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On the Spatial and Temporal Resolving Power of Satellite Data in 
Repeat Sampling Configuration 

Chang-Hou Tai 

N O M  Geosciences Lab.  
N/OES11 

1305 East-West Highway 
Silver Spring, MD 20910 

Abstract 

The sampling problem for satellite data in exact-repeat orbit 
configuration is treated here. It is shown there are multitudes of 
spectral ranges that are resolved with various degree of 
uncertainty by the data, while the suitable choice depends on the 
phenomena we wish to observe and the noises we endeavor to avoid. 
The problem is idealized for applications to regions of limited 
latitudinal extent so that straight lines represent satellite 
ground tracks well. Let X and Y be the east-west and north-south 
separations of parallel tracks, T be the repeat period, and k, 1, 
o be the non-angular wavenumbers and frequency with k in the east- 
west direction. The spectral range that is perfectly resolved (as 
if the data were placed on a regular space-time grid) covers ( -  
l/x, 1/X) in k, (-l/Y, 1/Y) in 1, and [0, 1/2T) in a. There are 
other spectral ranges that extend either the spatial or temporal 
resolution with increased uncertainty beyond the above-mentioned 
perfectly resolved range. 

The idealized problem is solved in stages, progressing from 
one-dimensional, two-dimensional (2D), to the fully three- 
dimensional (3D) problem. The process is aided by a discovery that 
has implications going far beyond the scope of the present paper. 
It is found that from a multi-dimensional regular grid, we are 
free to introduce misalignments to all dimensions except one 
without incurring any penalty in spectral resolution; i.e., the 
misaligned grid is equivalent to perfectly aligned grid in spectral 
resolution. (However the misalignment does induce far more 
complicated aliasing.) Thus non-simultaneous observations are 
equivalent to simultaneous ones, hence reducing the 3D problem to 
the 2D one. One 2D grid (the crossover grid) is equivalent to not 
just one but two regular 2D grids. These results are all verified 
numerically. 

1. Introduction 

The peculiar spatial and temporal distribution of satellite 
observations has presented great difficulties in determining their 
resolving power, i. e. , what maximum range centered on the origin in 
the frequency-wavenumber space is resolved by the data in the sense 
that spectral components within the range are sufficiently 
distinguishable from each other? The resolving power entails a 
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companion question: What aliasing can be expected from components 
outside the range into components inside the range? In textbook 
cases, observations are placed on regular space-time grid such that 
the Nyquist frequency and wavenumbers are readily determined. In 
the real world, this is rarely the case. In cases that regular 
sampling is physically possible, the fiscal constraints often 
prevent it. Or as in the case of the satellite, the sampling 
characteristics are constrained by the satellite orbit. Of 
particular interest is a class of satellites that repeat their 
ground tracks after a fixed period, thus sampling with a set 
(albeit irregular) pattern. These include all the altimetric 
satellites measuring sea level from space. The intelligent choice 
of a repeat orbit configuration depends on our ability to answer 
two questions. First, what is the inherent resolving power of a 
conf iguration?p Second, what are the approximate frequency and 
wavenumber spectra of the phenomena we wish to observe as well as 
those of the noises we wish to avoid? The present study will try to 
answer the former, while discuss the latter only in passing. 

There have been two studies on the subject. Wunsch [1989; W89 
hereafter] has tried to answer exactly the same question posed 
here, employing least-squares to explore the resolving power. The 
least-squares approach can be used to exhaust all possibilities to 
evaluate the maximum resolving power. However without sufficient 
theoretical guidance, the cost of an exhaustive search is 
prohibitive. Thus a slight misunderstanding has rendered W89's 
results confusing in retrospect. Chelton and Schlax [1994] have 
taken a different approach by smoothing the irregular data onto a 
regular space-time grid, then examining the spectral 
characteristics of the linear smoother (the so-called equivalent 
transfer function) to determine what range is well resolved after 
the smoothing operation. But the range clearly depends on the 
adopted smoother and its associated parameters, while the question 
posed here is finding the maximum resolving power of a repeat orbit 
configuration. Here we shall adopt W89's approach, but pepper it 
with more theoretical development. 

The data outage associated with land and data loss can 
severely complicate the issue and is not treated here. The 
idealized problem with no data gaps is solved in stages. First, in 
section 2 ,  the relevant one-dimensional ( 1 D )  problem (for either 
space or time) is shown to be one involving two alternating 
sampling intervals. The me'aning of Nyquist frequency (or 
wavenumber) undergoes a significant change when data are not 
equally spaced. Next, we demonstrate in section 3 the important 
result that observations taken at different times but at regular 
time intervals (e.g., the exact-repeat sampling by satellites) are 
equivalent to simultaneous observations, thus simplifying the 
three-dimensional (3D) problem to a two-dimensional (2D) one. It is 
shown that of the three dimensions only one needs to be aligned 
originally. We then solve the idealized 2 D  problem wherein 
satellite tracks are straight lines in section 4. The meaning of 
Nyquist wavenumbers undergoes a even more dramatic change. Finally, 
in section 5, the idealized 3 D  problem is solved using the results 
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obtained for 1D and 2D problems. We conclude in section 6. 

2 .  1D problem 

At crossovers, one has a time series that contains two fixed 
but alternating sampling periods. Only rarely are the two sampling 
periods identical (e.g., the 1.5 day at crossovers on the equator 
for Seasat's 3-day repeat). Similarly along a fixed latitude, one 
gets a spatial series with alternating sampling intervals. This is 
also approximately true along a fixed longitude. This recurring 1D 
problem has significant implications. A thorough understanding is 
provided here. 

a .  The damped 1 e a s t  - s q u a r e s  a p p r o a c h  

W89 gives a complete treatment on spectral analysis of 1D 
irregularly spaced data. He shows that spectral contents can be 
obtained through least-squares fitting of Fourier series to the 
data. Thus the maximum number of unknowns obtainable is the number 
of data. When data are equally spaced, the maximum range gives the 
Nyquist frequency. But when data are irregularly spaced, the 
maximum range may not be obtainable. For example, if two data 
points are placed too close to each other, they cannot possibly 
give independent information. In addition, the least-squares 
solution is more prone to noise (aliasing) with irregularly spaced 
data. These lead to uncertainties of the least-squares solution 
that can be handled by the mechanism of the damped least-squares 
[Hanson and Lawson, 1970; W89 uses the term, tapered least- 
squares]. If a spectral term's uncertainty (formal error) 
normalized by the term's signal variance is over 0.5, the term is 
not resolved at all (see examples in section 2b). This is the basic 
approach for all our numerical solutions herein. For readers who 
are uncertain of the details, W89 is a good source. 

We solve two cases: one for time series at crossovers, the 
other for spatial series along fixed latitudes. The difference is 
in the number of data points. For the former, the number is 147 to 
model about 2 years (73 repeat cycles) of TOPEX/POSEIDON (T/P), 
whereas 21 is used to model a east-west span of about 30' in 
longitudes for T/P. (Note that the number of data points is 
deliberately kept as odd to avoid the confusion at the highest 
frequency resulting from unevenly-spaced data.) Of course, one is 
free to interpret 21 as about 10.5 repeat cycles and 147 as 147 
tracks for any satellite. Besides, these disparate numbers provide 
a hint of how cases may vary according to the total number of data 
points. 

b. T ime  series w i t h  t w o  s a m p l i n g  per iods  

Thus with 147 data points, we solve for 147 unknowns (Fourier 
sine and cosine coefficients). The non-angular frequencies are 
integral multiples of the fundamental frequency, 1/(73.5xT), where 
T is the repeat period of the satellite (e.g., 10 days for T/P) . 
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The formal error analysis is performed employing the damped least- 
squares with an a priori noise to signal ratio of 1 (i.e., o/A=l, 
using W89's symbols) , but the total noise variance versus the total 
signal variance is 1 to 74. 

The solid line in Fig. 1 displays E, the average normalized 
uncertainty (i.e., the formal error variance normalized by the 
signal variance and averaged over the 147 unknowns), as a function 
of d, the smaller sampling period normalized by the average 
sampling period, which varies from 0.01 to 1 (where d=l means the 
data are equally spaced). It shows very little uncertainty when d=l 
to E close to 0.5 (i.e. , unresolved) when d is small. The 
interpretation is straight-forward. When d is extremely small, the 
data points are bunched together in pairs, essentially only giving 
74 independent observations. Thus all spectral terms that would be 
indistinguishable from each other if we only had 74 equally spaced 
data become completely confused with each other (as E=0.5 
indicates). Between the two extremes, the resolution also lies in 
between. The individual normalized uncertainties are fairly 
uniform, thus close to E, the average. The uncertainty also depends 
on the size of the noise. The dashed line in Fig. 1 shows E versus 
d if o/A=2 (i.e., the error variance is quadrupled). 

c .  S p a t i a l  series w i t h  two sampling i n t e r v a l s  

In this case, one has 21 data points and 21 unknowns. To keep 
the total noise variance to total signal ratio at 1 to 74, the a 
priori noise to signal ratio is changed to 0.39 in the damped 
least-squares formal error analysis. The dotted line in Fig. 1 
shows E versus d. It is barely distinguishable from the solid line 
except for d < 0.1; i.e. , the basic conclusions hold even though 
the number of data points is much reduced. 

In summary for sections 2b and 2c, irregular sampling does not 
allow a clear-cut Nyquist frequency. The maximum spectral range 
that can be resolved depends on the problem's tolerance for 
uncertainty and noise. For our particular irregular sampling with 
two alternating sampling intervals, the maximum resolved frequency 
(wavenumber) is at least 0 . 5 /  (small interval + large interval) . 
Whether it can be doubled to 0 . 5 1  (the average interval) is clear 
for the extremes, yet fuzzy in the transition. 

d .  A l i a s i n g  

The fuzziest issue is aliasing. To get a feel for the problem, 
here we model a 2-year time series at crossovers for T / P  with high- 
frequency noise at M,, K,, s,, and 0, tidal frequencies. The noise 
amplification (i.e., the power of the aliased result divided by the 
power of the high-frequency noise) is displayed as a function of d 
for these 4 tidal frequencies in Fig. 2, where it shows the 
vulnerability to noise is not limited to small d. Note that the 
noise amplification has been obtained using the damped least- 
squares with o/A=l, without which the results would have been much 
worse for small d. 
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It is clear that in the T/P case trying to extend the maximum 
frequency to 1/(10 days) leaves us vulnerable to noise. But what if 
we settle for 1/(20 days)? Should not the extra set of observations 
help reduce aliasing? The answer is yes, but not always. Fig. 3 
demonstrates this. Take for example the S, tide, whose period is 12 
hours. If the time separation between the ascending and descending 
observations is an integral multiple of 12 hours, there is little 
reduction in aliasing for S,. (Note that the exact separations that 
result in absolutely no reduction can be shown to be close to 
integral multiples of 12 hours.) But if the separation is 6 hours 
plus an integral multiple of 12 hours, there is very little 
aliasing from S,. In the former case, the two sets of observations 
are sampling the same S, phases, whereas the latter two sets sample 
phases 180' apart. It can be shown for all satellites that the time 
separation tends to be close to days near the turning latitudes 
(66' for T/P), but close to days plus 12 hours near the equator. 
The transition from the equator to the turning latitudes is fairly 
smooth. Thus based on time series at crossovers, S, aliasing is 
more serious in the tropics and near turning latitudes, while K, 
(period 23.93447 hours) aliasing is more prevalent at high 
latitudes. 

3. Equivalency of regular grid and misaligned grid 

W89 asserts there is no interesting 2D problem and proceeds 
directly to the 3D problem. This is the key point that this study 
departs from W89. Let us take a cue from multi-dimensional Fourier 
transform, which is done one dimension at a time. Although the 
observations at different locations are not simultaneous 
("asynoptic", according to meteorological usage) , the observations 
at a fixed location are regular in time, allowing easy frequency 
decomposition at the location. Thus the temporal misalignment has 
no impact on the 3D Fourier transform in terms of spectral 
resolution. The same principle applies to the spatial misalignment 
in one of the 'remaining spatial dimensions. For example, let us do 
a 3D transform in x, y ,  and t. Suppose the data are aligned in x, 
but not in y and t, even though the sampling is equally spaced in 
all three dimensions. The transform is done first in t at each 
fixed x and y. Then we transform in y at each fixed x (which is of 
course equally spaced). The transform is easily finished in x. In 
the following, this is verified numerically. 

We adopt the following 3D grid: x=O,l,. .,lo, y=yo,yo+l, 
y0+2,. . ,yo+lO, and t=to, to+l, t0+2,. ., to+lO, where yo and to lie in the 
interval [0,1) , i.e. , 0 5 yo,  to < 1. Note that when yo=to=O, it is 
a regular grid. Now let us keep yo=O, but let to vary with x and y ,  
which is the case of asynoptic observations on a regular spatial 
grid. To the 3D grid, the following 3D Fourier series is fitted: 
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where h represents the data at grid points, while c and s represent 
the unknowns. The indices vary as follows: m, n, i=O , 1,2 , . . , 10 and 
j=O,l,. .,5, while k,l=-5,-4,. .,4,5 for j>O, whereas for j=O, k=-5,- 
4,..,4,5 for 1=1,2,...,5 and k=0,1,..,5 for 1 = 0  with sooo=O. The 
interested reader may verify that there are 1331 data points for 
1331 unknowns. In (1) , we adopt the convention that the frequencies 
are non-negative, and with the minus sign in front of j ,  the plain 
wave propagates in the direction of the wavenumber vector. The 
damped least-squares error analysis confirms our conjecture. A 
variety of pattern for to are tried, culminating in a trial with 
random to. Yet all cases yield exactly the same error as the case 
with to=O (i.e., synoptic observations). That is, there is 
absolutely no penalty on spectral resolution for not having 
synchronized observations. Furthermore instead of keeping yo=O, we 
randomize yo as well. The result is the same as having yo=t,=O. We 
get the same conclusion with a 2D grid. We have not verified this 
beyond 3D, but it is clear the conclusion should hold for 4D and 
beyond. 

Hence starting from a multi-dimensional regular grid, 
misalignments (even random ones) along all dimensions except one 
cause no degradation of resolution; i.e., these misaligned grids 
resolve exactly the same spectral space as the regular grid. Thus 
conceptually we can realign grids to make them regular. Most of the 
spatial grids to be considered in the next section is either 
regular or misaligned regular. But even if the spatial grid is not 
regular or misaligned regular, the 3D problem is reduced to a 2D 
one by the 3D Fourier transform argument. 

However the misalignment does induce much more complicated 
aliasing than the straight-forward case with the regular grid. The 
aliasing depends on the exact nature of misalignment, thus has to 
be handled in a case-to-case basis. This is beyond the scope of the 
present paper. 

4. Idealized 2 0  problem 

a .  Idealized ground tracks  

Fig. 4 plots an idealized track configuration with two sets of 
equally spaced parallel straight lines, which intersect to form 
identical diamonds. The configuration is completely specified with 
two numbers: the east-west separation between the two corners of 
the diamond (called X) , and the north-south separation of the other 
two corners (called Y). Note that X, Y are simply the east-west and 
north-south separations between adjacent parallel tracks. For 
regions with limited north-south extent, the idealized tracks 
approximate well the real tracks on a latitude-longitude plot. A s  
the center of the region moves latitudinally, X in longitude 
remains the same, while Y in latitude changes with the appropriate 
regional idealization. Take T/P for example, Y is slightly less 
than 3X around the equator, Y=2X around 28'1atitude, Y=X near 47', 
then Y shrinks fast with Y=X/2 near 57', Y=X/3 near 61', Y=X/4 near 
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63', and Y=X/5 near 64', etc. In terms of distance, X changes with 
latitude too. X equals 2.835' longitude for T/P, 1.475' for Geosat 
17-day repeat, 0.719' for ERS-1 35-day repeat, and 8.372' for Seasat 
3-day repeat. 

It should be noted that for regions with substantial north- 
south extent, the Fourier harmonic analysis (to which we have 
restricted ourselves in this study) is no longer valid. Analysis 
should be based on spherical harmonics, and land cannot be ignored. 

b. Along- track  wavenumber s p e c t r a  

The idealized tracks show two directions that are richly 
sampled. Fu [1983] and Le Traon et al. [1990] have produced along- 
track wavenumber spectra, taking advantage of the dense along-track 
sampling. Suppose s is the meaningful along-track sampling 
interval, S is the shortest distance between parallel tracks. Note 
that S > s. Then from the ascending tracks alone, the resolved 
spectral range on the kl wavenumber plane (where k and 1 are non- 
angular wavenumbers being positive in the east and north direction 
respectively) is an elongated rectangle in the direction of the 
ascending tracks and passing though the origin at its halfway point 
with a length of l/s and a width of 1 / S .  The descending tracks lead 
to a corresponding rectangle in the direction of the descending 
tracks. They overlap in a diamond (the same shape as those in 
Fig.4) around the origin. Note that in this study, we adopt the 
convention that k and 1 can be positive or negative, but the 
frequency, 0, is always non-negative. This oddly x-shaped region on 
the kl plane represents the spectral region that is resolved by the 
data except in the vicinity of the origin, where the overlap 
complicates the issue. 

c .  What i s  a meaningfu l  20 s p e c t r a l  range? 

The x-shaped region, besides stating high-resolution along- 
track spectra can be produced, is not meaningful for 2D data 
analysis. A meaningful range should have comparable resolution in 
all direction. That is, the meaningful range lies in the region 
where the overlap occurs. Recall the ambiguity with the resolved 
spectral range for 1D irregularly spaced data. Now we have the 
additional problem concerning the shape of the range in 2D. Is it 
a rectangle on the kl.plane with its sides parallel to the k and 1 
axes (i.e., independent ranges in k and l)? This conforms to our 
usual notion and, in fact, will be the shape adopted here. But in 
general it does not have to be a rectangle. Even if it is a 
rectangle, it does not have to be oriented this way. (It happens 
that for data distribution depicted in Fig. 4, this orientation is 
right.) It will become clear that even for our adopted shape, there 
is arbitrariness, which can only be removed by other 
considerations. In fact, there is so much ambiguity in the resolved 
spectral range that even if our adopted rectangular shape is not 
exactly right, it serves the purpose. 

In the following, we show various resolved ranges based on 
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various subsets of data points marked in Fig. 4. All ranges are 
appropriate under the right circumstances, depending on one's 
desire for larger spectral range or less noise amplification. 

d .  20 ranges r e s o l v e d  by the c r o s s o v e r s :  the crossover  g r i d  

The crossovers are special because they may have temporal 
resolution up to 1/T or at least have less aliasing if resolution 
up to 1/2T is sought (see sections 2b and 2d). These points form 
two independent regular grids with sampling intervals of X and Y 
(those marked by A and those by v in Fig. 4) , each resolving the 
same spectral range, (-1/2X,1/2X) in k and (-1/2Y,1/2Y) in 1, with 
an area of 1/XY. This is the problem of "non-simultaneous" 
observations in x and y .  We can realign (see section 3) from the A 
grid locations to those aligned with the v grid. 

There are two ways to accomplish this, resulting in two 
different regular grids. From A'S along fixed y ' s ,  one can realign 
them to x's that are aligned with v ' s .  Denoting these by * on Fig. 
4, we see that these and v ' s  form a regular grid with intervals of 
X and Y/2, resolving the range, (-1/2X,1/2X) in k and (-/Y,l/Y) in 
1, with an area of 2/XY. On the other hand, one can also realign 
A'S along fixed x's to y ' s  aligned with v ' s .  Denoting these by on 
Fig. 4, then they and v's form a grid with intervals X/2 and Y, 
resolving the range, (-l/X,l/X) in k and (-1/2Y,1/2Y) in 1, also 
with an area of 2/XY. Numerical verification with the crossover 
points using these two spectral ranges shows that each range 
results in the perfect resolution as if the crossovers were located 
on a regular grid. 

Thus one has the ultimate in ambiguity that the same data 
points actually support two equally well resolved ranges. If we 
want to keep resolution in k and 1 as close as possible, the former 
is preferred in the tropics and mid-latitudes, while the latter is 
for high latitudes. As if this is not confusing enough, one may 
pose the question: Is any rectangular range, (-l/Lx,l/Lx) in k and 
(-l/Ly,l/Ly) in 1, with LxLy=2XY while L,12X and L,<2Y, equally well 
resolved? Numerical verification shows that while the two ranges 
produced by realignment give as perfect a resolution as a regular 
grid, any other ranges cause degradation. As stated in section 3 ,  
it is really the realignment that works here. 

e .  The 2D range resolved by mid -po in t s  between crossover  p o i n t s :  
the m i d - p o i n t  g r i d  

These points (which are called the mid-points hereafter) are 
marked by on Fig. 4, where they form a regular grid with 
intervals of X/2 and Y/2, resolving the range, (-l/X,l/X) in k and 
(-l/Y,l/Y) in 1, with an area of 4/XY. The mid-point grid gives 
twice the spatial resolution than the crossover grid. 

f. 2D ranges r e s o l v e d  by p o i n t s  midway between crossover  p o i n t s  and 
mid -po in t s :  the quar te r -po in t  g r i d  
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This represents an attempt to extend the resolution in one 
(but not both) direction at the cost of more uncertainty. The 
points (which are called quarter-points hereafter) are marked by 0 
in Fig. 4, which are obviously not on a regular grid. Nor can they 
be realigned onto a regular grid. However we can do the 2D Fourier 
decomposition one dimension at a time as well. This can be done in 
two ways. .First, for spatial series along fixed y's, the two 
sampling intervals are X/4 and 3X/4, from which 1D Fourier series 
can be obtained as described in section 2. From Fig. 1, the 
uncertainty is reasonably small (for d=0.5) for these 1D Fourier 
series with resolution of (-l/X,l/X) in k. These series are 
available along y ' s  that are Y/4 apart. Thus further transform in 
y resolves the range (-2/Y,2/Y) in 1, resulting in an resolved 
spectral area of 8/XY, which is twice the spatial resolution of the 
mid-points, but at the cost of more uncertainty. Second, following 
the same logic but switching the roles of x and y resolves the 
range, (-2/X,2/X) in k and (-l/Y,l/Y) in 1, also with an area of 
8/XY. A s  in section 4d, which is preferred depends on which 
direction we want more resolution. 

The damped least-squares error analysis is performed to verify 
these conjectures. A nondimensionalized grid corresponding to Fig. 
4 is used with one set of crossovers at x,y=O, 1,2, . . , 10 and another 
set of crossovers at x,y=O.5,1.5,2.5,..,9.5. The mid-points are at 
midway between the crossovers, while the quarter-points are midway 
between mid-points and crossovers. To this grid, a 2D Fourier 
series is fitted: 

where h, c, s are as defined in (11, 1=0,1,2, . . , L, whereas k=-K, - 
K+1, -K+2, . . ,K-l,K for 1 > 0  and k=O, 1, . . ,K-l,K f o r  1=0 with s9,=0. The 
interested reader may verify that there are 1421 data points and 
(2K+l)x(2L+l) unknowns. 

The mid-points form a 20x20 regular grid. Thus the spectral 
range,with K=L=9 represents the well-resolved range by the mid- 
points. The upper panel of Fig.5 shows the normalized uncertainty 
in percent for this range using o/A=l in the damped least-squares. 
This range is indeed well resolved with the average uncertainty of 
0.86% and no uncertainty greater than 1.25%. A s  discussed 
previously, the quarter-points are equivalent to a 20x40 or a 40x20 
regular grid with increased uncertainty. The middle panel of Fig. 
5 shows the normalized uncertainty for the corresponding range with 
K=9 L=19. (One can get the equivalent result with K=19 L=9.) As 
anticipated, the average normalized uncertainty increases to 4.39% 
with the highest at 8.62%. In addition, the vulnerability to noise 
amplification could be much worse as demonstrated in section 2d. To 
illustrate once more the importance of our interpretation of 
Fourier transform with one dimension at a time, the bottom panel of 
Fig. 5 shows the uncertainty for the range K=L=13. Note the number 
of unknown sought in this case is 729 (i.e., less than the 741 
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unknowns sought in the case with K=19 L=9). Yet the average 
uncertainty has increased to 8.54%. And more importantly the 
largest uncertainty is over 30%, spreading over significant 
portions of the range and signaling the range is not well-resolved 
at all. 

We can extend the logic to get fairly high resolution along 
one of the direction if the problem demands it and can tolerate the 
increased uncertainty. 

g. Along-track low-pass filtering to reduce the aliasing 

One may pose the question: What happens to all the unmarked 
data points? Aren’t they wasted? The answer is no. Sections 4d,4e 
and 4f more or less show the maximum resolving power of the 2D data 
set, while smaller scales cause aliasing, which is where the rest 
of the data contribute. Along-track low-pass filtering reduce not 
only spatial aliasing but also temporal aliasing from high- 
frequency small-scale phenomena, e.g., instrumental noise, etc. The 
notable exceptions are the so-called basin modes and the tide 
error. The simplest filtering can be achieved by combining the 
along-track data partitioned evenly surrounding points with the 
same mark. For example, we get the mid-point data by averaging data 
between crossovers. 

5. Idealized 3D problem 

Now we are in a position to answer the question posed in the 
introduction by combining the results of the preceding three 
sections. As in the 2D case, there are a multitude of resolved 
ranges, each appropriate under the right circumstance. These are 
discussed one by one in the following. We have restricted ourselves 
to rectangular ranges in 2D. Here in 3D, we shall restrict the 
shape to that of a cuboid (see section 4c for elaboration; also 
note that if the three sides of a cuboid are equal, it becomes a 
cube). However it is too optimistic to expect no new complications 
to result from the additional dimension. This produces some 
speculations on additional resolved ranges with high temporal but 
low spatial resolution. 

a. 3 0  spectral ranges resolved by the crossover grid 

If one is content with temporal resolution up to 1/2T with 
less temporal aliasing, the data resolve two 3D ranges with the 2D 
ranges in section 4d complemented by the o range of [0,1/2T), 
resulting in 3D spectral volume of 1/XYT with no increase in 
uncertainty than regular grids. If, on the other hand, temporal 
resolution up to 1 / T  is sought, the uncertainty is certainly 
increased (see sections 2b and 2d). The question is by how much. 
Here we compute the uncertainty numerically for two T / P  cases. 

We adopt the following non-dimensional grid: x=O,1,2, ..,lo 
y=O,1,2,..,4 for one set of crossovers, and x=O.5,1.5,2.5,..,10.5 
y=0.5,1.5,2.5, ..,4.5 for the other set. At each crossover, t=t,, 
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to+l, t0+2, . . , to+6 where I to 1<1 is the ascending or descending time 
in the beginning cycle (seven repeat cycles are used here). For a 
pair of parallel tracks, the eastern one is sampled three days 
later than the western one. Thus to specify the temporal sampling, 
all we have to do is to specify the ascending and descending times 
for one crossover point, say the point x=y=O. Two cases are 
examined with y=O corresponding to 2% and 43% respectively. 

To this grid, the Fourier series specified by (1) is fitted. 
From section 4d, we know the spatial grid is equivalent to a 11x10 
regular grid. Thus we choose K = 5  L=4. If we are content with 
resolution up to 1/2T (i.e., with J=3), the damped least-squares 
error analysis yields for both latitudes the same result as if the 
spatial grid were a regular 11x10 grid and the temporal sampling 
were synchronized. With 0/6=3, the uncertainty is 0.58% for j=k=l=O 
and 1.16% for the rest. Now let us extend the resolution to 1/T 
(i.e. , with J=6) . The results are shown in Fig. 6. The top panel 
displays the uncertainty for j = O  for both cases, where it shows the 
uncertainty of the temporal mean for both cases when J=6 remains 
the same as when J=3. For j > O ,  the uncertainty varies only slightly 
with different j and is indistinguishable as displayed. Thus only 
one uncertainty plot is shown for j=1,2, . . , 6. The middle panel 
shows the uncertainty for j > O  of the 2% case, whereas the bottom 
panel shows the corresponding 43% case. The uncertainty is indeed 
heightened, though not as bad as anticipated. The vulnerability to 
noise amplification could be much worse though (see section 2d). 

b. 3 0  Range resolved by m i d - p o i n t  g r i d  

The 2D range described in section 4e is supplemented by 
[0,1/2T) in 0, totaling 2/XYT in volume. This range gives the 
largest resolved spectral space with no increase in uncertainty 
than a regular grid. 

c .  3 0  r a n g e s  resolved by q u a r t e r - p o i n t  g r i d  

Complementing [0,1/2T) in o to the 2D ranges depicted in 
section 4f, we get two 3D ranges, each with resolved spectral space 
of 4/XYT, i.e., twice as large as the mid-point range, but at the 
cost of increased uncertainty. 

d .  3 0  r a n g e s  w i t h  h i g h  temporal  b u t  l o w  s p a t i 3 1  r e s o l u t i o n  

The following heuristic example shows that we can sacrifice 
spatial resolution to gainmore temporal resolution. In the extreme 
case, if only the spatial mean is sought, then (ignoring aliasing 
for the moment) the mean is observed every second except when the 
satellite is over land. It is a resolved range in the sense that no 
two components in the range are confused with each other. Yet the 
choice is obviously not sensible. This narrowest spatial range 
makes noise out of all other spatial scales, entailing the need for 
severe smoothing. We can get a reasonable estimate for the mean 
only by averaging data that are more or less evenly distributed 
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over the globe. An entire repeat cycle is a good choice, but then 
we end up with no better temporal resolution than any of the cases 
considered so far. The compromise is one day. 

The one-day tracks more or less cover the whole globe, but 
they do not repeat themselves every day. The biggest longitudinal 
excursion from the first one-day tracks in each repeat cycle is 
14.17' for T/P, 11.80' for Geosat 17-day repeat, and 12.22' for ERS- 
1 35-day repeat. If we are content with resolving spatial scales 
much larger than these excursions, the fact that the patterns do 
not repeat exactly becomes less important. Note that the so-called 
exact repeat only means repeating within 1 km of the nominal track 
at the Equator. 

Satellites have near-repeat sub-cycles. For example, T/P, 
Geosat 17-day repeat, and ERS-1 35-day repeat all nearly repeat 
every 3 days; i.e., in 3 days, an evenly distributed ground track 
pattern is produced, then the whole pattern is shifted to the east 
(west) by 2.835' or 1.475' (1.437') longitude in the following 3 
days for T/P or Geosat (ERS-1). In addition, ERS-1 has a 16-day 
near-repeat sub-cycle, wherein the 16-day pattern is shifted to the 
east by 0.719' longitude in the following 16 days. However, these 
near-repeat sub-cycles drift off continuously in one direction, 
causing the biggest excursion of the patterns to be no better than 
the one-day pattern. 

These high temporal but low spatial resolution resolved 
spectral ranges maybe useful for analyzing barotropic Rossby waves 
and gravity waves of basin scales, as well as large-scale 
environmental correction errors, e.g., atmospheric pressure related 
corrections and ionospheric correction. We have not verified these 
conjectures numerically. Thus these are better viewed as 
speculations for now, to be proved or disproved later. 

6 .  Discussion 

W89 fits 17 days of Geosat or T/P sampling (real or simulated) 
in the North Atlantic (32-46%, 280-315'E) with a Fourier series in 
the 3D range: (-1/6', 1/6') in k and 1, [0, 1/(4.25 days)) in 0. In 
retrospect, the sampling is clearly not capable of resolving this 
high-frequency range as confirmed by his results. As discussed in 
section 5d, in order to get temporal resolution that high, the 
spatial resolution has to be sacrificed. In any rate, it is not the 
special high-frequency range that is the most meaningful; Rather, 
it is the ranges described in sections Sa, 5b and 5c that have the 
maximum resolved spectral space. Chelton and Schlax [1994] 
concludes that the Geosat orbit configuration is capable of 
resolving scales of about 3' in latitude and longitude by about 30 
days. Considering that Y is about 3' in mid-latitudes and X is 
1.475' and T is 17 days, they come fairly close, albeit still 
missing the perfectly resolved range (the mid-point grid) by a 
factor of 2. 

The problem is by no means solved. The aliasing for a specific 
satellite and specific grid is yet to be determined. The impact of 
missing data, land, or large latitudinal extent is not yet clear. 
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We still have to determine the 3D spectrum of the sea level and 
noise, then what satellite sampling configuration is the most 
advantageous. 
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F i g u r e  Legends 

F i g .  1 Results of the damped least-squares formal error analysis 
for fitting Fourier series to time (or space) series having 
two alternating sampling intervals. E equaling 0.5 or higher 
indicates the average spectral term is completely unresolved. 
The solid (dashed) line is for the case with 147 data points 
and a priori noise to signal ratio of 1 (2), while the dotted 
line is for the case with 21 data points and ratio of 0.39. 
See sections 2b and 2c. 

F i g .  2 Fitting time series of 147 data points with the Fourier 
series with 147 unknowns at TOPEX/POSEIDON (T/P) crossovers 
[i .e. , trying to resolve up to 1/ (10 days) ] , the noise at M, 
(solid), K, (dashed), S, (dotted), 0, (chain dashed) tidal 
frequencies is not only aliased but amplified. See section 2d. 

F i g .  3 Same as Fig. 2 except the Fourier series has 73 unknowns 
[i.e., trying to resolve only up to 1/(20 days)]. Not only is 
there no noise amplification, but the aliasing is reduced in 
many cases. See section 2d. 

F i g .  4 The idealized satellite ground tracks. The crossover grid is 
represented by points marked with A or v (section 4d, which 
shows these points can be realigned into two regular grids). 
The mid-point grid is represented by points marked with 0 ,  
which form a regular grid already (section 4e). The quarter- 
point grid is represented by points marked by 0, which can not 
be realigned into any regular grid, but nonetheless can 
undergo 2D fourier analysis (section 4f). 

F i g .  5 Top panel: The normalized uncertainty, (error 
variance)/(signal variance) in percent, in the well resolved 
spectral range by the mid-point grid. Middle panel: The 
normalized uncertainty in the extended spectral range (the 
resolution in y is doubled in this case) by the quarter-point 
grid. Or equivalently the resolution in x can be doubled. 
Bottom panel: The normalized uncertainty in a range with 
extended resolutions in both directions. Even though less 
unknowns are sought with this range, the uncertainty is 
greatly increased. See section 4f. 

F i g .  6 The normalized uncertainty, (error variance)/(signal 
variance) in percent, in the 3D spectral range resolved by the 
crossover grid. Top panel: 0=0 (i.e., the mean) which is the 
same for two simulated T/P crossover grids with the 
southernmost latitude at 2% or 43%. Middle panel: WO for the 
simulated T/P crossover grid with its southernmost latitude at 
2%. Bottom panel: Os0 for the simulated T / P  crossover grid 
with its southernmost latitude at 43%. The uncertainties for 
non-zero frequencies only differ slightly and would be 
indistinguishable if shown. See section 5a. 
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