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'Abstract

By combining the vorticity and continuity equations for the
general two-level model, it has been found possible to aerive rela-
tively simple éxpressions for the avefage rate of growth (or increase
of rotetional energy) and the average rate of 6cclusion of large-scale
baroclinic disturbances. The growth raté depends primerily on the area
correlation between the verticel air-speed and the deviation of the
temperature from its zonal'awerage; the rate of occlusion depends on
the area correlations between the vertical air speed and the deviations
of both temperature and pressure from their zonal averages. Comparisons
of the average rates of growth and occlusion for various types of approxi-
mations show that the "quasi-nondivergent" model cannot correctly repro-
duce all the importent aspects of baroclinic development, and that marked-
ly baroclinic flows are essentially nongeostrophic. It iz also shown that
the verticel advection of vorticity has a significant effect on the average
growth rate, and cannot be neglected on the basis of simple order-of-
magnitude estimates,’ |

At least in cases when the horizontél velocity fieid is independent
of the north-south coordinate, it is found that disturbances in which the
temperature field precedes the pressure field tend to die out undetected.
Disturbances in which the temperature field lags behind the pressure
field, on the other hand, grow in amplitude as long 8s they maintain that
bhaee relationship. Simultaneously and as a dynamical consequence of
the growth process, the temperature field in such disturbences gradually
catches up with the pressure field, and the flow approaches & state of

quasi-barotropy. At the instant this state is reached, growth ceases and



there is no further change in the relative phase of the pressure and
temperature fields. In the absence of heating and viscosity, the flow
would tend to remain quasi-barotropic, verifying an hypbthesis proposed

by Rossby almost twenty years ago.



I. Introduction

Over the past two years, the Joint Numerical Weather Prediction Unit
has built up a file of almost 1500 routine numerical fofecasts and well
over a hundred experimental forecasts. Of the routine forecasts, roughly
850 were based on either of two baroclinic models——one, a variant of the
3-level model proposed by Charney and Phillips (1953), and the other, a 2-
. level model genericelly the same as the “fhermotropic" model described by
Thompson and Gates (1956). The remaining 650 routine forecasts were
based on the barotropic model. Since October 1956, both barotropic and
baroclinic forecasts have been computed dally, permitting direct compari-
sons between the performances of physically different models. During a
three month period from April through June 1956, experimentel 2-level fore-
casts were computed deily and compared with the routine 3-level forecasts.

Although this entire mass of data has not been given the systematic
and intensive study it deserves, certain conclusions can be drawn from
statistical indices of the errors of numerical forecasts and from a case-
by-case inspection of long series of individual forecasts, One inescap-
able and rather surprising conclusion is that the behavior of the large-
scale flow patterns in midtroposphere is very similar to that of initial-
ly equivalent flow patterns in a barotropic fluid. On the whole, the
barotropic 500 mb forecasts account for most of the day-to-day change
in the large-spale flow patterns—-at least in fegions where the fore-~
cﬁsts are relatively unaffected by conditions around the boundary of the
forecast area and/or by large errors in the analyst's reconstruction of
the initial flow pattern. It is perhaps even more significant fhat the

root -mean-square wind error of the barotropic forecasts is no greater

than that of the 500 mb forecasts based on either of the baroclinic



models,

Superficially, at least, this result is not difficult to understand,
since the atmosphere does maintain itself in a state of quasl-barotropy,
in the sense that thé isotherms of an isocbaric surféce in midtroposphere
coincide remarkably well with its contours. It does, however, raise a
fundamental question as to why the.atmOSphere tends toward a quasi-baro-
tropic state, and of what dynamical properties this behavior is a con-
sequence,

‘Prediction methods based on the barotropic model cannot, of course,
forecast the creation of genuinely new circulation centers. It is our
experience, however, that many of the developments. which the weather
forecaster might once have regarded as "new" are due to the reorganiza-
tion of previously existing circulation centers——as, for example, the
deepening and epparent retrogression of a long-wave trough as a vorticity
maximum of smaller scele is carried through it by the large-scale north-
westerly flow. Baroclinic development of really new circulation centers
in midtroposphere appears to be relatively rare (especially in reglons
of good data coverage), and 1s generally confined to a few small areas
at any given time.

The foregoing remarks do not, of course, apply to the flow patterns
at the lowest levels, whose behavior is rather poorly reproduced by
either of the baroclinic models. Errors in the forecast height gradient
at 500 mb, although percentagewise small at that level, are transmitted
undiminished to all lower levels and result in large percentage errors

at 1000 mb ——owing merely to the fact that the 500 mb height gradient



is very nearly compensated by the gradient of thickness between 1000

and 500 hb. Agide from errors of this simple type, moreover, we have
observed a systematic temdency for both baroclinic models to overpredict
increases in the intensity of surface circulations, and a consistent
failure to preserve the correct phase relationship between the patterns
of height and temperature. The latter 1s often menifested in a tendency
. for the predicted axes of the pressure systems to become vertical too
rapidly, the temperature field rapidly overtaking the height field and
sométimes, in fact, advancing a little beyond it. In general, it is our
impression that the instability exhibited by the simple 2- and 3-level
baroclinic models is of the correct type, but that the details of the

prédicted development are quantitatively incorrect.

Beyond the very general observations stated above, it 1s extremely
difficult to come 10 any definite conclusions about the defects of the
baroclinic models currently under study. In individual cases, the

numerical forecasts are contaminated by many other types of error

truncation error, errors due to the imposition of arbitrary lateral
Youndary condlitions, errors in the initial analysis, and errors in the

verifying analyéis

none of which is completely isclable or removable,
Added to tﬁese difficulties is the fact that the equatlons for even the
simplest of baroclinic models are mathematically quite complicated,
making it all but impossible to interpret a numerical forecast in simple
physical terms and to understand how it evolved from the given initial

state.
In the face of such difficulties, it is natural to inquire whether

or not one cen derive equations that govern the statistical or "general"
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agpects of the behavior of various models, from the dynamical gquations
that describe their behavior in detail. If so, and if those equations
aré_simple enough, they might serve as an aid in interpreting numerical
forecasts, and might provide a clearer understanding of the general be-
havior of fairly complicated models. As we shall see later, dynamicel
equations that govern the overall state of motion may also be taken as a
guide in designing improved baroclinic models; a model that is incorrect
in the average is necessarily wrong in detail. In particular, ip appears
probable that any successful baroclinic model must contain the mechanism
by which the atmospheré keeps itself near a state of quasi-barotropic
motion, at least in a statistical sense.

Having discussed the various reasons for approaching the dynamics of
baroclinic flow from a statistical standpoint, we can now state briefly
the main purpose of this article. It is simply to derive a pair of equa-
tions that describe how, on the average, the phase of the temperature
field (relative to the pressure field) changes with time, and how the
average rotational or kinetic energy of the large-scale disturbances in-

creases or decreases. These equations are first derived from the vorticity
equations for & rather general nongeostrophic model, and are later special-
ized in fhe case of "quasi-nondivergent" flow——a procedure that enables
us to isolate the effects of certain common types of approximations on
the statistical behavior of the models.

Other things being equal, it turns out that the average rates of
growth and occlusion are significantly greater in quasi-nondivergent and
quasi-geostrophic models than in the general divergent model. According-
ly, one may infer that a baroclinic model cannot correctly reproduce the

process of development end the attendant changes of vertical structure,

-4 -



unless the horizontel wind field (in which the vorticity is advected)
is regarded as divergent. This, in turn, implies that any success-
ful baroclinic model must be e fortiori nongeostrophic. It is also
found that the vertical advection of vorticity has an important
systematic effect on the average growth rate, and must be taken into

account in order to predict correctly the essentinl features of baro-

clinic development & conclusion that illustrates the dangers of
relying on order-of-magnitude estimates when dealing ﬁith inherently
unstable systems, |

By considering the evolution of a whole family of initial states,
one can also deduce the existence of certain phenomena thet are common-
ly observed in the true atmosphere. One finds, for example, that the
atmosphere has & selective preference for disturbances in which the
temperature pattern legs behind the pressure pattern; its dynamical
properties are such that disturbances in which the temperature fleld
precedes the pressure field die out and remain undetected, while
disturbances in which the temperature field lags behind are émplified.
Finally, through the very same mechanism by which "out-of -phase" dis-
turbances grow, the temperature field 1s gradually brought into phase
with the pressure field, and the atmosphere approaches a statistical
state of quasi-barotropy. As the temperature and pressure fields come
into phase, the growth of average rotational energy ceases, and there
is no further change in the relative phases of the temperature and
pressure fields. Left to itself, the atmosphere would remain in this
quasi-barotropic state. This result may be taken as a rather belated

theoretical Jjustification for the intensive studles of the barotropic
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model proposed and initiated by Rossby (1939), and,-in scme measure,
accounts for their remarksble and unexpected success.

The irreversibility of the sequence of events outlined above, to-
gether with the quasi-barotropy of the state toward which these events
tend, make it clear that am entirely different process must be postu-
lated to account for the removal of accumulated rotational or “eddy”
kinetic energy. It is evident, moreover, that the mechanism required
to do so 1s necessarily operative in quasi~barotr0pic'flow, a result
that is certainly in accord with the experimental and theoretical studies
of Kuo (1951), Lorenz (1955) and Phillips (1956). Lastly, the fact that
the process of development in an adisbatic nonviscous flow destroys the
conditions that are initially favorable to growth stromgly suggests
that tﬁe ultimate cauges of baroclinic development cannot lie within
8 closed system, but must arise from nonadisbatic heating — either
by eddy conduction from the surface end/or by absorption or emission of
radiant energy.

2. The equations for a nongeostrophic two-level model

We begin with the general vorticity equation for adiabatic non-

viscous flow, written in the form

§3‘+VZVO-\V =0 (1)

in which y = f+§ ¢+ & = o VBX\Y ili is a unit vector directed
vertically upward; ¥ 1is the horizontal projection of the velocity
vector; and V 1is the horizontal vector derivative. The subscript 8

jndicates that the differentiation is to be carried out along surfaces
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of constant potential temperature @ . vuUnless otherwise stated, all

notation is stendard. Now, in general,

v.v = vy + ¥ g
8 A a,r 91’

vhere the vector derivative without subscript denotes differentiation
along 1sobaric surfaces, and differentiation with respect to the pres-
sure p is carried out along the vertical. Since the flow is almost
geostrophic, the vector 3X/ 31; is very nearly perpendicular to the
vector % f , 50 that Va . X is approximately equal to V',X
Accofdingly, the continuity equation may be written in the following
form:

v oL vy . o w (2)

where w 1is the total derivative of pressure. Finally, combining Egs.

(1) and (2), we may rewrite the vorticity equation as

_a_'.l.-f-\V-VvI +wi~vl‘?—'i’=o (3)
. 2P op

It is now understood that differentiations with respect to time are
carried out with p held fixed. Eq. (3) is the general form of the
vorticity equation on which most baroclinic models are based.

We next apply Eq. (3) at the 400 and 800 mb surfaces, and approxi-
mate the vertical derivatives 9;1/31, and dw/ 3p by finite-differ-
ences. For simplicity, we shall assume that w vanishes at 200 and

1000 mb, and that its vertical profile is symmetrical around the 600 mb



surface.* Thus,

In, +Y vy T Awlq-n) - g® o

ot P P
M 4 v, vy, + Awl-n) 4 BY <o

ax P P

in which the subscripts 1 and 2 denote conditions at the 400 and 800 mb
surfaces, respectively, w without subscript is its value at 600 mb,
w, = w, = Aw , and P = 400 mb. It twrns out that it is more conven-
ient for later purposes to consider an.equivalent pair of equations,
obtainable by forming the sum and difference of the equations above.

After some rearrangement, we find that

% - / 4
Ll M R U 6.5 T DR, SRR
at P '

X
LU M R A ML SR (5)
3:t AAa Va% 'l P

where a “"starred" quantity is half the sum of its values at the 400
and 800 mb surfaces, and a "primed" quantity is half the difference
between its values (upper minus lower) at those surfaces.

In exactly the same way, we apply Eq. (2) at the 400 and 800 mb

- surfaces, with the result that

¥Tt should be noted that w is very nearly proportional to the vertical
mass transport @mr. Thus, w is much smaller in magnitude near a flat
ground surface than it is in midtroposphere, where it reaches its extreme
values. It has also been shown by Thompson (1956) that the vertical alr
speed must reverse sign somewhere above the tropopause, owing to the re-
versal of temperature gradient above that level.
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from which it follows that

V.V + ¥ .0 V-’WQ - ;g = O

7oV o oy - (6)
A~ Pa's' ] P
Egs.(4), (5) and (6) provide the physical basis for most of the remain-

ing discussion.

3. An equation for the growth of total rotational energy

Qur next concern is to derive an equatlion that relates the instan-
taneous increase of total rotational energy (or ave?age amplitude) to
the current fields of horizontal and vertical motion. To do so, we
first multiply Eq. (k) by vl* , multiply Eq. (5) by v, and add those
equations together. Factoring and making use of standard vector iden-
tities, we find that
('2*1{' 7,1) 4 _i,_w\é:* V(Y(*l""rzll) +,XfV(Y(*VZI

L2
2 3t (7)

~ (2At2) an®y’ _ 4
p
Now, from Eq. (6), it follows that

e T R AT e

v’ V(vz*v{) = v q*q/\vl + Z_)ﬂﬁi@/

where D is a constent which is actually unity. ‘In the socalled "quasi-
. 7/

nondivergent" models, however, the vector V' is regarded as nondivergent

vherever it enters explicitly in Eqs. (4) and (5). Accordingly, the

constant D takes on the value "zero" in the special case of "quasi-non-

divergent" flow, Eq. (7), when combined with the expressions above,
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then becomes

i i ¥* /
02 (el L (eI VRV

- (24+2-0) wn’y’
F

The next step is to form the average of each term of Eq. (8) teken over

the entire area of the earth. Thus,

2 (yrteg?) = 2(2A$2-0) Wy’ (9)
Jt P ‘ :
in which the "bar" above a quantity denotes its area—avérage. The area-
avérages of the second and third terms on the lefthand side of.Eq. (8)
vanish, since the a}ea integral of the divergence of ﬁny continuous
vector #anishes, when taken over a closed surface.
By making use of the statistical properties of the various fields,

Eq. (9) may ve simplified as follows: in the first place,

AR 'S f‘:i'*l’1)+2f~izx
_az’(q +v") at( K+ § | I

Let us imagine that the integration implied by éveraging is first carried
out around latitude circles, along which f is constant, Now, al;ng the
whole of a latitude circle, the instantaneous tendency of -S* is as posi-
tive as it is negative, on the average, so that the second term on the
righthand side of the equation above is negligible. By definition, more-
over,

b4 /1 ] .1
e e - 7 (‘S t 5;1)
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whence, combining the results above,

—_———————

P) : % = j *, ¢t r.‘—’i 142 10
5(7*4'7) at(f'*f) Zat(f,'f'f;) (10)

The righthand side of Eq. (9) may _be simplified by noting that

wvz'xvl/ = fuS’ + w8

The significant fact is that w , 5*, and S’all oscillate around zero,
and have the same characteristic scaele. Under these conditions, it can
be shown that three-factor correlations tend to be uniformly small,
without regard to the relative phases of the individual factors.*
Thus, substituting from Eq. (10) into Ea. (9), and introducing the last

result, we find that

2 (%5 2 A 85 Y) - 2(3A#2-D) ful
It z 't p
(11)

*¥This can be easily seen in the case of three sinusoidal functions whose
wave-numbers are equal, but whose phases are arbitrary. The proof in ,
the general case hinges on the identity ¢ wS¥¢ = w (S*+ 50— w ( 5'*—5-')1
and on the fact that w, §* $7( $¥+£7)  , and ($%,5) a1l have

the same characteristic scale. As will be shown later, both of the terms

on the righthand side of the preceding equation tend to be uniformly
small.
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Since the quantity (S:l-l— .{,_L) is & measure of the total "rotationality"
of the flow, one may think of Eq. (11) as a relationship between the in-
stantaneous increase (or decrease) of total rotgtional energy and the
current fields of vertical and horizontal motion.

In order to interpret Eq. (11) in simple physical terms, let us
estimate the correlation m in quasi-geostrophic flow. Replacing

/
5/°7 by - ‘;:- 38/ 2)1;. , and making use of the hydrostatic equation,

we find that

fws! - 133_ w O

where R is the universal gas constant, and T is the absolute temperature
at 600 mb. Thus, assuming for the sake of argument that most of the
povwer in the entire spectrum of disturbances is concentrated in a narrow

band around wave-number &

— 1
fwl = - E:%i w (=T

in which To is a zonally symmetric temperature field in which Vz‘T’,, =0 ,
and whose average meridional gradient is that in the true atmosphere.
Referring back to Eq. (11), we see that the total rotational energy in-
creases when there 1s a negative correlation between w and ( T~ 'T'u)
This corresponds to the case when, on the average around all latitude
circles, cold air (T < To) is sinking ( w > o), and warm air is rising.
This result, of course, is in accord with the classical view of the
growth process.

To carry the interpretation & little further, we note that «w tends
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to oscillate around zero along a latitude circle, so that the preceding

equation becomes approximately

fu§’ RSO L *.%f@ (12)

P 24 2t

Thus, from the adiabatic and continuity equations

fub  _ wfCe 4T | _ 4G [T L glry +_3..(‘T‘w)J
P - 2 dt 2 2x 8?

But the second and third terms in the square brackets of the equation
above vanish: one, because qi&: is & continuous vector, and the other,
because w was assumed to vanish at 200 and 1000 mb. Finally, substi-

tuting the results above into Bg. (11),

1'_1 5%(;% &)+ 2(2A+2——'D)5‘% CpT =0 (13)
Now, it is & well-known fact that the potential energy of a fluid in
hydrostatic equilibrium is proportional to its internal energy, and
that the sum of these two forms of energy (per unit mass) is equal to
éi;% . Accordingly, Eq. (13) states that any transformation of inter-
nal and potential energy in the atmosphere must result in an increase
of total rotational energy. Moreover, since the latter 1s essentielly
a measure of the degree to which the winds depart from horizontally
uniform zonal flow, at least a pert of the transformed potential ener-

gy nust go directly into the kinetic energy of disturbances.
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From more general considerations, it can be shown that the equation
for conservation of total kinetic, internal and potential energy may be
vritten as

L2 (pw+ oW ) =~ LR

F

Now, combining Eq. (11) with Eq. (12), we find that

N
L)
(a3

}
¢
N
'Y

*

AN | (2a#2-D) Rl
2 It g - /r*

Thus, setting D=/ and A = fz,L , and comparing the two equations above,

we see that the rate at which the total kinetic energy per unit mass

——

(y-

Pan

2 2
+M\3£'A%_) changes is just the rate at which (5{2-# 5 )/

e

chenges. Since the latter is very nearly a measure of the kinetic en-
ergy of the disturbances, we are led to conclude that all or a major
fraction of the transformed potential energy goes directly into the dis-
turbances, and that none or relatively little goes directly into the
kinetic energy of the average westerly flow. This result, of course,

is also in accord with the recent studies of Lorenz (1955) and Phillips
(1956).

L. An equation for the average rate of occlusion.

It wes pointed out in the preceding section that Eq. (11) may be
regarded as a means of calculating the average increase in the ampli-
tude of disturbances. Our hext concern is to derive a similar equation
that expresses the instantaneous change in the phase of the temperature
field (relative to the pressure field) in terms of the current state of
vertical and horizontal motion. To do so, we multiply Eq. (4) by 'Z, ,

multiply Eq. (5) by V(* , and add those two equations together. Fac-
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toring and making use of the rules for vector differentiation, we find

that
poy (q )4'W’ V(qvl)+-*-v V(q +7 )

(14)
z . ,2
~%[\?¥+(2A+I|Jv’ J:O

Now, from Eq. (6), it follows that

Vo) = 7Y

2 »2
VV(Q'!'({)— (¥+ql)\)/+w___ﬂ_i}_l——?

Thus, when combined with the expressions above, Eq. (1%) becomes

2 () +7 Py Lo (Y
t

(15)
- ;___),_'L + (zA+l-'D).._‘L

As before, we next average each term of Eaq. (15) over the entire aree
of the earth. Since the area integral of the divergence of eny continu-
ous vector venishes when taken over & closed surface, the area averages
of the second and third terms on the lefthand side of Eq. (15) vanish,

with the result that

2y (, D)_:L__+(1A+:—~)_,n_ (26)

Q,
=
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Let us now investigate correlations of the type

(;Jvl’1 : wtt o (IJETI -+ w(.':"z—?i)

In the first place, ﬁq. (6) implies that @ = © , so that the first
term on the righthand side of the equation sbove vanishes. We next note '
that 5'/ fluctuates fairly regularly around zero, so that S/Lusually has
a minhmmx (zero) between each minimum of §7 and its adjacent maxima. On
the average, thérefore ’ g’ihas twice as many minima as 7 in any given
direetién, and the scale of fluctuations of § ** i half the scale of
flucﬁuati_ons of 5/ . Finally, since the characteristic scale of w is
the sé.me as that of 5/ s and because (§ = 57 2) oscillates around
zero with double the frequenc& of w , the three-factor correlation w §’z

_'tends to be uniformly small without regard to the relative phase of W

/
and 5 .
: TR
The correlation wvc‘ may be simplified in a similar way. By defi-

nition,

Sr— ——

ou"fé1 = wS*1 + 2 Fful® + wf’

*
Since 5 oscillates around zero and has the same characteristic scale

as w , the argument outlined in the preceding paragraph may be invoked

1 2
to show that w5* is negligible. Moreover, w¥  is generally negligi-
ble, because w tends to fluctuate around zero along any latitude circle.

Approximately, then, the equation above reduces to




Finally, we note that

—_—
——

9 ’ 3 F F '*as"
= — + + 22
11 3i5$ ot

1

Vé
Now, along the whole of & latitude circle, /9%t is as positive as
it is negative, on the average, so that the second term on the righthand
side of the equation above may be omitted. Substituting all of the re-

sults above into Eq. (16), we find that

*.
2 M (2-D) fw'§ (17)
it P
| SOV ! ¥
Since 57§ depends on the correlation between the fields of §7 ana
§ ‘ , this equation obviously implies something about the rate at which
4
the relative phase of 5-# and § changes with time.
The quantity § *‘S’ does not, however, depend solely on the phase of

————

¥ ’ *
§ relative to that of 5 , Tor it is conceivable that %7 might in-

crease without change of relative phase merely as e result of an in-
¥ /

crease in the amplitudes of both S and S . Accordingly, we shall de-

fine a kind of correlastion index r, which is quasi~normalized with respect

¥ ’
to the amplitudes of § anda 5.

—

N = -‘:_ N = S*S'/ K: s¥1+3-,1

/ /
As can be seen by substituting a constant multiple of 5 (RS, for
s
exemple) for S , r is not independent of k and is not, therefore, en-

—

L2 7
tirely independent of amplitude. On the other hand, §# and §7 tend
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to increase in sbout the same ratio, so that r is primarily a measure of
¥ ’
the relative phase of the fields §7 and §" . Another important property

of r, derivable by simple algebraic manipulation, is that it never exceeds

L
20

Differentiating r with respect to time, we obtain

an ( N, dk

3¢ K\ a2t It

or, substituting from Eqs. (11) and (17) for 3N/3% and 3K/bt,

an

= -'—i(z—b) +_u_§_* — 2n (2A%2-D) ’z&»}_' ] (18)
at K P P

This equation provides us with a means of calculating the average rate
of occlusion — 1i.e., the rate at which the correlation (or relative

in terms of the current

¥ /7
phase) between the fields 5 ana § changes
fields of horizontal and vertical motion.

5. The average rates of growth and occlusion in quasi-nondivergent and

divergent baroclinic models.

According to Eqs. (11) and (18), the average rates of growth and

occlusion are linear combinations of the correlations -Fu;ﬁ* and ;::57
It is important to note that the inclusion or omission of certain effects
——as, for instance, that of vertical advection of vorticity, and the
divergence of the wind with which the absolute vorticity is advected

horizontally has no effect on the form of the correlations, but

is reflected only in the values of certain constant coefficients. This
¢clearly indicates that the physical mechanisms of growth and occlusion
are qualitatively the same in the quasi-nondivergent and divergent models,

but differ in the rate at which they operate.

- 18 -



One of the factors in the average growth rate, for examg;é, is the
coefficient (2A + 2 - D), which ig about 2 in the general divergent
model. This value, as was shown earlier, leads to an increase of "rota-
tional" kinetic energy that is just about equal to the transformed
potential and internal energy. If, however, the effect of verticel sad-

vection of vorticity is included in a quasi-nondivergent model

(As-z'-,bw), the value of (2A + 2 - D) is about 3, implying that 50%
more "rotetional" kinetic energy is produced than there is potential
energy transformed to supply it! Fortuitously enough, the quasi-non-
divergent model on which the JNWP Unit's beroclinic forecasts are based
does not include the effects of vertical vorticity advection ( A=0).
Thus, the value of (2A + 2 - D) in this model is 2, which is close to
the correct value. It must be pointed out, however, that one cannot
expect a model which has the correct average growth rate to be correct
in detall i4f the average rate of occlusion is wrong.

As oan be seen from Eq. (18), the average rate of occlusion is
very sensitive to the value of the coefficient (2 - D), whose correct
value is unity. 1In the quasi-nondivergent models ('D'=O), on the other
hand, the value of (2 - D) is 2. This implies that the process of

in such models
occlusion joperates 100% faster than it should in some cases, and may
account for the observed tendency for too rapid occlusion in the JNWP
Unit's baroclinic forecasts.

Because the rates of both growth and occlusion depend on A and D,
it is clear that no model can accurstely reproduce all of the essential
aspects of baroclinic development unless it includes the effects of

vertical vorticity advection and the divergent component of the advect-

ing wind. From the latter, it follows immediately that any baroclinic
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model must be essentially nongeostrophic.

6. Dependence of the average rates of growth and occlusion on the

relative phase of the pressure and temperature fields.

Since the everage rates of growth and occlusion depend on the corre-
S*

lations fw and fwl they are crucially dependent on the phase of
the vertical motion pattern relative to the horizontal velocity field. Our
next objective is to find out how the phase of the w -field is related to
the horizontal velocity field and how, in turn, the rétes of growth and
occlusion depend on the relative ﬁhase of the pressure and temperature
fields.

in order to retain the concept of "relative phase" in a clear and
unambiguous way, we shall consider the growth.and occlusicn of distur-
bances in which the velocity field is independent of the north-south
coordinate. If, in addition, the amplitudes of those disturbances are
small, the general relationship between the w -field and the horizontal
velocity field is given by Eq. (8) of Thompson (1956). For sinusoidal
perturbations whose orbital frequency is much greater than a pendulum

day, that equation reduces to

fo . ¢ (Bo'- 267 Va") (19)

where G'-l = | + 0(2..01/2{:. ' 5 ¢t .(Rsz/cjﬂ) 38/23= 3
o 1is the wave-nunber; @ is the nortﬁward derivative of the Coriolis
parameter; v is the northward componént of velocity; and UV is the aver-
age zonal component of velocity. The "starred” and "primed” quantities

carry their earlier meaning. In flows of the type under consideration,
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where x 1s the coordinate toward the east. Thus

Substituting from Eq. (19) into Eq. (18), and making use of the expressions

above, we then find thsat

g—’—; : .{—{(z—m 8u'S™ + ¢wa* (2A42-D) U,nr*S"] (20)

We note, however, that

—————

Ve 7 *
aw¥§ = p*v 2 n¥y) - PTG LA S o
2x ax AX

whence Eq. (20) can be rewritten as

——

dr ﬁ[(z—b)\a ~ qml(zmz-b)v’} w’ 5% (21)
ix K

Similarly, substitution from Eq. (19) into Eq. (11) yields

A 5,}‘+ S':' = 5’0-“2(2A+2~’D) U’ /U',s* (22)
at ‘

The two equations above express the average rates of growth and occlusion
in terms of the static stability, the scale of the distufbances, the aver-

’ 3
age vertical wind shear, and the correlation between the fields of nr and §

-2l -



Let us now consider a whole family of initial velocity fields in
which the phase difference between nf¥ and fvf takes on all possible
values,'and trace Tirst the evolution of those disturbances in which the
ar’ -field lags behind the nf*--field. A disturbance 6f this type is
shown schematically in Figure 1, on which the solid lines are streamlines
and the dashed lines are "streamlines" for the vertical wind shear.
Approximatély, of course, the solid lines are isobaric contours and the
dashed lines are isotherms. In the case shown, ﬂrl is poéitive where 5*

reaches its maximum values, and vice versa, so that m’?ﬁs positive. We
see, moreover, that &75; is positive as long as the coldest air (along
a latitude circle) lies in the shaded region between the pressure trough
.and the pressure ridge following it. Now, the average static stability
is'positiVé, and the average temperature gradient is directed from north
to south, so that T), is also positive. Thus, according to Eq. (22), the
average amplitude of the disturbances (or, more precisely, the total rota-
tibnal energy) increases as long as the temperature field lags behind the
pressure field. The rate of growth, of course, depends on the phase dif-
ference between the fields of pressure and temperature, being greatest
when the temperature field is 90° behind the pressure field and becoming
smaller and smaller as the fieidé are brought into phase.
Let us now suppose that the wave numbers of the disturbances are

small —— small enough that, even if r approaches its maximum value of

%, the expression in .square brackets in Eq. (21) remains positive.*

¥In actuality, r does not attain 1ts theoretical upper limit, and the
factor in question generally remains positive. It does, however, be-
come very small when the temperature and pressure fields are in phase.
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In the case discussed above, then, Eq. (21) states that the correlation
between the pressure and temperature fields increases as long as the
temperature field lags behind the pressure field; that is to say, the
temperature field tends to catch up with the pressure field. It 1s im-
portant to note that the rates of growth and "occlusion" both depend on
the same correldtion A;%?t and that the structure of the disturbences
enters only into that correlation. This means that the physical mecha-
nism of occlusion is the same as that by which the total rotational
energy increases, and that occlusion tekes place as an inevitable dynami-
cal consequence of the process of baroclinic development.

Carrying the foregoing arguments to their conclusion, we see that

‘& temperature fleld which initially lags behind the pressure field will

continue to catch up until it is in phase with the pressure field. At

that point, nr’S* vanlshes, the pressure and temperature fields undergo
no further change in:relative phase, and simultaneously the disturbances
stop growing. Left to themselves, disturbances of this type would re-
main in this final state of quasi-barotropy.

We now turn to the remaining class of disturbances

namely,
those in which the temperature field precedes the pressure field. A

disturbance of this type is shown in Figure 2. 1In this case, the cor-

_relation lv’$¥ is negative as long as the coldest air (around any
latitude circle) lies.in the shaded region between the pressure trough
and the pressure ridge preceding it. According to Eq. (21), therefore,
the correlation between the pressure and temperature fields decreases,
end the temperature field tends to become more and more out of phase

with the pressure field. This process continues until the pressure and
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temperature fields are exactly 180° out of phase, when nrlS* vanishes and

r can decrease no further. The important aspect of the behavior of this
class of disturbances, however, is that their amplitudes decrease with time
in accordance with Eq. (22). Thus, if disturbances of this type are very
small to begin with, they will become even less perceptible as time goes om.

7. The general behavior of large-scale disturbances in baroclinic flow.

let us next imagine that a horizontelly uniform zonal flow is slight-
1y and intermittently disturbed in such a way that the velocity field re-
mains indépendent of the north-south coordinate, but such that the initial
temperatﬁre field precedes the associated pressure field Just as'oftén_as
'it légs behind it. According to the arguments outlined in the preceding
sec£ion, however, one would not expect that equal amounts of energy would
be found in the two ranges of relative phasé at some {gEEE_time. “As we
‘have seen, the disturbances in which the initial temperature field pre-
cedes the pressure field will die out uhdetected, but will remain in the
same range of relative phase. The maximum energy will tend to accumulate
in those disturbances in which the tempergture and pressure fields are
almost exactly in phase, but in which the temperature field originally
lagged behind the pressure field. At any given time, on the average, one
would also expect to find considerable energy associated with disturbances
in which the temperature field lags behind the pressure Tield, ‘the émount
of energy varying inversely with the current phase difference between
those fields., From one time to the next, disturbances of this lattef
type increase in amplitude; simultaneou§ly, their temperature fields come
more and more into phase with the pressure fields, and gradually approach

a finael state of quasi-barotropy.
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This description of the general behavior of large-scale disturbances
in baroclinic flow is, of course, necessarily lacking in detail —— be-
ing deduced as it was from very simple dynamical and statistical considera-
tions. Nevertheless, it conforms remarkably well with the gross features
of the observed behavior of disturbances in the true atmosphere. It is,
in fact, observed that the atmosphere has a predilection for disturbances
in which the temperature field lags behind the pressure fiéld; the reverse
phase relationship is rarely observed, and is never associated with large
amplitudes. The sequeﬁce of events in the evolution of baroclinic dis-
turbances, as deduced from the theory, is also in striking agreement with
the history of the typical large-scale storm, even to the simultaneous
operation of the processes of growth and occlusion. Finally, it appears
that the observed tendency toward a state of quasi-barotropic motion is
a éonsequence of the dynamical propertiles of relatively simple baroclinic
models.

These results, coupled with the conclusions of section 5, indicate
that the equations for nongeostrophic divergent flow will not only pro-
vide a basis for methods of predicting the general features of baroclinic
development, but will eventually prove successful in accounting for the
details of the processes of growth and occlusion.

8. Summary
A brief resumé of the mein results is given in the last three para-

graphs of the introduction.
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Captions

Fig. 1 - Streamlines (sollid) and "streamlines" for the vertical wind
shear (dashed) in a typical disturbance whose temperature
field lags behind the pressure field.

Fig. 2 - Streamlines (solid) and "streamlines" for the verticsl wind
shear (dashed) in a typical disturbance whose temperature
field precedes the pressure field.
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