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ABSTRACT
The change in time in the relativé phase between the térﬁperature

and pressur.e fields in a two-parameter model has béen investigated by

making oné'-dimensional forecasts for simple flcw pattern varying the initiél
ph;se-difference. The variation in amplitude of the pressu;re and temperaturé
fields has also been investigated. It has beén found that the two fields adjust
' rather rapidly th each other in thé unstable wave in such a way that the tempera-
ture field after a while will lag behind the pressure field even if it initially were
preceding the pressure ﬁ.eld. It is further found that the amplitudes of the two
fields will increase initially, if the temperature field lags behind.the pressure
field initially, but decrease initially if the opposite is the case. Due to the
adjustment in the phase difference between the two fields the amplitudes will
start to increase after a while, when the temperature field starts to lag behind
~the pres suz;e field. The amplification during the first 24 hours depends. therefore
critically on the initial stafe and will.seldom reach the estimated amplication
rate obtained by a consideration of only the amplifying part of the solution.

The behavior of very long waves in the two-parameter model with no
divergence in the mean flow has been investigated. It is found that the tempera-
ture field and the press_ui‘e field move almost inciependent of éach other. The
pr-essufe field will retrograde with a speed comparable with the Rossby speed

_ for non-divergent waves, while the temperature field will progress slowly. As
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a result the latter field will precede the pressure field after a while verifying
an earlier observation in these forecasfs. Introducing a di§érgenc_e in the
pressure field it is found that not only is the retrogression greatly reduced’

in the pressure field, but a stronger coupling is found between the temperature

and pressure fields.



1. Introduction

Recent investigations of the energy-conversions in the atmosphere,

especially the conversion from potenfial to kinetic energy, by Wiin;Nielsén

(1959 b) and Saltzman and Fleischer (1959) show a positive conversion on each
day. The conversion of potential to kinetic energy is positive, if on the average
the warm air is riéing and the cold air is sinking. It is furthermore found that
this arrangement is possible only if, on'the average, the temperature waves

are somewhat out of phase with the pressure waves in such a way that cold air

is advected into the pressure troughs and warm air into the ridges. It is an
importanf problem to find out how the atmosphere is able to keep the te-mpera-.
ture and the pressure almost, but not quite, in phase and to keep the temperaturé
wave lagging somewhat behind the pressure wave. From the energetical point

of view it is obvious that the arrangement of the temperature field relative to

the pressure haé to be this way due to the fact that fri_ctioﬁal digsipation continu-
ously reduces the amount of kinetic energy and a conversion of energy from the.
source of potential energy has to take place in order to make up for the frictional
‘loss. Itis, however, of a great interest to describe, if possible, the major
mechanisms which are resi)onsible for keeping the atmosphere in a state where
it is able to convert potential to kinej;ic energy.

The purpose of the following investigation was to demonstrate that

" the two-parameter model of the atmosphere will predict the desired lag of the

temperature relative to the pressure field independent of the initial state of the
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atmosphere at least for sinusoidal initial flow pattern. We can demonstrate
that this is the case simply by making a predictiqn using.the two—paramet;er
model for varying initial conditions. In order to avoid complicated numeriéal
probiems it was decided to make the problem one-dimensional and thereby
reduce it t§ such an extent that a solution can be given in a closed form.

A similar investigation of the two-parameter model from a similar
point of view, but using a statistical approach was made by Thompson {1959).
However, his considerations can only give an initial tendency for "growfh"
and'beelusion'' and can therefore not say anything about the state _towards
which the atmosphere develops. By obtaining the solution in a closed form we
can easily investigate the developm‘ent in time and also investigate the limiting
state towards which the atmosphere develops. What is gained by obtaining the
solution in a closed form is sacrified by the limited complexity of the flow
pattern, which is possible.

In short, we are going to make one —diménsional fo;'ecasts with a
two-parameter model for initial conditions having varying phase differences

between the temperature and pressure.
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2. A Solution of the Model Equations

The a_tmOSpher_e will be represented by the simplest possible baro-
clinic model. We are going to use the 40 and 80 cb levels as information levels -
to aésume W = 0forp =20cbandp = llOOch and to assume that the atmos-

" phere is frictionless and adiabatic. The model equation for this model can be

written:

* | , ,
2.1) %‘f‘* v 'V(Stfr) t Y Vs s
o8’

_H-x +v VS + v e (SN) - ytey'=0

(2.2)

k . : .
In(2.1Yand (2.2) V= XVy/ denotes a horizontal wind, 3= vy
the relative vorticity and f the Coriolis' parameter. Quantities with the super-
script "star' refer to the arithmetic mean of the corresponding quantities at
the two information levels, (40 and 80 cb), while a superscript 'prime" refers
to one half of the difference between the quantities at the same levels. The para-

2
menter A = 2.'?0/0‘2 is assumed to be a constant. £ is a standard value of
the Coriolis' parameter)T-'-' 46 cb  and G=-o? &’9/513 is a measure of

’
static stability. In the following we are going to refer to the \ - field as the
% :

temperature field, while we will refer to the {/ - field as the pressure field.

We are going to find solutions to (2.1) and (2.2) in a linearized form.

The perturbations will be assumed to have the form:

o\ - Lk[x—ct)
wh(x, f) -
*, ck (x~ Cf)

(2.3)

LV (Xf)



-6 -
~ N At '
'7U and (,V denocte the (complex) amplitudes, k= 27T/L- the wave-number

.and c the phase-speed. (2.3) will be the solutions to the linearized forms of

(2.1) and (2.2) if the following two homogeneous linear equations are satisfied:

* AKX -
co [-Wrpr®] 9" - K ¥ =0
e W [Z7E=1] ¢ +[0er/ Ul )2
x

(/3

parameter. Non-trivial solutions to (2.4) and (2.5) are possible if the determi-

, . .
and u are the (constant) zonal wind speeds and'ﬁ-‘-‘d'g/d?. the Rossby-

nant is zero. This condition gives us an equation from which the wave-speed

¢ can be determined. Denoting:

*x 2.
(2.6) X= c-U + plk
we find £
2 r
| _BR/KE A
(2.7) X = TZ—('_'_Za/kz)
where

(2.8) | A:(ﬁxz/k"‘)z+4&'z(l— ’14//':4) |

The two solutions (2.7) will be denoted X+ and X_ corresponding
to the two possible signs in front of the vsquare root. The corresponding values

of ¢ will be c, and c_.
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The complete solution to the model equations may now be written:
A” bk(X-—C f) AN Lk(’(-q_é)
@9 (x t)= ¢, . € T+ y_ € |

AT c/((X-(.;_'é) | .AI. J}((K"C_f)
.10y \p (x,£) = ¥, e Y iyl e

because our equations are linear, and superposition of solutions is possiblé.

3. Determination of the Amplitudes
The four amplltudes, W+ , W y/ and W may be determined from-

the foilowing conditions. Firstly, the solutions (2.9} and (2.10) have_to satlsfy

* /
~~
the initial condi\-.}tions for the two fields \y and t}/ .. Let us assume that the -

initial fields are speéified by the relations

* /-],'( o kx
1 ' L= 0D
(3 ‘ ) Wf’b . 0 |
(3.2) = A ,coo( X+ .)
qu‘. =0 °
¥4
which means that we assume initially a phase-difference of 0/’ between the
/ * o
temperature wave L‘g and the pressure LV-& . Note, that the temperature
=0 -

field is lagging behind the pressure field, 1fo( ?20. In the complex notation we

may write the initial conditions in the form
o A *  (kx
(3. 3) WtJ’ o = o e ,
' } ¢ (kx -+ hLo)
/
(3.4 Wp_, = A, €

where A% and Al are real numbers.
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Equating (2.9) and (2.10) for t = o to (3.3) and (3.4) w‘e obtain two

of the necessary equations for a determination of the amplitudes, i.e.,
R N AR A*

{3.5) - o

Y, + ¥

/
/ / 0‘,

"~ A / ¢
(3.6) k‘j-l- -+ "V_ = Ao e

The two remaining relations aredbtained from either (2.4) or (2.5)
A * A ¢
which gives a relation between ‘,V+ and k}/+ yifc=c janda relation between
AR - /
Y/  and Y. , ifc =c_. The simplest forms are obtained from (2.4):

_ A * r Al
— = 0
3.7 X+ W-i- U wf
AKX
(3.8) X Y- - U v =0

The four equations (3.5), (3.6), (3.7), and (3.8) determine the ampli-
)

tudes in terms of the initial conditions, the wave-number k and the parameters: a;

2
z Gth The solut'ion' to plgz;s set of equations may be written:
¢, . -
kp"‘__uA‘,-e - X-Ap ‘L"H?’* X+
= = ¢
+ Xy = X 7 + t W
* 14 i
ok X A - UA € , @’_(;J* X-
= = - ’
- X+ h X- B u

The expressions (3.9) substituted in (2.9) and ( 2.10) determine the

(3.9

complete solution. In the following we are going to study some properties of

the unstable, baroclinic wave. We note first of all that in this case we have:

(3.10) ¢, = C,,.+!-’Cq’ C =G -¢¢
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where the subscripts r and c denote the real and imaginary parts of the numbers,

*

and the expression for { may be written:

koot ket chlx-c, ’é) n ¥ e_kQé. edk("-o-i').
(3.11) =. HV.,.' e e l g

In order to study some details of this solution we Bhall write:
. A X A ( 5
) Los é + ¢ Sik )
X * g *
The expressions (3 12) are to be c0n31dered as the deflnltlons of A + A +

).
and g

_ Substituting'(B. 12) in (3.11) we can after some manipulations write
% .
\1(/ in the following form:

(3.13)

| WiFh 2 .2 2'kc¢é . _qu,_t A A M(g 5)
(3.14) A = A-g-'e _.+A- <

and o ke, ¢ % —ke¢t
" Cm§+.+A_e il

A e
(315)fawg A e e/cmg f-A_K e-kgtc‘%’g-*

In an analogous way, we define

'(3-16) K[/ A (Cosg-i-c&ng ) SV A (»coaé-i-r,dm;)
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/
and we can then write the golution for L[J in the form:

(3.17) \,l),-_- Al,cm [k(x- ¢ t) + S'J

with.
| 2 ~2k€f / /
(3.18) A,z €2k('t‘-+ A_' e +2/€_ 4605(63_—5_

- ket / / ~kQ’5' /

+_ecCaog +A_e “emd.
The expressions (3.13) and (3.17) give the variation of l,l)*and LV
as simple sinusoidal waves, however, with an amplitude and a phase, which
are functions of time.
It is the problem to investigate the solutions given above in some
detail in the next section

4, Some Characteristic Features of the Unstable
Baroclinic Wave

Even the very simple initial flow pattern which is considered here
shows a great deal of compiexity as it develops in time. We shall first investi-
gate the phase difference between the thermal wave and the pressure wave, i.e.,
(S 5 ). From (3.15) and (3.19) it 1s seen that the limiting phase angle as

. * _ g
time approaches 1n.{1mty will be é and § . The phase difference will

ther efore in the limit approach the phase difference in the amplifying wave.
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From (3.12) and (3.16) and (3.9), we find in the amplifying case
% .-ZCA.,Cmol -+-A pz/k [2¢1+2%/*]”
(4.1) fa—«, 51_ = | 2 /k J

and

¢
(4.2) T 5,

l

A, wicls (~2) = A, cos ol ﬂZ et 2 A (1= 37K
Al oo, /32/k + A, ,c,go( (A)'-

From (4.1) and (4.2) we can derive the interesting result that

' X | (—A)z
wn  faw (3 9, ) = ﬁz‘/k"

(4.3) can be rearranged using (2.8) to the form:

vy Lo o (337 < [0k 871 k/«‘v-lj

too

(4.4) shows that the baroclinic, unstable wave will develop towards
a state, where the temperature field has a certain lag behind the pressure field.
The limiting phase diffzerence depends on the ver-tical shear, the /3 -effect, the
stability parameter Z  and the wave number, k, but is independent of the
initial state.

From (2.8) it is seen that the criterion for instability is:

, 2 b, 4 -
e W (ﬁzz/w) .[4:2l/k 51]
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It is interesting to note that (4.5) also expresses the condition that
the squafe root in (4.4) is real. We may therefore conclude that any unstafale
wave will ultimately have a positive phase lag. If the equality sign in (4.5)
holdé, we have waves in neutral stability. (4.4) shows that these waves are
equivalent barotropic in the sense that isotherms and contomlxrs are parallel.
The mére unstable the wave is the larger is the limiting phase-lag. Figure 1
shows u, as a function of wave len'gth in the baroclinic qnstable waves with a

: . -
certain phase-lag. The curve (8-5 } = 0 is the same as the curve for
neutral stability.

Equation (4.4) gives the phase-lag in the baroclinic ‘wave for time
approaching infinity. It is interesting to note that if we can apply the results
of this analysis to the real atmosphere, we find that the atmosphere constantly
is tending toward a state with a positive lag between the temperature and pres-
sure field. This result is somewhat different from the. statement made by
Thompson (19.59) who arrives at the result that the atmospherle constantly tends
towards a state of quasi-barotropy. These results are obtained from essentially
the same model, but are based upon a tendency computation for ''growth'

(?(S*g-{’ S'Z)ﬁt and "occlusion" (2(5”5' ')/B'é) He finds that waves, where

the temperature field initially lags behind the pressure field will grow and occlude,

while waves, where the témperature field initially precedes the pressure field

- will decrease in amplitude and have a tendency to an increasing phase difference
between the temperature and pressure field in such a way that the temperature
field at a later time will precede the pressure field even more. Although these

results are true in most cases as tendency computations, the present results
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show that the later development of the flow always will result in an amplifying
wave, which will tend towards a state of a.positive phase lag. As a further
cofrection to Thoméson's results welfind that the phase difference between
the tlemperature wave and the pressure wave do not decrease in a monotonic
way if the temperature field initially 1a.gs behind .the pressure fi.eld, but the
results suggest that the phase difference will decrease if the initial phase
difference is greater than the limitiﬁg one, and increase, if it is initially
smallef than the limiting pirase difference.

It is naturally somewhat doubtful whether one can apply‘ Ithel results
of a linearized treatment of the dynamic equations very far in time. It becomes
therefore interesting to compute a few examples which will show the develop-
ment in time/aomplitude and phase for the bargclinic wave and for different
initial states. We have here chosen a wave with-a wave length of 5000 km,

1

maximum meridional winds in the '"'star'' field of 20 msec ™" initially and in

1

the "prime'' field of 10 msec™" initially. The zonal winds have been chosen to

be U% = 20 msec"l, U = 10 msec"l.
/

The initial phase-lag has been chosen to be o(o ='7r/21 71'/4-/ 0/ -'77/4/ -7]/2 .
With a wave length of 5000 km these values correspond to about 16, 8, 0, -8,

and -16 degrees of longitude. The formula (3. 1.4), (3.15), (3.17), {3.18), and

{3.9) were used to compufe the phase diffe;'ence (515*; and the amplitudes A*

~and A' as a function of time. Multiplying A* and A' by the wave number k, we

obtain the amplitude in the meridional wind component.



-14-
: LW

Figure 2 shows the phase difference (8-5 ) as a function of time
np to t = 36 hours. For our particular choice of parameters the limiting

hase difference turns out to be 57° or roughly 1/6 of the wave length. It is
seen on fig. 2 that thé initial states characterized by a phase difference between
-'“/l-} and-lvn. approaches the limiting phase difference uniformly. The initial
phase difference of -T/2 is an example of a case, where the phase difference
becomes numerically greater until it finally approaches the limiting phase
difference. The curves on‘figure 2 indicate that the adjustment between the
temperature field and pressure field takes place rather rapidly. Already after
36 hours, the temperature field is lagging hehind the pressure field in all the
waves which have been investigated.
% * :

Figure 3 gives ¥ = kA as function of time computgd for the five
different initial states from. (3.14). It is seen that the amplitude increases |
monotonically. with time- in the case where the temperature field initially lags
behind the pressure field and even in the case where thetwo fields are initially
in phase. In the two cases where the temperature field initially precedes the
pressure field the amplitudes decrease at first, but have, at least in the ex-
amples computed here, started to increase after 36 hours.

The amplificatlion rate computed from the amplifying wave alone is
exf-(ktc{) This factor tﬁrns out to be 1.8 for the wave length of 5000 km
chosen here and t = 24 hours. From fig. 3 it is seen that the amplification
rate in the complete solution, where we have the amplifying, as well as the

dampenihg wave present, is smaller than the value above in all cases. The



-15- |
*

factor 1.8 would correspond to an amplitude of 36 msec'1 for ( kA } at

t = 24 hours. Only in the case of an initial phase of W/2 do we get a similar
amplification rate. The meridional velocity, Vf:- /(A' , varies as a function of
time in a way very similar to V*= ICA* and the corresponding curves have not
been reproduced h-ere. It is, however, interesting to note that the thermal
field amplifies in much the same way as the pressure field.

We find as the main conclﬁsion from this section that the phase
difference between the temperature and pressure fields rapidly become positive
if it were ne.gative in the initial state. This explains in a qualitative way why
we always find a positive conversion between the potential aﬂd kin;tic- energy.

With respect to the amplification rate we find that this quantity:in
ggneral depends to a large extent on the initial arrangement of the tem};erature
field relative to the pressure field. Fig. 3 sh'ox'ws that the amplification rate is
much smallerI than the one estimated from the amplifying wave alone in cases
whefe the two fie}ds are nearly in phase initially. As we, according to the
present theory, most often will find the two fields only slightlly out of phase it
is to be expected that the amplifilcation will be small in most short-range predic-
tions (24-36 hour forecasts).

5. On the Behavior of Very Long Waves in the
Two-Parameter Model

In this section we are going to investigate the behavior of very long
waves in the two-parameter model. From earlier investigations, see for '
instance Wiin-Nielsen (1959a), it is known that very long waves are always stable

for values of the vertical shear appearing in the atmosphere. This means that
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the two roots, cy, and c_, and therefore also the quantities x; and x_, will be
real numbers. In order to keep the investigations relatively simple we shall
investigate what happens, if k-—’) 0 , although it is reaiized that there is an
uppe.r limit for the wave length in the atmosphere.

‘ We return to the expressions (3.9) for the amplitudes. Denoting

* 2
(5.1) C =u - ﬁ/k

R
we have
_ . - = C - C
(5.2) X = "% ) X - R

From the éxpression (5.1), (2.6) and (2.7) it can be shown that

' —= k- o
(5.3) CR—)-oo ) X_'_—>+oo ) X - 0 -For_

From the results (5. 3) it follows using (3.9) that
A K *
Yo /A 0
AKX A
| /A, =~
sy Y- /A o for k>0
o -
Y+ /A° €
d,

Al r%
W_/Aoe — 0

—= |/

. The results obtained in (5.4) are interesting because they show that
* .
the stream function Y  for very large values of the wave length predominantly

will move with the speed c_, which is close to the Rossby speed and therefore
numerically large and negative for very long waves, while the amplitude ‘V_,_
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in the part of the solution moving with the speed c; will be very small. However,
the last two expressions in (5.4) shows that the thermal wave Y ’ behaves
opposite. Only a very small part of the initial amplitude will appear in the
wave moving with the speed c_, while the maj'or part will move with the speed
€, , which for small values of k is positive, but small. The pressure wave W/
and the thermal wave, Y/ ’ , move therefore in opposite directions and with
speeds which are very different. We may as an illustration take the case Where
the two waves, V¥ , and Y ,, are initially in phase. Accri:rding to our results
in (5.4) we will find the \,V*-wave will retrograde with a large speed, while the
N ! -wave will move slowly toward the east. Due to this result we will find the
temperature wave.preceding the pressure wave in this forecastl. " It has been
noted earlier that this actually takes piace in férecasts with this model
(Thompson, 1959), although .it was not stated whether it tended to appear for
very long waves. Although our results are obtained for infinitely long waves it
is likely that similar but slightly modified results apply also for the planetary
waves on the hemispheric forecasts. The waves in which it is found that the
temperature wave gfaduaﬂy will precede the pressure wave are therefore not
the unstable waves, but rather sufficiently long stable waves.

In an earlier effort to control the behavior of very long waves in a

two-parameter model it has been suggested (Wiin-Nielsen, 195%a) to modify

the prognostic equations (2.1) to the following equation:

29

'95’* Ly * / { .'z
(5.5). ——+'V-V(5+’C)+~\./,.'V5fr 2t
2t e -
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but to leave the other prognostic equation (2.2) unchanged. The modification
of (2.1) to (5.5) means that we have introduced a certain amount of divergence,
i.e.,

%

*
5 6 rz 2:._’,_—
( . ) V' V == ¥° .-Bt

A

- % ,
which will have a characteristic distribution relative to the waves in the - .fneu_

Assuming for a moment that

(5.7) qz* = A s klx-ct)

we find
z rt *
(5.8) V\/*:-—r— C.I(A cos k(¥—ct)=—-_ S P
. Anay o :

°
For very long waves, where € <0 , it means that we havé introduced
a convergence, where ‘U'*>o i.e., between the trough and the ridge, and diver-
gence between the ridge and the trough. Althoggh the introduction of these
divergence pattefns was based on an equivalent barotropic structure of the very
long waves, which not always is found, it is interesting to note that a divergence
pattern of this type will appear in a three-parameter model, if the vertical wind
2 2 '
profile has a jet-type structure, i.e., d u/dp ?0. The distribution of verti-
cal velocity and divergence in a three-parameter model will be deecribed in a
_paper to appear later. It is, however, pertinent to mention here that the term,
V‘Zfaq/*/'bf » may be justified also from the point of view that_We have intro-

duced a pattern of convergence which cannot be represented directly by two
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parameters, because it depends on the deviation from a linear vertical wind
profile, but which is present in the real atmosphere due to the vertical struc-

‘ ] 2

ture, especially the property that d’u/dP is positive in the midtroposphere
at leést in a jet-stream region. With this further justification for the presence
of this term it becomes interesting to investigate wheth.er the modified two-
parameter model will give a coupling between the.wa.ves in the Y/“-;field and
the \H,-field, especjally for very lc;ﬁg waves. From the analysis in the
earlier paper (Wiin-Nielseﬁ, 1959a), it is evident that the two épeeds, c, and

c_, are numerically smaller. In the limit we found:

(65.9) C, = L(*— /5/22_’ c = —ﬁ/r" ‘F“‘ k> o”

2 -]2 -2
In mid-latitudes (P= 45) and with a value of A= 4"!0 m , we find

2 44 - .

/3/« =f msec . This means that c; in general will be a positive quantity,

C_‘_-: 6 muc" for l,(,*= 20 msec’ A value of Y‘q'= 2xl¢;’:1-zwas estimated for
this quantity in mid-latitudes. With this value we 6btain < =- Emsec' Even
if the results obtained for the model with no mean divergence should hold h('ere.
we find, due to the smaller speeds, that the tendency to let the temperature
field precé_de the pressure field would be greatly reduced. The main point is,
however, that it is possi‘ble to show that we, indeed, will obtain a coupling be-
tween the pressure and temperature fields in this case. In order to show this,
" it is necessary to repeat the analysis for the modified model. Due to the more

complicated equations the analysis becomes somewhat more laborious and only

the major steps will be outlined here.
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Introducing the same type of perturbations as before (see 2.3), we

avrive this time at the following set of linear, homogeﬁeous equations:

AR t Al . .
(5. 10)[(l+r"/k)<:—l( +/3/k] - uw o

©' (1= 2Yk*) " [<l+ R (e “v/”") /’z/"ﬂ"m
(5.11) - -

The condition that the determinant has to be zero in order to obtain
non-trival solution gives us an equation from which we can determine the phase

speed ¢, which becomeé:

L

2

:2.-sw\r~'/l<t % (2+r’/k+2/k)/3/‘< D t __
2 (\rr/k') p_(l-;-r’/k)(l-;-Z/k) 2 (+r ) (10275}

(5.12) C=

where '
: 2
(5-13):D=[(\+7‘2/kt) ot u*/k%-t- (Q?/ki_ y-’/k“)/_l,/kz-] +
A (l+r’/kz)(|- 2Yk*) w'e

If we now define
)(1_ = (|+Y‘z/‘&1) C+ - R
(5.14)

x_ = (1+ rt/kt) C - e

we obtain the same relations (3.9) to determine the four amplitudés in terms

of initial conditions with the interpretation (5.14) of X + and K_ .
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. 2
It is immediately obvious that as (-9 -a= , while C't'_> u - ﬁ/’& 20
R

we have x -5 22 for l() 6 . Due tothe compensating effect between the two

terms in c¢_ in (5. 14), it is somewhat more laborious to find /I m C_.
kK-> o

It is, however, possible to find
2z

Z<I
(5.15) /I'fm X

e ot (phen - Y

through the use of l'Hospita‘l's rule twice. The computations leading to (5.15)

will not be reproduced here.

With the result (5.15) and the fact that /"Vh K = +20 | wecan
k>

easily derive the followmg results:

\V+/A =0

%* | .
~ = I . %
\‘P-— /Ao ?D(.' ul Ao“_

F- | -
(5.16) WT/Abe-d'—b o +(ﬁ/r—/3/2') Al e’ ol
\V_ /A.G ’ - * A° ¢
-t-(/g/r‘—ﬁ/’l') Alet™

Fl

for k‘7°-

We find that the béhavior of the pressure wave, {/ , is unchanged
%
in the limit, i.e., the (’/ -wave will retrograde with the speed c_. However,

]
the behavior of the Ll/ -wave ig different. In order to obtain an idea about the

/ : .
- amplitude in the \{ -wave traveling with the speed c_, we may estimate:

- A
5.17) . > ~ 2

! sl
A, €
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assuming a linear increase with height of the amplitude. Further we find

that
{

(5.18) u ~o 0.4‘
u-k_\_ (P/ra_ /B/’Ll)

and consequently:
~ ! ! ':°l‘: 8)
(5.19) Y- /f A, e l ~ O

We find therefore that the major portion of the thermal wave will

retrograde in this case, and we have a rather strong coupling between the
thérmal wave and the pressure w#ve. | |

The main conclusion from this section is that we obtain a stronger
- coupling between the '.|/f and the \Vfwave if we have a certain pattern of diver-
gence in the k,) -field, _nan'xe-ly such patterns as are described by (5.6).
This div.ergencé has to be introduced as a special requirement in a two-parameter
model, but will appear as part of the inherent solution in 2 model, when the

deviations from linearity in the vertical wind profile can be considered. The

simplest model having this property is a three-parameter model.

6. General Conclusions

From the complete solutions of the two-parameter prognostic
equations for certain simple flow-pattern, it has been found that the temperature

field and the pressure field in the unstable wave tend to adjust to each other in
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such a way that the temperature field after a while will be lagging behind the
pressure field, The limiting bhase d"i.fference does not depend on the initial
arrangement of the two fields, but the initial state is important for the develop-
ment within the first 24 to 36 hours.

It is further found that the amplitude in the témperature field and
the préssure field will decrease initially if the temperatﬁre field precedes the
pressure field initially, but_due to the adjustment in the phase diffei'encé they
will start to incréése when the phase difference becomes positive. As shown
in the first part, this state will appear sooner or later.

The amplification rate within the first 24 to 36 hours is very sensi-
tive to the initial state. Only in the case where the temperature field initially
lags behind the pressure field by about 1/4 of a wave-length will we find ampli-
fication rates comparable to the one found if only the amplifying wave is consi-
dered.

In a two-parameter model with no mean divergence we find that there
is practically no coupling between the temperature and pre;ssure fields for very
long waves. The pressure field will retrograde with a speed comparable to the
Rossby spéed for n.on-divergent waves, while the temperature wave will pro-.
gress with a small positive speed leading to a situation, where the temperature
field will precede the pressure field as it sometimes is found in forecasts using
the model. If we introduce a divergence in the pressure field we find that the
pressure field will retrograde much slower and further that a stronger coupling '

now will exist between the pressure and temperaturé fields.
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The results obtained in this study are not necessarily directly
applicable to the development of the flow in a two-parameter model or in the
'atmoéphe're. based as they are on extremely simple flow patterns. Especially-
the lack of shear in the zonal winds and the non-existence of non-linear inter-
action between different wave components are severe resirictions in the solu-
tions considered here. The results should be looked upon as describing the .
behavior of simpie baroclinic waves and could serve as background information
for empirical studies of baroclinic development in cases where an analytical
solution is impossible due to the great complexity of the equationsl.

The investigation described in this note is of course closely related
to earlier investigations of baroclinic instability, which are too many to be
listed in the references. The attention has he're been focused on the nature of
the complete solution, the evolution of the phase difference and the amplitudes

as functions of time in the first 36 hours and their dependence on the initial state.

POSTSCRIPT

After the completion of this paper it was pointed out to the authof that the
results in sections 2-4 are similar to those obtained by Ogura (Journal of Meteoro-
logy, 1957, vol. 14, pp. 60-64). The dicussion of several initial situations showing
the rapid adjustment of the temperature field to the pressure field in the unstable
wave, the comparison with Thompson's results, the discussion of the dependence of
the growth rate on the initial fields, and the discussion of the very long waves are

probably still of interest as an extension of Ogura's investigation.
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Figure 1:

Figure 2:

Figure 3:
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LEGENDS

! -
The vertical windshear.u (m sec ), as a function of wave length,
. -3 '
Lxlo ( kh‘)) in unstable baroclinic waves having varying
I ¢k
limiting phase difference. ‘The curve, (8 - 5 ): O , coincides

with the curve for neutral. stability.

The phase difference between the temperature field and the pressure
field as a function of time in unstable baroclinic waves from various

initial conditions.

" kA (msed), s '
The meridional velocity, YV = A MSec J, as a function of time
in unstable baroclinic waves. Each curve corresponds to a different

initial phase difference.
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