the initial instant, taking advantage of the fact

that R is initially random. Owing to the latter property, the initial

values of the time-derivetives of E teke on relatively simple integral
forms that can be expressed é.pproximately in terms of the MS gradients

of the initial streamfphction vo and analysis érror Ro and the auto-
corre'lation functions for vo and Ro. The final step is simply to represent
the error £ at any time t as a Taylor series in aséending powers of t, in
which the coefficients ere the time-derivatives of E at the 1nit’ia.l instant
(t = 0). This series explicitly relates the statistical measure of error E
to the statistical properties of the initial wind and error fields, as well

as to the period of the forecast.

III. The Predictability of Barotropic Flow

The result of epplying the procedure outlined abeve in the case of
nondivergent barotropic flow is most concisely expressed in & fdrmula. for
the percentage change in the MS vector wind error E over a given interval

of time t. With certain spproximations of integratiom, discusséd more fully

| in Appendix I,
E-E, .
T = (M® - n®) V¥ VY t° F(M,m) | (1)
o . ' ..
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- The function ¥ is related totne Initisl streamfunction ¥ es follows:
Yo=X-U

vhere U is the zonal component of the average wind,_i:aken over the entire
area A, and y is the coordinate distance toward the north. Thus,; since

the meridional cmnppnent of the average wind must vanish, V§«V¥§ 15 the
square of the vector deviation of the wind from i1ts aversge. The bar
placed sbove a quantity denctes its area average, taken ovér the entire
regioﬁ A. The quantity M is an inverse measure of the scale of fluctuations

in the true initial flow pattern, defined as

2 o TV
'
Similarly, m is an lnverse measure .of the scale of the initial error field,
defined as
2 = VBo VR,
R®

The function F(lM,n) takes on either of two forms, depending on whether m ex-

ceeds M, or vice versa.

2
gz fm>M
ROum) = 35§

e ifm<M

As might be expected, the chenge in error (E - E o) is proportional to the
initial error Eo' It is also proportional to the MS value of the vector
deviation of the wind from its aversge, & measure of the rate at which the

various interactions and exchange processes. operate.
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The most startling end significant implicetion of Eq. (1) is that the
growth of error is evidenfly very sensitive to the difference in the scales
of the iaitisl exror field and the fluctuations in the true initial flow
"patteru. If, for example, the scale of the initial error field were appre-
ciabiy greater than that of the true fluctuations, the error wouid increase
rapidly end the predictebility of the winds would correspondingly decrease.,
COhversely, if the scale of the initiel error fileld were appreciably_lesa
than that of the true fluctustions, the error might setually decrease for
a while. On the face of it, this result seems paradoxicél. It is, however,
consistent with the results of independent studies of the stabllity of
barotropic flow made by Lorenz (1953) and Thompson (1957), both of which.
indicate that the kinetic energy of perturbations decreases if thelr scale.
is less than that of meridional fluctuations in the speed of & nonuniform
zonal current, and increases if it is greater., One may, in fact, inter-

" pret R0 as a real perturbation instead of a random initial error, and rg-
gard Eq. (1) as a genewslized criterion for the stability of nonequilibrium
flows with réspect to randam péfturbations of finite amplitude,

Evidence of the effectiveness of ‘this mechanism of barotropic stability
is contained in the fact that wind flelds predicted by solving the baro-
tropic vorticity equation grow noticeebly “smoother" and more “zonai" as the
forecast period is increased --- smoother then can be accounted for by the
artificial averaging process that is applied intermittently to reduce small-
scale truncation error. In general, the mechanism of baroclinic instabllity
(by vhich the actual fluctustions in the initial flow pattern were originally
produced) tends to amplify components whose scale lies in the range of "baro-
tfqpic damping". Thus, sincé the.method of prediction does not disfinguish

between analysis error and real fluctuations of comparable or slightly greater
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scale, the phenomenon described above may be interpreted as a gradual trans-
fer of kinetic enérgy from disturbances of small scal_.e 10 those of larger
scale through the mechanism of barotropic stability. Indeed, the recent

~ work of Phillips (1956) indicates that this is the principel mechanism

by which the kinetic energy of the westerlies is maintained.

In sumnary, there 1s strong reason to believe that the effect of scale
on the predictability of a truly barotropic atmosphere would be a very real
one, Although it is peculiar to barotropic flow, it is also cne of the
dominant effects in sfrongly baroclinic flows.

| One never observes, of course, that the errors of barotropic forecasts
decrease as the period is increased. A part of this might be attributable
to truncation errdr. As suggested earlier, however, a more important rea-
son for the invariable growth of error probabiy lies in the fact that baro-
elinic flows are unstable with reépect to perturbations of smaller scale
than are barotropic flows --- or, more obviously, the fact that the atmosphere
is not really barotropic, Thus, in order to come to sny definite ecnclusions
about. the predictaebility of the atmosphere, we must investigate the growth
of grrof in predictions based on a baroclinic model.,

Before proéeeding to the discussion of more genmeral results, it should
be pointed out that Eq. (1) and all suﬁsequent expressions for the érror
growth contain only the first few terms of the complete Taylor expansion,
and are probably not valid for periods longer then a few days. The error
caonot, for example, grow indefinitely, since its maximm value is limited
by the total initisl kinetic energy, Likewise, it cannct decrease indefinitely,
for it must always remain positive. In particular, Eq. (1) is correct only
£0 within terms involving the fourth power of the period. In that caﬁe, the
first time-derivaxive of E vanishes at t = 0, a8 do all derivaxives.or odd
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- order. The lstter stems from the randomness of the initial error field ---
" whieh, together with considerations of reversibility, implies that fore-
costs and "hindcasts" over periods of equal length should be equelly in

errox.

IV. The Predictability of Baroclinic Flow

We now take up the results of applying the procedure outlined in Sectiomn
II in the case of the two-level baroclinic model. With sppraximations that
are more fully discussed in Appendix II, the percentage change in overall

érror during a period of length t takes the form:

E¥% - E* ' '
5 ¥ { F(M,n) ((# - w?) (2‘n = “ JITF-VT* + TTVT)

nPy? S
+ Ez'::_—uz (Vv - Vi®.vin)

2 2 2
S EER T ]

‘Here, for mathematical simplicity, the stetistical measure of error E¥ was

taken to be
B = § (R + Ty W) 408 (BT 4R

" {n which the subscripts 1 and 2 refer to conditions at the 250 and 750 mb
surfaces, respectively, and p® is a positive conistant.' Since E* is still
positive_ defiﬁite » its effectiveness as a measure of predictability is un-
impaired.  The quantities M, m and F(M,m) are as defined in Section III,

and are assumed to have the same values at 750 mb as they do at 250 mb. The
constant u, which is essentially a measure of temperature lepse-rate, 18

closely related to the wave number of maximum baroclinic ingtability, and is
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defined as

-1
2 _ S
vhere £ is the Coriolis parameter; R, the gas constant; g, the gravitational
acceleration; T and & are representative values of the absolute temperature
and potential temperature, respectively. fThe varisbles ¥* and {' sre re=

lated to the initial streamfunctions ¥, (at 250 mb) and ¥, (at 750 mb) as
1 2

follows:
Y, +3 %, - ¥
] !
P == V==
he=§ -ty Yo = Yy - Uy
where U

1 and 112 are the zonal components of the areas-averaged wind at 250

and 750 mb, respectively. Thus, Vii<+ VyX may be thought of as the MS vector

deviation of the vertically averaged wind from its area'a\'rera.ge.‘ Similarly,

V- W' 18 to be interpreted as the MS vector deviation of half the vertical
wind shear between 250 snd 750 mb from its area average., Finally, U' is
slmply half of the zonall component of the area-averaged vertical wind shear
between 250 and 750 mb. |

According to Eq. (2), as in the case of barotropic flow, the gfowbh
rate of error is proportionsl to the ir_zitia.l value of the MS vector wind
erxor. Moreover, since the term whose coefficlent is (M® - n®) is one of
the dominant terms on the righthand side of Eq. (2), the growth rate is

- to
. roughly proportional the MS vector deviation of the vertically-averaged

A
vind from its area average. For the same reason, it is evident that a
general decay of predictability in baroclinic flow is favored by an initial
error field wvhogse scale is large relative to the scale of initial disturbances
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- dn ﬁhe true flow patiern, end discouraged by the reverse.

The resulte described gbove, of course, apply equally well -in the case .
.of nondivergent berotropic flow. In the present case, however, they bre
conslderably modified by the thermodynamic processes operative in baro-
clinie flow. It should be noted that the term in Eq. (2) involving U‘ is
the only one that dqes not depend on deviations from purely zonal flow and
is, therefore, freguently dominant, It invariably increages the rate of
error growth, by an emount that 1s proportional to the square of the average
vertical wind shear and inversely proportional to the square of the average
static stebility. In other words, the atmosphere tends to be umpredicteble
1ﬁ situations of strong horizontal temperature gradient and negr-adidbatic
lapse-rate --- a result that is probably not very surprising to the practicing
forecaster,

The joint effect of scale end vertical wind shear is illustrated in
Figure 2, on which (E%* - Eg)/Eo after oné day is plotted as a function of
average vertical wind shear and the ratio of'error scale X to the scale L
of fluctuations in the true initial flow pattern. The vertical shéar is
expressed in units of the RMS vector deviation of the vertically averaged
vind from its aiea average., The nondimensional numbers 2R To* < ViF and
ﬁz/M2 were assigned fixed values of 5 and 0.56, respectively =~=- boih of

which are fairly representive of actuel conditions in the atmosphere. The

ratio of V¥ + Vi* to V' - V§' was set equal to k.

Figure 2 shows that the percentage growth of error in the case of no
average vértical wind shear is much like that in barotropic flow, the error
increasing when the scale of the initial error field is greater than that
of the true fluctuations in the initial flow pattern, and vice versa. As

the vertical shear increases, however, the rate of errpr'growth for iniltial
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error fields of any fixed scale also increases. Simultaneously, the region
of scale and shear over which the growth rate is positive includes initial
error fields of smaller and smaller scale. This general result is in accord
with studies of baroclinic instability made by Fjbrtoft (1950), Phillips
(1951), Eady (1952), and Thompson (1953), all of whom find that increased
vertical wind shear and decreased static stability tend to destabilize
baroclinic flows, and also points up the close connection between the
problem of predictability and the stability problem,

-The seriousness of these results can be most quickly appreciated by
estimating the ratio of the scale of actual fields of initisl error to the
scale of fluctustions in etmospheric flow patterns. Now, the average dis-
tence between regular radiosonde, rawinsonde, and dropsonde reports from
land-stations, fixed ship positions, and weather reconna.issa.n.ce aircraft
is about 700 miles =--- when taken over North America, the Caribbean Sea,
the North Atlantic and most of the Pacific, end weighted according to the
area that each report represents.¥ Tdentifying the average distance be-
tween reports with the characteristic half wavelength of the initial error
-fieid., and taking the average half wavelength of fluctuations in the true
flow pattern t.o. be about 1000 niles, we see that the exisfi.ng circumstances
Xe somevwhere near the dagshed line om Figure 2. Thus, when the re_lafive
wind shear falls below 0.9, the inherent predictability of the atmosphere
is quite high. (This is not to say, of course, that forecasts in such

situations will be correct, for they are actually subject to truncation errors,

C* Al repdrts obviously cannot be given equal weight, as one can easily see

in the exireme case when all reports are clustered around one point,
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boﬁndary errors, and defects of the physical model). On the other hend,
there are many vinter weather situations in.uhich the relative wind shear
exceeds 1.0, in which case E* may increase by as much as .5 E  after one

dey, 2.0 E  after two days, k,5 E, efter three days, and so on. Accordingly,
if the initial MS vector wind érror Eo is a subgtantial fraction of the MS
vectaor wind,'the error B¥* rapidly approaches the level of camplete unpre-

dictability.

V. The Maximum Range of Predictabllity -

Having gained a general idea of the rate at which initial analysis
error contaminates a forecast, we are nov in a position to make a crude
estimate of the maxiﬁum time-range of predictability, beyond which the at-
mosphere is essentially unpredicteble., Before doing so, however, one musﬁ
éirst decide what he means by "unpredictable". Now, it 1s certainlj in accord
with the common-sense meaning of the word to regard the occurrence or non-
occurrence of an event as "unpredictable”, if any prediction is no better
than a guess. Thus, we mey shift the burden of definition to that of de-
fining a standard method of "guessing" and a standard.error of guessing,
_against which the errors of "predictions" can be judged. We shall then
say that the atmosphere is unpredictable beyond the time when the inherent
errors of prediction approach the error of guessing. o

One of the most obvious methods of "guessing” ie simply to select
values of wind speed for each point at random, from a population of velues
whose frequency distribution is that of a représentative sample. - A meteorol-
oglst, of coufse, wouid not guess in this fashion, but would insure that his
"guess" varied smoothly from point to point, This does not affect the error
of rapndom selectlion, however, for such modifications are equivélent to

selecting homogeneous subpopulations from a collection of subpopulations
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“whose frequency distribution ia the same as for individual values. It is
easily shown that 'thé MS vector wind erfor of thies type of guessing is
exactly twice the MS vector deviation of the wind from its everage.

On a little reflection, one sees that the procedure described above |
is not a good method of guéssing, simply because always placing one‘'s bet
on the average wind would result in a MS vector wind error that is exactly
hﬁf that of random selection. Accordingly, the RMS vector wind error of
gueasing will be taken to be the RMS vector deviation of the wind from its
area average. It will be found convenient to express the RMS error of
guessing in units of the RMS analysis error. In these units, the RMS error
of guessing is of the order oi; b over most of the western half of the
northern hemisphere.

Let us now suppose that (E¥ - E¥) /Eo after one day is of the order of
.50, a figure that is made plausible by the results of Section IV. Thus,

since p.a/Ma is approximately .5, E* is approximately 2E, so that
+2 |
E"\"Eo(l""ﬁ') for t in days

The question ié now reduced to agking how big t must bé in ordér that E
(the MS vector wind error of prediction) equal the MS error of guessing ---

vwhich, in units of E_, 1s 16. The period v in question is evidantly

-rNJ-—days o 7,7 days

According to this estimate, the atmosphere is essentlally unpredictable

beyond a period of about a week. '
The result stated above should not be taken q;uite literally,; since

the MS vector wind error of predictipn undoubtedly does not continue to

increagse like the square of the period beyond two or three days. Offsetting
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this, however, are the facts thax'we have considered only the inheremt error -
due to uncertainty of initial state and have disregarded the various other'
types of error and, second, that the gquasi-nondivergent ﬁodel is probably
more predictablé than the true stmosphere.

These estimates, slthough they are admittedly and necessarily rathef
crude, must be of the correct order of magnitude and are consistent with
general experience. Verification studies rarried out by Bfiez (1944) and
others are in unanimous agreement that the forecaster loses virtually all
ability to predict the details of a weather situation for periods longer
then about five days. The significance of the present results does not;
however, lie in merely explaining the observed decay of accuracy, but in
being able to predict what the decay of predictability would be in eircum-
-stances that are altogéther different from the present one --- e.g., if the
dsta density were drastically increased or reduced. |

Another point deserving emphasis is that the foregoing results apply

to the predictability of flow patterns in natural detail, or to meteorological

events that depend on the phases of individual disturbances -- as, for in-
stance, rain or overcast skies on a particular day. Tﬁese results 4o not
necessaerily apply to the predictability of space- or time;aweraged flow
patterns. As mentioned earlier, it has been suggested by Namias (19&7) that
averaged wind fields might be inherently more predicteble than detaiied flow
patterns, end might be predicted over longer periods. In the next section,
we shall discuss the predictability of zonally-aversged flow pattqrna_in a
case where.difect comparisons are possible, namely; in nondivergent baro-

tropic flow.

VI. The Pfedictability of Zonally-Aversged Flow

Tn an earlier psper, Thampson (1957) has developed a method for pre-
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dicting the zonelly-averaged flow of a nondivergent barotropic fluid. This
enables us to compere the predictablility of zonally-averaged flow with that
of .unsmraged flow in a case that resembles the actual situstion er:ough to
vaprrant a fow tentative conclusions. Making use of techniques gimilar to

those outlined in Section II, and introducing approximations discussed more

fully in Appendix III, we find that
L = 212 1 W
-E'.‘.J[E(M“-Emz)Eot] i:"/; Udy (3)

in which m, E_, and t are as defined in Section IIT, and W is the eatire
width of the flow. The quantity U is the difference between the zonally-
averaged eastward camponent of the wind at a particular latitude and its
average taken over all latitudes; B is now the MS error in U taken over
all latitudes. The constant M is the "characteristic wave numbei'" of
meridional fluctuations in U.

According to Eq. (3), the statistical measure of error (when
normalized with respect to variations in the gquantity to be predi;:ted )
is equal to the fourth power of a nondimensional measure of the forecast
period. Referring back to Eq. (1), we see that the corresponding normalized
error in predictioms of the unaveraged flow can be put in a very similar
form, the non-dimensional méasure of the forecast period being about the
same, but raised to the second power. This implies that the zonally-l
averaged flow is more precii(:table than the unaveraged flow for periods
during which the nondimensional measure of time is less thaﬁ. unity,
Superficially, at least, it also implics that the zonally-everaged fiow

becomes legs pi'edictable than tﬁe unaveraged flow over longer ﬁeriods 9
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a conclusion that should not be taken seriously in view of the obvious
limitations of truncated Taylor expansions over finite intervals., It is
hardly conceivable that & quantity which is more predictable over short
periods should be less predictablé over long periods.

The greater predictability éf zonally-averaged flow --- which stems
directly from the fact that the gecond order time-derivaxive of the erfor
vanishes initiaily ~== 13 due to an essential difference between the
initial states of averaged end unaveraged flows. The reason is simply that
the averaged flow is not contaminated initially by random analysis error.
Although it is certainly not conclusive, this result suggests that any
average which is not sensitive to analysis error 1s more predictsbie than
the unaveraged flow pattern. At the same time, it must be pointed out that
the poésible increase of predictability brought about by everaging is
acquired at the price of losing "information content" --- in the usual
sense that the prediction of averages tells less sbout the unexpected or

abnormal event.

VII. Predictability as a Measure of Confidence in Forecasts

~ Another question that was raised in the introduction and which needs
little elaboration is that of estimating the probable error of predictions.
Although Eq. (2) says nothing sbout the total error to be expected from
approximations of 2ll types, it does pro;ide a mesns of calcﬁlating the
inherent error due to the wncertainty of initial state, and a means. of
reting fdrecasts according to the degree of confidence we should place in
;tﬁem. Tn general, of course, the probable error does not depend only on
the.initial error field, whose statistics are fixed by the character of
the dbsefvational netvork,'but also depends on conditions of scale, vertical

wind éhear, and static stabllity in the particular meteorological situastion
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in guestion. Thus, the inherent error should (apd can) be computed daily,
and issued in copjunction with the forecast itself.

By this time, it should be abundantly clear that the theory described
here 1a a combination of the dynsmical and probabilistic spproaches to pre-
diction, The probsbilistic element is introduced directly into the dynam-
ical equations by specifying only the statistics of the avalysis error; this,
in fact, is all that is known about an essentially random error field, It
is not claimed that this is the only approach, or even the best spproach.

It is merely a first step toward reconciling a deterministic approach with

the meteorclogicel facts of life.

VIII. The Point of Repidly Diminishing Returns in the Development of

Numerical Forecasting Methods.

' Our next concern is to compare the total error of predictions with
the inherent error due to uncertainty of initial state alone. Experience
over the past few years indicetes that the RM5 vector wind error of numerical
predictions over 36 hours is about 50% of the RMS vector deviation of the
wvind from its area average. Judging fraom the fough esﬁimates mede in
Section V, the ipherent RMS error after 36 hours is ebout 30% of the same
standerd. The difference between the total RMS error and the inherent RMS
exror --- roughly 20% of the RMS vector devietion of the wind from its
average =--=- must be due to the combined effects of truncation error, roundoff
error, boundsry error, and shortcomings of the physical model. A part of
this error, conceivably, might also be due to some fundamentel indeterminacy
_iﬁ the behéwiér of the atmoséhere.

The result stated aﬁove is subject to two rather important interpreta-

tions. In the first place, errors of numerical method and defects of the
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present physical models are quite large enough to account for the residual

error not accounted for by the inherent error; and are coptrollable within

economic limitations, In short, there is nothing in these resulis to in-

_ dicate that the atmosphere is unpredictsble in any fundemental sense ---
i.e., that there is any mysterious principle of uncertainty operating, other
than the very real one discussed at length in this article,

It is also interesting to note that the inherent RMS error after 36
hourgs is ebout the éame size as the residual RMS error, both being sbout
one quarter of the RMS deviation of the wind from its average. This indi-
cates that it is certainly worth trying to halve the residual error through
the use of higher order finite-difference approximations, special smoothing
technlques, hemispheric finite-difference grids, more reference levels, and
more realistic physical models., It is also evident that even further efforts
in this direction would et most result in something like a 25% reduction in

& total RMS error that would still be about 4od of the RMS deviation of the
vind from its average, and that such further geins in eccurscy would be'
bbught st enormous cost. In summery, the development of better and more
complicated numerical prediction methods has not yet reeched the point of
rapidly diminishing returns, but will have approached it when the RMS error
due to "controllsble" sources has been about halved. At that point; the
only significant gain in actuai'predictability is to be made by reducing the
inherent error ~--- that is, by increasing the density of regular reporting
gtations, It is also clear that the time to prepare for such drastic action

has already come.

IX. The Effect of Imcreasing the Density of Cbserving Stations.

Tt has been stressed several times earlier that the growth of the in-
herent error --- due to errors iﬁ reconstructing the initial state from
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data at a finite nucber of points --~ depends crucially on the scale of the
initial error field and, ultimately, on the spacing of the upper air observ-
ing stations. We have shown, further, that initjal anélyaia.error over the
_oceans and other regiomns of poor data coversge leads to a widespread and
rapid growth of error --- so rapid that the detailed flow of the atmosphere
becones complétely and essentially unpredictable after periods of about &
week. This situation, as has long been recognized, can be remedied effec-
tively only by increasing the density of reporting stations over regions
where the density is now quite low. The remaining questions are these:

What return in increased predictability can be expected from increasing

the overall density of reporting stations, and how does this compare with
the corresponding outlay of funds? Where is the point of rapidly diminishing
return per outlay? How should new stations be located in effecting an in-
crease of overall station density?

Tﬁe facts bearing on these questions.are summerized in Figure 3, vwhich
shows & éraph of the cost of maintaining & uniformly dense network of sta-
tions (expressed in units of the cost of maintaining a uniformly dense net-
'work, whose density is equivalent to the overall densify of the present
network) plotted against the percentage increase of the inherent RMS vector
wind error after two days for a relative shear of 1.2. For simplicity, it
was assumed that the cost of maintenance per observation is the seme for all
stations, fixed or moving, regardless of type. This assumption would be
fairly true, for example, of land stations and installstions on ships moving
along theii normal courses. Our pfesent gituation is estimated to lie near

the circled point on the curve.

Inspecting Figure 3, we see that doubling the cost and overall density
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- of cbserving stations would all but eliminate the increase of inherent error.
Thus, although it -w»:mld not campletely eliminate the initial error, it would
reduce the total RS vector wind error In 48 hour predictions to something

_on the order of 45% of the RMS deviation of the wind from its average,
rather than the existing error of about 60%. Moreover, according to our
present estimates, trebling the cost and overall density 6f the observational
network would produce no significant reduction of ;thérent error, beyond
that attainable. by doubling the present outlay. Thus, the point of rapidly
diminishing returns lies scmewhere around double the present cost.

In sctuality, of course, the density of observing stationa is far from
uniform. Thus, the optimum strategy in effecting an overall increase 11;
density 18 1o estsblish stations in the regions where the density is lowest
up to the density level of the surrounding regions, and then to increase the
density over a more inclusive region up to the density level of areas of
good coverage, Thiz is simply because the cost of producing an effective
ipcrease of overall density in & nonuniform network is less than the cost’
of producing the same incresse of demsity in a uniform network, In fact,
if economy were a strong factor, and if the aims were ‘to produce uniform
forecasting accuracy over very large areas, it would be désirable to re-
place some. land stations in regions where they are eéctremely denge By
stations aboard moving' ehips.

From considerations of symmetry alone, the optimum distribution of
cbserving s-ﬁations is very nearly one of uniform density, slightly modified

by the va.fying degree of meteorological activity over different i-egions and

by the fact that maximum forecasting accuracy should be attalned :Ln regions
of dense population. Experience with pumerical prediction over the past

two years has shown that two and three day forecasts for the United States
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alone are strongly dependent on the initial state of the atmosphere over
more than half & hemisphere. Accordingly, the fact that few people live
or travel in the mid-Pacific is not a strong argument for concentrating
observing stations in the United States.

It is hoped th;;t the resultz-; described in the foregoing sections of
this article, or more refined estimates based on a similar theory of pre-
dictability, can be used as a common besis for decision end action in deal-
ing with a problem that, by its very neture, is truly international. It is
also to be hoped that these father crude estimates of predictebility will
not be accepted at face value, but will provoke more camplete studies of

the empiriecal factors that enter into this important problem.

X. The Effects of Heat Sources and Viscoslty

The estimates of predictebility presented earlier do not include the
effécts of viscous momentum transfer and nonadisbatice heating. Thus, al-
.though these processes are probably not important factors in the predict-
abllity of atmospheric flow patterns over short periods of time, it is
8till a matter of interest to speculate about their géneral effect. By
and large, the net effect of internal viscosity is to reduce the variance
of relative vorticity, and to cbliterate gradually any trace of previously
existing circulation cgnters. Consequently, the state of a viscous fluid
depends more on the dynamical properties of the system.and the external in-
fluences acting on it thap it does cn an initial state at some time in the
remote péat. It is hard to imaginé, therefore, that the effect of viscosity
: iﬁ to increase the predictability of the flow, except in & sense to be dis-
cussed later.

Similarly, it is difficult to conceive that nonadisbatic heating acts
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in such a way as to lncrease the predictebility of the detailed flow pattern
over short periods. Apart from the fect that the distribution of heat sources
i8 not precisely knowan, it is lmprobable that the. existence of convective
ingtekility on any scele iz conduecive to accurate prediction, It is also
true, of course, that nonadisbatic heating has a deciasive effect on long period
trends in (say) monthly averages --- as, for instance, the change of seasona.
It is certainly not necessary to know the detailed state of the atmosphere

in the middle of the swmer in crder to predict the coming of winter. This
is due to the fact that long-period averages depend very little on the de- |
tailed state of the atmosphere at some time in the far distant past (partly:
through the dissipative action of viscosity), but are positively controlled
by the cumilative effect of energy input. It may turn'out, in fact, that
averaées vhose variations depend primarily on the external influences

exerted on & quasi-linear system are more predictable over monthlong periods

than the detailed state is over a week or s8o0.

XI. Sumary of Results
| A brief review of the main results is given in the last five paragrephs

of the introduction.
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Appendix I - The Predictability of Nondivergent Barotropic Flow

We bugin with the definition of the meen square error B.
1
Be i VR VR dA
A

vhere A is the area of a very large region (also designated by A), dA is
an element of A, end R 1s the error in the streamfunction at various points
~ and at time t. All notation is steudard, unless specified otherwise. Dif-

ferentiating E with respect to time, we have

A

2 oR OR,
=Kf(v-kv3€-nv2&)m\

A

A part of the infegral above may be transformed by applying Geuss' theorem,

as follows:
B 2.3 ,3R 2 oR
&"zjr“aa‘ﬁ)dc 'xf”aas“

¢ A
in vhich C is the path around the boundary of A, 4C igs an element of C, and

a derivative with respect to n 1s the component of the vector gradient

normal (outward) to C. Thus, since R vanishes on C by hypothesis,

g%--'%fnveg%d;\ | | ()
A |

Now, the equation governing the evolution of the flow pattern from an

initially incorrect wind field is



vgg;(v;n) + J(¥ + R, V¥ + ¥R) +ﬂ§;(t+n) = 0
whereas the equation for the correct flow pattern is
vi’g%+.r(v,v2t)+eg§-o ~(5)

B is, as usual, the Rossby pb.rameter and x 13 the eastvard coo:_'dinnte_. . Bub-

tracting the equation above from the one preceding it,

vﬂaﬁu-[J(R,vzv+ven)+J(w,van)+ag§l§-n (6)

We next eliminate * % between Eqs. (4) and (6), with the result that

2.2 oo, vmaas) [, Fvana (0
A A ' -
1, R
A

By epplying Stokes' theorem, the second integral on the rig’h‘t._-h_ahd side of
Eq. (7) can be transformed into a line integral around C, whose integrand
contains R as a factor; thus, slnce R venishes on C, fhat inteéral vanishes.
Fof similar reasons, the third integral on the right-hand s.ide of Bq. (7)

yanishes. At any time t, therefore,

§§'= %fn J(¥, V°R) dA
A

LY

kaxMﬁNA (8
A |

vhere Kk is & unit vector, directed vertically upward, At t = O, v and R

are uncorrelated by hypothesis, so that the right-hand side of'lq, (8)
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vanighee initially --- i.e®., designating conditions at t = Q by the sub-

ecript zaro,

& ) -0 (9)

- Ve now differentiate Bq. (8) with respect to time, At any time,

f[k Wx[EV(VER)+RV(V2 )]dA
fn: v( )xnv(v‘-n)dA (1(_:;

At t = 0, however, the second integral on the right-hand side of BEq. (10)
vanighes, since g‘g is given in terms of ¥ alone by Eq. (5), and because ¥

and R are uncorrelated initially, Initially, therefore,

aag fm o x (& v(van)-(v'*‘ ) w) aa

" %f.r (v, 1= &y an : (11)
. A. ' ' - p
By applying Stc?kes' theorem, the second :I.ntegi‘&'l. on the r_ig\;t-l}and side
of Eq. (11) can be trensformed into & line integral around C, whose inte-
grand contains a factor of R; thus, since R vanishes on C, that integra.]-.r
also Ivanishes.

The next step is to eliminate the time derivatives of R from Eq. (11)
by résubsti_tutiqn fram Eq. (6). We have

oR .
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from which

R [[otem) wx + &, v + 1) aten (12)
A

where G is the Green's function corresponding to the Laplace operator;.fof
G = 0onC; x and y are rectangular coordinates in a horizontal plane; § and
n are variables of integration corresponding to x and y. As implicitly
egsumed in Eq. (12), the Green's function for a large reglon A 1s very'
nearly 1ndependeﬁt of x end y at almost all points of the region. Bimi-

larly, letting VR = Z,
B(WR) = W¥R) = V2

W = ‘-ﬂc(g,n) VZ(x + t, y +n) dkdy
A

Thus, substituting these results into Eq. (11),

2 - . | )
%t%} ?{@F k- W (x,y) x (V2 (x,y)gG(m) N(x + &, y + n) dedn
- N(x,y)ffG(&,ﬁ) VZ(x + &, y + 1) dédn] dxdy
, . A -

From now on, it is to be understood that this equation applies only d# t =0,
and that the right-hand side is to be evaluated from the initial fields of
¥ and R. We now invert the order of integration in the equation ébo?e, with

the result thsat
3°E o '
52 ° c(&,m) x (&,m) atan where . (13)
' A : .
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X (&) =%]f e« W (2,5} * [N(x + ¢, y +n) V2 (x,y)
- A

- N (%) V2 (x + &, y + 1)) dxdy

Finally, introdueing the definitions of N and Z,

oR
X(£m) =3 ff (9 (4, PR) [1(R,P¥ + PR) + 3y (%, R) + B 5]
A

- J(v,vznd) [J(R,®¥ + VR) + J(Vv,%°R) + B g’_r:] } dxdy

vhere quantities without subseript apply at the variable point (x,y) and
those with subscript d ap}’;:ly at the point (x + &, y + 4).

Ovixig to the rendomness of R and the fact that ¥ and R are initially
uncorrelated, certain terms in the integrand above vanish in the mean,

Others, however, do not vanish. In fact, the integral of one such term

L [ atnen) 3, (47 axy
A
is the autocorreletion function for the advection of initial #o;-ticity
error vith the true initial wind. Similarly, J(¥,V°R) is correlated with
Jd(R,Va_V), simply because R (which oscillates around zero) is highly'
correlated with V°R, and ¥ is correlated with V'¥. As & result of such

considera.tionéi X may be written as

x (&) =3 ﬂ [3(E,7R) 34 (R,%°F) + J (§,%°R) J; (¥,¥°R)
. |

- ETRY T (RFD) - HLPRY T (L)) asay  (a8)

in which ¥, = § - Uy, U 1is the gonal component of the average wind over A,



and y is the northward coordinate. Since both § and R oscillate around
zero, they are both highly correlated with thelr Laplecians. For purposes
of approximating X, therefore; we write

VR = - n°R FY = - M3§

vhere m and M are inverse measures of scale, defined as

o

p? = - IR W= Y

B ¢

and the ber above a quantity denotes its area averasge over A. Introducing

1t

these spproximations into Eq. (14), we find that

X(gm) 2 w08 - w®) (J{ER) TR, - JAVR) JTR)] (15)

This equation makes it clear that X is a kind of autocorrelation function.
The next problem is to express X in terms of the autocorrelation
functions for the initial fields of ¥ and R. Let us first consider the

quantity |

TGR) HEsRy) = 4] 1] [WR] [¥R,| sin a sin a,

in vhich & is the angle between V¥(x,y) and VR(x,y), and @, is the angle
between V§(x,y) and VR(x + £, ¥ + n). Now, it is clear that the decrease
of X, as § and n become larger and larger, is not due to any systematic

decrease in the correlation between |VR| and lVRdl, but .to a decrease in

the correlation between @ and ay. Approximately, then

TTHH HGR) = G-§ WR-WR sin o sia o

Moreover, assuming that all angles « are equally probsble in the mean,
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o vy
o 8in o 2

where iﬁ is the normslized sutocorrelation function for the initial field

of R. Following a similer line of reasoning, we find that
T - 1l ey e = =
LR I, (HB) o5 W B*WR X Xg

in which ’—‘i 16 the normalized autocorrelation function for the initial §

field, Introducing these estimates into Eq. (15), and substituting the

resulting expression for X(¢,n) into Eq. (13) , we bave

FE L 20F - 1) W VR ] o(e) (% - Ky Xp) aten (16)
A

This formula expresses the second time-derivative of E at t = 0 in terms
of statlsticel properties of the initial fields of §¥ and R --- namely,
the characteristic sceles of those fields, their mean-square gredients,
and their autocorrelation functions. The Green's function G is analytic ’
and can be comimted with any desired degree of accuracy.

'l‘he most direct procedure, of course, would be to detemine the . auto-~
correlations for ¥ and R empirically. It is desirable, on the other hand,
to express )’Zi and _XR explicitly in terms of the scale parameters m and M.
Accordingly, for purposes of estimate, we shall mssign them simple analytic
forms. Provided the statistics of the ¥ and R fields are isctropic, the

second derivatives of the autccorrelation functions at (&,4) = (0,0) are

| W %
=

w
2

&3

where r2 = £2 + 1%, We now assume that the equations above hold frém r=0
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to the points where the autocorrelation functions venish. That is,

_ 1-’."%& uhenr<§
Xgr- . 2
0 when r > &

2 :
_ 1--1;'-'2 uhenr<?-
X = 2
_ 0 whenr>E

To & degree consistent with earlier epproximations of G, these expressibns

lead to:
_ | i—ﬁzl iIfm>M
ff G(&,n) (%, - XpXy) dkdn %< .
e - 52- ifm<M

Substitution of this result in Eq. (16) glves

(BQE M2 .2 - - -
gg) = 2(M° - %) W W, VR *WR, F(m,M)

o

where
/’

5 |

F(x'n,m). -5 I

ifm'>M

ifm«< M

A% W%

Finally, expanding E in a Taylor series around t = 0, end recalling that
(3e/ot) venishes,

) 4 oo’

:-E = ( ) 3. (

:~_nz:o(m2 - o) WV, 2 F(m,M)

From considerations of reversibility, the third derivative of E at t = O -

(end all higher derivatives of odd crder) must venish, The equation above
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ie Bq. (1) of Section III. Together with Eq. (8), the result ebove implies
that the error cannot remain rendom with respect to ¥; although initially
random, the error £ield is organized through nonlinear interactioms to pro-

duce aa increase or decrease of error as the period t is increased.

Appendix II - The Prediciabiliiy of Baroclinic Flow

The procedure fbr calculating the initiel time-derivatives of mean-
squaxe error in the case of the two-level quasi-nondivergent model is
exactly maloéous to the pattern of development described in scme detail
in Appendix I, and will be reproduced only in outline. As before, we be-
gin by considering a statistical measure of error E.

Bed) 5 ) o

A

E%f(VR*-VR* + VR'+ VR') dA
A

in vhich Rl and, R2 are the errors in the streamfunctions at 250 and 750 mb,
respectively, and
w B tR R By
L= L=
Unless otherwise indicated, all "starred"” end "primed” variebles shall
bear this same relationship to the corresponding variables at 250 snd 750 mb.

The equation analogous to Eq. (4) is
gEE=-§f(R*veg-tR—*+R-v2%‘i)'dA (ba)
_ _ A ‘ :

In this case, the equations by which the time-derivatives of R* and R®

are eliminated from JE/Ot and higher derivatives of E are
=40=



v B (e, oo PR + (v, PR¥)

+ J(R', ¥’ + PRY) + J(¥', VR') + B %fl'

- -§*  (6a)
v g%R_' = - [J(R%, P¥' + ¥FR') + J(¥*, VR')
+ J(R'y P¥* + PRE) + J(¥', PRY) + B %ERJ
- L +BY, BY) - 20(R%9)] © - K (60)

Substituting from Eqs. (6a) and (6b) into Eq. (4a), and introducing the

fact that R* and R' are assumed to vanish on C ’
aE* 2 ] (] L} 1)
St =5 [ [BI(¥*, 2%) + RI(v', 2') + R'I(¥*, 2')
' A

+ R'J(¥', z*%) - p?R'I(R*, ¥')] dA (8a)
where

'E*-s%f(vn*-vm+vnfovnv+p23'2)djx and
A . :
7% = VzR* 7 = VZR'
As before, the initial randomness of R* and R' requires thab JE*/dt vanish
at t = 0. Differentiating Eq. (8a) with respect to time, and again taking

advantaege of the facts that R¥* and R' are initially random and vanish on C,

we obtain an equation analogous to Eq. (11).
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S A S v - S e+ G -

2

+ k. VW'x[&—VZ' gi-vn*q»g{*—vz*-%?va']
2 OR! * o OR™ . ows |
- u 3—J(R *)"‘H&—J(R:#)]M (11a)

- Time-derivatives of R* and R' are again eliminated by recourse to Egs. (6a)

and (6b), with the result that

..._... - eﬂs(g,q) X (&,q) dedy vhere now (13a)

x(,m) -%_/f[ ko V% x (N§ VZ¥* - N VZX
A .

+ 8] VZi - ' V&)
+ kW' x (N‘é‘ VZ' - N VZ¥
+ N VZ* - N* V1)

- uPN) J(R*, ¥') + u3N% J(R', ¥')] dxdy

We next introduce the definitions of N*, N', Z¥ and Z', and meke furﬁher
use of the initial rendcmness of R¥ and R' to put X in a form similar to

that of Bg. (15).

2.



2+

Wisn) = 2200 - o Ry) NV, R) + J(¥!, Ry) J(¥', R)

- 3§, B) J,(¥%, R) - J(¥', R) J(¥', R)]

i ~ . —
* e DA RY X ®) - 3G, 1) I, X)

- a(§'5 B) J4(¥' R) + I(F*, R) I4(¥ R)]

YR - MR) == _ T p——
* E—;T;:o.—)‘ (3", R) 34(¥' R) +m“g—ﬁf‘" U e, (15

in'wh.ich ¥* = §%* - U¥y and ¥' = §' - U'y; U* is the zonal component of. the
area average of the vertically-averaged wind, and U’' is the zonal -compqnent
of the aréa average of ha.li’ the vertical wind shear between 250 and 750 mb.
For simplicity (although it is not necessary), it has been assumed that the
statistics of R¥* and R' are the same. Folldwing proceduréé similar to
those by which Eq. (16) was derived from Eq. (15), we arrive at a formula
that expresses the initial value of ‘c;he second time-derivative of E¥* in

terms of the statistical properties of the initial error and vwind fields:

(azE*> - TRVR ([m2(° - 2)(———%)(@ T+ R

n2 ' . . B s .
+ B (T - ) Aﬁ(g,n)(xR . "RXI) agan
_ "Sm'a—ra—'l V! . Vﬂi'f[G(M) HXR% dgdn
+ 2"4‘“2 U'zjfﬂ(sm) Xg dgdn) (16a)

Finally, substitution of the approximate sutocorrelation functions described

T I



in Appendix I, and expansion of E* in a Taylor series around t = O leads

to Eq. {2) of Section IV.

- Appendix III - The Predietability of Zonslly Averaged Barotropic Flow

We now consider the MS error B in predictions of the zonel component
U of the zonally averaged wind, starting with reconstructed initisl wind
fields in which Rﬁ and R , are the analysis errors in the eastward and north-

vard wind components u and v,

1 W
E=ﬁL deyl

where R 1s the error in u at various latitudes, and W 1is the entire width

of the flow. Differentiating E successively with respect to time,

=_fw R gy

W
'gi:“—f [R—z )aldv

gzﬁ f[n 5%"1?—2-21@

2. f{na““ WBER, 5 iy g Can

Initially, R vanishes, because the analysis error Ru is random and oscillates

around zero. Moreover, the first derivative of u is given by

in which a "bar" above & quantity ncw (and henceforth) denotes its zonal

il



average, Ths equation sbove implies thet, initially

g S S

. T: (vR, +WR, +RR,)
Since the enalysis errors Ru and Rv are assumed to be uncorrelsted with
the true initiel wind field, and are themselves independent, OR/3t vanishes

ipitially at all latitudes. Together with Eq. (17), these results imply

that

3B, O %
(E)O = (&2)0 = ('31;1 o.ﬁ 0

%, _6 Y ¥®n :
GD =% [ e e

Thus, expanding B in a Taylor serles around t = 0,

<Gl G o

From this formula, 1t follows immediately that the MS error in the zonally-
averaged wind increases like the fourth power of the period,

It remains to estimate the second time-derivative of the error R for
any particular latitude at ¢ = 0. This can be done most simply by ma.king '
use of Eq. (2L) of Thompson (1957), in an approximate form justified later

in that article. At any latitude,

?af-eﬁ?u _ (19)
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Now, since R vanishes initially, Eq. (19) implies that

(2_21‘.%)0 = g (v + Rv)a - ;,-E] -2U [{v + Rv)(v2v..,, VZRV) - WAV}

Thus, because Rv is random with respect to v,

¥R Ry .
(Btz)o = E‘; 3 -Z.R_VGER1r u

Por puwrposes of estimate, we now introduce a characteristic wave-number

& of the initial error field, and a characteristic wave-number M of meri-
- dional fluctuations in the mean zonal wind profile. At the same time
recalling that the statistics of the initial error field ere isotropic, we

may rewrite the equation above in the form

(-S—f%)o=%(zn“’-ﬁ2) R-RU

‘where R is the vector error in the initiael wind field. This equationm,

token together with Eq. (18), leads to Eq. (3) of Sectiom VI.
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Captians
Figure 1 (a) - A hypothetically "true" initial contour pattern.

Figure 1 (b) - The contour pattern reconstructed by interpolation between

~ glven "true" height values at the circled points,

Figure 1 (c) = A typical pattern of initial analysis error, formed by
‘subtracting the helght field of Fig. 1 (2) from that of Fig. 1 (b).
Note. the relation between the "station locations” end the positions
and scale of the error centers.

Figure 2 - Percentage increase of error as a function of error scale and
average vertical wind shear.

Figure 3 - The cost of msintaining a uniformly dense network of stations,
plotted agalnst the percentage increase of inherent error correspond-
ing to that outlay. The circled point on the curve represents the

existing situation.
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