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1. " Introduction
.Over the pa.st fevw months, the Joint Numerical Weather Predictlion Unit
| hu cmputed over sixty sets of 12, 24, and 36 hour numerical forecasts,
baesed on the equations for a generalized form of the so-called "thermo-
tropié" model. This two-parameter model is very similar to the one described
by Thompson and Gates (1956), in that the terms representing the reoriente-
tion of vorte,x' tubes and vertical advection of vortieity are omitte& from
the vorticity equstion, but differe from it in the following important re-
spects¥: . . '
-(l) The absolute vorticity, where it enters aa a factor of the “"diver-
gence” term in the vorticity equation, is not replaced by the Coriolis
parameter. |
(2) The total derivative of pressure at 1000 millibars is not set
' _equa.l to zero, but is computed as the advection of standard pressure
at the ground surface with the mterpoluted geoatrophic wind at the
ground surface,
(3) The finite-difference gri& --- a rectangular array of 30 x 3%
points, lpaced about 300 kumaters apart along the grid axes --- |
cavera an area much larger than that covered by earlier multi-param-
eter forecasts. Thus, ’ since the restrictions still present are valid '
_i'd‘r disturbances of very large scale {vhere the Richardson number is
large), the model in question approachec the most general. two-param-
'. . ‘eter: gyasi-ggost.rophic model, '

j___'iA sore detalied discussion of the "thermotroplc” model is given by Thampson

. in Appendix I, Report of Progress from 15 February 1953 to 15 August 1953,
Joint GRD-AWS Mumerical Prediction Project, Geophysics Research Directorate,

. AF Cambridge Regearch Center.



_ A limited nwiber of conpa.risons'betw_een forecasts that were identicel
‘{n all other respecte showed that the introduction of chenges (1) end (2)
aborve produced s slight, but si@iﬁca.nt :.mprovemsnt in the accuracy of
both the 500 and 10C0 millibar heisht forecasts. Similerly, the intro-
duction of change {3) guaranteed that the forecests in the central por-
tion of the grid were almost completely unaffected by errora in the
lateral’ boundary conditions for perlods up to 36 hours. Further ccmpui-
sons between otherwige identical models have revealed that forecasts com-
puted fron the initial streamfunction {Calculated from the balance equa-
tion for nondivergent flow, and treated as & "height") are slightly, but
signiﬂcantly better than forecasts computed from the initial height
Pleld 1tself. '

_ In a more sbsolute sense, the 500 millibar height forecasts baged on
the current version of the thermotropic model are slightly, but signifi-
cantly better_thﬁn thbse based on the barotropic model, the JHWP Unit's
earlier 3-level model --- a_.nd, for thet matter, better than the 500 milii-
bar height forecasts prepared subjectively by the National Weather Analy--
sis Center. In a still more sbsolute sense, the 500 millibar thermotropic
forecasts are essentinlly "correct”, usually predicting the observed trend
of the large-scale changes for periods up to 36 hours. A truly bsd pre-
diction of the large-scale circulation pattern at 300 nillibvars is almost
s rarity. : | ' ‘ '

The 1000, millibnr "themotropic" forecests, however, still leave much
to be desired Taken on the whole, they are perhaps slightly better than
the ferecasts based on the JNWP Unit's earlier 3-level model, comparable

. with the aubjective forecasts of the NWAC, and inferior to the 500 milli-

_’-ba. forecaats cemputed by eny of the accepted numericel methods. With

" change (l) above , spurious mparoelinic” anticyclogenesis (usually con-

fined to the louest layers) hes been considerably reduced. Moreover ) By '

. treating the ipitial atreamrlmction for "balanced" flow as & heigat,
.spurious "barotrgpic“ anticyclogenesis {extending through all layers, and
" most pronounced in Bubtrepical highs) cen be effectively controlled.
Illevertheless, the 1000 millibar thermotropic forecasts frequently displey

"highly unrea.list.ic ‘changes in the phase relations between toe surface sys- .

" tems ‘and the la.rge—scale treughs and ridges aloft.

' Considering that the JNWP Unit's thermotropic model does approach the
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general two—pmter in—geoatrnphic model, it is natural to ask
vhether the poor quality of the 1000 millibar forecasts is due to the
lack of vertical resolution or to the quasi-geostraphic character of the
- model. With regard to the first alternative, it should be noted that the
1000 millibar forecasts based on the 3-level model (making due sllowances
for emaller grid area) were no better than the thermotropic forecasts.
One is thus 1éd to sugpect that the main defect of the models currently
under study is not merely that they do mot detect &)l the minute varia-
tions in the 'vert.'x_cal structure of the lerge-scale disturbances, but that
they do not accurately reproduce the physical mechanism by which the flow
in the lowest layers is coupled to that in the middle snd upper tropo-
sphere. | In view of the facts cited above, the system ig evidenily not-
governed By.. the eguations for quasi-geostrophic or quasi-nondivergeat
flow, even beginning with initially nemgeostrophic (balanced) initial
conditions, It sppears that the system is governed, rather, by the equa-
tions for an essentially nongeostrophic divergent flow.

The purpose of this memorandum is to derive the eguations for 2 two-
parameter nongeoatrophic model, which is not much more complicated toan

the con'eepcmding quasi-gecstrophic or quasi-rondivergent models, and
"o outline a. numerica.l method by which those eguations can be solved,

: 2.  The Vertical Distribution of Vertical Motion.

‘Since the menner in which the horizontal motions at different levels
are coupled together depends crucially on the diatribution of vertical
motion, it is important t.hat any model reproduce aamething like the cor-
rect verbicd. profile of vertica.l air speed or vertlcal mess transport.

It is 1mp11c1t in the thermotropic model and virtually all other two-
‘parameter models that the profile of vertical mess transport either has &
specified (uéually paravolic) form, or that the verticsl mass trangport
varies smoothly and remains of the same sign throughout the entire depth -
‘of the atmosphere, The validity of such crude representations of the
distribvution of vertical motion may be investigated with the eid of a
diagnostic equation that' relates w, an anproxXimste measure of vertical

uass _tmsporb,f to a giver height distribution.

°av2m+rq5;-=f§5w VR -FW ¥ %=F(x,y,p) (1)

p?
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,j_;iin Hhich %= (32'1‘8/39)(39[82), & measure of the stat.ic stabllity; p is
pressure; va 13 the horizontal Laplacian operator; w = %% f is the
',‘CQrial.is parlmeter i n s the sbsolute vorticity; W ie the horizontal
,“proaeetion of the wind vector, V is the norizontal vector gradient; end ¢
KT the geopotentm Eg. (1) was obteined by differentiating the vorticity
‘iequation for quasi—geostraphic flow with respect t0 Py applying

.Isplacian opemtor to the adiabatic egquation, and eliminating the height
tendency betmn the resulting pair of equationa. It is most nearly exact
 mtm1musmuewmumansaumeWMu.“

In the great n.jority of .cases, . _vhen the flow is annost equivé.lent’ ,
'barotropic, ‘the character of the w-profile is determined primarily by

. vert.icul variations in the advectian of absolute vorticity “-- i.e.; bY
the ﬁ.rst term on ‘the right- -hend side of Eq. (1). In general, although-
the sense of the tempera.ture gradinnt reversee as one passes: from tropo-

" gphere to' stratosphere, the direction of the isotherms remains sbout the
same 'I‘hus, the ‘vorticity advection norme.lly reaches its extreme values
nea.r the tropopa.use level, ihence F changes sign et sbout that level. '

_'l‘his, wit.h Eq (1), implies thet the three- dimensional "curvature” of

. the u-ﬁeld allo cha.nges sign mear the tropopause level. According, if
the tropopme 18 low encugh, @ {tgelf may vanish at & height samewhat.
‘above tropopause level, gmd reverse its aense before reach;mg a value of
-"zero nt a prelsure of zero millibm

Since thin qunlitative deecription of tho w-preﬁle does not agree

‘i_with thst provided by the thermtropic a.nd. other 2-parmneter models, 1t
'15 vorbb mak:l.ng a rough qua.ntitative eatmate of the effect of the tropo-
T-'_"panse in the nomu. ‘case of- equivalent-’barotropic fiow. This can bte dome -
Z‘lmmt si.nply by upplying Eq. (1) at the tropopamse (here aspumed to lie at |

300 milliba.rs), 650 millibare, and 150 millibars. --Since w oscillates
arcund zero st any level, ¥ is highly correlated with w, so that the
: re-ultmg equations may be uritien in the appm.ﬂmate form:

Bzu 1‘32 o Fj
— e B (), B
B R o
-(a?u)'- By o



) vhere the subacripts 1, 2, and 3 refer to conditions at 150, 300 and 650

; millibars respectively; k _?_; v is an inverse measure of scale, cor-

responding to the wavelength of maximum paroclinic instability; and a is

a positive constant for equivalent-ba.rotropic flow, reflecting the degree

to which the temperature gradient reverses sbove the tropopause., When

all vertical derivatives are replaced by corresponding ratios of finite

differences » &nd the upper end boundary conditions are introduced, the -

equationa above became a complete system of lineer algebrale eguations

. involving w 19 W) and w3 The solution of this system is illustrated

by the solid curve on Fig. 1, which ahows the typical w-profile for @ = 1,
=2 (corresponéing to izothermal lmpse rate), k32 =1 (eorrespondmg

fta BB/Bz = 3.5° A/im.), and ka = 1.5, The most striking features of

Pig. 1 are the reversal in the sense of » at about 200 millibvars, and the

~ pronounced extreme of w at a level roughly mit_lway petween 200 and 1000

- millivars. '

As far as the design of a 2 parameter aodel is concerned, the rele-

: \_vant question 18 how to choose the reference levels in such o vay that

Bzw/bpe 1s best spproximated by finite differences. The most common

pfab_‘i_:i’eevis ‘to appreximate 3w/dp® at 500 millivars as

ino - 2_-(»500 + Wnng

(500 mb)? -

taking o = 0 smd wyon, = O (1n the case of fiat témm).
A better procedure, e may b& seen fram Fig. 1, is to approximate d%w/dp®:
at 600 millibars as

‘."200_ - 2 W0 T Y1000
(500 mb)2

~ taking Yoo = 0 =nd W oo = 0- Stated in anotuer vay, the question 1ia
2



uhetﬁef_ﬁhe'gétunl'w-pfofile.in the troposphere is best approximated by
a8 fnrdbola passing through (w = 0, p = 0), (& =0, p = 1000) and

max, p = 500) or by & parsbola pessing through (w = 0, p = 200),
(w =0, p =1000), aad {w = }ml , p = 600). For reference, these para-

(= ol

bolae are plotted on Fig. 1 as dashed and dotted curves, respectively
The laxter 15 clearly the better approximation.

In summary, the overall effect of the existence of a tropopause in
normal situations 6f almost equivalent-barotropic flow is to produce a
reversal in the sense of w at gbout 200 millibars if the tropopause lies
at 300 milliiars, and samevhat lower if the tropopause is also lower.

The importance of this conclusion with regard to the comstruction of &
2.parameter model is simply this: The effective "top” of the atmosphere,
the lowest level where w vanlshes, is generally around 200 millibars
rather than at zero millibars®. '

3. The Effect of the-Quasi-geostfophic and Quasi—nondive;gggg
Agpraxlmaxions -on the Average Growth Rate.
"The essential simplifying feature of the quasi-geostrophic and qu881-
_nondivergent approximatians is that the absolute vorticity at each level
is.adyegted with a geostrophic or nondivergent wind, after the horizomtal
dive}gencé has been réplaced by -dw/Op in the so-called “"divergence”

']term of the vorticity equation. Experience with various guasi-geostrophic
'bﬁroclinic modelé indicates.that they have too great an average growth
fate, and systematically tend.to produce much stromger prgsaﬁre gradients
betwéen:surface highs and lows than are actually observed. Our present
-concern, therefore, is to see if these shortcomings are stfributable to
”-the qyasi-geostrophic or qnasi-nondivergent character of the modela. |
1 - To examlne this qpestian, we shall set up a simple E-yarameter nodel
with reference 1evels at 200, 400, 600, 800, and 1000 millibars, in
-'accordance with the results of Section 2, letting w venish at 200 and
.1000 millibers. Applying the vorticity equation &t L0O and 800 millibars,
and replacing vertical derivatives by ratios of flnite-difaerences, we
obtain

" #Much the same conclusion has been stated by Sawyer and Bushby {1953), who
have taken 200 millibars as a "11d" on their guasi-geostrophic model.
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%x\vvn + 2 (ny - m) - B0 (2)
an - .u A Q .
3_2+\v “12+—-—(n2-1h)+—?~=0 o o B3

in uhich the aubscripts 1 and 2 refer to conditions at 400 and 800 milli-

. bars, respectively, P = 400 millibers; end vithout subscript is its value
~at 500 millibars. It uill ‘be noted that the term representing the re-
orientstion of the. vortex tubes has been’ omitted, whereas the one repre-
sentipg_the vertical advgction of vorticity has not. The Justification

| - for this procedure is thet the omission of the "twisting" effect merely
changes the defined value of the potential vorticity --- %. e., the dynami-
cal qmmt.ity that 1s conserved following the Individual elements of

fluid --- ‘and not by more than a few percent of its_exact value. Omission
“of the vértical advection of vorticity, on the other hand, results in a -
snurious ‘change in the phase difference of potential vorticity patterns
at different levels, an effect that may account for some of the pest

- errors in nredicted phage relationship. | .

'_ ' As will be ‘seen ‘later, it is less convenlent to deal with qu (2)

' and (3) than with an equivalent palr of eqnations, obtained by forming
":'the sum and difference of Eqs. (2) and {3). Letting w, =t 9y = Aw

ﬁ (m-profile symmetrical around 600 millibars),

U B ST TR H=0 o (5)

~ vhere 7 = (q2 +n)/2, 0" = (ﬁz - H:)/2, and simil erly for all other
_"barred" or "primed" quantities. In order to calculate a measure of the
fgrovth rate, we now multiply Eq. (&) vy m, multiply Eq. (5) by ', and

- add. them together, with the result that



i Ay v (L) +w v () + (28 +2) B e0 (8)
';In an exactly analogous faahion, we apply the continuity equation at 400

;and 800 mlllibars and replace all vertical derivatives by ratios of
;ffinite difrerences

i
i1 .
o

. ‘\v"l_ +

.qu g”_ -

Thus}ffoxming_the;aém and difference of the equations above,
viFeo. (7)
.. ’.'=:.b.,.-" . " .- 8
| \_.V. F - (8)
Ve hext cabine Egs. (6) and (7) in the form
' Integrating each term of the eqpation above over a closed surface. [such .
_jas an iaobaric surface) or over a closed region with cyclic boundary con-
_'ditiona, and noting that the area integral of the divergence of any con--

;;tinuous vector can be transfanmed by'GausB‘ theorem into a line 1ntegral
.;around tbe boundary'curve, o

'fl i _;'f;; '--‘2 o ' o | | '
5@ s - [Ra w'dS+(2“‘) fwnn a5 =0 (9)

[T

..vhere S is the region of integration and dS is an element of §. At



ithit po&nt, 1t ahould be noted that\V' 1is regarﬂed as & nondivergent vector
j":ln'tl'wv:qnui-nmdinrgmt model, and is essentielly noudivergent in the
f—t'ixuiu-geoumm model. Thus, in these mod.els, the second term of Eq. (9)
Hould be niasing, 80 that

fﬂ——l—)as--<2‘“2>meas o)

.,_s‘-. 8

:IIn actuality, however, V- V' does not vanish, According to Eq. (8), the
_1exact equation corresponding toc Eg. (10) is: '

g/
S

l)fwﬁn' as SR E D

It remains to 1nterpret the result stated in Egs. (10) and (11) We first
"note that

-? 12 . -
%f(l_;ﬂ_) m:%%j(;22+;12) ds+'f'§§fqu

éuhere £ 15 the relative vorticity Now, since the second term on the
;rignt hand side of the equation above is generally negiigible, the left-
“hand side of Eqp. (10) end (11) is essentially & measure of the rate of
?change of. the total "rotational energy” of the flow, As has been shown
1.‘by Thompsem (1956), the right-hand sides of Eq. (10) and (L) are related
;to the rate at uhich potential and internal energy are converted, and are |
.'fmdirectly related to the rate st vhich the total kinetic energy of the
fgrowing diaturbances is built up through the mechanism of baroclinic in-
5Btability. _ : '
e amparing Eqp. (lO)Iand (li) we see that the kind of mechanism by
H.which the rotational energy of the quasi-.gecstrophic and quasi-nondivergent
.fmodela increaaes is the stme &8 for the general divergent nongeostrophic
;model. Other things being equal, however, this mechanism operates
(2a + 2)/(2A +.1) a8 rapidly in the former s 1t dces in the latter. In
short, the average growth rate in the quasi-nondivergent and quasi-geostrophic

9




'fmodels is about 50% greamer then that in the general divergent model.
;?This result 1s 1in accord with the general dbservation mentioned earlier ----
f?namely, that forecasts based on quasl-geostrophic baroclinic models tend to

?iexnggerame the pressure gradients between surface highs and lows.
_; The effect described above 1s clearly not sericus in the great majority
n?of cases, for ‘in equivalent—barotropic flow the change in the total rota-
?tional energy 18 ot very greax. The discrepancy becomes greater, however,
.:as the flow becomes more and more baroclinic. It is also evident that the .
effect on the qnaai-nondivergent flow neer 600 millibars will be consider-
ably. less than on the flow in the lowest levels --=« gnother distinetion
;-between the flows in the middle and lower troposphere that is borne out by
,fexperience.
In conclusion, ve: infer that the advection of vorticity with the diver-
- gent cqmponent of the wind is, on tae average, quite as important as the
direct "stretching effect” of divergence., Finally, whatever is markedly
- different in the mean must be even more markedly different in indiv1dual
caaes of baroclinic development.

b, Thegggpations for'a Two-Paraemeter Nongeostrophic Model

.. In accordance with the results of the preceding sections, we shall
;:consider a divergent nongecstrophic model which is governed partially by
qus. (k), (5), (7) and (8).. It should be noted that this system of four’
féc@lhx_éqpations is not complete, since it involves the scalar w as well

‘ag fhe.‘vec"t'é;'s WV and W '. One of the equations necessary to complete the
“B}stem'is the thermodynnmic energy equation for adiabatic flow, applied
.at" 600 millibara. Repla~ing the vertical derivatives in this equation
ﬂby ratios of finite-differemces, we obtaln ' T '

?é¢'f' T
B-t— +WV' + 3" 0 ) (12)
LThis eqpation, however, involves still another variable ---- namely, ¢'.

lTne remaining equation is the so-called "balance" equation, which, in its
igengrgl form, is:

2= TPer w28 (3, w') + 25 (v', T) + Bu’ | (13)

10
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'”"and v are the. eastvard and northward components OfV’, respectively.
35), (7), (8), (12), and (13) now comprise a camplete system of

\-V‘zlkxw - C y E = F\??‘If- + f

)

LW e kx W g = ges v VoW = 9 =

.Hhere lu ia a unit vector directed vertieally upward. Introducing tbese
jresults 1nto Eqs (h) (5) (8), (12}, and (13), ve obtain

( ) + J (p, VY o+ £) + VX.v (vaw ) o+ T (v, 7 ¥)

(EAi%)V‘?W'w;O )

)+J(w,v2\y)+vx V(V'?'-dr+f)+.]'(w' v’-w+f)

(l?-!%'*_g = Ol - (15}
X =g (16)
)
ay’ ) - 27 ( a\"' )
"9y & T 3 337
+ 8 (3; %i’:;f- | (18)

2;00un'1ng up variablea, we' £ind that these five equations contain only the
- "quantitiea ¥, X, W 3 w and ', The equationa summarized above are
feqnations for & general 2-parameter model.

It is a matter of general experiencp that the inversion of the balance

1



L"-_;.equation (18) '1s an extremely time- -consuming operation, and cannot be
"-'?:f-"""ca.rried out. econanically at every time stage of a mumericel integration.
Thus | y noting that ¢' enters only into Egs. {17) and (18), cne is strongly
'tempted to epply the balance equation in approximste form for the purpose
7.'_?"'01’ computing ¢' in terms of ¥', and for this purpose only. As will be
".seen 1ater, this procedure modifies w and X slightly, but leaves the form
“".of the Prognostic equations intact. We shall agsume s in fact; that

R w o wege

© 80 that Egqs. (17) and {18) are replaced by the single equation

-

’ l. ‘ .__ . .-,
%’F_* J(¥, v') + gﬂ,“’ =0 _ (19)

This assumption, it will be recognized, is very similer to the quasi-
jnondive_rgent'.a'ss\mption proposed by Kuo, but differs in that it is not
introduced dii‘ectly into the continuity equation or the vorticity equa-
tions. It 1s also noteworthy tast the balance equation is no longer cne of
the equations that governs the evolution of the flow from one time stage
“to the next, but enters explicitly only in the determinstion of the initial
_‘.fielda of ¥V and ¥' ---- an approximation that has already shown some im-
j:’provemmt over the iusual ‘quasi-geostrophic approximstion.

. Applying the Laplacian operstor to Zq. (19) and substituting for

_,VE (o' /at) in Eq. (15}, we obtain a diagnostic equation similar to Eq. {1).

»l'-'a—:?-g-—vaw _--(21;;—9-&=W-V(Vz§+f)
*I )+ T (v, ) - R I (T, v)
-Finally, sub;tituting from Eq. (16),
2 '
-g? T - (FFY + £) VX = WXV (PF + )

+ I, FY) +T (v, Y +2) - A (¥, v') (20)

- 12



"iﬁgﬁion s to'belregérdgd as & means of computing X fram known
ot ¥dnd y', - |
Th,fmethod that 1s proposed for solving the system of Egs. (lh)
(15), (16),_and (20) is the following:
‘l};'Beginning with the initial geopotential ¢ at 850 and 40O millibars,
'ffffinterpolaxe ¢ at 500 miliibars and form & and o°.
©2) " Compute the initiml Pield of ¥ by solving the balance equation for
. the nondivergent flow at 600 millibars,

B RN T

“Tis step is carried out only once, in order o caleulate the
. initial §-fleld.
3y Compute the initial fields of ¥' and X by solving Eqe. (18) and
(20) as a simultaneous system, regarding ¥' and X &8 the unknowns
and using the previously computed ¥-field. Tais step 1s also
carried out only once.
&) Compute the initial field of w fram Eq. {16), using the previously
. computed field of x. '
5) Compute d%/3t by inverting Eq. (14), using the previously computed
 fields of ¥, ¥', X, and w. Extrapolate over the next time interval
to obtaln the predicted j-field.

:f-6) Compute %gl By inverting £q. (15) using the previously camputed
.fields of ¥, ¥', X and w. Extrapolate over the next time interval

.. to obtain the predicted y'-field.

 57§“icompute the predicted X- f eld by solving Eq. (20), using the pre-
| Qicted Plelas of ¥ and ¢'. - o |
f?B);ﬁCompute the predicted field of w from Eq. (16), using the previously

_‘  .computed field of X

9) .Return to Step 5 and iterate the cycle of Steps 5 through 9, until

.'-'the forecast period is of ihe length desired.

- It will be noted that the ‘most time-constming operation in the iterative
'[scheme ‘cutlined above 1s Step 7. If the flow is not very divergent, the first
-:tenm on the right -hand side of Eq. (20) is negligible in comparison with the
i‘remaining terms, in which cage Eq. {20) may be solved for Vox = w/P. The
. X field may then be computed by inverting V¥X. Thais fact, incidentally

:'1ndicates that the boundary conditions required to solve Eq. (20) for x
;jare the. values of X and VX around the boundary of & closed region, provided



1k
Ry + £ > 0. In practice, it 1s probably sufficient to take X = O and
X = 0 around the edges of & large grid.

In conclusion, it sheuld be pointed out that the model discussed here
can easily be modified to includs the la.rge-lcale effects of irregular ter-
rain, The appropriate change is to replace (5)2 by (@ - w)/P rather thsn
by - w/P. The quantity 0 is the value of w &t 1000 millibars, aad is given
approximately by :

_n-v‘.vps V8=ka+'(2_;§_3) (W+ kx W)

whorepsiutheknm-tandardprnsureatt!wground m-,nucxpnl-
liblointemofw, ' and X.
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