TL
796.5
US
§5
1954

Siager, 8. 7.

N

étqdiu of a minimum ebHbital wmasned
satellite ef the Earth, (Meuse)




.

3

-

101 21



—

AMERICAN
ROCKET
SOCIETY

A national association
for the advancement of
rocketry, jet propulsion
and astronautics

500 FIFTH AVENUE ¢ NEW YORK 36, N.Y.

STULIES CF

e

7L~

796
us

$5
| j75H
AMEHIEAR GRUFRYSIGA. ﬂﬁi_tin

g&ﬁ SE 4 1956

MINIMOM ORBITAL

UNMANNED SATELLITE OF THRE EARTH (musE).

b
PART IT. OBBITS AND LIFETIMES OF MIWIMUM SATELLITES

160-54

BYe Se Fo )‘.ﬂngﬂr
Unlversity of Maryland
College Park, Maryland

LIBRARY

JAN 2000

Naliroftat W i a & -
Atmospheric Adinistration

U.S. Dept. of Commerce

Pubiishing rights reservsd by the
American Rockast gSoecisty. Absiracts
may be publishad withouti permission
if ecredit is given to the author
and to ARS.

Pressented at the Winth snnual Meeting
of the pmerican Rocket Society, Hotel
McAlpin, New York, N. Y., Movamber 30=
December 3, 195h

MR

N.C
T~



National Oceanic and Atmospheric Administration
TIROS Satellites and Satellite Meteorology

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such
as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library and the Climate
Database Modernization Program, National Climate Data Center (NCDC). To view the
original document contact the NOAA Central Library in Silver Spring, MD at (301)
713-2607 x124 or Library.Reference(@noaa.gov.

HOV Services

Imaging Contractor

12200 Kiln Court
Beltsville, MD 20704-1387
January 26, 2009



STUDIES OF A MINIMUM ORBITAL
MMANED SATELLITE OF THE EARTE (MOVSE).
PART IT. ORBITS AND LIFETIMES OF MINTMUM SATELIITES*
By |

S. ¥F. Singer
ABSTRACT
Tne_pgrpose of thig paper is pWOvrolq:
(1) To describe the (elliptﬂoa;) orbit of an artificial satellite in
~terms of the launching conditions (i.e. at. "burmout"); in partigular, to
éive perigee (minimum) and apogee (maximum) altitudes of the ellipse_as a
:fqnctipnlof lqunching altitudes.and of errors in launching yelpcity.apd
ﬂangle..-Criteria_are then.@evelqped for gpptxq%l;ng'phe launching,ccnditions.
=(é)_ To investigate the subsequent. behavier of the orbiﬁ'undér the in-
?;uqnce of the q;gg of tngngppqr;qtmﬂﬁﬁhgre,u Tpe-";ixqtimaﬂ of ﬁhe satellite
dgpends on ;ps area and mass, and is related to the upper atmosphere densi-
fies;'hence-these:densitieq}can;be determined from measured changes of the
_grbittby methods q;§gussed ig.dqta;l&. Both cirpcular and elliptic orbits are
‘investigated usiﬁg appropriate approximation.mephods. The appendices take

up (a) some features of orbit theory and (b) upper atﬁosphera densities,

*1 apologize for the delay in the publication of this paper. The reason is
two-fold: (1) I was planning to present a more sophisticated treatment of
orbital theory, including e detailed discussion of astronomical perturba-
tions; I have decided to postpone this to -Part III. (2) I was not satisfied
with the atmospheric density data obtained from earlier rocket experiments
'since they may be subject to a large systematic error; recent measurements
of solar X-ray absorption have confirmed this belief, However, I have de-
cided not to wait any longer for improved data. Over the past year I have
distributed the lifetime graphs widely, and have been asked about their
bdsis and have been urged repeatedly (especially by-the ARS office) to set
down the methods of calculation and basic assumptions and data, In the
meantime I have had a chance to compare m¥ results with those of Krafft
Ehricke and Norman Petersen, who presented papers on similar topics, They
Juse similar atmospheric models,: and ‘our:results. agree quite closely.
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INTRODUCTION

Before discussing its- orbit, it ig ¢learly important to specify first
the utility of an artificiai-éaﬁe;iite;~tb disouss the applications to which
it is to be put, and to solve some of the technidal problems of its instru-
mentatlon, including power gupply and méans of orientation(l), For a satel~
lite like the MOUSE, whose main application is geophysical and astrophysical
research, many features of the orbit are of minof importance, ©.8. the exaot
altitude énﬁ shape. It is onl&'désirable'to keep it above the ionosphere
for a sufficiently long period of time so that it can ocarry out its observa-
tions. |

But some importapt.questiQns must be asked. qu'aqcurately do we have
to place the 'satellite in its orbit? What is the effect of launching errors
on the lifetime? How Lmportant is the chofce of launching altitude, and the
satellite's size and wéight?f}These and other quegtioné must be'énswered to
decide, e.g. on the degree of precision, and therefore on .tl;e'wei_ght of the
guidance system in the ;ocket'gtages; and thus allow the.deéigyer to achieve
an'optiqgm”balance of the prdpu;s;@n'and coﬁtrpl'rﬁquirsmgnts. For this ﬁur-

pose we will present the-resqlts of our calculations inp the'fgrm of graphs

" wherever possible.

(1) We will first derive the pefigee and apogee altitudes as a func-
tion of launching errors.

(2) We will then calculate the;lifétime as a funqtio;;or ﬁar;gee and
apogee altitudeé. |
SATELLITE ORBIT

At the instant of burn-out.of the _"J_."a.-gt..-propulsion'",é_t.ag'e the satellite

is "launched™ in its orbit.. In the inverse~square 1aw,_h§ntral force field
of the earth's gravitation the orbit is given by the well-known equation

for an ellipée(z):



r=a(l-e?)(14ecos @t )
For our pﬁrposes it is more convenient to introduce the altitudes of apogee
and perigee of the ellipse, hp and hp:

hy = Ry - Bg hp = Rp - By (2)

In Equation (1), both € and a can be expressed in terms of RA and RP:

_ Ry - Bp _ Ry /Rp
é-m a = = (3)

(These relationships can be seen most clgarly by inspecting Figure 1).
We easily derive

Ry = a (1 £€), Rp = all &), (4)
and :
2 Ry Rp

r s — L P . (5)
(RA 7[ RP) / (RA - RP) co8g ¢

"It is sometimes useful to give the expression for geocentric angle
2 Ry RP/I‘ - Ry - Rp
RA"RP

cos @ =

It is useful also to take the Keplerian expression for the period T of an

elliptical orbit and express it in terms of R, and Rp:

3/2 - : 3/2 S
p=2le = 2 (G ME)'l/2 (BAE’.-‘EE) (6)
(G ME)1/2

T is shown for various values of hp and hy in Figure 2.

.

BFFECT OF LAUNCHING ERRORS _ _
The simplest orbit is the‘circular one. At any altitude h the gravi-
tational force (weight) is mgy , and this is balanced by the centrifugal
n V3
force > so that

G Mg m _ _movgR )
. 1'2. "m.gh T ’ o ) )

. ‘Re _ _
Now g, varies with altitude: g, = g, (ﬁﬁ"§’H)2 (see Figure 3) according



R2

Therefore, the circular veloeity is given by Vo T |8, _TR T (8)

to the inverse squeii'e law: : :l

(See Figure 4)

Now in general_it is quite impossible to achieve a mathematically per-
fect circular orbit; we always have a launching velocity vy which is slightly
different from vg by an amount A.Vj vy, = Vo # OV and we have an angular
error (in the plane of the orbit) A6. (See Figure 1).

PROBLEM
| The problem we want to solve is the f_ollowing: |

Given the launching altitude hy, and the launching errors A v and Ae,
we want to find the perigee and apogee altitudes of the resulting orbit.
SOLUTION _

We simply use only the princ_ip_les of _(a) conservation of angular momen-

tum, and (b) conservation of energy (see Appendix I).

(a) (vy cos &B) Ry, = vy Ry = vp RP - (9)
' 1 1 = l
(b) G Mg (R - ﬁ-i;) (vL - VP 2),
¢ o R 1 1 2
sovpt = 2G M (g5 - w5 £ vy (10)
It is most convenient to solve (9) for cos A O and use (10):
Rp’ Rp [r2 1 _ 1 ] 1/2
e = = v 2 G My ( - )
cos A RL L Vp RL VL L 7‘ E ﬁ; Ry,
Rp GMg 3 1)1/ |
= EI: [l_ / 2 -—z—vL (T{Ij - R‘I:') _ (11)
-— ST R
We now define %L ='w'r%; because of (7): v ,“’ %L = L L , and

R: Ry, - Rj
substituting we arrive at:cos A@ = -ﬁ-E ‘: 142 —\}—12 (_—_2)] 1/2 (12)
L

For a nearly circular orbit,CRL —.Rﬂ is small, and we can write _



..-_' 5 -
cos A 6 ~ Rp [ RP)J (13)
%L

Note that a clrcular orblt i.e. R.L = Rp, implies A6 =
PRESENTATION OF RESULTS |

After a number of not altogother succegsfyl attempts I arrived at ;_the
presentation shown in Figures 5 and 6. The problem was to make the result.o
of the preceeding section u__so_;ful to a design engineer mo'wants to see at
one glance What orfect combinations of launching errors have on the perigee
and apogee altitude. I.c_lecided to use the'_lau_ncr_li'ng altitude RL-as e fixed
| tarameter*; Figure 5 is for h1=300 km (187 mi) and Figure 6 is for hféoo km
(375 mi). The launching (burn-oqut) velocity is oxpreso'ed as -lé-_'L’ i.. in |
terms of the circular velocity corresponding to RI.-' '

EXAMPLES |

(a) If one fixes nL at 300 km, and tekes the launching velocity as 1% high-
er than circular, and Do = 1° (either up or doyn), then from Figure 5:

\aLL = 1, 01 intersects the two AG = 1° 1ines at absolssa value of 260 km
and 625 k_m. These are the result:.ng perigee and apogee altitudes,

(b) If one wishes to keep h_P above 200 km, then A@ can be.~ 1%, If Ao =
2°“, then we must raise %L to_ 1.._02, -but this r.esults in-an a_pog’ée- 'alt_itude
of 960 km which may bé undesirable, | o |

CONCLUSION

The advantages of :a_.high'er laurlch altitude are clearly seen in Figure 6;
much larger errors are then.”allow.ed. This satellite orb;!,t however, requires
more propulsion, the ascent control problem may be much more difficult, and
because of the inoreased altitude the tracking and radiotelemetering problems

for the satellite become more difricult. The r_e.sul.t_s presented here are a

*J. Jensen at the ARS Me__e_t_i_ng.,--; Chicago. November 1955 hes used a presenta- .
tion applicable to a range of Ry, if Ry ~~ Rg.
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convenient ald in arriving at a compromise solution.

It 1s apparent that it is not necessary or even desirable to try to
attain a circular orbit velocity by ruel cutoff; complete burn-out allows
larger angular errors in the velocity vector.

LIFETIME IN GIRGULAR ORBIT

Introduction

_ Various authors(B) have considered the etrects of alr drag at high al-
titudes in great detail, but no discussion of the liretime of a satellite
.vehicle seems to exist in the literature. This may be because designers gen-
" erally considered quite elabcrate satellites or space stations, and placed
them high enough to be above any atmospheric effeots. When we are faced,
however, with the limited means of rocket propulsion presently at our dis-
posal, we must reorient our thinking‘towards a minimum, unmanned satellite.
If properly instrumented this object can be extremely userul for various
geophysical and astrophysical investigations.(l) It would ke valuable even
it the observations extended over a few hours or days. we will derine here
"liretime" as due to atmospheric effects only. In reality, and particularly
for longer periods, the effective or userul life may be limited by meteor
hits, cosmic ray bombardment and deterioration of components of the satel-
lite instrumentation._ _ _

The drag of the atmosphere will change the chsracteristics of the orbit
gradually. We will be interested in deriving the variation of perigee and
apogee altitude as a runction or time. In this calculation we will neglect
all aatronomicgl perturbations and consider the earth a perrect sphere., Our
Justirication is the following: For short lifetimes one can generally neg-
lect astronomical perturbations enyway. ‘For very long liretimes we will
conslider them (Part III of this series) but neglect the drag. For inter-

mediate ocases it would be best to work out particular examples on high-speed
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computers. But by treating separately drag and astroppmical perturbations
we preserve a physical insight into.the.resultipg.orbit changes, and are able
to give better qualitative arguments if, e.g. our picture of upper atmosphefe
deﬁsities changes., |
Drag Loss

We will consider a (neariy).spherigal satellite of (average) projecﬁéd
area A, A squat cylinder would 4o equally well. We will consider the drag
coefficient Cp appropriate to the molepular flow region as ~ 2. Any errors
in A or Cp are completely absorbed by the upcertainty in the atmospheric
density P . wais plotted vs h in Figure 7; its derivation is discussed
eritically in Appendix II. '

The drag force Fp = %-CD A v? P (h) | | (14)
To appreciate the effect of this drag force on the satellite's orbit, I
would like to point out first a fallacy by means of a numeriéal example:
For the case of the MOUSE at e.g. 210 km:

A= 0.1 mz, Vv = 7,780 m/sec, P= 10710 kg/mB, m = 20 kg

S Fp=6x 10~% newtons:

The drag deceleration = Fp/m = 3 x 1077 m/s.ec2
Multiplying the deceleration by the orbital period at 210 km (5310 sec) one
would gain the impression that the satelllte loses 1.6 x 10~ -1 m/sec in
velocity. But this is not correct; 1in fact the satellite speeds up. What
happens is that it loses altitude; this recovery of potential energy over-
comes. the drag loss and even increases the kinetic energy of the satellite,
so that its velocity becomes almost equal (but not quite) to the circular
velocity corresponding.to the lower altitude., - Figure 4 shows how vg in-
creases with lower altitude. |

‘ Perturbati on Cale u_l.ati on

In order to awcid errors we use straightaway a method of energy balance



to describe the shrinking orbit.
(a) We first express the total energy (potential with respect to sealevel
£ kinetic) of the satellite per unit mass of satellite: the total "specific"
energy ETO (in a circular orbit), measured in joules/kg:
G Mg G Mg n G My h
Potential Energy V: - m(iE 75 " g )= T (R-m)

G My

Kinetic Energy T: -%-m vcz = %m % 7 h from (7)
| eMg, n ,1 Rg
o e g (s f ) (a5
We: can also express (15) as
Ep = ;2" 8; Bg (1 # §E7h"5) (see Fig. 8) (16)

(‘_o) Next we express the energy loss per orbit, and using (8)

(caE)

FD-2TC1‘=[%CDAVC2 P(h)] 'ZTC(RE/h)

TGy A (8, Bg2) p(h) (17)
We see therefore that the energy loss per unit projected area depends on h
through P(h) only; namely(-AE/A)= 2.5 x 10'° P joule/n? (18)
Note that here is the only place where Cp is used, and that it appears in
combination with P e Any slight error in CD is thus absorbed by the much
iarger uncertainty in P . '

() The determination of the change in orbit, and of lifetime is now a very
simple process. We use Figure 7, or an analytical expression for p (h),
evaluate(—AE) from (17) and divide by m to reduce it to the specific energy
loss per orbit revo'lu.tion. We then apply this loss L'AE-T) on the plot of
Figure 8 to determine the new altitude after one orbit. (In practice it may
;be more convenient to take a larger number of orbit revolutions, and use

average values of P ). _ ' _

{(d) Note that in our perturbation method we assume that both the energy
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" loss, and therefore altitude loss, are so small that we can use a mean value
| for h and-completely neglect _1__:his altitude loss dﬁringl o.ne orbit revoiution,
OQur method breaks down in the very dense atmogsphere near sealevel where the
~energy loss is large, and th_e_altitude decreases rapidly. There we can no
longer average over one orbit, but we must apply a step-by-step numericé;

calculation.
(e) We. can express our procedure ((_:) analytically: By differentiating (16)
, =1 BB V2 ...
we have: Bq = 5 &, (m) AHh; ge -1
Ry,
ph/per orbit = AEmp | ( ; ) ]
/D T [5 € (R 7 &

Expressing AEqp = AE/m, and using (17), we end up with
Ah/orbit = 2T Cp * (%) - (Rg £ n)® . p (n) | (19)
In order to study h as a function of tiqcle, we remember the dependence of the
. -orbital period on altitude given by (6); then

. 3
%_1; = cp @up)® o &) . (3 4w p(n)

(20)
= 4 x107 (&)« (By £ 1)2 Pn)

TQ obtain the time required to de_scend from altitude hl to h2, we integrate
At , = 2.5 x 1078 ) ah I (21)

L'.{fetime

We define "lifetime" %ty as the time required to descend from an initial al-
titude to sealevel. Figure 9 shows plots of ty for different satellites¥*;
(a) a densely packed one corresponding to a MOUSE or similar instrumented
satellite, (b) a large, light-weight "balloon" satellite designed for visi-

bility rather than for carrying instrumentation.

.‘Here we have used upper air densities which are rather similar to Model (4)
Apperdix II, PFigurs 16 gives universal lifetime curves for various density
models and any m/A.



MEASUREMENT OF ATR DENSITY

Equation (19) or (20) and Figure 9 show clearly how observations of
changes of the orbit can be used to deduce the density of the upper atmos-
phere. We see also how the sensitivity of the determination can be improved
by suitably designing A/m. |

In actual practice it may be easier to determine the change in orbital
period, and deduce A b from Equation (6), rather than to measure Ah directly.

It would appear that the method described here is the only one known at
present for meaesuring densities in the very high atmosphers,

LIFETIME IN ELLIPTIC ORBIT

Introduction

As pointed out earlier, the satellite orbit will in geéneral be an el-
lipse, whose eccentricity (or "glongation") depends on the magnitude of the
launching errors. Clearly then, since the altitude now varies considerably
over the orbit, we can no longer use the perturbation method applied above
to circular orbits. Instead we now introduce a new method based on an im-
pulse approximation. We assume (and this holds quite well for very elongated
ellipses) (a) that all of the drag loss can be concentrated at the perigee
point, and (b) that the perigee remains fixed. We imagine therefore all of
the drag is compressed into an "impulse" which lasts for such a short time
that it changes only the velocity, but not the position of the satellite.
| Reduction of wvp, the velocity at perigee, without change in hp leads to
a decrease in the apogee altitude... This is shown graphically in Figure 10,
and can be calculated most conveniént}y from Equations (9) to (13), remember-

ing that A© = 0 at the perigee and apogee. The results of this calculation

are presented in Figure 1l.

- We proceed as follows:
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" l. Find energy loss:due to gtmpspherio drag per orbit,

2. Calculate the new engrgy; apply impulse approximation discussed above;
and £find new value for hj.

3. Repeat this procedure until] hy ~ hp. The jmpulse approximation then
breaks down and we return to thé ¢circular case,

(a) We rirst construct the satellite orbit trajectory in the wicinity of
the perigee, in the manner shown in Figure 12, (For the sake of definite-
ness I have chosen thalues of 100, 150 and 200 km,) Tnese "dip curves"
show how quickly the satellite dips into and leaves the dense atmosphére
around the perigee. (We recall.that the atmospheric falls off exponentially
with increasing altitude),

(b) We now calculate the energy loss for all the dip curves by integrating
(numerically) the drag force (l4) over the trajectory._ The results are
shown in Figure 13. Note that A E does not depend too strongly on hy (for
large values of hy,), but breaks away sharply when hA beoomes ~ 2 hp. This
consideration establishes roughly the reglon of application ¢f our approxi-
mation method. | g -
(c) As in the oircular orbit case, we multiply by (%), aﬁd apply the result-
an?l-.' AEm to Figure 14, which shows the total specific energy as a function
of hy and hp. Here we remember to keep hp fixed, and slide down, e,g. the
hp = 100 km line to find our new value of hj. Ep(e11) 1s easlly calculated
using the same method_wnich led to Equation (15), but using ¢ m vpz rather
than 24 m vcz for the kinetic energy. |

vP2 Ry _ 2 (RE # ha)
° . 2 - 2 -

Defining EaP‘ = 2 B = — — (22)
ot vcz RAwf Rp 2 R-E.7( hA:f_hP o

G M 2 -

= hp 1 Rg |, . R - ] 2
Ep(e11) ~ R'EE [ﬁf,{'hp * 3 mﬂ?] &0 Ry 7 Bp EFP ¢ 3 Rg Yp s

’ (d) We have caloulated (and plotted in Figure 15) the variation of h, with
number of orbits (and with time) for the three values of hp: 100, 150 and
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200 km, and for a particular %. In*Figure 15 we note again how sensitive
the lifetime™is to the perigee altitude; ty increases by over a factor
1000 in going from hp = 100 km to 200 km.

Analytical Method

From the general energy relation in an ellipse (Equation (33) of

Appendix I)

1
3 V2 =0 M (£ - 7
PO b d . I
We derive by differentiation, and since T/m = %
| - 282 AT |

Assuming no change in hp

_ (R4 #Rp)? . |
Ohy/orbit = 2(Aa) = 3¢ T Cpa v | P @

o 2 (25)
. 1 . A
~ 4 x 100k {(RA # Rp) VP] - (@ 'des
It is apparent that the slope is proportional again to A/m
Again we can use Equatiom (6) to derive
Aby _ % bRy i
- —— - ° -] g dS 26
2T T M) e @) Jp (26)
(A P) R
-2 P

(Here we assume Ry and Rp not much greater than RE).
Discussion | |

Figure 15 shows the apogee altitude decreasing rather_uniformly.until
a near-circular orbit is attained. This f;ature_is, of cou:sé, a résﬁlt of
our approximation. What actually happens is that thé périgee altitude de-
creaseé also, although much less rapidly than hy. 'As_pointed out earlier
the effect becomeé imporfant when hAI&:z.hP,' But even small decreases of

thaffeqt the lifetime considerably (see Figure 15). We conclude, therefor@,
.that our method holds well when hy 3> hp since then the greatest portion of
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the satellite 1lifetime is spent in hy decreasing down te 2 hp, and the sub-
séquent shortening of the re@aiﬁing iife-cqn be spmetimes neg;ectéd, 0L |
in Figure 15 for hp = 200.km);t”takes 280 days for hp to decrease from 1000
km to 4LOO km, with the remaining li?e only about 50 days, but probably some-
what less according to the reasoning given aboves We must, therefore, regard
our approximate methods as_convenient but rough guides when appropriately
used, but we must resort.éo detailed numerioal orbit integfations when resl -

. acouracy is mandatory.



- BASIC RELATIONS ABOUT ORBITS

We start with the equations of motion in polar coordinates

m (% -z §°) =t () (27)

n (rf # 2 zf) = £ (9) (28)

We will neglect the atmospheric drag but introduce it later as a pef—
turbation. We, therefore, set f () = O, and arrive at a pure central force
law; this is the Newtonlan gravitational law: .

£ (r) =G Mg m ™2 (29)

Equations (27) and (28) are of second order. However, (28) can be
written as %-gf (rzﬁ) = 0 and integrated to m r? B = J = Constant, i.e. the
angular momentum is constant. (30)

Solution of the equations of motion leads to the familiar Keplerian
ellipse provided the initial conditlions are such as to give a bound orbit,
These conditions are satisfied if the kinetic energy T of the satellite is
less -than its potential energy.

The energy integral can be set up as

T4 V=W= constant

Where T % m v2

S
- jrf(r) dr=_——lr£E—'—m'

In order for the orbit to be bound, i.e. elliptic or circular:

v

{ T| must be less than [V |

This can be seen from the expression for the eccentricity € of the conic

section (which is the orbit)

- (2WJ% 3 1
€ = (GMEm%l) (31)
orw= SMED (2 )
R J= GMgm
For a circular orbit: €= 0, A Wg = - o

For an elliptic orbit: 0 < &€ <1, .. Wg < W11 < 0
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We want to state in detail some important properties of orbits., A
body having zero velocity at infinity and falling towards the earth acquires
kinetic energy at the expense of potential energy .

lmVZ-GMEm(—- ) (32)

2 G ME)*
T
parabolic orbit: W = O, as can be seen from (32).

where v = is now the "escape velocity" since the body follows a

For an elliptic orbit the'.kinetic energy is less, and corresponds to a
(2)

fall from an initial circle of radius 2a, where a is the semi-major axis,
so that L1
| 2mv2 =6 Mg (F- 35 ) | (33)
Since the body's potential energy is G ME .m, its total ensrgy
"G Mg .
Well = - 28 A . (3‘#)

and is seen to depend only on a. It has been shown that t he orbital period
‘depends also only on a. (see Equation (6)). Conversely, when the speed at
any point r of the orbit is given, w is determined and therefore, a. The

launching conditions RI.. and ?L therefore determine RA 4 RP, since

% 2"GME H—}T)

" Ry £Bp = —m,;) ° B, (1 -5 (35)
using 31‘2 - l’l-:; . "12'31‘.. |
\0 G ¥y
Note that the A © does not ent.er'- only sz. It is :meediately obvious 'thet
the eccentrlclty does depend on AO ~being a minimum for A® = 0° and a
maximum (i.e. é = l) for N = 90°, Using (31) and by suitable substitu-
tlons we derive € in terms of the launching condit.ions %L 2 ab:

6 - l _ 2%]_‘2 (1 _h—) cos AOJ ﬁ (36)

R, - R
Since € = ﬁ—;—ﬁg ) | (37)
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we have now derived our ellipse in terms of the familiar Ry and Rp as fune-
tions of \U;, cos A6, and Ry.
We can finally express the orbit eqﬁation
r=a(l-&? (14 €cos @)™t
as (Rg # h) = R-L%I.z cos? D6 (1 £ € cos @)1 ( 38)

PENDIX II
UPPER ATR DENSITIES

Values for upper air“densities up to 220 km have been given based on
rocket measurements.* Beyond this altitude all density values are deduced
indirectly or arrived at by calculating particular atmospheric models. To
get good density values one needs to know the atmospheric constitution and
the temperature. It is generally agreed now that 02 dissociates around the
100 km level and that at 150 km it is present only in its atomic form. Some-
where near this altitude diffusive equilibrium sets in between O and N, so
that one can neglect the contribution of No to atmospheric density beyond
400 km.

The temperature in the upper 1%$3T§.is arrived at from a great variety
of considerations: optical observation of night glow and aurorae, radio
measurements of scale heights, and computations of the escape of helium from
the exosphere. It is thought that the temperature at the base of the exo-
sphere 1is 500°K, or even 1000°K, and may rise to even higher values during
solar flares. Above 300 - 400 km the ﬁemperature probably does not increase

much further and may gradually approach”™ to that of interplanetary space,

*There is some uncertainty about the rocket data beyond even 100 km. Recent

measurements by Friedman (Phys. Rev. 1956; see also Ann. de Geophys. II, B

174, 1955) based on the absorption o6f solar X-rays give quite reliable
density values in the 110-130 km region which are only 1/3 of the Rocket
Panel densities.
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There is evidently a great deal of uncertainty in these extrapolations,
and it may be hoped that obseryation of the satellite's orbit will settle
not only values of density but, at thg same time, manj other interrelated
problems gbout the strucpure of.the upper atmosphere, No final conclusion
is possible at the present time; only a compilation of values is given,
ﬁogether with references.

Using Equation (21) we have plotted universal lifetime curves for
density models (1 and 2), (4), (1 and 5). (Figure 16). t; is shown for
% =1 kg/mz; to use these curves for any other.satellite méss.and area,
one should simply multiply the value of t; in Figure 16 by the new %.
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LIST OF SYMBOLS

distange of satellite from center of the earth
semimajor axls of orbit ellipse

polir)angle of orbit ellipse (measured from perigee) (geocentric
angle '

eccentricity of orbit ellipse

apogee distance

- perigee distance

- distance of launching point from center of the earth

(mean earth's radius) 6.37 x 106 meter

altitude above sealevel

apogee altitude

perigee altitude

altitude of launching point from center of the earth
(Newton's gravitational constant) 6.67 x 107 nt -m® —kg'z
(mass of the earth) 5.98 x 10k kg

mass of the satellite

kinetic energy of satellite

potential energy of satellite

total specific energy, Epp for circular orbit, E for elliptic
orbit, in Joules/kg ? TIC » “T(ell)

gravitational acceleration at sealevel 9.8 m/sec2
gravitational acceleration at altitude h
launching velocity

velocity at apogee

velocity at perigee

magnitude error in the launching velocity

angular error (in the vertical plane) in the launching velocity
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COMPILATION OF UPPER ATMOSPHERE DENSITIES

Altitude (Km)
100 150 20 250 300 ko0 500

gx10™7 3.5x10"7 1.7x10710 |
1.7210720 2,6x10711 8x10712 1310712 | 1.7x0713
17210710 2.6x10°1 7,.5x10712 3, 3:10‘12" be6x10713
9.6x10"% 6.4x10710 gx10r  2x10731  2,8x1071% 6,7:10713
1.5x10710 C 7.6x10712 1.2010732 4, 2020713
7x10°7 1079 ox10™2  2.6x10°1 8210712 31,3107 4,6x10733
All Values in Kg/m3

Rocket Panel, Phys. Rev. 88 1027, 1952.
Bates, (isothermal above 250 km), in "Rocket lxploration of the Upper
Atmosphere", p. 350, London, 195k.
Bates, (isothermal above 400 km) 1n'"Rooket.Eipiprafioh of the Uipenm
Atmospﬁere," Pe 350 London, l95h. _

Mitra, "The Upper Atmosphere", Pe 582, Galoutta, 1952.

Nicolet, in "The Earth as a Planet", p. 654, Chiocago, 1954.

Present analysis: Based on and eztrapolated from Friedman's data,..
isothermal above 4LOO km. |



1.

2.

3.
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APPENDIX III

ANALYTICAL METHOD FOR DERIVING CEANGE IN PERIGEE ALTITUDE
e o ol

caleulating lifetime in an elliptical orbit we have sssuned

in
no ehange in hy,  For a near-circular orbit we can derive Lh, by
perturbation metheds. g

From Ref (2) p 405 we obtain the effect of a tangential per-

turbation accelsration T on the orhbit psrameters a and &
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the mean moticn (angular velocity) in radians/sez and v the
angle measursd from apcgee.




We can give some numerical values to illustrate the order of

nagnitude of 4 R

pﬂ
F A AS
We take Ve =T = B = A - - 22
" " 5500 I P (MJ VP at VRS
Do A 2 (_&' . .
thon & Cp T Lhp + 5500 W\) v (f AS)
)“"V’“: "é\' = ‘_2‘_‘\,‘3" v~ gku«/%
ﬁj’t‘?/’ﬁ?f"b;t ~ ;OOW\ ’F)T ")P = ‘SOkw\/ J hA= 4_00‘(“4}
~ F0 vy ‘]ﬁU‘f %P = Lo0o k\/l/\/) }‘\A - 450 kM

The effect of a change in hp as against our assumption of fixed

b, becomes impertant. Its effect on lifetime can be judged by examination

(43



