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PREFACE.

This article was written to give some sort of answer to the questions:
(1) How much might the best obtainable spheroid for the earth as a
whole differ from the Clarke Spheroid of 1866, now officially adopted
for the whole of North America? (2) How much difference would
the adoption of such a spheroid make in the geographic coordinates
of points now referred to the Clarke S heroig ? (3? Is it probable
that, in the foreseceable future, it will be necessary or desirable to
give up the Clarke Spheroid for geographic purposes and to adopt
some other? (4) Are present met ofs o}f) adjusting triangulation for
obtaining the figure of the earth and the deflections of the vertical
adequate when extended to a territory so large as the whole of North
America ?

The questions involve matters of opinion and the answers to them
must necessarily involve opinion to a certain extent and must there-
fore be rather general in character. If the questions were made more
specific, the answer would involve a great deal of numerical calcula-
tion, tedious to do and equally tedious to read about. It was not
intended to overload this article with matter of that sort. Such calcu-
lationsdas are explained in detail have been placed separately at
the end.

Dr. O. S. Adams and F. W. Darling, mathematicians, gave valuable
assistance in making and checking these calculations.

The last chapter contains the formulas for transferring geographic
coordinates over a long geodesic line of given length am% direction
and for the inverse Ero lem, that of finding the length and azimuth
of a geodesic line when the geographic coordinates of its end points
are given. Numerical examples of the use of these formulas are
also given. The calculations contained in other chapters of this pub-
lication were mostly made by these formulas. This matter was put
in as an afterthought, since 1t appeared not to be readily accessible
except in languages other than Xnglish.
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EFFECT OF VARIATIONS IN THE ASSUMED FIGURE OF THE
EARTH ON THE MAPPING OF A LARGE AREA.

By Wavter D. LameerT, Mathematician, U. S. Coast and Geodetic Survey.

VARIOUS DETERMINATIONS OF THE EARTH’S MEAN FIGURE.

The following table gives the principal determinations of the earth’s

mean figure, beginning with tE\e work of Méchain and Delambre.

Their work was undertaken for the purpose of obtaining the length

of the meter, which was at that timergeﬁned as one ten-millionth

part of the earth’s meridian quadrant.! Their work forms a con-

venient transition between the older and the newer egﬁ)chs in ﬁfodesy.
ed by

The modern. era may be considered as fully establi e time

of Bessel. .
Elements of the earth’s mean figure.

. Reclp- Recip-

Semi- | rocal of Semi- | rocal of

Author. Date. masjor |the flat- Author. Date. msajor ([the flat-

) . . axis (a). | tening axis (a). | tening

amn. am.

. Kilorieters.

Commission générale 1799 | 6,875.739 204.28
des poids et mesures 294.38
(for the metric sys- 293.26

204.98
1810 | 6,376,428 288. 50
1810 | 6,376.623
1819 | 6, 376.895 203. 47
1828 | 6, 876,959 300.20
208.3
1830 {6, 377.253 207.8
1841 | 0,377.397 207.0
1847 | 6,376,634 298.2
1849 | 6,377.401
1856 | 6,377.936 |.

1 Using deflections of the vertical corrected for topong)hy and isostatic corlngensatlon.
1 Uslngndeﬂectlons of the vertical left uncorrected and the spherold determined to fit as nearly as pos-
sihle to the uncorrected deflections.

The data in the above table are taken chiefly from La Figure de la
Terre (Revue de Géographie Annuelle—Tome II, 1908), Capt.
(now Col.) G. Perrier.. other similar list is given in Professional
Paper No. 16 of the Survey of India, The Earth’s Axes and Triangu-
lation, by J. de Graaff Hunter, Dehra Dun, 1918. Other values of
the semimajor axis differing shightly from the forgﬁoin% may some-
times be found in other sources of information. The discrepancies
will usually be due to the use of relations between the foot, toise,
and meter differing from those here assumed. The above table is
based mainly on the relations between these quantities determined
by Clarke.

1Thelength of the meter is now defined by the International standard meter kept at Sévres, near Parls.
1




2 U. 8. COAST AND GEODETIC SURVEY.

The semiminor axis (b) corresponding to the Hayford (1) Spheroid
1909 is 6,356.909 km. (See, however, the footnote on p. 10.) The
relation between the semiaxes o and b and the flattening f is

b=a—af

If the flattening be held fixed, and a be varied, then b varies in the
same direction as a by an almost equal amount (less than the change
in a by only about one three-hundredth part). If a be held fixed,
and the flattening f varied, then a change of one unit in the reciprocal
of the flattening, 1.e.,in 1/f, will change b by about 72 m.; the reciprocal
of the flattening and the semiminor axis 4 increase and decrease to-
gether, a being held constant.

The determination in the preceding table that is in all probability
nearest to the truth is the Hayford %1) result of 1909 (¢=6,378.388
km., 1/f=297.0). These values were adopted by the Paris (Astro-
nomic) Conference of 1911, and are used in the American Ephemeris
and Nautical Almanac. The probable errors? of these determinations
of a and 1/f are, respectively, 0.035 km. and 0.8. The reciprocal of
the flattening is further confirmed by (1) the results of pendulum
observations and (2) deductions from the precession of the equinoxes.
The value 298.3 for the reciprocal of tEe flattening attributed to
Helmert in the table is from pendulum observations and a later deter-
mination from a greater number of observations taken all over the
world (without correction for topography and isostatic compensation,
but using only stations chosen where this correction is certainly
small) is 296.7, and Bowie’s value * from observations throughout the
world, fewer in number but corrected for topography and compensa-
tion is 297.4; the mean of these two results from pendulum observa-
tions is almost exactly 297.0. The flattening deduced from the
precession of the equinoxes depends on the law assumed for the
variation of density within the earth, but only to a surpisingly slight
extent Véronnet has shown * that with any law of density con-
sistent with hydrostatic equilibrium in the interior of the earth we
have from the precession '

1/f=297.12 +0.38

Here the quantity following the double sign indicates not the usual

robable error, but the range due to possi%le variations in the law of
gensity. The precessional constant adopted by Véronnet is itself
subject to error, which fact widens the limits of uncertainty to per-
haps +1.0. The best available evidence, therefore, points to a
flattening the reciprocal of which is about 297.

It will be noted that the value of the semimajor axis ¢ deduced by
Hayford is greater than any other value in the table. This quantity
a can not be deduced from pendulum observations. This larger
value of a is due to the correction for topography and isostatic
compensation. The negléct of this correction in previous discussions
has left outstanding in general the error due to the deflection of the
plumb line toward the interior of the continental land masses, which

3 Helmert: Sitzungsberichte der kéniglich preussischen Akademie der Wissenschaften, 1911, p. 19.
s Inevesg;gations o&mvity and sostasy. U. S. Coast snd Geodetic Survey Special Plibuca'ti%u No. 40,
. 131-134.
pp‘ Journal des mathématiques pures et appliquées, vol, 77 (1912), p. 416,



EFFECT OF VARIATIONS IN FIGURE OF EARTH, 3

fact results in greater apparent curvature over continental areas
than over the earth as a wgole and diminishes the radii of curvature
deduced from the uncorrected deflections. This fact appears when
the figures of Hayford (1) and Hayford (2) are compared. It is to
be expected, therefore, that future determinations in which the
correction for isostasy will be made, will make the dimensions of the
earth’s figure greater than previous ones other than Hayford's and
ive results closer to Hayford’s. The probable error of +0.035 km.
%35 m.) comes from the observations themselves, and it is well known
that probable errors so deduced give too low an estimate of the real
uncertainty; this is due to the presence of systematic errors. It is
robably safe to put the practical limits of uncertainty of a in Hay-
ord (1) as less than +150 m.

SPHEROIDS ACTUALLY IN USE FOR GEOGRAPHIC PURPOSES.

Many of the spheroids given in the preceding table represent
attempts to determine the earth’s figure for scientific purposes only,
and were never actually used for geographic purposes. The following
table gives the elements of some o tﬁe spheroids actually in use.
It makes no pretensions to completeness, but is intended rather to
illustrate the variety of spheroids used. It contains special spheroids
not found in the proceding table; these were presumably determined
to fit local conditions rather than the general figure of the earth.

Spheroids used for geographic purposes.

Reciprocal
Semimsjor Countries using spheroid
Author and date. . axis (a). of ﬂz()lt/tﬁn!ng (with reference).
Kilometers,
8,378, 208 205.0 | United States(1), Canada 2‘,)(0)(100(2).
6,378, 249 203.47 | France (3), South Africa (4),
*3,377. 253 800.8 | India (5).
6,376, 523 308,64 | Map of (6).
6,377,397 209.15 | Gormany (7), Austria (8), Dutch East
Indies (8).
Kraljenhofl. ...oocvnireinianiacanananns 8,376. 950 308.65 | Holland (8).
Danish Survey.....cooeviieiiiennanens 6,377.019 300 Denmark (10).

* 20,922,931.80 feot is the official value, ’

Q) U4 CandG. 5 Special Publication No. 8 (8th ed.), Formulae and Tables for the Computation of
Geodetic Positions, p, 6. K

(2) U.8.C.and G. S, Special Publication No. 19, Primary Triangulation on the 104th Meridian, etc., p. 80,

(3) Nouvelles tables de logarithmes & cing et & quatro décimales. Service Géographique de I’Armée,
1889, near ond (no paging) under ‘Nombres Usuels et leurs Logarithmes,”’ .

(gsReport International Geodotic Association, 16th Conference (London and Cambridge, 1909), vol. 11,

P 5) Auxillary Tables to Facilitate Calculations of the Survey of India, 4th ed., 1906, p. &
6} U.S.C.and G. S. Special Publication No, 49, Lambert Projection Tables with Conversion Tables, p. &
§7 Albrecht: Formeln and Hillstafeln fiir geographischen Ortsbestimmungen. .
8) Die Ergebnisse der Trisngulierungen des k. u, k. Geographischen Institutes, vol. 1, Vienns, 1901,p. 1X.
(9) Tafelen benoodigd bij het hydrographisch opnemen. Department van Marine. The Hague, 1913,

. 81,
P (;% Report International Goodetic Assotiation, 16th Conference (London and Cambridge, 1909), vol 11,
p.

A spheroid with a flattening equal to that of the Bessel Spheroid
but with its major axis greater than the major axis of the Bess
Spheroid by 1 part in 10,000 has been extensively used by the Central
Bureau of the International Geodetic Association for %eodetlc calcu-
lations relating to Europe.® This choice was made because many

¢ Encyclopedis Brittanica, 11th ed., under Earth, figure of, p. 813.
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tables to facilitate computation have been based on the Bessel
Spheroid, and these can be adapted to the increased major axis with
comparative ease, while a change in the flattening would require &
recomputation of the whole set of tables.

EFFECT OF A CHANGE IN THE DIMENSIONS OF THE SPHEROID ON
THE COMPUTATION OF A TRIANGULATION.

In computing a triangulation the following quantities are used
which involve the dimensions of the spheroid adopted: (1) The cor-
‘rection to the azimuths for the elevation of the object sighted, (2)
correction to the azimuths to reduce from the azimuth of & vertical
section to that of a geodetic line, (3) the spherical (or spheroidal)
excess of the triangles, and (4) the reduction of horizontal angles
from the geoid to thé spheroid of reference.

(1) The correction (z,) to an szimuth for the elevation of the
object sighted is always small and is given by the formula,

Sh .
X, = 7 Cos? a.
1= em 177 ©© ¢ sin 2

In this formula 4 is the elevation of the object sighted above sea level,
a is the semimajor axis of the spheroid used (in the same units as h),
£ is the flattening, ¢ is the latitude of the point of observation, and
a is the azimuth of the line. The largest values of z, that occur in
the United States Transcontinental Triangulation are where it goes
through the Rocky Mountains, and they are less than 0’7.30. To
change & correction of 0’’.30 by 0’.01 or 1/30 of itself would require a
change of about 10 units in 1/f, which is very unlikely, or a change of
over 200 km. in @, which is absolutely out of the question. A change
of 0’'.01, even in the larger values of x,, is therefore to be considered as
improbable, and the effect of & change in the dimensions of the spheroid
upon this correction may be considered negligible for practical
purposes. _ )

(2) The correction (z,) of an azimuth to reduce it from the azimuth
of a vertical section to that of a geodetic line is given by the formula

— 2
T,=—%— COS? ¢ sin 2a.
276 g?sin 1”7 ¢ sin 2o

The notation is the same as before, and s denotes the distance from
observer to object sighted expressed in the same units as a. For a
line 294 km. long, which is the longest side of a triangle found in the
United States Transcontinental Triangulation, the maximum value
of this correction is about 0’'.25 at the Equator and less in higher
latitudes. This correction is always so small that it is neglected
entirely in computations of the Coast and Geodetic Survez, and, of
course, changes in the correction due to changes in the spheroid are
negligible a fortiori. . It may be noted that the corrections z, and z
both reach their maximum numerical smounts in & direction inclined
45° to the meridian, but they are of opposite sign, so that in practice
there is considerable compensation even of the small changes due
to a change of spheroid.
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(3) The spheroidal® oxcess of a triangle is affected only slightly by
a change in the spheroid. Clarke 7 computes the effect on the excess
of a large triangle in Ireland of varying each of the semiaxes of the
ellipsoid 1,000 feet. Although the signs of the variations of the semi-
axes were so taken as to act in the same way on the excess, the total
effect was about 1/6800 part, or since the excess was 49'’, the effect
was about 0'7.007. Spheroidal excesses of this magnitude are rare
even in precise triangulation in mountain country, although there
is one case in the transcontinental triangulation where the excess is
120’’. For this triangulation a change of 1,000 feet in the semiaxes
- would make a change of 1/10000 of the excess, or 0’'.012. Further-
more, 1,000 feet is an excessive estimate of the probable correction
to the Clarke Spheroid used in the United States, so that as a prac-
tical conclusion we may say that the spheroidal excesses would be
practically unaffected by a change in the spheroid.

(4) In measuring horizontal angles the graduated circle of the
theodolite is leveled with referonce to the actual plumb line of the
point of observation. The triangles to be computed, however, lie on
the spheroid of reference and to measure their angles directly the
graduated circle should be leveled with reference to the normal to the
spheroid of reference. The directions of the normal to the spheroid
and of the plumb line do not, in general, coincide; the difference in
direction is the deflection of the vertical. Since it is not practicable
to level the theodolite with reference to the normal to the spheroid,
a correction to the horizontal angles actually measured should in
strictness be applied in order to reduce them to the spheroid. This
correction is zero for observations on points the zenith distance of
which is 90°.

The correction (z,) to a direction for the noncoincidence of the
normal to the spheroid of reference with the actual plumb line is
given by the formula

z,=cot { (£ sin a+7 cos ) +n tan ¢.

In this equation { is the zenith distance of the object sighted, « is
its azimuth reckoned from the south through the west, ¢ is the latitude
of the point of observation, and ¢ and 4 are the deflections of the
vertica.f) in the meridian and the prime vertical, respectively, or more
specifically,

$ = Astronomic latitude minus geodetic latitude,
n = (Astronomic longitude minus geodetic longitude) cos ¢,

in which west longitude is positive.

The sign of the correction z, as given 1s sucn tnat when applied to
the astronomic azimuth it gives the geodetic azimuth. When the cor-
rection to an angle is computed as the difference of the corrections
to the two directions of its sides, the term 5 tan ¢ disappears. ,

To make this correction it would be necessary to have observa-
tions of latitude and longitude (or azimuth) at every triangulation
station. As this ideal is not practicable on account of the expense,

¢1n practice the spheroldal excess is computed as itit were a spherical excess; this process is amply accu-
rato oxcopt for precise work with large triangles, In any case for the purpose in hand, which is to estimate
the change in excess duo to a cha.uﬁ;aeln spheroid, it is sufficient to calculate the excess as spherical, the
cu,r\a\tme of the sphere used being the average of the mean curvetures st the vertices of tho(;gmgle,
eodesy, p. 202, '

82068°—24—-2
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this correction has never been applied on an extensive scale. It is
easy to see that for observations on a station a degree or two above
or below the horizon and with £ or 5 of the order of magnitude of 10’”
the correction for a direction may amount to several tenths of a
second, and under exceptional circumstances the correction may
exceed a second. Since £ and # depend on the spheroid of reference
used, the computation of the triangulation would in theory be
affected by a change in spheroid, but since in general practice the
correction #,, because of lack of data, is not applied at all, the actual
routine of the computation is unaffected.

It seems desirable, however, that in refined work the correction z
should be included, especially in mountainous regions where & and
n are likely to be large, and ¢ to differ considerably from 90°, condi-
tions both tending to make z, large. An unpublished trial computa-
tion by E. F. Church;of the Coast and Geodetic Survey, for triangu-
lation of the Salt Lake base net (with estimated deflections at points
between astronomic stations) failed to bring out any evident cumula-
tive error due to the neglect of this correction. On the other hand
the discrepancy in length between two base lines in Switzerland
(Aarberg in the northwest and Bellinzona in the southeast) was 86
units in the seventh decimal of the logarithm before the angles of
the Bellinzona base net were corrected for the deflections of the ver-
tical and only one unit after the angles were corrected.®

It seems probable also that one reason why Laplace’s relation
between deflections in the prime vertical as determined by longitudes
and by azimuths is, in general, less closely satisfied than would be
expected from our estimates of the errors of the triangulation is
precisely the neglect to reduce the horizontal angles to the spheroid.®

We thus see that a change in the spheroid of reference (within
. reasonable and probable limits) has almost no effect on the triangu-
lation as ordinarily computed. The question is, however, less simple
if we suppose the spheroid to which the triangulation is fitted to
be extremely erroneous, or the triangulation very extensive. Then
the question becomes one of the distortion necessary to make two
surfaces of different curvatures fit together at all points, and this

roblem can not be solved until its congitions are more fully specified.
See p. 11.) For changes of the order of ‘magnitude we have
been considering the question is not important, as has just been
shown. Hayford’s determination of the spheroid used the Clarke
Spheroid of 1866 as a basis. Corrections were determined to this
spheroid from observations covering the entire United States, but it
was assumed that no second approximation was necessary in order
to correct the geodetic positions for changes in the triangulation due
to new values for the s ﬁerical excesses, etc. The effect of a change
in the dimensions of the spheroid for any part of the United States
covered by Hayford's discussion may be found by consulting the
observation equations which are uﬂlished by the United §tates
Coast_and Geodetic Survey in the Igigure of The Earth and Isostasy
from Measurements in the United States, and Supplementary Inves-
tigation in 1909 of the Figure of the Earth and ?sostusy.

U Fomro:%port sur les triangulations, 12th Conference International Geodetic Association (held at
Stuttgart, 1898), p. XXIII,
* Hunter: The Earth’s Axes and Triangulation (Survey of India Profossionsl Papers No, 16), p. 77. For
ossible observational causes of error see Prlmmg ’l‘rlnnﬁulation on the 104th Meridian and on the 80th
m;%uel in Colorado, Utal, and Nevada (U, 8, Coast and Geodetic Burvey Special Publication No, 19),
p. 76.
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The effect of change in the semimajor axis a on the deflection in the
meridian or in the prime vertical at a point is obtained from the
coefficient of the quantity called l—gﬁ
vation equations of that point. This coefficient multiplied by 1/100
of the assumed change in a (in meters) will give the change in the de-
flection expressed in seconds of arc. The shape of the spheroid in this
discussion 1s specified by the square of the eccentricity, €?, ratlier than
by flattening, f, and the observation equations are in terms of correc-
tions to 10,000 ¢>. Butsince f= 4 ¢? nearly, we have the following sim-
Ble rule: To find the effect of a change of unity in the reciprocal of the

attening, multiply the coefficient of (10,000 ¢?) by 0.23; the result
is the change in the deflection in meridian or prime vertical expressed
in seconds of arc.

Let us consider the effect of a change from the Clarke Sg)heroid of
1866 on the geographic positions of points in the United States. If
it were desired to make such a change it would probably be made
for the sake of international uniformity in the spheroid used, and the
spheroid adopted would doubtless be one intended for a close approxi-
mation to the mean figure of the earth as a whole rather than a
spheroid especially designed to fit a particular region; that is, as far
as we can now judge, its semimajor axis would not be more than
about 200 m. greater than that of the Clarke Spheroid, and the
reciprocal of the flattening not more than three units greater. There-
fore, if we double the coefficient of (%) and take three-fourths of
the coeflicient of (10,000 ¢*), we shall get estimates of the probable
effect of a change to the supposed new spheroid. These coefficients
are as a rule less than unity, but at Calais, Me., the coefficients are,
respectively, 1.34 and 1.68 and at Sand Key, Fla.,'* they are, re-
spectively, 0.89 and 3.06. Suppose the changes in @ and f to reinforce
each other, we get in the two cases 2 1.34 +0.75 X 1.68=3'".94 and
2X0.89+0.75%3.06 =4".08, respectively. That is, in the United
States a change of spheroid is not likely to affect the deflections by
much more than 4’'. In cha.ngling spheroids there is to be considered
also the change of the assumed latitude, longitude, and initial azimuth
at the origin of the computation (Meade’s Ranch for the United States).
It is probable that in changing spheroids these quantities would be left
disposable, so that the mean residual could be diminished. This
quantity 4'’ is just about the mean residual deflection without regard
to sign, so that only in very rare cases in the United States would the
outstanding deflection be doubled. :

When we extend our calculations to points outside of the United
States, the effects are roughly proportional to the distance from
Meade’s Ranch as may be seen by examining the formulas for the co-

a

efficients of (1—00> and (10,000 ¢*) given on page 76 and following of
Hayford’s The Figure of the Earth and Isostasy and on page 42 and
following of Ha):ﬁ:i'd’s Supplementary Investigation in 1909 of the
Figure of the Earth and Isostasy. If, therefore, the North American

in the latitude or longitude obser-

10 Calais Is station No. 173 (primo vertical) on p. 10 of Hayford’s Figure of the Earth and Isestasy from
Measurements in tho United States; Sand Key is station No, 302 (meridian) on p. 12 of Hayford’s Supple-
mentary Invesu%nuons in 1909 of the Figure of the Earth and Isostasy. Both works are published by the
TU. 8. Coast and Geodetic Survey
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Standard Datum were extended to Arctic Canada or to Mexico, the
extreme change in the deflections due to changing over to the new
spheroid woulg not be greatly increased; for a circle with its center at
eade’s Ranch and a radius of 24° of great circle, which is about the
distance to Calais, Me., will include Canada nearly to the Arctic Circle
and Mexico and pass not far from southeast Alaska. We shall there-
fore be safe if we double our previous estimate and take 8'’ as the
maximum change of the deflection in North America due to the
change from the Clarke Spheroid of 1866 to any spheroid likely to be
adopted hereafter.
ographers are not, as a rule, interested primarily in deflections.
They are more apt to be concerned in the length and direction of a
line from one point to another. If these points are fixed by the
triangulation, the distance between them will be nearly independent
of the spheroid which the triangulation is assumed to cover, unless
the distance between the points is great, say 45° or more, and even
in such a case, the relative change in the distance is less than the
relati;'e change in the dimensions of the spheroid. (See examples,
. 10,
P The labor of changing from one spheroid to another is considerable.
All the geographic positions and azimuths must be recalculated.
About 20,000 <feogmphic positions dependent on triangulation have
been published by the United States Coast and Geodetic Survey, and
about 13,000 more have been computed and are awaiting publication.
The United States Geolqg}ilca.l Survey and the United States Army
Engineers have also published a great number of geographic positions
on the North American Datum. All these would be invalidated by
a change of spheroid, and the existence of two different sets of co-
ordinates for the same point, one set on the old spheroid and one on
the new, would inevitably lead to inconvenience, inconsistency, and
confusion. Furthermore, it would be necessary to redraw the
graticules (network of meridians and parallels) on published maps
or to renumber them, giving to the meridians and parallels, as at
resent drawn, a number no longer a round number of degrees or
egrees and minutes, but one ending in some odd number of seconds.
This has been done before on some of the old Coast and Geodetic
Survey charts, but it is an unpleasing and unsatisfactory expedient.

EFFECT OF CHANGE OF SPHEROID ON TRIANGULATION COVERING
A LARGE AREA.

Although the changes to be made in the computation of a triangle
due to a change in the spheroid used are very small for any one
triangle (except occasionally for the reduction of horizontal angles to
the spheroid), almost always less than 0.”/01 as has just been shown,

et these effects might be cumulative to an amount which, according to

elmert (Hohere Geodisie, vol. 1, p. 562-4) might well be appreciable
in a region the size of Europe. This fact isillustrated by the examples
on pages 10-13. The area of the quadrilateral in Example 1 is some-
what less than that of Europe but the closing error due to change of
s;f)heroid alone, although not large in comparison with the perimeter
of the quadrilateral, 1s nevertheless large enough to suggest the
desirability of removing or diminishing it. It does not appear,
however, that the change would invalidate the argument just given,
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which deals with the order of magnitude of certain corrections
rather than with their exact values.

If, however, it is a question of scientific accuracy in problems of
the figure of the earth or of deflections of the vertical, the question
of whether it is necessary to correct for cumulative errors just men-
tioned will degend on the accuracy sought. The examples are
meant to provide the basis for a summary judgment. It should be
noted that the closing errors of the polygons in the examples increase
approximately according to the areas of the polygons rather than
according to their linear dimensions.

One way of securing greater precision would be to obtain a first
approximation to the spheroid sought and then to recalculate the
triangulation and the resulting deflections on the basis of the new
spheroid, and finally on the basis of the new deflections to obtain a
second apgroxima.tlon to the spheroid. The second approximation
would enable corrections to be made to reduce the horizontal angles
to the spheroid. A second way that would avoid the necessity of the
second approximation would be to adjust the triangulation by the
method of the variation of %jaographic ositions (see U. 8. C. and
G. S. Spec. Pub. No. 28, Application of the Theory of Least Squares
to Triangulation, pp. 91-196), after adding to each observation
e?uation the terms necessary to allow for the variation in the elements
of the spheroid.

For large areas this second method might be simplified by using
selected triangulation points only, too far apart in general to be
intervisible, computing the length and azimuths of the geodesic lines
joining adjacent points selected from the intervening triangulation
and then treating these geodesic lines as if they were directly ogserved.
When the length and direction of such a geodesic line had been
derived from the adjustment, the triangulation along that line could
be adjusted to conilorm to the established length of the geodesic
line in question.

These refinements have not been a?plied to determinations of the
figure of the earth and of deflections of the vertical from triangulation
in Europe and North America. For the smaller areas thus far
involved the simpler methods used appear reasonably adequate.
But as the area covered by a connected scheme of triangt&ation
increases the time may come when more refined methods would be
desirable such as the recomputation of the triangulation on the basis
of the new spheroid, or the use of some form of the method of the
variation of geographic positions with terms added to allow for
variations in the assumed figure. When the triangulation of all
North America is discussed to obtain the figure of the earth, these
greater refinements would seem to be in order. :

On the general subject of deflections of the vertical and of the
effect of the change from one spheroid of reference to another, the
following works may be consulted:

Borsch and Kriiger: Die Europiische L.Enlgengradmessung in 52 grad Breite.
II Heft. Publications of Prussian Geodetic Institute, 1896.

Helmert: Hohere Geodiisie, Vol. I, Chap. XII; also, Lotabweichungen, Heft I,
Formeln und Tafeln sowie einige numerische Ergebnisse fir Norddeutschland.
Publication of Prussian Geodetic Institute, 1886.

Hunter: The Earth's Axes and Triangulation: Survey of India, Professional
P% No. 16, Dehra Dun, 1918,

ger: Beitrige sur Berchnung von Lotabweichulg:gysteme: Publication of
the Prussian Geodetio Institute and the International Geodetic Association, 1808,
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SUMMARY OF CONCLUSIONS.

1. The spheroids proposed during the past century as best repre-
senting the earth’s mean figure have varied widely, but all indications
are that Hayford’s Spheroid of 1909 with correction for topography
and isostatic compensation may be taken as representing our lgest
present knowledge and it seems probable that future determinations
will give nearly the same results. _

2. There are various spheroids in use for geographic purposes and
the demand for a change in the spheroid used for geographic purposes
would naturally be for the purpose of securing international uni-
formity, with a spheroid representing the earth’s mean figure, i. e.,
something like Hayford’s Spheroid, as a basis. :

3. It is desirable in the interests of scientific accuracy to apply the
correction to reduce horizontal angles to the spheroid more exten-
sively than has been done in the past especially in mountainous
regions, where it is likely to be large. ,

4, For North America the change to an international spheroid
from the present North American Standard Datum would proba.bly
involve changes in the deflections of the vertical of not more than 8"/
in Veli;’ extreme cases. ) : : ) o .

5. For ordinary geogra%%nc purposes relative directions and
distances between points in North America would be little affected.

6. The labor of makingl the change of spheroid would be great and
the advantage for purely geogr‘z:f)hic purposes gractic y nil; a
change in spheroid and datum would invalidate published geographic
positions, and the existence of old and new sets of data would cause con-
siderable inconvenience and confusion for those making use of them.

7. In the scientific problem of the figure of the earth it would be
desirable to allow for the effect of change of spheroid on the triangu-
lation, if the area covered by a connected scheme of triangulation
were as large as North America. '

EXAMPLES OF THE EFFECT OF CHANGE OF SPHEROID.

The spheroids used in these examples are the Clarke Spheroid of
1866, expressed in meters, which is used in the United States, Canada,
and Mexico, the Bessel Spheroid, which is widely used in Europe,
and the Hayford Spheroid: (1) of 1909, which is Iv)elieved to be the
best approximation so far obtained to the figure of the earth as a
whole.l The elements of these spheroids are given in the table on

_ page 1. EXAMPLE 1. .

Suppose two points 4 and B (fig. 1) both in latitude 30° (near or
below the southern border of the United States) and 40° apart in
longitude. From these points lineg are run northward to points
and D on the forty-ninth parallel which either coincides Witﬁ, or lies
north of, the northern boundary of the United States exclusive of
Alaska, except for the bit of territory near the Lake of the Woods.

. 1 For the dpurposes of these examples the Hayford Spheroid is defined by its semimajor axis, 6,378,388 m.
exaotly, and its flattening, 1/207 exaotly,  Theso assumguons ve 8 samiminor axis of 6,356,812 m., to the
nearest metor, which is 3'm. greater than the value published Hayford. From the axes as pui)llshed
by him the flattening comes out 1/206.06. The decision to use a flattening exactly equal to /207 was made
by the Paris Canference of 1911 on Astranomical Constants, anqg it is d ble to conform to this decision
{0 the interests both of slmPllclty and of uniformity. The deflnition of the Ha{r’!ord 8pheroid-as here
adopted has also been ofticially adopted in Finland. 8ee Y, VHlsili, Tafeln fiir geo&t.lsche ‘Berech-
tlmn&nwnncNh dlen Erddimensionen von Hayford, Verlffentlichungen des finnischen geoditischen
nstitutes, No. 1. . A .
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What is the effect on the distance C'D of a change from the Clarke
to the Bessel Spheroid ¢

As thus stated the problem is not defined with sufficient precision
for solution. Four possible interpretations will be considered.
Before considering these, let us state the distances in question for
the Clarke Spheroid. The length of the arc of meridian AC or BD
between the parallels of 30° and 49° is 2,109,475 m., the distance 4B
measured along the thirtieth parallel is 3,859,529 m., and the distance
CD along the forty-ninth parallel is 2,926,965 m. .

First inierpretation.—We might inquire merely what are the dis-
tances between the same meridians and parallels on the Bessel
Spheroid. The arcof the meridian between 30° and 49°is 2,109,286 m.,
or 189 m. less than on the Clarke Spheroid. These calculations
were made with 7-place logarithms and the final digit given may be
& unit or more in error. The arc of 40° on the thirtieth parallel is
3,858,994 m., or 535 m. shorter than on the Clarke Spheroid, and the
arc of 40° on the forty-ninth parallel is 2,926,515 m., or 450 m.
shorter than the corresponding arc on the Clarke Spheroid. A length
of 31 m. along the meridian represents a second of latitude while
27 and 20 m. represent one second
of longitude on the thirtieth and
forty-ninth parallels, respectively.
The differences in distances corre-
spond to deflections in latitude of
6’’ and in longitude of 20’’and 22"’.
. Second interpretation.—The re-
sults of the first interpretation are
merely consequences of the size
and sﬁape of the two spheroids in
question and have no bearing on
what happens when triangulation
is applied to one or the other sphe-
roi£ We can get a closer agresment with actual conditions if we
suppose the distance AB=3,859,529 m. to have been obtained from
the Clarke Spheroid, and then laid off on the thirtieth parallel of
the Bessel Spheroid. On the latter it corresponds to a digerence of
longitude, not of exactly 40° but of 40° 00’ 20"’.0. Similarly we
su Fose the meridian distances AC=BD=2,109,475 m., when laid
oﬁP rom latitude 30° northward, puts the end points €’ and D', not
in latitude 49° even, but in latitude 49° 00’ 06’'.1. (The distances
CC' and DD’ are greatly exaggerated in the figure.) The distance
C’D’ along the parallel of 49° 00’ 06’’.1 is 2,926,822 m., or 143 m.
less than the distance between corresponding points on the Clarke
Spheroid. This is seen to be less than the discrepancy of 450 m. by

e first interpretation.

Third interpretation.—We can approach still nearer to the way a
chain of triangulation would actually be laid down on a spheroid by
supposing AB to be connected by a geodesic line, or line by which the
distance 1s shortest, corresponding to a portion of a great circle in
a sphere (APB in fig. 1). The points A and B would correspond to
vertices of a triangle, and the direction of the line like AC or BD would
be ﬁiven simply hy the angle, PAC or PBD, P being a point on the
geodesic line. The distance APB on the Clarke Spheroid is 3,839,223
m. and the angle PAC = PBD = 79° 41’/ 03’'.38. Let us apply

Parallsl 30°
Ta. 1.



12 TU. 8. COAST AND GEODETIC SURVEY.

these distances and directions to- the Bessel Spheroid. A line of
length 3,839,223 m. both of whose ends are on the parallel of 30°
would on the Bessel Spheroid subtend a difference of longitude of
40° 00’ 20"’.17 and would make at both ends angles of 79° 40’ 57'*.95
with the meridian, or 5’/.43 less than on the Clarke Spheroid. Now
in an actual triangulation the direction of the line 4C or BD would
be determined simply by the angle like PAC or PBD without refer-
ence to the meridian. To transfer our triangulation from the Clarke
Spheroid to the Bessel, we should take the angle 79° 41’ 03"'.38 as
given by the Clarke Spheriod and lay it off from AP and BP. We
thus get lines AC’’ and BD’’ making with the meridian of the Bessel
Spheroid angles O’/ AC=D'"AD=5"".43. . The distances A" and
D'’ are taken equal to AC or BD on the Clarke Spheroid, that is
2,109,475 m, We come out on practically the same parallel as in the
second interpretation, namely, 49° 00’ 06'’.11, the angle of 5'/.43
being too small to affect the meridian distance appreciably, but the
effect of this little angle is to displace the points 8” and D'’ to the
left and right of ¢’ and D’ by 54.7 m.; so that the distance C''D'’
is 109 m. greater than C'D’. If we bear in mind that "D’ as
computed by the second interpretation for the Bessel Spheroid was
143 m. too small as compared with

2 CD on the Clarke Spheroid, we see

that our revised interpretation has
made the distance "'D’’on the Bes-
sel Spheroid more nearly the same
(that is, within 34 m.) as the corre-
sponding distance on the Clarke
pheroid. It is more consistent,
B however, to continue measuring dis-

G

A

_ tances along geodesic lines instead

of along - parallels. The distance
CQD along a geodesic line on the Clarke Spheroid is 2,892,512 m.,
while the corresponding distance C'’Q''D’’ along a geodesic line on
the Bessel Spheroid is 2,892,467 m. The difference of 45 m. between

these two distances gives an idea of the closing errors that would
result from transferring a set of triangles enclosing an area nearly
equal to that of the United States from one spheroid to another.
Fourth interpretation.—We can estimate the closing error due to
a change of spheroid in still another way closely analagous to the
third interpretation. Suppose the points A, B, C, and D fixed as
before on the Clarke Spheroid. From the geographic coordinates of
these points we can determine the sides and angles of the quadrilateral
ABDC(C, the sides being assumed to be geodesic lines. Let us take the
length AB thus determined and transfer it to the Bessel Spheroid
keeping A, and B,, the points corresponding to 4 and B, in latitude
30°. %See fig. 2.) Lay off the angles A,B,D, and B A,C; equal to
ABD and BAC and take the lengths A,C,~ AC and B,D,=BD. (So
far this is the procedure in the third interprétatlon.s Lay off the
angles 4,0, X equal to ACD and make 0, X =CD. The correspond-
ing procedure on the Clarke Spheroid gave us the closed quadrilateral,
the point X coinciding with D. On the Bessel Spheroid this is not
the case. As was found in the third interpretation, the point [) is in
latitude 49° 00’ 06/.11 and is 40° 00’ 25’’.55 east of C. he point X
however is in latitude 49° 00’ 03''.92 and is 40° 00’ 26’'.88 east of C,
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so X lies about 73 m. S.22° E.of D and the quadrilateral ABDC
transferred from the Clarke Spheroid to the Bessel thus fails to close

by 73 m.
EXAMPLE 2.

Suppose the distance from the parallel of 30° on the Clarke
Spheroid of 1866 to the pole be laid off along the meridian of a
Bessel Sgheroid beginning at latitude 30°, where will the end of the
line fall? On the Clarke Spheroid the distance is 6,681,954 m.,
while on the Bessel Spheroid it is 6,681,069 m., so that the Clarke
distance laid off on the Bessel Spheroid would overrun the pole by
885 m. or 28'’.5. (See fig. 3.) If mendian lines determined from
the length on the Clarke Spheroid were laid off on the corresponding
meridians of the Bessel Spheroid, : :
instead of meeting at the pole, as g8 4%
on the Clarke Spheroid, the ends of
the meridian lines would lie on a
circle of radius 885 m. For two
meridians 40° apart, as in Example
1, the two points corresponding to
the Clarke pole would be 605 m.
apart. If we allow for the differ-
ence in direction of 5'°.43, which
a?%ears in the third interpretation
of Example 1, the points A’ and B’
in Figure 3 would be shifted to the
left and right, respectively, perpen-
dicular to the meridian each by
some 145 m., thus taking the posi-
tions A’' and B’ in figure 3, and
the discrepancy of 605 m. would be
reduced to about 330 m.

It should be noted that the dif-
ference in direction of 5'/.43 arises
from the different angles on the two
spheroids between the meridian
and the geodesic line between the Paralial 30°
two points in the same latitude Fic. 3.
(here 30°). The angle in question .
18 90° for all spheroids at 316 equator, and where the two meridians
start at the equator the difference in direction does not occur and
the second and third interpretations give identical results.

EXAMPLE 3.

This example is intended to simulate approximately the conditions
found when a circuit of triangles was closed by a chain of triangles
extending from Texas to southern California.”* The triangulation
completed up to the time when the Texas-California arc was under-
taken formed three sides of a quadrilateral. The geographic posi-
tions in the triangulation forming these three sides were arbitrarily
held fixed in the adjustment of the Texas-California arc and the
directions in that arc were so adjusted as to close the quadrilateral.

NH W. Bowie: The Texas-California Arc of Primary Triangulation. U. 8. C. and G. 8. Spee. Pub.
0. 11; 1912,

82968°—24——3
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All the errors accumulated in the three older sides of the quadri-
lateral were thus thrown into the new line. The discrepancies in
latitude, longitude, and azimuth that had to be taken care of in this
way were, respectively,’® 39 m., 14 m.; and 7.”’5. It is therefore of
interest to estimate how much of these discrepancies might reason-
ably be attributed to possible errors in the spheroid used; this was,
of course, the Clarke Spheroid of 1866.

The geographic coordinates of the corners of the quadrilateral
assumed to be equivalent to the actual figure were as follows:

North West
’ latitude. longitude.
A 33° 00/ 98° 00’
B 39 00 98 00
C 39 00 123 00
D 33 30 116 00

The side AB (see fig. 4) thus represents triangulation along the
ninety-eighth meridian, the side Bg triangulation along the thirty-

c
e 8
T Paraliel 35°
b Paraliel 33° A
FI1G. 4a.
/’
o' A
Fia. 4b. .

(T'o correspond to the numerical example the point X should lie to the
right of the line 4’ B’).

ninth parallel, the side CD triangulation in southern California, and
the side DA the Texas-California arc.

The sides and angles of the quadrilateral were computed from the
above positions of vertices, which were first assumed to refer to the
Hayford Spheroid of 1909, this being considered the best available
approximation to the true spheroid. A point A’ in latitude 33° 00’
and longitude 98° 00’ was then taken on the Clarke Spheroid of 1866
and the distance A’B’ equal to AB was laid off northward on the
ninety-eighth meridian. At B’ the angle A’B'C" on the Clarke
Spheroid was taken e%ual to ABC on the Hayford Spheroid; B’C’
was taken equal to B( and so on around the quadrilateral until a
line D’ X was laid off equal to DA, the angle 'C" being equal to

13 0Op. cit. p.20.
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ADC. The point X would lie near A’ but could not be assumed
to coincide with it. The difference in position between X and A’
gives immediately the amounts by which the quadrilateral fails to
close in latitude and longitude when transferred from one spheroid
to another and a simple computation gives the correction in azimuth
needed to effect closure. ese failures to close are due solely to
the change in spheroid.

The following are the sides and angles of the quadrilateral on the
Hayford Spheroid. The sides are assumed to be geodesic lines.

Sides. Angles.
A B= 665,773.0 m. A= 83° 09’ 31.78"”
B C=2,158,881.5 B= 97 56 33.99
C D= 876,002.9 C= 49 57 03.53
D A=1,676,289.6 D=130 45 32.15

When this quadrilateral is transferred to the Clarke:Spheroid of
1866 in the manner just described the points A’, B/, (', D’, and X
(see fig. 4) are in the following positions:

North latitude. West longitude,
A’ 33° 00’ 00.00" 98° 00’ 00.00"
B’ 39 00 01.08 98 00 00.00
¢’ 39 00 00.80 123 00 02.12
D' 33 00 00.01 116 00 01.39
X 33 00 00.13 97 69 59.94

The point X therefore fails to coincide with the point 4’ by 07’.13
in latitude and 07/.06 in longitude, that is, by agout 4 m. in the
meridian and less than 2 m. perpendicular to it. The quantities are
small as compared. with the discrepancies of 39 m. and 14 m. devel-
oped in the adjustment. It would then appear probable that an
erroneous choice of spheroid is not the principal cause of these dis-
crepancies. '

nother way of stating the failure to close is to say that the dis-
tance A’X is 4.3 m., which is 1 part in 1,250,000 of the total perim-
eter of the quadrilateral. The difference in azimuth between D'X
and D’A’ is legs than 1"’ as compared with the 7’.5 developed in the
adjustment. Here again it appears unlikely that the choice of sphe-
roid is mainly responsible for the discrepancy.

EXAMPLE 4.

This example is of the same general character as Example 3. A
quadrilateral is taken to represent a circuit of triangulation in the
northern part of the United States. The coordinates of the vertices
are:

North latitude. West longitude.
A 49° 00/ 123° 00/
B 39 00 123 00

C 39 00 105 00
D 49 00 108 30

If this quadrilateral is computed from the Hayford Spheroid and
then transferred with angles and lengths of sides unchanged to the
Clarke Spheroid, just as in Example 3, the distance between X and
A’ is 2.9 m., or 1 part in 1,800,000 of the perimeter of 5,209 km.
The difference in azimuth is 0'/.22. These discrepancies are small
in comparison with the discrepancies usually disclosed in the adjust-
ment of a circuit of triangulation as big as the one in question here.
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FORMULAS FOR THE COMPUTATION OF GEODETIC POSITIONS OVER
LONG LINES, DIRECT PROBLEM.

Given a point A in geographic latitude ¢, and a geodesic line AB
of length s issuing from A in azimuth e;: to find the latitude of B,
the back azimuth (a,)
of the line BA at B, and
the differences in longi-
tude (Al) between B and
A. The length s is
supposed to be several
hundred kilometers and
therefore such that the
approximations used in

oast and Geodetic Sur-
vey Special Publication
No. 8 (Formulae and
Tables for the Compu-
tation of Geodetic Posi-
tions) are no longer
valid.

The solution of this
problem in substan-
tially its present form
was given by Bessel.!*
Among more recent
works in which the
groblem is treated may

e mentioned those of
Clarke and Helmert.!®
The necessary formulas
are given without proof
by Albrecht together
with tables which are
an enlargement of those
given by Bessel. These
tables are, of course,
convenient, but do not °
shorten the work as
much as might be ex-
pected, since the inter-
polations are rather
troublesome and the
computation necessary
to replace the tables
rather simple. In this
statement of formulas
we shall follow essen-
tially the presentation of Helmert, who makes no use of special
tables. The system of notation is similar to that of Helmert, the
T

B A. R. Clarke: Geodesy, Oxford, 1880, Chap. VI. F. R. Helmert, Die mathematischen und physika-
MUschen Thoorien der huheren Geoddsie, Lei zfé, 1880, Vol. 1, Chap. 5.

18 Theodor Albrecht: Formeln und Iiuus?aleln fir geo, aphlscgo Ortsbestimmungen, second and later
editions, Lelpzig, from 1879 on. In the fourth edition (190%) the convention as to azimuth is stated, o

point tcz\('{.rlook in earlier editions, and a typographical confusion between spherical and spheroidal is
corrected.

Fia, bb.
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changes being mainly for ease in printing. A comparison of the
notations of %{elmert, Albrecht, and this work is given on page 35.
On the spheroid, the two points A and B and the pole P (see fig.
5a), are the vertices of a spheroidal triangle, the sides of which are
eodesic lines, a meridian being a special case of the geodesic line.
%t is convenient to use also an auxiliary spherical triangle P'A’B’,
(see fig. 5b), in which P’ corresponds to the pole and the sides P’A’
and P’B’ are taken equal to the complements of the parametric
(reduced) latitudes of A and B, respectively. By a property of the
geodesic line the angles P’A’B’ and P'B’A’ are then equal, respec-
tively, to the corresponding angles PAB and PBA, but the angle
APg (=spheroidal difference of longitude=Al) is not equal to the
angle A’P'B’ (=spherical difference of longitude=AX). However,
the difference between Al and A\ is small, since the ellipticity of the
earth is small. In order to compute this difference and also the
relation between the side A'B’ of the spherical triangle and the side
AB=s of the spheroidal triangle it is necessary to determine the
position of the point ¢" in the figure and the distance C’A’. The
point (' is that point at which the great circle A’B’ is perpendicular
to a meridian. A convenient name for the point C” is the vertez of the
great circle A’B’. The corresponding point on the spheroid, or C,
where the geodesic line AB is perpendicular to the meridian may
also be termed the vertex. There being two such points we may take
for definiteness the one on the northern hemisphere regardl}(:,ss of
the hemisphere in which A’ and B’ may be. If, again, in Figure
5a, we draw the meridian that is perpendicular to the geodesicbline
AB, extended if necessary, and caﬁ tﬁe foot of the perpendicular C,
the goint, C corresponds to (" in the other triangle and by a property
of the geodesic the reduced latitude of the vertex C on the spheroid
will be equal to the latitude of ¢’ on the sphere.
With this preliminary we proceed to a statement of the formulas.
In this statement those numerical coefficients or their logarithms
that are printed in italics apply only to the Clarke Spheroid of 1866
and must be modified if another spheroid is used; the numerical
-coefficients or logarithms printed in roman type apply to all spher-
oids. The unit of length 1s the meter. Square brackets signify that
the number inclosed 18 the common logarithm of the coefficient in
question.

FIRST STEP—COMPUTATION OF THE PARAMETRIC (REDUCED) LATITUDE OF 4.
Let g8, denote this reduced latitude. Compute

tan ﬁ1=3 tan ¢, =[9.99856262 — 10] tan ¢,, (1)

where b and a are the semiminor and semimajor axes of the spheroid.
The computation for a change from one kind of latitude to the other
mai also be made (and with greater accuracy, even where tables
with a small number of decimals are used) by the following formulas,!?

. CnE o, nd .
B,=¢,—nsin 2¢1+§ sin 4¢1—-——3— sin 6¢,
— ¢, —[2.5443412) sin 20, +[9.47828 — 10] sin 4¢, (1a)

—[6.527 —10] sin G¢,,

17800 O. S. Adams: Latitude Developments Connected with Geodesy and Cartography, Coast and
Geodotic Special Publication No. 67, p. 15, and also p. 95 for the tables.
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The - quantity n denotes %:_—l;); the numerical coefficients whose

logarithms are given for the Clarke Spheroid of 1866 are expressed
in seconds of arc.

SECOND STEP—TO FIND THE LATITUDE OF C’ (=) AND THE DISTANCE (' A'(=8).

This is merely the solution of a spherical right triangle of which
the hypotenuse A’P’'=90° —8, and one angle ("A’P'=a, are known.
The following arrangement of formulas is convenient in that it pro-
vides checks for the computation and also enables the quantities
sought to be determined without ambiguity as to quadrant when the
triangle is taken in the general sense and 1ts sides are not restricted
to being less than 180°. The conventions are that the azimuth is
reckoned from the south through the west and that west longitudes
are positive.

sin B, cos 6, =sin B,
sin §, sin 6, =cos §, cos a,, (2)
cos B, =cos 8, sIn a,.

If the azimuth is in the second 'il;;a.drant, 8, comes out negative,
a case illustrated in Figure 6b. e formulas are, of course, per-
fectly general. -

There is also needed the longitude of A’, reckoned from the me-
ridian of the vertex C’. Denote this by A, We have then

Co8 B, cos \,=cos b, cos 8, } 3)
cos B, sin A, =sin §,.

Formulas (2) and (3) are perfectly general and will give 6, in the
proper quadrant if attention is paid to the !igns of the other trigono-
metric functions. It is convenient to take values of 6, and A\, between
—180° and +180° rather than between O and . 360°. This is not
essential however. 6, is positive when the arc (A’ (from ¢’ to A’)
is in the same direction .as the arc A’B’ (from A4’ to B’). The
vertex (" may be taken as always in the northern hemisphere, even-
though A’ or B’ or both may be in the southern hemisphere, so that
sin 8, is always positive. However, when o, is in the third or fourth
quadrant the formulas make cos 8, negative, so that 8, can not be
a latitude in the ordinary sense; 1. e., numerically less than 90°,
since cos B, would then be positive. 8, In this case is the supplement
of the latitude of (’, that is 8, is measured from the equator through
the pole to (", or 8,=D’P’(" in Figures 6¢ and 6d. 9I‘his method of
reckoning has its analogy in the practice of generalizing the formulas
for computing meridian transits of stars by using declinations greater
than 90° for lower transits. This method of representing 8, makes
the point D’ move continuously around the equator through 360°
when the azimuth (e,) changes from 0 to 360°.

THIRD STEP—TO FIND THE ANGULAR DISTANCE A¢=A‘B’ ON THE SPHERE CORRE-
SPONDING TO THE LINEAR DISTANCE AB=3 ON THE SPHEROID,

This relation involves elliptic integrals of the second kind. The
modulus depends on the latitude of the vertex (" and is so small
that the elliptic integral may be readily calculated by the first few
terms of a rapidly convergent series.
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Lets denote, as usual, the quantity li—~e” where e is the eccentricity

of the spheroid used, let %, denote the modulus of the elliptic integral,
and E an auxiliary quantity. Then

tan E=+/8 sin 8,=[8.9167261 — 10] sin B, (4)
k,=tan’} E (5)
so' 1-k,
Ad = b m' (6)
Ao is the first approximation to A9; p’’ denotes Mgg—x—@,
log p’’ =5.3144251,3 )
144

log "T =8.5112013,5—10, . (8)

b being in meters. _

1-%
log iTkll’:leg cos ¥ E—§MFEk32 ... (9)
log § M=6.73469, (10)

for unity of seventh decimal. M=modulus of common logarithms.

2¢,==260,+p"' k, sin 26, (11)
2¢ =20,+ A0, (12)

The quantities ¢, and ¢ are defined by equations (11) and (12).
A9=Ao + A cos 2¢ sin Ao+ B cos 4¢ sin 2A¢ (13)

log A=log (—p'’) +log £,,
(14)
=5.3144251,3 n+log k.-

log B=log (§ p"'k,+ .. ..)=5.11031+2 log k,. (15)

The terms of the series (13) are evidently eXpressed m seconds of
arc.

FOURTH STEP—SOLUTION OF THE TRIANGLE A’'B’P’ FOR THE LATITUDE, BACK AZI-
MUTH, AND DIFFERENCE OF LONGITUDE OF B’,

Since A0=A’B’ has been found and the angle B’A’P’ and the
side A'P’ are known, the remaining parts can be found, giving B
the parametric latitude of B’ and Al=A’P’'B’ the diflerence o
longitude. One convenient way of solving the triangle is to solve
the right triangle B’C’P’. This triangle gives, after putting 6,=
CB'=C'A'"+A'B =6, + 46,

sin B, =sin 3, cos 6;,
cos B, cos a; = —sin B, sin 6,, (16)
cos 8, sin a,= —cos f,.
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If we denote by A, the angle C"P’B’, we have
cos B, cos \,=cos B, cos 9, } a7
cos B, sin A\, =sin 6,.
These equations give 8,, \,, and «,.
For the difference of longitude AN we have
AN=A'P'B'=(C'P'B'—~C'P'A' =\,—\,, (18)

A, coming from (3).

We may also attack the oblique triangle directly; or any of the
formulas for the oblique triangle may be used as a cKeck on the com-
putation of the right triangles. Such check formulas are, for example,

sin AA=sin A8 sin «, sec B,
= —sin Af si(; a, sec f3,. } (19)
tan 3 AA= sin 3 (Bz —Bl) sec & (Bz +ﬂx) cot ¥ (az +al) } 20
=cos ¥ (8,—B,) cosec % (8,+8,) cot } (a,—a,). (20)

FIFTH STEP—-COMPUTATION OF THE GEODETIC LATITUDE OF B.

The parametric latitude of B is equal to the latitude of B’, that is,
to B,. The geodetic latitude of B, or ¢,, is then found by the formula

a
tan d>2-3 tan B, (21)
=[0.0014748] tan 8,, :
or by the series
. n® . n oL
¢,=8,4+n sin 2432-%-7 sin 482+§ sin 68, .. ..
— B, +[2.5448412] sin 26,+ [9.47828 ~ 10] sin 46, [ (218)
+[6.627— 10} sin 68, . -..
The logarithms in brackets give the terms in seconds of are.
SIXTH STEP—COMPUTATION OF THE SPHEROIDAL DIFFERENCE IN LONGITUDE.

Although the latitudes on the auxiliary sphere are equal to the
parametric latitudes on the spheroid, the relation between the differ-
ences in longitudes is less simple. Let Al represent the difference of
longitude between A and B on the spheroid; then

Al=AN—cos B, {A'A6+ B’ cos 20 sin A6 __ .} (22)
has the same meaning as before and
20 =06, +6,,
or (23)
=06, +1% Af.

log A'=Iogf— IMQA-3 )k

—7.5302093 — 10—[6.3360] ¥, } (24)

Tlhe term [6.3360] k, is expressed in units of the seventh decimal
place.
log B'=log (—%p"' k)
=2.§429n+10g Icl1 } (25)
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The symbol 1 denotes the ellipticity or flattening of the spheroid.
The coefficient of k; in formula (24) for log A’ should, in strictness,
be printed in italics to show that it is for the Clarke Spheroid only,
but any probable change in the flattening affects it so little that it
may be considered as practically invariable. The computation of
Al completes the solution.

NUMERICAL EXAMPLE, DIRECT PROBLEM.

From a point A in geodetic latitude 55° N. there runs a geodesic
line AB, 4,000 km. long, with an initial azimuth (S via W) of 50°.
What is the latitude of B, the back azimuth of the geodesic line
there, and the difference of longitude between A and B? Assume
the Clarke Spheroid of 1866.

The trigonometric part of these calculations was made with Short-
rede’s logarithms to seven places. The hundredths of a second are,
therefore, uncertain. The functions are all logarithmic.

Whenever the quantity dropped in rounding off an interpolated
logarithm to seven decimal places is about half a unit of the seventh
decimal place, or when two different determinations of the same loga-
rithm give results differing by a unit of the seventh decimal place,
the two alternative final figures are written in succession with a
hyphen between. Thus, 9.436 4126-7 might mean either that the
logarithm lay about half way between 9.436 4126 and 9.436 4127,
or else that these two quantities represent two different determina-
tions of the same logarithm.

FIRST STEP.

tan ¢, 0.154 7732
constant 9. 998 5252

tan 8, 0. 1563 2984
81 54° b4’ 30471

This is in exact agreement (although the hundredth of a second
can not be depended on) with the table on page 96 of Special Publi-

cation No. 67.
SECOND STEP.

sin «a, {9. 884 2540 Co8 B cos a; =sin Fysin 8, 9. 567 6473
cos B 9. 759 5798} gin 4, * 9. 614 4636
cos a 9. 808 0675 cos & * 9. 959 6945
ces By sin oy =cos B, 9. 643 8338 sin By =sin B cos 4, 9. 912 8783
tan 6, 9. 654 7690
A 24° 18’ 16786
sin Ba 9. 953 1837-8

* The values ofsin 6, and cos 6 are not filled out until 6, has heen determined from fts tangent. Therefore,
the value of sin §1==sin Bo cos 6; may bo subtracted from the value of cos 8; 008 ay==sin B sin 6 without having
the eye distracted b{ intervening figures. When 6; has been det&rmineé and tho values of sin 8; und cos §;
tllmd{u, they aro to bo subtracted cach from the logarithm {n tho adjacent lino above or below, thus afford-
tng two detorminations of sin 8. A similar arrangement occurs frequently in these numerical examples.
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The values of 8, from its sine and cosine agree within a few hun-
dredths of a second. The definitive value of 8, may be taken from

sin .
tan 8,= B and is found to be 8,=63° 52’ 17730.
°" cos B, 0

cos 6; 9. 959 6945
cos B 9. 643 8338
cos B; cos A\ =co8 §; cos By 9. 603 5283
cos A ¥ 9. 843 9485
sin Ay * 9. 854 8839
cos B sin A\ =sin 4, 9. 614 4636
tan A 0. 010 9353
M 45° 43’ 16755
cos By 9. 759 5798-7

The agreement of cos 8, with the value previously used is a partial
check.

THIRD STEP.
20, =48° 36’ 34"
log & 8,916 7261 log k2  4.2731
sin By 9. 953 1837 log4 M 6. 7347
tan E 8. 869 9098 1. 0078
E 4° 14’ 194546
}E 2° 07" 097773 § ME? 10(= cor. to log of first term
in units of seventh decimal)
tan § E 8. 568 2847
logky (=tan®* 3 E) 7.136 5636 log p’’ 5. 314 4251
log s 6. 602 0600
cos? $ £ 9.999 4056—10}10 1k )
correction —10 € 143k3
colog b 3.196 7762 —10
log Ao (Ao
in secs.) 5. 112 6659
Ao 129, 618%18 =36° 00’ 18718
log o'’ 5. 3144 log (—p’’) 5.314 425111} —log A
log k, 7. 1366 log & 7.136 5694 [ 708
sin 26, 9. 8752 cos 20 8. 967 7116
sin Ao 9. 769 2714
2. 3262 —_—
1. 187 9775n
p’’ ky sin 26, 21179 =3’ 3179 Second term of (13) = —15. 416
20, 48° 36" 3347
20, 48 40 05. 6
Ao 36 00 18.2
20 84 40 23.8
40 169 20 47.6
log §0'' 5. 1103}_]_ B Ao 36° 00’ 18718
log k? 4. 2731/ =° Second term  —15. 416
cos 4o 9, 9924n Third term -0. 226
sin 240 9. 9782 AF 36 00 02 54
9. T —
3540n 6 24 18 16. 86
i . = —07226 —_—
Third term.of (13) 6, G0 18 19,40

20=6,46, 84 36 36. 26

*Seo footnote, p. 22.
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cos 6
cos By

coB 83 COS A2
=co8 3 cos
cos \*
sin A*
cos B3 8in A3 =sin 6,

tan A3
Az

cos B3
A
)\2 - )\] = A)\

FOURTH STEP.

9. 694 9358 €08 6y

9. 643 8338 sin By

_ sin 6;

9. 338 7696 co8 33 COS a3 =

9. 386 6299 —sin By sin 6;
9. 986 7191 cos ag*

9. 938 8589 sin ag*

0. 600 0893
75° 54’ 08785 tan ag
—_—— a

9. 952 1397-8 cos B;

45° 43’ 16%55 sin B =sin B, cos 6,
30 10 52.30

U. B8, COABT AND GEODETIC SURVEY,

9. 694 9358
19. 953 1837}
9. 938 8589
9. 892 0426n

9. 939 9028n
9. 691 6940n

cos By 8in ap= —cos By 9. 643 8338n

9. 751 7912
209° 277 06790
9. 952 1398
9. 648 1195

The values of 8, from sin 8, and cos 8, agree as well as could be

expected. The definitive value from tan g8,=

cos f3,
B, =26° 24’ 27726

Verification from oblique triangle.

sin oy 9, 884 2540 sin ag

sec By 0. 047 8602 sec B

sin Af 9. 769 2261 sin A8

sin AM 9, 701 3403 sin AN
AN=30° 10’ 52733

¥ (B481) 40° 39" 28798 % (a3 +ay)

3 (B —8) —14 15 01.72 3 (o —ay)

sin 4 (B2—8;)) 9. 391 2199n cos % (8. —B1)

cot 3 (az+ay) 9.919 5914n cot 3 (a; —a)

sec 3 (8:+/) 0.119 9806 cosec 4 (B +81)

tan 4 AX 9. 430 7919 tan 3 AX

3 A=15° 05’ 26¢15
AN=30 10 52.30

sin

9. 691 6940
0. 240 4202
9. 769 2261

9. 701 3403

129° 43’ 33%45
79 43 33.45
9. 986 4263
9. 258 3087
0. 186 0568

9. 430 7918

These three values of A\ agree satisfactorily, and the final result

may be taken as

AN=30° 10’ 52731
FIFTH STEP.

tan 8, 9.695 9797

log a/b 0.001 4748

tan ¢, 9.697 4545
¢, 26°29/ 06758

A computation by the series (21a) results as follows:

B, 26° 24/ 27226

second term 4 39.017
third term . 286
fourth term . 000
s 26 29 06.563,

which agrees satisfactorily with the previous result.

*See footnote, p. 22,
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SIXTH STEP.
A6 in secs. 129,602454
log ¥ M (1—4%)) 6. 3360 log f 7. 530 2093 1 4!
log ¥ 7. 1366 correction —2969} 08 -
log A#¢ (in secs.) 5,112 6135
3. 4726 cos B 9. 643 8338
correction in seventh decimal 2969 —_—
2. 286 3597
second term of (22) 193¥357=3' 13#357
cos Bo 9. 6438 AXN- 30° 10’ 52¢31
log ki 7. 1366}1 p second term — 3 13. 357
constant 2. 5429('°8 third term - 0. 012
cos 26 8. 9728 _—
sin A6 9. 7692 al 30207’ 38794

8. 0653
third term of (22) 0Y012

FORMULAS FOR THE COMPUTATION OF GEODETIC POSITIONS OVER
LONG LINES, INVERSE PROBLEM.

Given the latitudes and longitudes of two points 4 and B on a sphe-
riod to determine the length of the geodesic line joining them ans its
azimuth at 4 and B.

The same figures, Nos. 5a and 5b, showing the spheroidal triangle
and the auxiliary spherical triangle, may be used as in the direct
problem. The solution of the inverse problem is, however, indirect,
requiring successive approximations. Tho reason for this is that
the modulus of the elliptic integral, on which depends the length
of the line AB and also the diflerence between the spherical and
spheroidal differences of longitude, involves a knowledge of the
latitude of the vertex ¢’ (fig. 5b). In the present instance we know
merely the sides P’A’ an«fiy P’B’, since these are the parametric
colatitudes of the points 4 and B, but this is not enough to deter-
mine the position of ¢". If we knew the angle A’P’B’, that is, the
sEherical giﬂ'erence of longitude, we could solve the triangle A’P’'B’,
thus determining the angle P’A’B’ and P'A’(". With angle P’A’("
and P’A’ known, we could solve the right triangle P'A’C" and thus
locate the vertex ¢’ by its latitude 8,. The spherical difference of
longitude (AM) is known to be approximately equal to the spheroidal
(al), the difference between the two being only a few minutes of arc
at most.” As a first approximation we use Al for A, or we can get a
better approximation, as hereafter explained, without a knowledge of
B,. With this approximate knowledge of AN we get a value of 8, and
use it to obtain a better value of AN, which in turn gives a better
value of 8,, and so on until two successive &}])proximations to AN
agree within the limits of error appropriate to the number of figures
used. In the following formulas the notation of the direct problem
is used so far as it applies.

FIRST STEP-DETERMINATION OF THE PARAMETRIC (REDUCED) LATITUDES.

The parametric latitude B, is derived from the geodetic latitude
¢; by the same formulas as in the direct problem, equations (1) or
(1a) page 17, or by special tables. In a similar manner 8, is derived
from o,.
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SECOND STEP--APPROXIMATE VALUE 'IQI?‘D%HE SPHERICAL DIFFERENCE IN LONGI-

An approximate value of AN may be found by the formula
AN=Al+p"" f cos B, cos B, sin Al. (26)

For the Clarke Spheroid of 1866 this becomes numerically
AN = AL+ [2.8.4468] cos B, cos B, sin Al. (27)

A more accurate formula that will often obviate the necessity of a
second approximation is due to Jordan.’® It reads

A)\=\/ % AL[L—m &¢ —nAll. (28)

Here N is the radius of curvature of the prime vertical section, I
the radius of curvature for a meridian section, A¢=¢,—¢, expressed
in scconds of are, Al is to be similarly expressed, and m and »n are
uantities given in the table on page 34. The formula expresses A\
likewise in seconds of arc.

If the tables in U. S. Coast and Geodetic Survey Special Publica-
tion No. 8 are to be used, the formula may be written

A)\=\/—j-37 Al [1—m Ap* —n AP (29)

N, R, A’, B, m and n are to be taken out for the middle latitude
¢=1% (¢, +¢,). The quantities A’ and B in this instance are entire-
ly different from the A’ and B of formulas (24) and (15) and have
here the meanings assigned in Special Publication No. 8. This
formula gives the value of AN within 0.”7001 for values of A¢ and Al
less than 10°. For larger values of A¢ and Al the error increases and
a second approximation may be needed.

THIRD STEP—DETERMINATION OF §, §;, AND 6,.

This may be done in more than one way. With an approximate
value of AN we find:

(@) sin? A0=sin? 3(8,—B,) +cos B, cos B, sin® AA. (30)
cos §, cos B3, sin A
co8 B,= By e g‘; y (31)
and
sin 3
oS f, =——21)
sin 8
or ’ ) (32)
cos 6, =cos (6, +- Af) _Sn B,

sin B,

18V, Jordan: Neuo Auflsung der é;codiitlschen Hauptaufgabe und {hrer Umkehrung, Zeitschrift fiir
Vermessungswesen, Vol. 12 (18383), p. 65.
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For the quadrants in which the quantities are to be taken see Figure
6, page 19, and the accompanying remarks. Evidently «,, 8,, \,, and
B, are related to 8, and «, in the same way that 8, A, and 8, are related
to 8, and «,.

(b) An alternative process gives incidentally the azimuths corre-
sponding to the approximate value of AN used. Gauss’s equations
applied to the triangle PAB give equations (33), the azimuths being
reckoned from the south around through the west.

sin § (@, +,) sin & A= —sin } (8,—B,) cos } A},
cos % (o, +a,) sin § A= —cos § (8. +8,) sin 4 A\,
sin 4 (a,—a,) cos ¥ A6= +cos } (8,—B,) cos } A\,
cos } (a,—e,) cos § AG= +sin } (8, +B,) sin 4 A\

(33)

f
The right-hand sides of the equations being known, the values o.
} A8, § (o, +a,), and } (a,—q,) are easily found, and thence a, and «,
This form of computation has the advantage of giving the azimuths
at once if the value of A\ used is sufficiently approximate. Further-
more, equations (33) will give with the use of the same set of tables
more accurate numerical results than will equations (30) to (32).
We have further

sin B, cos §,= sin 8,
sin 8, sin 6,= cos B, cos a,,
cos B, = cos B, sin a,
or (34)
sin 8, cos §,= sin 8,
sin B, sin 6,= — cos B, cos a,,
cos B, = —coS B, sin a,.

FOURTH STEP—VERIFICATION OF THE VALUE OF Ax,

The ap(I)roxima,te values of 8, and 6, enable the value of A\ to be
calculated more accurately. The formulas are (4), (5), and (22),
which are here repeated and renumbered for convenience.

tan E= /6 sin 8,=[8.9167261 — 10] sin B,. (35)
k,=tan® } E. (36)
AN=Al+cos B,{ A’A6+ B’ cos 26 sin Ag}, 37

where
log A’=log f—4 M (1—% 1) k,
=7.5302093 — 10—16.3360] k,, (38)
log B'=log (—}p"’ € k,),
=2.6429n+log k,.

If the value of AX thus found differs from the AN previously used by
more than the preassigned limit of error or by more than the probable
uncertainty due to omitted figures, the computation should be re-
peated till the desired agreement is attained.



28 U. S, COAST AND GEODETIC SURVEY.

FIFTH STEP-COMPUTATION OF THE DISTANCE s.

When definitive values of 8, A9 and %, have been found, the value
of s is found by formulas (39) and (40) which arc based on formulas
(7) to (15),

s—bl—%‘:_i—-gf— [4 +k cos 26 sin Ae—% cos 46 sin 2 AS. } (39)

log —b— =1.4887986,6,b bemg in meters.
log b 6.8032
1+4,
lo g( ----- ) 2 log sec $E+ 4 Mk,?, > (40)
=2 log sec 1 £ +([6.7347] k?
log( 8) = 5.900n. J

The logarithm of the coefficient of k> gives the term expressed in
units of the seventh place of decimals.

NUMERICAL EXAMPLE, INVERSE PROBLEM.

Given two pomts A and B whose latitudes are 25° and 65° and whose
longitudes are 60° and 110°, respectively, on the Clarke Spheroid of
1866; find the length of the geodesic line joining them and ite azi-
muths at 4 and B.

FIRST STEP.
Point A Point B
25° 00’ 007000 ¢, 65° 00’ 004000
Rednto parametric lat. — 4 27. 992 Red’n to parametriclat. — 4 28 577
81 24 55 32.008 8, 64 55 31423

SECOND STEP.

AP =¢3—¢, 40° 00" 00’/ log m (p. 34 this pub.) 6. 1251 ~20
144, 000’’ loga¢? 10. 3167
Al 50° 00’ 00" log mA¢? 6. 4418 —10
180, 000" mag? 0. 0002766
¢ =%(e2+9)) 45° 00" 00"
log B }Spec. Pub. 8 8. 510 4677 log n (p. 34 this pub.) 5. 5234 —20
log A'farg. ¢ 8. 508 9904 log AP 10. 5105 —-10
log B/A' 0. 001 4773 log nal? 6. 0339 —10
log VBJA? -0. 000 7386 nAap 0. 000 1081
log Al 5. 255 2725 1 —mag? —nAl? 0. 999 6153
log (1-ma*~nal) 9,999 8329
log AN 5. 255 8440
AN 180,23740
50° 03’ 5770
NN 25 01 58 5

Since the points A and B are so far apart, it is not probable that
the value found for Ax can be accepted as final.



EFFECT OF VARIATIONS IN FIGURE OF EARTH, 29

THIRD STEP.
First alternative: Formulas (30), (31), and (32).

cos B, 9,057 5384  4(8,—B) 19° 59’ 597708

cos 8, 9. 627 1589 log sin 3(8,~8,) 9.534 0500

sin? § A 9.252 9659  log sin?3(8,~B,) 9.068 1000

8.837 6632  nat.sin?3(8,—B,) 0.116 97687

nat. cos B, cos B, sin® AN __ ______ .. ______._..0.068 81184
nat. sin? A0 0. 185 78871
log sin? {a6 9. 269 0193
log sin 3A9 9. 634 5096, 5
3+ A8 25° 317 59708
AB 51 03 58.16

cos B, 9. 957 5384 sin g, 9. 624 7361

cos 8, 9. 627 1589 sin g8, 0. 966 3578

sin AN 9. 884 6722 -

cosec Af 0. 109 091 cos 4, 9. 658 3783

—_— =~ —62° 54’ 37715

cos B, 9, 578 4613

B, 67° 44’ 16729 s:ln 8, 9. 957 0116
sin 8, 9,966 3578
cos (8, + Af) 9. 990 6538
0,+A8 = —11° 50’ 39700

These formulas do not determine the signs of 8,, 6,, and 6, +A8,
without ambiguity. Special criteria would be needed. On this
account, even 1f for no other reason, the alternative formulas (33)
and (34) are preferable.

Verification. A6= (0,4 AB) —0,=51°03' 58715. The agreement with
the value of Af previouslfr found is better than could always be
obtained with seven-place logarithms.

Second alternative: Formulas (33) and (34).

—sin KB —8,) W {9. 53¢ 0500n  —cos 3(B.AB) (g {9. 850 0491n
cos § AN 9, 957 1593}(3) sin § AN 9. 626 4830}(4)
cos 3 (B-61) 9. 972 9860 sin $(8:+81) 9. 848 9194

(1) =sin § (ay+-a)sin 3 A0 9. 491 2093n (8) =sin 4 (s—ay)cos 3 A8 9. 930 1453

sin 4 (g * 9. 856 6996  sin } (ay—an)* 9. 974 7767-8

cos $ (ag4ay)* 9. 842 0224-5n cos § (ay—on)* 9. 520 0338

(2) =cos 4 (oztay)sin § AG 9. 470 5321n  (4) =cos 4 (ag—a)cos § A0 9. 475 4024

tan 3 (s +-ay) 0. 014 G772 tan 4 (ag—ay) 0. 454 7429

$(as+ay) 225° 58’ 04474 M ay—ay) 70° 39’ 39¥58

sin 4 A9 9. 634 5097 cos § A8 9. 955 3686

* Iu the comphtation these lines can not be filled out at once, Being empty they permit (2) to be sub-
tracted from (1) to obtain tan %(aﬁ"al) or (4) from (3) to obtain tan § (a2—ay) without distracting the eye
byintervening figures. When'y (aa+ay) has beco found from itstengent, sin & (ap+-u ) and 003§ (aa+ay) CaD
be inserted in the vacant spaces and each subtracted from the number on {he line above or below. i. e.,
(1) and (2), thus obtaining sin § A61n two ways, the results of which should agree. The procedure {8 simi-

lar with SBD § (as—ay) and cos %(aa*a;). This{s a convenlent form for wanuy of the formulas of spherical
trigonometry and frequent use has been made of it in this computation.
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The values of A6 from sin 344 and cos $Af agree within the per-
missible range of error. They also agree satisfactorily with the values
found by the first alternative method. The value adopted may be
taken from log tan } Ag= lo% sin 4 A6 —log cos 4 A9=9.679 1411, when
% Ag=25° 31’ 59709, A0-=51° 03’ 58718 =183, 838718 = A¢"’

a,=296° 37" 44730
a.=155 18 25.18

cos o (1){9. 958 3532n —Co8 ag (3){9. 651 4827n
cos 8 9. 957 5384}(2) cos B 9. 627 1589 }< 4)
sin o ) 9. 620 9229 —sin ag 9. 951 3024
(1) =sin B, sin 8, 9. 915 8916n (3)=sin B, sin 6, 9, 278 6416n
sin 6,* 9. 949 5338-9n  sin 6,* 9. 312 2838n
cos 8;* 9. 658 3784 cos 6;* 9. 990 6538

sin B, =sin B, cos 6, 9. 624 7361 sin B, =sin B, cos f; 9. 957 0116

tan 6, 0. 291 1555n tan 6; 9. 321 6300n

9, —62° 54’ 37713 6, —11° 60’ 38¥94
sin By 9. 966 3578-7 sin B, 9. 966 3578

(2) =cos B, 9. 578 4613 (4) =co8 By 9. 578 4613

In these computations we may for definiteness take 8, as always
positive. The quadrant of 8, or 8, is then determined without
ambiguity. The values of sin 8, and cos 8, are consistent within the
range of error of seven-figure computation. The value of g, itself
is not needed in subsequent work, except perhaps for the purpose

of drawing a figure.
FOURTH STEP.

26, —125°49° 14726 logdM (1—4f) 6. 3360
Y 51 03 58. 16  log k 7. 1628
20 — 74 45 16.10 '3, 4988
Check IMOA—%Nk 3154 (units of seventh
4 — 62 54 37.13 place in log of A")
0; — 11 50 38.94 tog 7 530 2063
————— 0 .0 ’
29 — 74 45 10. 07 ;fi O—%Nk - 31541084
cos B, 0. 578 4613
log 48"’ 5 264 4357
2. 372 7909
First term =2357934
=3’ 55%034
log V& 8. 916 7261 log (—}p'’e¢® 2. 5420n ,
sin B, 9. 968 3578 log ki 7. 1628 }“’g B
_ cos 26 9. 4200
tan K 8. 883 0839 sin A8 9. 8909
E 4° 22/ 07¥736 €08 o 9. 5785
i1E 2 11 03. 868
tan 4 E 8. 581 4216 8. 5951n
log (k, =tan*} E) 7. 162 8432 Second term —0. 039
al 50° 00’ 00’’.00
First term 43 55 934
Second term - 0 039
AN 50 03 55 89+

$ax 25 01 57. 95

*Seo note on p. 29.
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This value of AN agrecs approximately with the value found by
Jordan’s approximation, but not within the range of crror of seven-
figure computation, so formulas (33) to (38) arc to be recomputed
with this new value of AX.

—sgin $(8,—8:) (l){9‘534 0500n —cos 3(8:+8)) (2){9.850 0491n
cos 3AX 9.957 1598}(3) sin 4AX 9.626 4805 )
cos (81 —B1) 9.972 9860 sin 4(8; +81) 9.848 9194}
(1) =sin 4(ay +a;) sin 346 9.491 2098n (3) =sin}(a; —a;) 03346 9.930 1458

sin 3 (ay+a))* 9.856 7010-1n sin 4(ay—ay)* 9.974 7771

cos ¥(aytay)* 9.842 0209n cos ${ag —ay)* 9.520 0312

(2) =cous $(a2 ) sin 340 9.476 5296n (4) =cos¥(ar—a;)c0s3A09.475 3999

tan 3 (o +a) 0.014 6802 tan y(a;—ay) 0.454 7459

3 (ar+ay) 225°58'05%45 Y(aa—ay) 70°39'40700
sin 3A0 9.634 5087 cos 440 9.955 3687

The values of A6 from its sine and cosine agree within the permis-
sible range of error. The value adopted may be taken from

log tan $Af=log sin A6 —log cos 346 =9.679 1400
1A9=25" 31’ 58" 89, AG=51° 03’ 57778 =183, 837778 =A6"’

0, =296° 37’ 45745
a, =155 18 25.45

cos «, 1) [9. 958 3534-5n —cos a, (.;){9. 651 4875n
cos B, 19. 957 5384}(2) cos B, 919. 627 1589}( 4
sin o, 9. 620 9216 —sin a, 9. 951 3012
(1) =sin B, sin 6, 9.915 8918-9n (3) =sinfB,sin 6, 9.278 6464n
sin 6* 9. 949 5339 sin §,* 9. 312 2883-4
cos 6% 9. 658 3782 cos 0,* 9. 990 6536
sin 8, =sin B, cos 6, 9. 624 7361 sin B, =sing,cos6, 9. 957 0116
tan 6, 0.291 1557-8n tan @, 9. 321 6348

8, —62° 547 37718 6, —11° 50" 39740
sin g, 9. 966 3579-80 sin 8, 9. 966 3581-0
(2) =cos 8, 9. 578 4600 (4) =cos B, 9. 578 4601

The values of 8, 6, and 0, differ so little from those previously
found as to lead one to expect that the value found for AN will differ
inappreciably from the one from which the computation set out,
and that this approximation may thercfore be considered final or
nearly so.

* Spe note on p. 29.
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28, — 125° 49’ 14736 log 3 M(1—%f) 6.3360%
A9 51 03 57.78  log k, 7. 1628
20 - 74 45 1_6. 58 . 3.4988
Check M (1 —-%f)k,=3154 (units of
8, — 62 54 37.18 seventh place in log of A').
0, — 11 50 39.40 log f 7 530 9003
_ og .5 /
26 — 74 45 16.58  logd M(1—4 )k, — 3154}103‘4
cos B, 9. 578 4600
log A9”’ 5.264 4348
2. 372 7887

First term= 2357933
=3’ 557933

log /& 8.916 7261 log (—1p"’e?) 2. 5429
sin g8, 9. 966 3580 log k, 7.1628
—_— cos 26 9.4199
tan I 8. 883 0841 sin Af 9. 8909
E 4° 22’ 077744 cos B, 9. 5785
1+ E 2 11 03.872 —_—
tan 3+ £ 8. 581 4218 8. 5950n
log(k, =1an?} I) 7.162 8436 Second term — 07039
Al 50° 00’ 007000
First term 3 55.933
Second term — . 039
AN 50 03 55.89
3AN 25 01 57.95

This value of AX is identical with the one from which the compu-
tation set out. A divergence of one or two hundredths of a second
might well have been tolerated on account of the uncertainty of final
figures.

*The figures in this column are unchanged from the proevious computation. This may commonly be
taken for granted unless the first approximstion is very rough or such nnusual acenracy js sought that it
can be obtained only by using logarithms of cight or more places.
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FIFTH STEP.
3E 2° 11’ 03.872 log iM 6. 7347
sec 4 E 0. 000 3157 log k2 4. 3257
. 1. 0604
sec? 3 £ 0. 000 6314 SMkE? 11,5 in seventh place
$ME? 11, 5%
log b/o"’ 1.488 7986,5 logk, 7.16 284
log A§”’ 5.264 4347,7 cos 26 9. 41 988
_ sin A8 9. 89 091
log first term 6. 753 8659, 7 sec? 3+ E 0. 00 063
First term 5,673,694. 8m. logb 6. 80 322
3.27 748
Second term 1894. 4 m.
40 149° 31’
2A0 102 08
log (——g 5.900n
cos 46 9. 935n
sin 2A6 9. 990
log k2 4. 326
0.151
Third term +1.4m.
First term 5,673,694. 8 m.
Second term +1,894. 4
Third term +1.4
s ==5,675,590.6 m.

Recapitulating problem and results we find:

Given point A in geodetic latitude 25° N., longitude 60° W., and

point B in latitude 65° N., longitude 110° W., by this computation.

Length of geodesic line AB=5,675,591 m.

Azimuth at A of geodesic line AB=155° 18’ 25745.
Azimuth at B of geodesic line BA =296 37 45.45.
The final figures are uncertain by ono or more units.

*Eight-place logarithms have becn used in this part of the computation to avoid accumulation of errors
in the seventh place, but the accuracy of the preceding work hardly warrants this.
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LOGARITHMS OF JORDAN’S AUXILIARY QUANTITIES, m AND n, FOR

COMPUTING AM (Clarke Spheroid of 1866).

ssin® 17
m=——s - [2—cos 29— § cost ¢)
24
\ ésin®1'" . . o
b= 2
48

¢ logm | logn F logm | logn 'y logm | logn ¢ logm |logn
o s . . . .

000| &8214 —0 18 00 | 5.8983 | 5.0618 36 00 | 6.0518

030 5.8215 [ 2.0071 18 30 | 5.9021 { 5.0823 38 30 | 6,056t

100 58217 2,600 19 00| 5.9059 | 6.1020 37 00| 6.0603

130 58220 2.0610 || 1930| 50090 | 51210 || 3730 6.0848

200} 5.8225 | 3.2106 20 00 | 5.9138 | 5.1395 38 00| 6.0688 | 5.4972 56 00 | 6.1999 | 5.4577
230 | 6.8231 | 3,4040 2030 5.9178 | 5.1572 38 30 6.0730 | 5. 5008 56 30 | 6. 2028 g 4514
300 | 5.8238 | 3,5018 21 00} 5.0210 | 5.1744 3000 | 6,0771 | 5. 5042 57 00} 6.2057 ) H. 4448
330 585247 | 3.6951 21 30 { 6.9260 { 5, 1909 30 30 | 6,083 [ 5.5073 57 30 | 6.2086 | 5.4379
400 5.8257 | 3.8105 2200 | 5.9301 } 5. 2069 40 00§ 6.0854 | 55101 58 00| 6.2114 [ 5.4307
1300 Twwe |l vaz0ll 2230| 50343 (52223 || 4030 | 6losu5 | ssi26 il E5 30| o.2142 | 54231
500 58281 | 40027 | 2300] 5035 | 52372 )1 4100 6,003 ) 55149 || 50 00] 62160 | 5 4152
530 | 5.8204 | 4.0810 l 23 30 | . 5.9427 | 5.2516 4130 | 0.0076 | 5.5169 50 30 | 6.2196 | 5. 4070
6 00| 58300 (41691 ‘ 2400 5.0470 | 5.2655 | 42001 6.1016 | 55156 || 60 00| 6.2223 | 5. 3084
630 | 5.8320 | 4,2275 24 30 | 5.0513 [ 5.2789 42 30 | 6.1056 | 5, :’:200 60 30 l; 2249 :’: 3893
700 | 58343 [ 4, 2007 25 00 | 5,0556 | 5.2010 43 00 | G6.1006 | 5,5212 61 00 [ 6.2274 | 5.3502
730 5.8362|4.3494 25 30 | 5.9509 | 5.3044 43 30} 6.1135 | 5.5222 61 30 | 6.2400 | 5.3708
800| 55351 | 44040 || 26 00] 59642 | 5365l 4e00| 6117 |5 5028 || 62 .2324 | 5
830 58102 | 44552 2630| 59650 | 53281 || 4430 | 6.1212 | 55292 || 2 gg g. 2343 5%2‘0’?
900 | 58424 45033 || 2700 5.9730 { 53308 || 45 00 | 61251 | 5:5234 || @3 00 | ©.2373 | 5.3303
030| 5. 544% | 45486 2730 59774 | 5.3501 45 30 | 6,128% | 5.5232 63 30 | 6.2396 | 5.3281
10 00 | 5.8472 | 4.5015 28 00 | &5.9818 | 5.3605 46 00 ¢ 6.1320 | 5.5228 64 00 | 6,241 5,3164
10 30 : 5.8497 | 4.6320 28 30 | 5.9861 | 5.3705 46 30 { 6.1363 | 5, 5222 64 30 (; 2443 5. 3044
11 00 5.852% | 4.6705 || 2 -9908 | 5.3802 [[ 47 00| 6.1400 | 55212 ) 65 00| 6. 2464 | 5. 2019
11 30 ] 5.8551 | 4. 7071 2030 59950 ] 5.3895 |) -47 30 | 6,1437 | 5, 5200 6530 | 6.2480 | 5.2789
1200| 58579 | 4.7420 | 30 00| 5.9994 | 5.3984 |! 48 00| 6.1473 | 5.5186 || 66 :
12 30 l 58608 | 4. 7753 1) 3030 | 6,0038 | 65,4070 | 48 30 | ©.1508 | 55160 || 66 ‘3’8 2: ;‘;’% 2; %15?;
13 00| 58638 | 4.8070 || 3100 | 6.0082 | 574152 | 4900 | 6.1544 | 55149 || 67 00| 6.2519 | 52372
13 30 i 5.8669 § 4. 8375 34 30| 6.0126 | 5,4231 49 30 ( 6.157v | 5.51268 67 30 | 6.2569 | 5.2223
14 00| 58701 | 4.8666 3] 32 00) 6,0170 ) b, 4307 S50 00} 6.1613 | 55101
14 30 ! 58734 | 4.5045 || 3230 | 6.0214 | 54379 || 5030 | 6.1648 | 55073 gg gg 32252«7?8 9» fggg
1500, 5.5767 | 49213 || 33 00| 6.0268 | 5.4448 |: 5100 | 6.1682 | 55042 | €9 00 | 6.2626 | 51744
15 30 ‘ 5,8801 | 4.9470 | 33 30| 6,0301 | 5.4514 51 30| 6.1715 | 5. 5008 69 30 | 6.2645 [ 5.1572
1600 5.836 | 4.9718 || 34 00| 6.0345 | 6.4577 || 6200 | 6.1748 | 6.4972 || 170 00 :
1630 | 5.8872 | 40050 | 3430 | 6,03 | 54097 | 5230 | 6171 | 54382 || 7030 0. 268 | 51901
1700 58908 | 50185 || 3500 | 6.0492 ) 54603 | 5300 61813 { 54800 1} 71 00 | ©.2607 | 5.1020
1730} 5.8045 | 5. 0400 35 30 | ©.0479 ) 5.4747 53 30 | 6.1%45 | 5. 4846 71 30 | 6.2713 ) 5.0823

i o




EFFECT OF VARIATIONS IN FIGURE OF EARTH, 35

COMPARISON OF THE NOTATION OF THIS PUBLICATION, WITH
THOSE OF HELMERT, AND ALBRECHT (see p. 26).
[The notation of Jordan’s formula for A\, equation (28) or (29), is not included in the comparison. The

symbols N, R, B, A’, m, and n thero have special meanings which are explained in connection with
those oquallous.]

Symbol used.
Brief explanation of quantity. " I
This put- ‘Helmert. Albrecht.
Firstpointonspherold.....................: ..................... l A ‘ P o P,
Second point on spheroid............c......... . B [ o T O,
Poleofspheroid...........c.cooiiviaai.l . P ! N i
Vertox of goodesic line on spheroid ... C PoPo el
Vertex of great elrclo on sphore. .. .oocueeiiieini i iieeiieanaane [0 [ | OO
First golnt on sphere...... e te et ienaencaeeanaaaean ! A B. ............... .
Second point on sphere. . . B’ 8 eeeeectienenaans
Polo of sphere .....ooeenuiiniole J AR T - R R [ N
Qeographic latitudo of first point . . * B, S
Reduced latitude of first point.......ooooooi i B [T u
1
Geographic latitude of second point.. ... ... ... ..ccoiiieneL. ! 3] 8 , 3
Reduced latitude of second point...................... . B -3 | u
Reduced latitude of vertex on spheroid .. B o 90°—
Difference of longitinde onspheroid d.............o.coveiiiiaan. al 1.3 1
Diflerence of longitude onsphered . .......oooiiiiiiiiriieciaannn, AN Adle=As—A\) Y
Longitude of first point reckoned from meridian ol vertex (on
3 01170 41 LSO M AN e reeeeaans .
Longitude of sccond point reckoned from meridian of vertex (on ; |
7o) 1013 S Ay b Y S P, .
Forward azimuth at first point3..... a aly | A
Back azimuth at second point2..........cooeeii L . ay an A4’
Distance between points along geodesic lines on spheroid......... s 3 3
Arc from vertox to first point on sphere..............ooiiiiiiial.
Arc from vertex to second point on sphere. .
Arc from first to second point on sphiere. ........eoevvvieiiiennoa.
Arcfrom vertex to point midway between first and second polnts
L0 1) 11T 8
Semimajor axis of spherold........ooooiiiiiiiiiiiiiiieiiiiia, a
Semiminor axis of spheroid............ b
Eccentricity of meridian of spherold. .. . ¢
Ellipticity of meridian of spheroid......................... eeeeae /
Auxillary quantity....o.oooiiiviiiiiiii e 6( ={=a
D0, et e e e e ettt e n( —T/——j
Modulus of elliptic INLegrals. . ... cveiiiieriiiiiiiiiiiiaaaans Ky
Auxiliary used in computing modulus....... E
First coofficiont in series for A9 (this publication) or A¢ (Helmert)? 4
Second coefficlent in above series. . .. B
Approximate value of 8, or ¢y.... ay
Approximate valusofforé....... 4 .,
rst coofficient in serles for differen 4! A 2pa’
Second coefficient in above series....... B! & —~2pB
- 1+4Kk "1+ 1k
First coofficient in series for o (Albrocht)s RV el et 2l «
Second coefficiont in above series. .. ....coeiiiiviiiiiiiiiia Tt e T 8
First coefficient in series for difference of longitude................ —zg i 7a | o
b N ‘l !
Second coefficlent in above serfes. .. ...cccvieiiiriiiieianainns ~3 | “im I 4
Modulus of common 1ogarithms ¢. . .....ooviiiiiieiiiiaiiiaananean M Ji{
Radian expressed 10 seconds Of 81C........ooviiiiiiiniouiieannans " et smi®

1

1 In this publication and in Helmert west longitudes are positive, in Albrecht nogative. .

* In this publication and in Helmert azimuths are reckoned from the south through the wost, in Albrecht
from the north through the east. .

* The formulas in this case are given a differcnt turn in this publication and in Helmert on the one hand
and in Albrecht on the othor, and so are not directly camparable. This use of the letters 4, B, 4’, and
B'both for points in the igure and for coefficients in the {ormula need cause no confusion.

¢ Not to be confounded with other sense of Afin Albrecht. .

O




