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GENERAL THEORY OF EQUIVALENT PROJECTIONS 
INTRODUCTION 

Under this general title we shall treat the general principles that underlie all pro- 
jections in which the area is preserved in constant ratio throughout the map in all its 
parts. The 
latter designation was employed by M. A. Tissot in his classical work “MBmoire sur la 
kepres6ntation des Surfaces.” In the course of this pamphlet we shall make much use 
of the principles enunciated in this publication. 

The law that underlies all of the projections to be treated may be stated as follows: 
Every section of the resulting map must bear a const.ant ratio to the area of the earth 
that is represented by it. As a result then, the whole map will have the same ratio to 
the whole region represented. To accomplish this end it is necessary that the mathe- 
matical expressions that give the coordinates of the map must meet certain diflerential 
requirements. I t  is necessary that we first investigate this phase of the subject so that 
we may have at hand the guiding principles in our further treatment. 

Let u s  think of each point of the spheroid as corresponding to a definite related point 
of the plane. This one to one correspondence is what we have in all kinds of maps 
whether equivalent or not. In practice this generally consists of expressions for z and y 
coordinates in terms of the latitude and longitude of the point on the’earth. We shall, 
as usual, denote latitude and longitude by t$ and A, respectively. The projection will 
then consist of the two expressions 

Such projections are also called equal-area and sometimes authalic. 

t=f (+,A) 
Y =g(+,M 

In whichj and g denote functions which must be determined to fulfill the required con- 
ditions. 

If a denotes the 
equatorial radius and e the eccentricity of the meridian ellipse, the radius of curvature 
in the meridian is 

The element of area on the spheroid must first be determined. 

a(1 -e”) 

The element of length in the meridian becomes 

Pm=(1-e2  &2+)3/2’ 

1 
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Likewise, the radius of curvature perpendicular to the meridian is 
U 

PP= (1 -e2 S b 2 4 )  5' 

and the element of length 

The element of area on the spheroid is the right triangle formed by these two elements 
of length as sides. This element of area therefore becomes 

1 -uz(l-e2) cos + d + d h  
2 -dam a%,- 2 (1 - e2 sin2+)2 

In the plane the three points that correspond to the 9, X origin and the ends of the 
two elements of length are 

The element of area is the area of the triangle formed by these three points. 
given by the determinant 

This is 

% 

or finally 

The condition for equivalence or equal-area therefore becomes 

a x b y  ba: It should be noted that a etc., denote partial derivatives, that is, - is a deriva- 
tive of x with respect to 9 with X considered as a constant and so with the other partial * 
derivatives. In terms of thef and g symbols for 2 and y, if we denote by the subscript 
1 a partial derivative with respect to X and by the subscript 3, the same with respect 
to 9, we have 

a4 
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We see a t  once that if the earth is considered as a sphere, e will become 0 and we have 

The formula is thus reduced to a much simpler form than is the case for the spheroid. 
f,gz-j2g,=u2 cos 4. 

REDUCTION OF THE SPHEROID TO THE SPHERE 
In order to make use of this simplification even when we wish to consider the 

spheroid,we have employed a scheme of first mapping the spheroid on a sphere of equiva- 
lent area and then we can map this equivalent sphere in the plane and t,hus get an equal- 
area map without the complications due to the spheroid. 

The details of the scheme are now indicated. We do not change the longitude but 
determine the latitude on the equivalent sphere so the map may be an equivalent one. 
If we denote the latitude on the equivalent sphere by B and the radius of the sphere as c, 
the element of area on this sphere would become 

112 c2 cos B dB dA. 
This then must equal the element of area on the spheroid. 

Since we are going to take the longitude the same on the equivalent sphere as on the 
spheroid, the dh will cancel out and we have left 

First we determine the radius c on the agreement that /3 and + become 912 together. 

in which log,, denotes the Napierian logarithm. The radius c thus becomes the radius 
of a sphere equal in area to that of the spheroid. We have called B the authalic lati- 
tude and the resulting sphere the authalic sphere. The difference between 4 and B has 
been developed in a series in Special PublicationNo. 67, “Latitude Developments Con- 
nected with Geodesy and Cartography.” A table of the authalic or equivalent lati- 
tudes is also given for every half degree of 4. If the B latitudes are used in place of 4, 
the spheroid can be taken into account with the simplified forms for the sphere. A copy 
of Special Publication No. 67 should be procured by anyone who wishes to use this 
method of procedure. 

From the equation of condition for an equivalent projection we see that the function 
for either 3: or y may he arbitrarily chosen and then the other so determined as to fulfill 
the given condition. i f  the function for z is arbitrarily chosen as 

z = F ( U )  , 
‘See pages 7 and 8 for a method of evaluating the Integral on the right. 
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we will find for the partial derivatives 

In these p and p will in turn be functions (4, X). It may happen that one becomes 
either a constant or a function of only one of the variables. With these values of the 
derivatives of z the partial differential equation in y becomes, 

by- b y  u2(l-e2) cos 4 P- a4 9-=-------- a h  (1-e2sin24)a 

This can be solved as total differential equations in the usual manner. The equations 
become 

d4- d h  - dY 
p p -u2(1-e2) cos 4' (1) 

(1-e2 sin2 4)2 
If p and q are such that these equations can be solved, we get the function for y that 
must be used in connection with the adopted function for x. This would give the 
complete solution for the given projection. Later, we shall have occasion to make use 
of this principle in our work. 

DISTORTION IN LENGTH AND ANGLE 
In order to derive expressions for the change in length we consider an infinitesimal 

triangle with sides ds,, ds, and hypotenuse ds in which ds, is in the meridian and 
d8, in the parallel and hence they are perpendicular and they form a right angled 
triangle with ds. The linear elements on the map become 

and 

In many cases the representation of the meridians and parallels on the map will not 
form an orthogonal network; if the angle which they form at a point is denoted by $ and 
if.the angles that ds and dS form with the meridian are u, u', respectively, then we have 
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-2- d S  =dS: sin2 (r-#)+[dS,-dS, COS (r-#)J2 

=;zS,2+;Zs2-2dSR d S m  COS (r-#) 

=ds,”+B$+2dSp d S ,  COS # 
dS ,  sin (T-J.) dS ,  sin $ 

dS,-dS, cos (f-#)=dS,+dS, cos #.’ tan ut= 

FIQUBE 1.-Differential relations of azimuth and distance on the projection. 

Since C$ is reckoned positive to the north and X to the east, dSm is positive north- 
ward and dS, positive eastward. In like manner # is the angle of intersection of 
the meridian and parallel between the same directions. In general, east of the central 

meridian # is greater than and west of the central meridian less than E- The angles 2 2 
u and ut are, therefore, reckoned from the north in a clockwise direction. 

The area of the irhnitesimal right triangle formed by ds,, ds, and ds  on the earth 
is represented on the map by the area of the triangle formed by dS,, d S ,  and dS. Since 
the projection is equivalent we must have 

which determines 
Let 

ds, ds,=dS, dS, Sin #, 
the angle + as function of the position. 
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When we introduce the values already obtained, we get 

1 +-- 
hk 

or 

but 

h2+k2 tan2 u+2hk tan u cos # 
1+tan2 u 

K2" 

=h2 cos2 u+k2 sin2 u+2hk sin u cos u cos 
k tan u sin rC. 

h+k tan u cos 9 
- hk tan u sin $ 

h2+hk tan u cos I) 

tan u'= 

- 

1 hk=- hlt 
tan u 

h2+tan u cot $* 
tan u'= 

When # equals 5 as is the case in many projections, cos $=0 and sin $=1. The 
above expressions then become, 

P = h 2  cosa u+P sina u 

tan u'=- k tan u=k2 tan u=ptan 1 u. h 
I--=- tanu' h-k 

tanu h 
I+-=-- tan u' h+k 

t anu  h '  
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hence 
tan u-tan u’ h-k 
tan u+ tan u’-h+k 

or 

sin (U-u‘) h-k 
sin (u+u’)=h+k 

h-k sin (u-u‘)=h+k sin (u+u’). 

From this we can see that u-u’ will be greatest when u+u’=r[2. 
value be denoted by 6, then 

Let this maximum 

EXAMPLES OF ONE COORDINATE AS AN ARBITRARY FUNCTION 
[A) Let us assume x to be a function of X alone. 

x = F(  A). 

For the meridians on the earth X is a constant, so in this case 2 on the map will be a 
constant for a given meridian. The representation of the meridians are therefore 
straight lines on the map which are parallel to the y-axis at the distance given by 
x=F (X). In this case 

&,F‘(X); _- a x  
dX a+-O* 

Here we have p=F’(X); q = O .  
Thus the equation ( 1 )  on page 4 becomes 

dY -- d+ 
a2(l-e2) cos +-F’(X) 
(1-e2 sin2 +)2 

or _-  
a2(1 -e2) cos + d+ 

F’(X)(1-e2 sin2 +)z dy= 

in which G (A) is a function of A that depends upon the limits of the integral. When 
4=0 we have the Equator on the earth. If this is to be represented by a straight line 
and if it is to serve as the x-axis, we must take G (A)=O. In  this case, the above 
integral becomes 

let 
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To evaluate this integral we can proceed in the following manner. 
integration by parts gives us 

The formula for 

f u dv=uv-,fv du. 
In the integral 

let 

1 
1 - e2z2 

u=- 

then 
V = Z  

Hence 

therefore 

On restoring the value of Z, we get for the projection 

x = F( A). 

For example if F (X)=a A, F'(X)=a, and the equations become 
x=aX 

For the sphere e=O and the equations become 
x=aX 

y=a sin 4. 
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This is the Lambert equal-area cylindrical projection. (See fig. 2.) 

I i I I I  rt 
1 1 1 1 1 1 1 1 1 1 1 1  

1 1 1 1 1 1 1 1 1 1 .  

FIGWEE z.-Lambert's equivalent cylindrical projection. 

Since here, for the spheroid 
-=o, a x  La 

dx 

hence 
sin +=l, 

so that the meridians and parallels are perpendicular to each other as is a priori evident. 
1 -e2 sin' 4 

cos' 4 tan u tan d= 

(1 -e') sin' 
2-(l+e2) sin' 4 sin 6= - 

(B) As ~t second example let 

x =f (4) x 
p=f(4); n=f ' (4)~.  

Therefore, the differential equation (1) becomes 

or 

and 
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The integrals of these equations are 

and 

or 

The general integral of the above partial differential equation is given by cl=g (cz) in 
which g denotes an arbitrary function. This gives 

log, A= -1ogn.m) +log, ca 

V ( 4 )  =c2. 

then the lengths along the parallels will be maintained true to scale but the meridians 
will no longer be straight lines for, when is a constant, z will still depend upon 4. 
In  this case 

y=a( l  -e2) J(l-e2sin2 d+ +g(x) .  

We can integrate this expression by the following procedure: 

1 e2d[ sin ,p cos + e2 sin2 4 cos2 + cos2 +-sin2 ,p 
d4 (1-e2 sin2 +)1/2]=e2[(1-e2 sin2 +)3/2+(1-e2 sin2 +)1/2 

- - e2-2e2 sin2 ++e4 sin4 + 
(1 -e2 sin2 #)3/2 

- 1-2e2 sin2 4+e4 sin4 4-(1-e2) 
(1-e2 sin2 +)3/p 

= .,/1-e2 sin2 4- 1-e2 

- 

(1-e2 s i n 2  4)3/2' 
On integration of this equation, we get 

hence 
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in which E (4) is the second elliptic integral sf Legendre. We have taken g(z)=O, so y 
may vanish throughout for +=O and the equator becomes a straight line on the map. 
It should be noted that y is merely the length of the meridian counted from 4=0. 
For the sphere, since e becomes zero, we have 

z=aX cos + 
y=a+. 

With the values for the spheroid, we get 
bx a(1-e’) sin 5, a cos + _-_- a+- (1-e’ sin2 +)3/2 9 bh (1-e’ sin’ + ) ‘ I 2  

a(l-e2)  . b y  
(1-e2 sin2 +)3/2 bX 7-=o 

Hence 

--X sin 4 1 
; t an  #=- - XSin+ cos *= 

dl++Z sin’ + 
tan u 

1 - x sin + tan u+ ~2 sin2 4’ tan u’= 

The angle $ is the angle of the intersection of the meridian and parallel greater 

than 2 
This formula gives us the alteration in the angle u counted from north in a clock- 

wise direction with X counted positive to the eastward. When west of the central 
meridian X is negative and the formula is correct for the same considerations for u 

and also u‘. When u=--, it  can be seen that tan u’= - --tan # the greater 

angle of intersection as it should be. When west of the central meridian X is negative 
and tan u’ is positive and we have the smaller angle of the intersection again as it 
should be. Norbert Herz in his excellent treatise on projections, “Lehrbuch der 
Landkartenprojektionen” makes a mistake in this formula by omitting the term tan u 

in the denominator. together 

and the meridians and parallels would be perpendicular at all points. 
In actual practice we are not as much interested in the distortion of this angle 

as we are in the direction of the arc ds with respect to the axes of coordinates. Since 
the parallels are represented by straight lines parallel to the x-axis it is better to count 

7r 1 
2 .  xsmrp- 

If his formula were correct, u and u‘ would become 
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our angle of direction from the parallel as initial. 
angles in a counterclockwise direction. 

Let us take east as origin and reckon 
With this convention we have the relation 

in which R is the radius of curvature in the meridian and R’ is the radius of curvature 
of the parallel. 

ax ax Rb4= - x sm 4 ; 7  - 1 R ax- 
t anu  - tan u 

I--X sin 4 tan u-l+cot t ~ .  tanu’ tan u‘= 
U When u=-I tan u’ = tan$ or u’ = $, the larger angle of intersection of the meridian and 

parallels and cot $= - X sin 4. 
2 

. 
To determine the axes of Tissot’s indicatrix we have the two equations 

a2+b2=h2+k2=1+1+X2 sin2 4=2+h2 sin2 4 
ab=hk sin $=1. 

From these equations we find 

To determine the directions of the axes we must determine the maximum and 
minimum values of K i n  terms of tan u. We have 

h2 tan2 u+k2+2hk tan u cos $ K2” 
1 + tan2 u 

in which u and $ are reckoned from east in a counterclockwise direction and $ is the 
larger angle of intersection of the meridians and parallels and cot #=-A sin 4. 

9 

bK2 -2h2 tan u+2hk cos J. 
b (tan u)- l+tan2u 

(h2 tan2 u+k2+2hk tan u cos $) 2 tan u - ~  - -- 
(1 + tan2 u ) ~  

I For an account of Tissot’s indicatrix see Special Publication No. 67, General Theory of Polyconic Prolections,~~. 163 et seq. 
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(h2 tan u+hk cos $) (1+tan2 u)-tan u (h2 tan2 u+k2+2hk tan u cos $)=O 

h2 tan u+hk cos $+h2 tan3 u+hk cos $ tan2 u-h2 tan3 u-k2 tan u-2hk tan2 u cos $=O 

hk tan2 u cos $- (h2-k2) tan u-hk cos $=0 

tan u- 1 =O. h2- k2 
hk cos $ tan2 u- 

But for this projection we have 

h2-P= X2 sin2 4=cot2 # 

Hence we get 

Hence, 

And so 

hk COS $=cot $. 

tan2 u-cot$ tan u=l 
cot2 * cot2 $ tan2 u-cot # tan u i - 7 -  - 1 + 4  

tan u=- 2 

tan ul= --a 

tan %=b. 

-a 
I+aX sin 4 tan ul' = 

b 
1-bX sin 4 tan %' = 

-ab 
l+(a-b)X sin +-abX2 sin2 @ tan ul' tan Q' = 

but 

Therefore 
tan ul' tan ~ ' = - l ,  

or the two directions on the projection are perpendicular to each other as they should be. 
When the azimuths are measured from the x-axis of Tissot's indicatrix, we have 

the relation 

ab=l;  a-b=X sin 4. 

b 
a tan u'=- tan u. 

537697'-45-2 
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From this relation we find 
tan u- tan u’ a- b 
tan u+tan u‘=+a+b’ 

sin (u-u’)- a-b 
sin (u + ut) - + a~b’ 

or 

This shows us that the maximum alteration of direction is found when u’+u=i. 
If we denote this maximum value of u-u‘ by 6, we have 

If 

we have 

w=-+-;w/ “ 6  =I-- 6 
4 2  4 2  

W+W’=; and W-W’=6. 

Now, for the projection which we have been examining, we have 
ab=l, 

therefore 
tan W=a and tan W’=b. 

We have found the direction on the earth of the major axis to be tan ul=-a, 
therefore 

or 
tan ul= -tan W= tan (- W )  

and 

but 

tan u1 
1 - x sin 4 tan ul’ tan ul’= 

tan %=--a 

X sin +=a-b, 
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therefore 

--a - ‘ b  -a --a 
1 + u (U- b)  = 1 + -a2- ab= 1 + -a2 - 1 - - &= - tan u1’= 

therefore 

tanul’=tan (-W’)=tan 

SO 

Tissot’s indicatrix thus becomes 

tan (u’+i-i)>=; tan (u+i+;)=~ tan (u+i+%> 
It is evident that u and u’ vanish. together as they should. 
equation 

With this projection the 

U - b  tan 6=- 
2 @I’ 

becomes 
X s i n f $  1 tan6=-=--cot 2 2 # 

in which # is again the larger angle of the intersection of the meridian and parallel. 
?r lr At X=3Oo, f$=3Oo, X sin f$=- and tan 6=--. 12 24 

tan 6=0.13089969 
6=7’27’2714 

6=3043’4317 2 

‘-41 ‘1 6’1 613 7r ---_ 
4 2  
n 6  -+-=48’43’43!7 4 2  

Let us apply Tissot’s indicatrix for u=6Oo. 

=b2 tan (108O43’43’!7) 

b= tan 41’16’16!3=0.877631 

b2= 0.770236 

tan (108’43’4347) = -2.94948906 
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tan ( ; 2 6 )  U' +--- = -2.27180266 

~'+41'16'16'13= 113'45'29Yl 

U' = 72'29' 12% 

1.7320508 - 1.7320508 a =  - 
0.54655016 tan u'= s 

1 - 1 -E (1.7320508) 

=3.16906101 

~'=72'29'1217 

tan #=-E= -3.81971864 
A 

JI= 104'40'14'!7 
smaller angle = 75'1 9'45'13. 

We see that either of the formulas for tan u' can be used since they give the same 
result. Tissot's indicatrix is merely another form of expression for tan u' and the one 
formula can be transformed into the other by a little mathematical ingenuity. 

We have given a pretty full account of this projection with the purpose of illustra- 
tion of the use of Tissot's indicatrix in case the parallels and meridians do not intersect 
at  right angles. 

Since the equation for y in this projection is independent of X, this equation at  once 
gives the parallels which consist of straight lines perpendicular to the straight line 
central meridian and parallel to the x-axis a t  the distance given by the expression of y 
in terms of 9. If we should want to get the equation for the meridian it would be 
necessary to eliminate 9 from the equation for x and y. However, since theexpression 
for y in terms of 9 contains an elliptic integral as well as the trigonometric functions, the 
elimination is not readily practicable. Of course the elliptic integral could be expanded 
in a series to a few terms and then the elimination of 4 could be made in the approximate 
equation. 

Since the result in any case would not be simple and would not throw much light 
on the nature of the curve, it is better to dispense with the effort. However, since the 
form of the meridian for the spheroid does not differ much from that for the sphere, 
we can get a fair idea of it from the formulas for the sphere. For the sphere the equa- 
tions become very simple: 

x=aX cos I$ 

Y = a91 
thus the meridian has the equation 

X Y -=X cos -. a a 
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The meridian of longitude X is therefore a cosine curve with the distance X from the 
central meridian a t  the Equator. Since a cosine curve is exactly similar to a sine 
curve but differently placed with regard to the origin, this projection has been called 
the sinusoidal projection. (See fig. 3.) It is also sometimes called the Smson pro- 
jection or the Snnson-Flamsteed projection. We understand that this projection was 
employed by Mercator in his atlas and so some prefer to call it the Mercator equal-area 
projection. The designation sinusoidal is so well known that it would be better to 
designate it the Mercator sinusoidal projection to avoid confusion, if it is desired to 
link it with Mercator. 

FIOUBE 3.-Stnusoidal projection. 

Since the equation for y for the ellipsoid is merely the length of the meridian from 
the Equator and the length of the straight line parallels is exactly equal to the true 
length of the parallels, the complete values for the construction of a map are found in 
the polyconic projection tables. This map is therefore one that can be constructed 
very easily and hence it is much in use for equal-area representation. For maps that 
include more than a hemisphere, it is not very well suited because of the violent dis- 

tortions of the part beyond X= I. 2 

then y must be independent of X. Therefore, y must be a function of 4 alone. 
(C). If the parallels are to be represented by straight lines parallel to the z-axis, 

Y = md , 
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and the differential equation to be solved becomes 
bx a2(l -ez) cos 4 F'(+)-= ax (1-e2 sin2 4)2 ' 

Since this is a partial differential equation in bX, the expression in 4 is considered as a 
constant, and so 

If the central meridian is to be represented by the y-axis, then x must equal zero for 
x=O, andf (4) must be zero, and the general equation of this projection becomes 

Y = F(4) , 
and for the sphere 

Y=F(4). 
In these expressions the function F (4) is still arbitrary. If we choose 

we get the sinusoidal projection that we have just treated. 
We can specify th i t  the meridians should be curves with particular properties; but 

in so doing we cannot proceed arbitrarily. If the accepted c m e  is expressed by the 
function 

then in accordance with the assumed value of y we must have 
Qb, Y, N=O, 

1-e2)h cos 4 
(1-e2 sin2 +)2 dy9 - y9 ']=O. 

This fact is analytically expressed by the relations 

.I"' d4 
But from this equation X must cancel out for from our assumption, y is a function of 9 
alone. 

dG a G  a G a x  or -+-.- - a x  ba: 
and since 

the relation becomes 
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This equation expresses the fact that the function G (5, y, X) with respect to x and is 

homogeneous of the first degree, that is, it  is merely a function of i! and is therefore of the 

form 
x 

which in fact satisfies the required condition. 
that in the elimination of 4 from the equations for x and y the quantities x and 

appear in the combination -- x 

This can be seen at  once-from the fact 
always 

X 

(D) If t.he meridians are to be represented by ellipses, the general equation of 
which we write 

then, because these curves must all pass through both poles, the distance from the 
origin of their intersections with the central meridian must be constant and equal to 
half the distance between the poles. Since for z=O, y must equal a constant denoted 
by m, we must havef, (h)=m, and the equation of the meridian becomes when the 
value of z is substituted, 

If y is to be a mere function of 4, then f (A) must be equal to nx in which n is a constant. 
The equation for the meridian now becomes 

. .  
The equation for y now becomes 

or 

or by integration 
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in which we have taken the constant of integration as zero because y must equal zero 
for $ = O .  To this we must add the equation for z, 

a2(1-ee2)X cos C$ 

(1-ez sin2 4 ) * ~  

y=m sin e, 

-. 
dY 2= 

We can get more convenient forms for computation by assuming 

then the left side of the equation becomes 
m2 -((20+sin 2e). 4 

If, for the sake of brevity, we take 

then the equation becomes 
%+sin 2e=- 4a2g (4). 

mn 
The constants, m, n, that we have introduced are not independent magnitudes but 

A zone of the ellipsoid from the Equator to are interdependent for a given ellipsoid. 
latitude 4 has the area 

hence the area of the partial zone between the meridians a t  +2 and -3 is 
Ob = 2 +J (4) 1 

Ob, x = a2g (4) A. 

x x 

The lune thus formed from pole to pole becomes 

1-e 

7r since +=-, and we have twice the area from 0 to E. The area of the corresponding 

lune on the map is 
2 2 

x rrnn21 

and because of the equivalence if, for brevity, we set 

1-e 
we have 

x rmn- - - a'qX 2- 
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or 

and so follows 

From this we get 

or 

therefore 

umn = 2a2q 

ds 2(1-e2) scos  4 
dcp 7 (l-ez sin2 4)z' 4 cos2 e--=- 

(lie2'> *cos4 -_ 
(1 - ez sin2 4)z 

-a2(l-e2)[ - cos 4 ] 
n cos 6 (1-e2 sin2 4)2 

and consequently 

As a whole then we have for the projection 
x=X n cos e. 

S i n 4 '  1 
T(l-eZ)(l-e2 sin2 ++s log ,  1-e sin 4 2e+sin 28= l -ez  l + e  

1 + y  logn i q  
=?rsin 0 

in which /3 i s  the authalic latitude already referred to and, 
x=nX cos 0 

y=m sin e. 
The values of m and n are only limited to the interrelation mn=2a27. If we take 

n such that m = 2  then the 90' meridian will become a circle. After the circle to 

represent X=- is drawn, the parallels can be located on the circle by 

2 
lr 

2 
X=T COS e 
y=T S h  8. 

Straight lines through these points perpendicular to the y-axis give the parallels. The 
meridians can be computed from their equations by using the adopted values of m 
and n. The tables for the values of sin 8 and cos 8 are given in Special Publication 
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No. 68, so they are not reproduced here. By interpolating the values for 8, the spheroid 
can be taken into account. 

or 

from these values, we get 

h= n cos 8,/l-e2 u cos 4 sin2 1 / ' + ( i x  tan e)I 
n cos e J1 -e2 sin2 4 

u cos 4 k= 

consequently 
n 

.a ---A tan 0 
1 sin $= 

n 
m cot $=--A tan 8. 

FIGURE 4.-Mollweide projection. 
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This projection was f i s t  given by Mollweide. It was further employed by Bahinet 
who gave it the name of homalographic. 

(E) Another example of an equivalent projection with parallels represented by 
straight lines is the one given by Prepetit Foucaut called by him the stereographic 
equivalent projection because the parallels are spaced along the central meridian at  
the same intervals as in the stereographic projection. For the sphere, we have 

(See fig. 4.) 

y=a  tan 2 2 

theref ore 

a dY - . ~  

a 4’ a- 2 cos - 2 

cos + = 2 a ~  cos 4 cos 2 4  -. 
du 2 X= 

To determine the equation of the meridians, we have 

1 1 a 

sin $= dF Y 
a2+y 

24  - 2+-a2-Y2 
2 2 a2+y2’ 

cos 4=cos --sln 

hence 

The meridians on the projection are therefore curves of the fifth degree. 
(F) In the Geographical Journal for November 1929, Lt. Col. J. E. E. Craster 

proposed three equalarea projections with straight line parallels, one with hyperbolic 
meridians, another with parabolic meridians and a third with elliptic meridians. The 
most interesting one of these is the parabolic variant. Let us take the (See fig. 5.) 
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FIGURE B.-Psrabolic equivalent projection for the sphere, after Steers. 

origin at the vertex of the parabola 
1 
2 

then, if we represent the central meridian by 5=2m, the meridian from pole to pole 
will equal 2m, with the half of the whole Equator also equal to 2m. This parabola 
would then bound the hemisphere on one side of the central meridian. Another in- 
versely similar parabola cutting the x axis a t  the distance 2m on the other side of the 
central meridian and passing through the poles would represent the hemisphere on the 
other side of the central meridian. The outer meridian would not thus be a continuous 
curve but consist of the two parabolas meeting at the poles. We can just as well le 
m become equal to one and thus have the whole Equator equal 4 and the whole central 
meridian equal 2. 

One-half of the area of a zone between the Equator and any given parallel will be 
represented on the map by the integral 

y2=mx 

or so” (2 - 2Y2) dY. 

A ~ 2 y - g .  2 
The value of this integral is 

Since, when y is equal to 1, this map area must be equal to one-fourth of the area of the 
given sphere or rR2, we must have the equation 

4 uRz=s. 
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Hence 
R= ~1.651470. 

Now the area of a zone on the sphere from the Equator to latitude + is known to be 
equal to 27r R2 sin 4. Then the half of this zone must be represented by the expression 
for A in terms of y as derived above. Hence, the equation for the determination of y 
for the various parallels is given by the solution of the equation 

2 
3 2y--y3=7rR2 sin 4. 

But we have already found ?r R2 to be equal to 413. 
becomes 

With this value the equation for y 

$-3y+2 sin +=O. 
4 Now it happens that this equation has the root y=2 sin 3- Since y is thus a function 

of + alone, we have 
_- aY 0. %=2 cos -. 4 ax- J a4 3 3 

With these values, we get 
2 + a x  3 COS - -=R2 COS + 3 ax 

But 

hence 

3R2 cos + 
2 cos -- 3 

X= + (XI. 

4 R 2 = g ,  

x=- x 4 cos2 --3 + )  x=- 
?r cos - + 7 r  3 

3 

7 r X  y2' 1 - -. 
2x 

This is the equation of the meridian at  distance of from the central meridian with the 
line of poles for the y-axis. This is the equation of a parabola, so all of the meridians 
are parabolas. 
For the outer meridian 
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If it is desired to use this projection for the spheroid, it  is only necessary to use the 

authalic latitudes as given in Special Publication No. 67, Latitude Developments 
Connected with Geodesy and Cartography, instead of 4 in the computations. A table 
of the values of these latitudes denoted by 0 are given in this publication for every half 
degree of 4. Tables for this projection are given in Special Publication No. 68, Elements 
of Map Projection. We do not include hyperbolic and elliptic variants for they are 
similar to other projections and are therefore not of special interest. 

(C) We willnowgive a,n example in which the meridians are straight lines as well 
as the parallels. The meridians, of course, must pass through a point which represents 
the pole. As a result, they must be discontinuous a t  the Equator, the meridians in the 
Southern Hemisphere being an inversely similar set of lines passing through the South 
Pole. 

Since by use of the authalic or equal-area latitudes we can pass from the sphere to 
the spheroid, we will discuss the projection for the sphere. Since the parallels are to be 
straight lines, we must have y a function of 4 alone. 

Then Y = F(4)  
a2 cos 4 x=- F’(4) 

The equation of the straight line which is to represent the meridian must Be 
y-d=x tan CY, 

in which d is where the line intersects the y-axis or the distance of the pole from the 
origin or center of the map and CY is the inclination of the line to the x-axis. 

Since all the meridians cut the y-axis at the same point, d must be a constant; 
furthermore, the angle of inclination of the line depends on only the X of the given 
meridian. Since this is so, we must have tana=G(X) and the equation of the 
meridian becomes 

This equation must be satisfied by the values of x and y given above, hence 
y-d =zG( A). 

1 
This equation can only become identical, that is, independent of A, if G(X)=Z and 
then we get 

a2 cos 4 y - d = T j  
Y 

n& 
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By integration of this equation, we get 
2a2 sin 4 

n yz- 2yd + C= 

FIGUBE 7.-Equivalent projection with meridians and parallels BS straight lines. 

n- 
Since y must be zero for 4=0, Cmust be zero. Since further, y=d for 4=-, we get 2 

and by division we have 

The equation of the meridian becomes 
(y -d)nX=x, 

in which d,  n, and a are bound together by the relation 

d2n+ 2a2= 0. 

If we choose d and n arbitrarily, a will be fixed by the above relation. 
If y=O, x=-dnX, or -dnX is the distance from the origin of the intersection of 

If we wish the outer meridian to be inclined at 45' to 

With this value of n and the 

The equation of the meridian thus 

the meridian and the x-axis. 
n- 2 2, or n=---e the y-axis, then we must have d= -dn - 

relation d2n+2a2=0, we determine that d=aJ?r. 

becomes 

n- 

(y-aJ;;)( -;)X=z 2 

or 
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Ret- to the equation of the parallel, we have 
2yd-yz=dz sin 4 

y2-2yd+dz=dz(l-sin 4)=2d2 sin2 

29 

or 
y--a , /;=-ad% sin (2-g) 

This is not a particularly important projection and we will not discussst further. 

PROJECTIONS WITH CIRCULAR PARALLELS 

Let us now consider a case in which the parallels are to be represented by con- 
centric circles. In  order to treat the matter in all generality, it  will be best to carry 
through the computation in polar coordinates. With these coordinates the element of 
area in the plane is expressed by p dp de in which p is the radius of the paralie1 and 6 
the angle a t  the center of the parallel. This element for an equivalcnt projection must 
equal the element of area on the ellipsoid. 

-aZ(l-ez) cos 4 d+ d;\ 
( I -eZ sin2 412 * 

p d p  de=- 

The negative sign is used because as p increases, the latitude decreases, so the sign as 
used is necessary. The values p and e are functions of 4 and A, so we must have 

dp=-d bP X +-d4, dP 
bX ag 

therefore 

If we adopt for p or 0 an arbitrary value, then we can find from the above partial 
differential equation the value of the other unlinom. 

d F  bF 
34 If p=F(4, A), a known function; then both - and are also known, and we 

have a partial differential equation in 6 in place of which the total differential 
equation becomes 

dA d4 
~F-TF= F- F- a+ ax 

-- 

637697"45---3 
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If e=G (4, A), a known function, then in similar fashion we have for p 

-=--=- d4 dx P dP 
- de be a2(1-e2) COS 4’ 
ax Zj, (1-ee2sin2 +)z 

For a given meridian h is a constant, hence A=O; consequently on the map we have 
a ae 
d4 d4J 

dp,=--pd4; dO,=-d+ 

therefore, the element of the meridian on the spheroid ds,=r,d$ is represented on the 

For a given parallel on the other hand, 4 is constant and d4=0; so 
be dp,=-dX; a P  de,=-dx ax 

bX 
and the element of the parallel on the spheroid ds,=r, dx is represented on the map by 

The two ratios of scale thus become-in the meridian 
dp i ( l - e 2  sin2 

h=J( E>’+(@) a(l-eZ) 
in the parallel 

k=J ( P ~ ~ + ( ~ > ” ” ~ ~ ~ ~ ~  ” 
All. other relations remain exactly the same as they were in the consideration with 
x and y coordinates. 

1 sin #=- hk 
P = h 2  cos2 u+k2 sin2 u+2hk sin u cos u cos # 

tan u tan u 
h2+hk tan u cos #=h2+tan u cot # tan u’= 

the angle # being as usual the larger angle of intersection. 
If the representation of the parallels is to be circles, then must the value of p 

for any given parallel be a constant and hence independent of A, or it must be a function 
of 4 alone. 

p=F(+). 
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aP For the determination of e, since s = O ,  we have the equation 

e=- u2(l-e2) cos 4 
F(4)F’(4)(1-e2 sin2 4lZ’ 

the integral of which is 

( X I  +g(d), 
uz(l-e2) cos 4 

e= - F( 4) F’ (4) ( 1 - e2 sin2 4 ) 2  

in which g ( 4 )  is an arbitrary function of 4, the value of which is determined when X 
is set equal to zero; then e=g(+). The function g ( 4 )  thus is the e for the central 
meridian. If this meridian is to be a straight line and that from which the angle e is 
reckoned, then must g(+) be equal to zero, and the fundamental equations of this 
projection become 

P= F(4) 

(A) As the first special case, we will make the assumption that the parallel circles 
on the map shall be spaced at  equal distances. Then will 

and 

and therefore 

F(4) =m-n4 

F’(4) = -n 

u2(l-e2)X cos 4 
e= + n(m-n4>.(1-eZ sin2 +12’ 

in which both m and n are arbitrary constants. If we impose the condition that the 
pole should be the common center for the circles that represent the parallels, then for 
+=-, p must be zero and a 

2 

Therefore 

a 
m - n- = 0. 2 
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FIGWE %--Werner equivalent projection. 

Since n is still arbitrary, we can let n=a and, if instead of 4, we use the polar distance 

- 'Y-~=P,  we get 2 
P=aP 

1-e2 sin p 
(1 -e2 cos2 p,z( p ) ~ .  e= 

This projection was devised by Johann Werner of Niirnberg and it is called the Werner 
projection. The parallels are represented by equally spaced concentric 
circles with the pole as center. The spacings of the meridians on any given parallel are 
equal, so it is only necessary to compute one and then the others can be stepped off on 
the circle of the parallel on the map. 

(See Fig. 8.) 

If we confine the projection to the sphere, we get 

P=aP 

OP 

e=- sin (A) 
P 

pe=ah sin p .  
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We t.hus see that the arc p0 of the parallel circle of latitude 4 on the map is equal to the 
arc aX sin p of the parallel on the sphere; because of this, the construction of the net of 
projection is a very simple matter. With the pole as center equidistant circles are 
drawn which represent the parallels on the map and on these are laid off the true lengths 
of the parallel arcs on the sphere. The complete map for the sphere thus becomes a 
heart-shaped representation. For a map that does not extend very far from the central 
meridian the projection is not too much distorted and could serve very well for practical 
use. 

From the equations for the sphere we find 

hence we get 

-cos p ) ;  +>;. 
If, for a given p and X, the value of $ has been computed, then h = cosec #. 

(B) We will now consider a projection in which not only the parallels are circles but 
also in which the meridians are straight lines that pass through a common point. 
Besides the projection is equivalent and consequently a conical equivalent projection. 
Because of the first condition we must have as before 

P"F(4) 

e= - u2(1-e2)X cos 4 
F ( + ) F ' ( ~ )  (1-e2 sin2 412' 

Since the meridians are to be straight lines, the radius of t.he circle must represent 
the meridian ; therefore e must be independent of 4, or 

u'(1 -e') cos 4 - 
F ( + ) F ' ( ~ )  (1-e' sin2 4)2=m~ 

in which m is a constant. Then we have 

and we have for the radius 
o==mX, 

or from this by integration, 
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or in terms of the authalic latitude 
2 2c2 

p +c=-- sin 8. m 

For the determination of C, we can make several different assumptions. 

(1) If the pole is to be represented by a point, for c$=;, p must equa.1 zero. In 
2c2 this case C=-- and our equation becomes m 

2c2 
p2= (1 - & 8) = m 

and 

8=mX. 

If T, denotes the radius of the parallel on the earth rP dX on the earth will be rep- 
resented by pde on the map. But pd8=pmdX; therefore, the scale along the parallel 
becomes 

k,-. 
TU 

Since the meridians and parallels intersect a t  right angles, we have sin I)= 1 and $=E* 2 
Hence 

,-m2p2 . tan u -7 tan u. 
*P 

Since the meridians and parallels are orthogonal, u 
Tissot’s indicatrix as appears in the last equation. 

and u are the correct angles for 

For the case of the sphere we get 

cos (2-8) ; k= f i  
4% cos (;-Q h= 

m 

4 2  

tan uf= tan u 

This projection originated with J. H. Lambert and was called by Germah, Lambert’s 
isospherlc stenoteric projection. (See fig. 9.) 

It is evident that m should be less than unity for, if it is greater than one, we caa 
reduce k by reducing m and at the same time bring h nearer unity. 
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FIQWBE 9.-Lambert’s isospheric stenoteric projection. 

(2) Since m is arbitrary, we can determine its value in such a way as to give cer- 
tain advantages to the map. Let us suppose we wish to map a certain region. If 6 

TO is the latitude of the middle parallel of the region, we can take G= 
2c sin (;+) 

for the parallel &. For this parallel both h and k will be equal to unity, and the scale 
will be preserved along that parallel and the angles will be’ unaltered along the same 
parallel. If we wish a map that will change the angles throughout as little as possible, 

- In  this expression the sub r1r2 we can adopt the value of m= 
4c2 sin (;-e) sin (;-e) 

one functions are for the lowest parallel and the sub two functions, the same for the 
upper parallel. With this value of m, the a semiaxis of Tissot’s indicatrix has the 
same value at the upper and lower margins of the map. At  h, a lies along the parallel 
and at &, along the meridian. 

For a projection of this kind in which the earth is treated as a sphere, the equations 
become 

2a . p 
p=- sm 

8=mX, 
f i 2  

in which p is the polar distance or colatitude of the given parallel. The distortion 
equations are in terms of p 

P 
6 cos 3 

h=-. k= -. 
’ cos-, P 
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m tan u'=- tan u. 
cos2 z? 2 

The projection of this type with minimum distortion of angles for a hemisphere has 
for the value of m 

The alterations are null along the parallel of 24' 28'. The greatest value of a is vT 
or 1.189 and the smallest value of b is the inverse of this number, or 0.841 and the ratio 
of length of the most expanded length to  the length of the most reduced is $2 or 1.414. 

Finally, the greatest value of sin 6 is tan2 I, which corresponds to 6=9'53' or for 26, 8 
19'45'. 

For the representation of the whole globe by means of two maps, it is not best to 
adopt equatorial projections, that is, maps with the poles as centers, but what are called 
meridian projections, or ones with centers on the Equator. In  this way North add 
South America will not be separated and Africa will not be separated into two parts by 
the Equator. For the one center it would be best to locate it on the Equator at 70' east 
longitude; and for the other at 1 loo west longitude. The maps would thus be transverse 
conic projections. A table of distances and azimuths from a point on the Equator are 
given in Spqcial Publication No. 67 already referred to. If one wished to take into ac- 
count the spheroid, it would only be necessary to compute such a table using the 
authalic latitudes ( B )  iilstead of the ordinary latitudes (6). The map instead of form- 
ing a complete circle would be reduced to a sector of about 255'. The division line 
for the vacant sector could be chosen in each so that one would lie in the Indian Ocean 
and the other in the Pacific Ocean, thus leaving the land areas intact. 

We have computed such a table for every 5 degrees of latitude and longitude and 
the results are given in the table on page 68. These values can be used for any equivalent 
projection with center on the Equator or for transverse conic projections with pole 
on the Equator, such as suggested above. 

This projection has null deformation at a radial distance from the center of approx- 
imately 65' 30'; from this it results that in the Eastern Hemisphere, a circle through 
Africa, Europe, Asia and Australia has null deformation throughout its entire length. 
The circle in the Western Hemisphere which possesses the same property passes through 
the Americas. Thus, not only are the deformations small but also the number of 
points where they attain their maximum values are very limited in number. The pro- 
jection is rather easy to construct and lends itself readily to determine the alterations 
in length and azimuth. The deformations are the same at points equidistant from 
the center and a line drawn from the center to any point gives one of the directions for 
Tissot's indicatrix with a perpendicular thereto at  the point for the other direction. 
These two directions are orthogonal, both on the globe and on the map. The devia- 
tions starting from either of these axes do not amount to 10' anywhere on the map. 
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It is on these axes that the maximum and minimum scale distortions are found which 
in no case differ from true scale by more than 20 percent. 

Instead of taking m=--0.707, one could take in round numbers m=4=0.75 

which would be convenient for computation. The angle of the vacant sector on the 
map would be only 90' instead of 105'. The circumference of null deformation would 
be approximately 60' from the center and would pass through the continents close to 
their central regions. The alterations would be slightly increased but they would be 
diminished toward the center, that is, in the region where they change most slowly. 
At the center of the map, we should have 

1 3 
JZ 

and on the edges 

2 4 a=-=1.155; a2---1.333 4 -3- 

1 
6=-; 7 26=16'26', 

'-1.225; a2=- 3 =1.500 
"'W- 2 

1 
5 sin a=-; 26=23'04'. 

Besides the representation of the two hemispheres just described, it is sometimes 
desired to represent the whole world on one map. If it is desired to have an equal- 
area map of this kind, it would be necessary to use a conic projection with minimum 
deformations between the north pole and 50' south latitude. The deformation beyond 
the parallel of 50' south would not be troublesome as no land of importance lies beyond 
that point, since only a tip of South America extends further south. The north pole 
should be taken as the center and the separation should be made at  170' west longitude 
which passes through Bering Strait and does not meet any land area. This projection 
corresponds to m 4 . 3 4 2 ;  it  does not produce any deformation along the parallel of 
18'25' south; at  the north pole, a singular point of the projection, 26 amounts to 
118'26'. The greatest value of 26 besides this point is 58'43'; of a, 1.710 and of u2, 
2.924. 

LAMBERT'S AZIMUTHAL EQUIVALENT PROJECTION 

(3) If, in the above-described Lambert's projection, we take -1, e will equal X 
and the parallels form complete circles. With the authalic latitudes we have 
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(4) Returning to the cone, we would have for the sphere 
-sin 4. 

p2+C=-2a2 - m 

Let us suppose we wish the cone to be tangent to the middle parallel; then m=sin +,, 
and we have 

sin 4 
p2+C=-2a2 __ sin &I’ 

and when I$=&, 
Hence 

or 

p=a cot 40. 

a2 cot2 40+C=-2aa 

pa-aa cot2 1#~0=2a2 ( I-- :::) 
a2 

sin2 f#Jo 
p k -  (l+SinZ &-2 sin 40 sin 4) 

FIQVBE 10.-Lambert’s azimuthal equivalent projection. 
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The distance of any parallel from the middle parallel becomes 

39 

-- a l+sin2 sin +o sin +cos2 & 
+ooJ1+sin2 +0-2 sin +o sin ++cos +o 

- 2a(sin +,,-sin +) 

- .  

- 
J l + & Z  40-2 sin 40 sin ++cos 4 0  

For &=O, q=-a sin + and p,, becomes 01 as do all of the p's, but so that pO=aX. 
It thus passes into Lambert's equivalent cylinder projection for the sphere, with 

x=aX 

y=a sin 4. 

BONNE'S PROJECTION 

The spacing of the concentric circles representing the parallels are to be the 
same as that upon the ellipsoid. We will start with the equations 

p=F(dJ) 

If C is t , e  radius of the middle parallel of latitude do, then we will have 

p= c+s,-s, 

in which so and s are the lengths of the meridian to $o and 4, respectively, reckoned 
from some initial'point or from the Equator as may be. But we know that we have 

henca 

Ji-8sin2+ a c o s 4  -[I F@J 1 @= 

From this it followe that 
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a cos 4 But since - is the radius of the puralltd on the earth, the expression given ,/l-es sin’ 4 
above for p0 is t,he arc length of the pariillcl for thc loiigit3udc diffcrence A, aiid pe is 
the corresponding arc on the projecttion; it thus appears tlint tlie scale alocg the parallel 
is preserred and that k=1. Of cowse the meridiaiis and pnrallcls do not intersect at  
riglit angles for e is a function of both and A. We ham the following partial differ- 
en ti rtls . 

3/z[sin 4--- 
p JI aces -e2 sin2 + I; a(l  -e2) X =- 

p(l-e2 sin2 Q) 

b’e- acos Q 
bA pJ1-e2 sin2 4 
-_ 

From these we get 

k=1 
1 

pJ1-ez sin2 4 Y aces + 

h=cosec J.. 
The expression for h shows that the scale along the meridians is not preserved on 

the map; only on the central meridian is the scale true. As long as X is small, the dis- 

tortions will also be small. For X=O, $=:; hence the parallels are perpendicular to 

the central meridian. In addition, for the meridians to be perpendicular to the middle 
parallel, the function of 4 in parentheses for sin $ must vanish for A, or 

a cos 40 
Po di=zizz&- 0, sin &- 

from which we get 
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that is, the radius for the parallel of +o is the tangent to the ellipsoid a t  +o and the 
cone is tangent to the spheroid along this parallel. 

s is the length of the meridian as already stated. The values of s in meters for 
every minute of + from the Equator to latitude 7 5 O  are given in the Publication G-43, 
Tables for the Machine Computation of Geodetic Positions. A table of the values 
extending from the equator to the pole will soon be ready for use in such projections. 

This projection is generally known as the Bonne projection, but authorities ascribe 
i t  to Ptolemy and to Mercator. Herz prefers to call it the Mercator equivalent pro- 
jection. This 
projection was used for a map of France and it is sometimes known by the title, Pro- 
jection du DBpBt de la Guerre or Projection de la Carte de France. 

We will now investigate the distortions due to this projection. 

However, we retain the name that is most commonly applied to it. 

- a cos + 1. tan6= sin 4- cot I. p 41 - e2 sin%)= -2 
Since h and k are conjugate semidiameters of Tissot’s ellipse, we have 

p- , l l -e2  sin2 4 a2+b2=h2+k2=2+X2 

ab= 1 

p J I  - e2 sin2 + 
(Note that the a on the left is not the same a as on the right.) 

pJ1-e2  sin2 + 

) 
>- 

a cos 4 
p J 1 - e Z s i d  6 

a cos + 
pJ1-e2  sin2 + 

a cos + 

I’ a cos + a= 1+- sin+- 
4 p J 1 - e 2  sin2 + 

a cos + 
pJ1-e2sin2 + 

J ”( 

On the projection we have 
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On the earth for the corresponding curve, we have 

Pm d4 tan u=- r, dA 
in which r,=p, COB 0. 
But 

or 

tan u’=- . p a t 9  -- P ” tan u+- - 
Pm 34 r, ax 

On substituting the partial derivative values given on page 40, we get 
tan u 

1- sin+- E ~ . )  tan u, 
tan u‘= 

( pJ1-e2sinZ4 
in which u is reckoned from the east in counterclockwise direction and u‘ is reckoned 
from the tangent to  the parallel at  that point on the projection. 

We have already proved that the direction of the major axis of the Tissot ellipse is 

given on the earth as - tan (:+%) and of the minor axis, tan (:-%)e These values 
are -a and b, respectively. The krmula above for tan u’ can also be written 

tan u tan u 
1-(a-b) tan u=l+cot  + tan u’ tan u‘= 

By substituting; the above values for tan u, we find for the corresponding values of 
tan u’ 

b b 1 

tan w’ tan ~ ’=-ab=- l .  
Hence, the two directions on the projection are perpendicular to each other as well as 
are the corresponding directions on the earth. 
We thus find 

tan u2’= 1 - (a- b)b= l-~,b+b”T=~ 
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hence 

*“-+-, r 6 .  %=--- R 6  
4 2  4 2  

Tissot’s indicatrix thus becomes 

?r We see that u and u’ vanish together. When %== 

tan u’+b - - b 3  
1-b tan u’- 

tan u’+b=-b3+b4 tan u’ 

( l -b4)  tan u’=-b-b3 
(a2bz-b4) tan u’= - (ab2+b3) 

hence u’+, the larger angle of intersection of the parallels and meridians. 
a-b 1 -- = - (a-b) tan 6 = t a n [ - + ~ ) - ( ~ - ~ ) ]  --I+& 2 

1 “-2 cot 

as already given. 

and the scale in a given direction could be computed. For the ellipse, we have 
By means of this indicatrix, the azimuth distortions can be computed at a point 

z=a cos (u+;+2”) 

=a2 [ 1-- a2-b2 a2 sin2 (u+;+;)], 
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hence, scale in the direction (Y reckoned from the east point is given as 

ALBERS EQUAL-AREA PROJECTION 
We now come to one of the most important of the equivalent projections. Let us  

return to the conic projection with the general equations already found on page 33 in 
which we will change the constant m to n to agree with previous usage. 

9=nX 

2 2  
n p2+c= -- sin 8, 

with 8 denoting the authalic latitude. 

called the standard parallels. 
We now put in the condition that the scale shall be held true along two parallels 

We must then have the relations 

x a cos 41 
d1-e2 sin2 +l 

p19= plnX= 

h a cos 42 
d1-e2 sin2 42 

pp9=p2nX= 

Substituting these values of the p’s after dividing out the X and first multiplying the 
general equation by n2 

we get 
p”n”+n2C= -22n sin p, 

a2 cos2 I#I, 1 -e2 sin2 C#I~ +n2C=-28n sin pl 

a2 cos2 t j ~ ~  1 - e2 sin2 +2 +n2C= -28n sin @a 

The first terms in the left-hand member of these equations are r12 and T?, respec- 
tively, in which the r’s are the radii of the parallels of dl and &, respectively. These, 
in turn, are equal to N,2 cos2 41 and N,2 cos2 +2 in which the N’s are what are called the 
great normals of the ellipsoid or the radius of curvature perpendicular to the meridian. 
By subtracting the two equations, we get 

N,2 C O S ~ - ~ ~ - N ~ ~  cosz 4,=2c2n (sin f12-sin &> 
or 
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This equation serves for the computation of the value of n. 
and p 2  directly from their equation in terms of 41 and @z respectively. 

We get the values of f i  

By setting p equal to p1 in the general equation, we get 
2 2  
n p,2+ c= -- sin 81. 

Now by subtracting this equation from the general equation, we have 
2 2  

p 2 - p l 2 = z  (sin 81-Sin S ) ,  
or 

2 2  
p 2 = m z + ,  (sin &-sin p).  

In  a similar way we can get 
p 2 = p 2 + ,  22  (sin p2-sin 8). 

Either of these equations can be used for the computation of t,he various p's. 
calculating machine these P'S can be computed rather rapidly. 

With a 

For this projection we find, since it is a true conic projection and J , = q  2 
h--- T a c o s 4  

np np J1-e2 sin2 4 

k=-= np np.Jl-e2 sin2 + 
T a cos + 

, -n2p2(1 -e2 sin2 4) tan u - tan u. a2 cos2 4 
This last equation is Tissot's indicatrix as, of course, it should be. It should be noted 

that p does not equal zero for 8='; the result is that the pole is represented by an arc 

of a circle and not by a point as is usually the case in conic projections. The cone is 
thus a truncated one and the projection is sometimes called a truncated coiiic projec- 
tion. For mapping regions that do not extend to thc pole, this feature is in no way 
troubiesome. For a map of the United States, for instance, no one would ever know 
whether the map was a true conic projection or not, since only a small section of the 
surface of the cone would be used in any case. 

2 

6 3 7 6 9 7 " - 4 5 4  
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PROPOSED NEW PROJECTION 
In thinking about the projection called the stereographic equal-area, it occurred 

to us to try a similar projection with the central meridian spaced as in the meridian 
Lambert azimuthal equal-area projection. As far as we know, no 
such projection has been heretofore proposed. In order to take account of the spheroid, 
we decided to project the authalic sphere as a further study in the theory of map 
projection. Let us assume 

(See fig. 11.) 

y=2c sin 8, 2 

with c as the radius of the a,uthalic sphere and p the authalic latitude, as already ex- 
plained. Then 

Hence, from the equation of condition for equivalent projections, we have 

or by integration 
c cos B 

B 
2 

z=- 
cos - 

B 1  x=c:x 2 cos --- ( cos;) 

ax aB--eh sin -+- 
2 cos2 - -- ( -8) 2 
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c cos pJ1-e2 sin2 4 - 5  
j3 a cos 9 r,X cos 3 

k=- - 

a C For + = O ,  h=- and k=-, hence h k = l  and the meridians are perpendicular to the 

straight line equator. For X=O, 

C a 

B a cos - cos 4 2 c cos /3(1-e2 sin2 4)’” 
B a cos 3 cos 4 c cos o(1-ez s i n 2  ~ ) I / Z J  k= h= 

and again hk= 1. 

The parallels are straight lines parallel to the x-axis and spaced at  the distance 

The x coordinates are linear in X and hence are equally 

From the equations 

y=2c sin 

spaced, the expression in 
of the coordinates we get 

from the origin. 2 
being a constant for any given parallel. 

cos2 b 
B cos2 - 2 

$,c2 ---A2 

” 
2 cos p=2 cos2 --1 

-4c2-y2 
2c2 

2c2-y2 
2 2  

1 -- - 

=- 

(42 - y”) 2 = X2(2c2 - y’) 2. 



EQUAL- AREA PROJEOTIOH 
OSCAR S. AOAMS 

FIGURE 11.-Proposcd equivalent projection for the ellipsoid. 



F ~ G V R E  12.-Proposed equivalent projection for hemispheres. 
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The meridians are therefore fourth degree curves. 
we have 

Since the projection is equivalent, 

hence 
1 sin *= 

$2 tan2 ;(1+2-&J+1 

cos #= 

DETERMINATION OF THE AXES OF THE TISSOT INDICATRIX 
The h and k are conjugate diameters of Tissot’s indicatrix, hence we have 

a2+ b2 = h2+P 
ab=hk sin $=1. 

From these relations we get 

a-b a-b tan 6=- - 
2 4 a - 3 -  

tan ( z - i ) = b .  
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DETERMINATION OF THE DIRECTIONS OF THE AXES 

Since the parallels in this projection are straight lines, it is best to reckon the 
direction from the east in counterclockwise direction. The positive direction on the 
earth will then agree with the positive direction on the plane. We will count X positive 
to the east to agree with the usual positive value for the 2. 

E ~ O W P  13.-DitTerentisl relations for distance and azlmuth from the psrallel. 

From the diagram we have - 

2 +>; dSm sin tj 
dS*+dS, cos 1c. tan u' = 

d s m  

--&P 
tan u-- 
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From these two relations we get 
d S m  hrn 

+ 
-- 
ds, ds, 

' tanu'= 

or 
h tan u sin + hk sin + tan u 

k + h  tan u cos $=k2+hk tan u cos $ tan u'= 

tan u 
k2+tan u cot #' 
h2 ta,n2u+k2+2hk tan u cos + 

1+tan2 u 

From the equation for tan u', we se; that when u = z  

therefore 

- - 

--. K2' 
7r 

tan u'= + tan #, 

or u' is the large angle of intersection of the parallel and meridian as it should be. 

result to zero to determine the maximum and minimum value of P, we get 
By differentiating the expression for K2 with respect to tan u and equating the 

hk cos + tanz u- (h2-k2) tan u-hk cos #=O 
h2- k2 tan2 'u- ___ tan u-l=O. hk cos $ 

If tan u1 and tan u2 are the roots of this equation, we have 
tan u1 tan UZ= - 1. 

Hence, u1 and u2 are orthogonal. By solving this equation, we get 

h2-P J1+( h2-k2 J 

h2-k2 +J1+( h2-k2 >1 tan ul"+2hk cos +- 

tan %=+2hk cos # 

2hk cos 

2hk cos # 
After tan u1 and tan are computed, it is necessary to compute tan ul' and tan uz' 
from t,he equation of relation between tan u and tan u'. We will not carry through 
the computatioq in general terms since the expressions become very complicated as 
can easily be seen. As a practical matter, it is better to make the computations step 
by step as it would ultimately have to be done in any case. 
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EXAMPLE OF THE INDICATRIX 

As a concret,e example of t,he working of the formulns, we will make the compu- 
A 

tations for 9=30° and A=6O0=,. R7c must first compute h and k for this point. 

log p p  at  4=3O0=6.SO506633 
log COS +9.93$53063 - 10 

log r=6.71259696 
t=5,528,368 m. 

-r=5,789,293 m. 3 

for +=30°, A=-, r=5,9S6,861 m. 3 

l r  

A 

5’9s6’861 - 1.03412645 k=5,7S9,293- 

tan :=0.26689969; cos -=0.96617886 B 

COS* 2=0.93350159 B 

2 

1+-- B- 1.53561773 
2 cos2 3 

- r B  tan 2=0.27949670 
3 

cot #= -0.42920009 
tan J/=-2.32991563 

$= 113°13’44’!45 

Sin #=0.91893573 
h= 1.052303.99 

h2= 1.10734369 
k2= 1.0694 175 1 

h2+k2=2.17676120 
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1 tan 6 = 3 4-0 = 4.2 1 02 148 9 

6= 1 1'52'17Y655 

6 - = 5'56'08'!828 2 

s 6  -+-=50'56'08'!828 4 2  

' -39O03'51'1172 lr _--- 
4 2  

tan (z  +;)= 1.232071 19 =a 

tan --- =0.81164141=b (4" 6 2 )  
We can arrive at these values in another way and we will give this method as an 

illustration. 
k 
h tan q=-, sin 27=& $ sin 27 

r ]  and y being auxiliary angles 

sin 6=tan (i-7) 

h2 
cos2 q= - h'+P 

sili 2q=2 tan 7 COS' q ' = h - 2  2hk 

h 2 + k 2 =  2hk 0.99984821 

&I 2y=0.91879624 

2y= 66'45'02'163 

y = 33'22'3 1f315 

i- y= 1 1°37'28!685 
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tan -- y =0.20571864=sin 6 c ) 
6 = 1 1 '52' 17'!655 

cot y = 1.5 1799942 

a = &-= 1.23207 1 1 9 

b= J ~ = 0 . 8 1 1 6 4 1 4 1  

We have thus obtained the same values as by the other method. 

We wil l  now proceed to compute u1 and uz and then ul' and Q'. 
h2- k2 h2- k2 

tan U"'2hk cos $ - ~ ' + ( 2 ~ ~ ~  
h2=1.10734369 
k2=1.06941751 

h2-k2= 0.03792618 
COS $=-0.39440730 

2hk COS $=-0.85840019 

h2-k2 --0.04418240 2hk cos $- 

1 +( 2giL +>a= 1.00195208 

tan ul= - 1.04515796 

h2-k2 +Jl+( h2-k2 >" 
tan %"+2hk cos + 2hk cos + 

tan uz= 4-0.95679316 
- 1.04515796 

1.0694 1751 + 1.0451 5796 X 0.42920009 tan u1'= 

-_  -0.68851013. - 1.51799940- 
0.956793 16 

tan 1.06941751-0.95679316XO.42920009 

- 0*95679316 = 1.45241 142. -0.65876180 
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We find 

and ul' and uzl are also orthogonal as they should be. 
tan ul'tm uz'= - 1 

tan ul= - 1.04515796; tan ul'= -0.68851013 
u1= -46'15'53Y67 U1'=-34'32'52'!10. 

These two correlative angles give the directions of the major axis of the ellipse, since 
we know that this axis lies in the smaller angle of the intersection of the meridian and 
parallel at  the point. The relation for the ellipse t.hus becomes 

b tan tu'+ (34O32'52!10)]=, tan [u+ (46'15'53!67)] 

- =b2 tan [u+ (46'15'53'!67)] 
b2=0.65876178. 

This equation should be valid for u=u'=O and it is, as can easily be shown. 

u=E, u' should be the larger angle of the intersection of the meridian and parallel. 

For 

2 
tan [u'+ (34°32'52'!10)]=b2 tan (136'15'53'!67) 

= - 0.65876 178 X 0.956793 16 
= -0.63029877 

U' -t (34°32'52'!10)=147046'36'!55 
U' = 113 '1 3 '44'145 

=IL 
This gives us the correct value for t+5 as already computed. 

We have given this complete treatment of the indicatrix a t  this point as an example 
of the case when the equivalent projection has variation of scale along both the meridian 
and the parallel. A greater amount of computation is required than is needed for the 
case of a projection that has true scale either along the meridians or along the parallels. 
Tissot uses the word automecoic for true scale; thus he would describe the sinusoidal 
projection as one with the parallels automecoic. 

HAMMER-AITOFF PROJECTION 

This projection is based on the Lambert azimuthal meridian equal-area projection. 
If we have such a Lambert projection we can proceed in the following way. Turn the 
map about the polar axis until it  makes an angle of 60" with the horizontal. Then project 
the map on the horizontal plane by a system of parallel lines all perpendicular to the 
plane of the map. This will double the length of the Equator and all straight lines par- 
allel to the Equator. Thus, the circular boundary of the Lambert map will be projected 
into an ellipse with major and minor axis in the ratio of two to one. At  the same time all 
areas will be doubled. Now, if we have a Lambert map computed for every 5" of 
longitude, we can double the 2 values for 5", lo", etc., and designate them IO", 20", 



AITOFF’S EQUAL AREA PROJECTION OF T H E  S P H E R E  

FIGURE ll.-Aitoff’s equal-area projection 01 the sphere. 
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etc., on the new map. At the same time the y values will remain unchanged. Note that 
this procedure should apply to the values for lo", 20°, etc., of latitude since the 5", 
15", etc., parallels would not be wanted when the meridians on the new map are only 
given for every 10 degrees. Of course one could compute the 2X0, 7X", etc., of longitude 
and then every 5" intersection could be shown on the new map. The resulting map is 
strictly equal area for the area between meridians is doubled, so it is proper to double the 
designation of the meridians. 

A table for the Lambert azimuthal equivalent projection on a meridian is given in 
Special Publication No. 67, already referred to. A table for the Hammer-Aitoff projec- 
tion is given in Special Publication No. 68, "Elements of Map Projection." These 
tables are both based on the sphere and not on the spheroid. If the tables for the trans- 
formation on the authalic sphere are used for a new computation, both of these maps can 
be based on the spheroid with no extra labor of computation. These tables art? given on 
pages 68-74 and they were computed so that any future computations of equal-area 
projections can make use of them if it is deemed necessary to take account of the ellip- 
soid for such purpose. 

CURVES OF TRUE SCALE ON EQUIVALENT PROJECTIONS 

Since, in the directions of maximum alteration of scale on equivalent projections, 
the scale is too large in the one direction and too small in an orthogonal direction, there 
must be some azimuth between these two directions in which there is true scale. In 
Special Publication No. 68 we called attention to these curves and stated that no detailed 
study of them had been made. A couple of years ago we received a letter from M. R. 
MacPhail, Caracas, Venezuela, calling attention to our statement and enclosing a 
study of the curves that he had made under the interest aroused by our statement. 
His treatment was an excellent application of differential geometry to the subject in 
hand. Mr. MacPhaiI was at  that time employed by the Standard Oil Co. of Venezuela. 
We appreciate such interest in a practical engineer and wish to give him due credit for 
his work. We will now approach the matter in a slightly different way but will use two 
diagrams that Mr. MacPhail sent us. His work was sent to us for any use that we 
might wish to make of it. 

As a start, it is evident that there are two sets of such curves forming a network on 
the projection. We will make use of Tissot's indicatrix in our study of the matter. 
When the meridians and parallels of the map intersect at  right angles, the dGections of 
the axes of the indicatrix ellipse are given by tangents to the curves at  their point of 
intersection. Then the scale along the parallel is reciprocal to the scale along the 
meridian a t  the point and they form the a and b semiaxes of the ellipse. The scale in 
any direction on the earth is then given by the equation 

a2 cos2 u+b2 sin2 u=K2.  
But when the scale is exact K becomes equal to one and we have 

/- - 
a2 cos2 u+b2 sin2 u=l=ab (sin2 u+cos2 u ) ,  



F r O V R E  15.--F:xnnplcs of 'Fiwut's itldioatrix uti sinusoidal Iirujcctiou. 
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or 
(ab-b2) sin2 u= (a2-ab) cos2 u. 

If a is not equal to b,  we get 
b sin2 u=a cos2 u. 

Note that a will not equal b on an equivalent projection except at, certain points or 
sometimes along certain lines. When a does equal b any direction satisfies the condi- 
tion but we generally consider the curves as then making angles of 45" with the merid- 
ians. We should state that these curves are called isoperimetric curves on the projec- 
tion. Returning to the equation we have 

- 

t anu=*d%=*a=*  tan (I -+- 2") 
u being reckoned from the major axis. 

b 
a 

From the equation of the indicatrix we have 

tan u'=- tan u 

or 

hence 

The isoperimetric curves thus run approximately midway between the two axes of the 
indicatrix. With certain projections that have the meridians and parallels orthogonal, 
we can easily get the equation of these curves. 

R=j(+) O=nX. 
Since the projection is equivalent, the element of area on the map R dR dO=nR dR dX 
must equal the corresponding area on the authalic sphere -19 cos /3 dp dx,  the sign 
being negative because R decreases as /3 increases. 

nR dR=--c2 cos /3 d/3 

With the Albers' projection 

since the dh cancels out, being a factor on both sides of the equation. By integration, 
we get 

1 p R 2  = c2 (A - sin p),  

c2 A being the constant of integration. 

Since the scale is to be true along the standard parallels, we must have, r1 and r2 being 
the radii of the parallels, 

R,O = Rlnh = r, X 

R26 =R2nX = r2X 
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or dropping the common factor on both sides and squaring we get 
R?n2=r? and R22n2=rl 

'l 

c2(A-sh /32)-2(nz) n =T# 

c2(sin pz-sin P1)2n=r+T# 

n= 2e2(sin pz-sin pl>' 
rlz-r22 

This agrees with the equation for n in the Aibers' projection as ordinarily given. 
R's can be computed from either of the expressions 

The 

or 

Since the isoperimetric curves intersect a given parallel at  a constant, angle, such 
that the angle on the earth and that on the map are complements of each other, we 
must have dR on the map equal to f d s ,  on the earth. We have 

d B = - b d s ,  

Rnd>.=ads,, i=b=- 1 h, 
Rn d k  

b ds,- b2ds ,  --- dR -- ____ 
Rndk- ads ,  ds, ' 

but for the perimetric curves, 

dR ds, j j j X =  3ab2= f b= f- Rn d k  

:. dR= fds,, as stated above. But from the differential equation for R dR, we get 

and 
ds,=c COS BdA.  

Substituting t.hese values we get 
c2 cos p d p  

nR c COS p d k =  f 

or 
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In the equation for R, let  8=27--1 2 
then 

2c2 
n R2=R?+-(sin /3l+Cos 27) 

cos 27=1-2 sin2 q 

2 8  R2=R?+n(sin B1+1-2 sin2 7) 

2c2 
n 

with 

Let 

then 

and 

By integra tion 

This is Legendre's fist elliptic integral. By proper choice of X, we can take Xo=O, then 
sin 7= &sn(Atn) 

and sn (Mn) is the Jacobian elliptic function. Note that for any given parallel we can 
choose any meridian from which to reckon X, since the angle of crossing is constant 
for that parallel. After starting one curve, the same central meridian must then be 
used for all other parallels for this curve. When one curve is computed any number of 
others can be located by their points of crossing the parallels, since they will be 
symmetrically related to another chosen meridian as the given curve is to its meridian. 

637697"45- - -6  
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lr l r  ?r As I] varies from 0 to - 9  p varies from -- to +z and hence covers t-he full range of 2 2 
lat,itude. The computation of the X values is sufficient, for these give us the points of 
crossing the parallels for any given curve. For q=O, X=O and we can start from any 
meridian that we wish on the circle representing the south pole. The curve should 
cross the standard parallels a t  a 45' angle. 

The equations of the curves on the earth become on substituting the value of 

As p varies from -E to +z, ntX varies from zero to K, the complete elliptic integral 

of the first kind. 
Let us apply these formulas to a map of the sphere that holds the equator and 30' 

1 
2-2 

With these values n=- and R,2= 16a2; these results give k2=2/3; t= 6 

2 2 

north latitude as standard parallels. In  this case rl=a, r2=-a, 8 .  sin pl=O, sin p - 
2 

1 
4 

and c=a. 

Substituting these values in the equation of R, we get 

sin2q=2&adn(y%%), with k2=- 2 
3 

From the relation 

when 

and 

sin q=sn-X, & 
4 

in which K is the complete elliptic integral of the first kind, 
k= 0.81 649658 

54 '44'08'! 2 
54'. 7356 

By interpolation in Legendre's Table by use of second differences we get 

-9 
K=2.02896 

4 
-K=3.3133=X. & 
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It is thus seep that the total extent in longitude is a fraction more than 'IT or 180'. 
Mr. MacPhail has constructed a diagram showing this curve on the projection which 
we have given as figure 16. 

FICUBE 16.-Isoperimetric curves on Albers equivalent projection. 

We will nom compute the constants for the map of the United States on the Albers' 
For this projection the following values given in Special Publication No. 

From Special 
projection. 
68 are: log c=6.8042074; log n=9.7832478; R, for 29'30f=9,215,188. 
Publication No. 67, p for 29°30f-29023f20.ff09. With these values we f k d  IC2. 

=0.94276541 4c2 ha = n[R,I+g (sin b1+ 111 

k=0.97096108 
t= 1.32639929 
n=0.6029035. 

With these values for k, t and n, the longitude of the crossing of any meridian can be 
computed by means of a table of elliptic functions. The formula for the computation 
in terms of the authalic latitude is the one to use 

The authalic latitudes for any given parallels are given in Special Publication No. 67. 

For the south pole b=-- and X=O. To compute for the United States map one 

could start with parallel 25' north. This will give a certain value of X and we can 
choose the meridian that we w7ish to have this value. Suppose it is to apply to the 
intersection of the meridian 120° with the 25' parallel. Then we compute the value of 

7r 

2 
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X for 30"; this will be a larger value than that for 25'. Subtract the %" raluc from 
this and that will giva the X east of 120" on para!!el 30"; ill a sirnilhr way we can com- 
pute the intersection for any otlrcr parallel. We can use the ssme values stnrtiiig 
from the southeast corner and use the ncgstive sign. This gives a =ember of the other 
family of isoperimetric curves. After one curve is computed, any number of others 
of the same family can be constructed by moving each intersection lo, 2", 5" or a n y  
number of degrees either east or we3t. The two fami!ies of curves are inrmse!y Gmiix 
and one can be derived from the other by revering the signs of the intersections. If 
we started a t  the centrtl meridian of the ma? we could lay our values off to thg eact 
and to the west on any parallel and thus get, the two curves that intersect on the startifig 
parallel. A diagram is given in Special hbhcaticln KO. 68 with several of these curl-es 
shown on it. 

THE LAMBERT AZIMUTHAL, EQUAL-AREA, POLAR PROJECTION 

This is a special case of a conic projection iii which both standard parallels moTe 
up to the pole. Then n=l and R1=R2=0 and sin pl=sin &=1. Then 

A Lot p---p', in which p' is the authalic colatitude. This gives us -2 

P' R = ~ c  sin -; a=X. 2 

t= 1 and k= 1 and the elliptic functions become the hyperbolic functions in the follow- 
ing way 

sn x tanhx 
cn 2 sech x 
d n x  + sechx 

The isoperimetric curves s e  spirals of the form 
r=2a sech a-2a sech X. 

The curve is shown in figure 17 With the two inversely similar curves shown on it. 
On the sinusoidal projection wa have shown the Tissot indicatrix in the form 

We have shown that the curves of equal scale have the directions &(:+;)on tho earth 

on the projection. The plus values correspond to u=O and u'=O. 

These isoperimetric curves are the parallels which were constructed true to scale. 
n 6  n 6  n on the projection or u' = -- $6- 2 For the other curve we must have u' +---- --+- 4 2 - 4 2  
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Hence 
2 

tan u’= -cot 6= - --=2 tan I), x sin 4 
u‘ is, of course, a negative angle. 

Considering the earth as a sphere, we have seen that u on the earth is either 0 or 

- ( ; + E ) -  For the second value 
2 d4 =+cot 6= +- =- A S ~ $  dXcoscp 

---- -0 2dX sin cpdg 
x cos cp 

2 log x+log cos +=log c 
log C being the arbitrary constant 

A2 cos +=c. 
By assigning to C a valae of 4=0 that will make the isoperimetric curve start at a 
chosen longitude indicated by X, we should have the equation 

x 2  cos 9= g. 
By means of this equation we could compute the longitude of its intersection with the 
various parallels. The A’s, of course, must be expressed in radian measure and not in 
degrees. This equation of course applies to the sphere and not to the spheroid, but if 
the projection is based on the authalic sphere, the curves can bc located €or the spheroid 
by using the equation 

There still exists the slight variation due to the mapping of the spheroid on the authalic 
sphere, but for practical purposes this is a negligible quantity. 

The same relation is found for the Bonne projection since in it the scale along the 
parallels is constructed true; the parallels are therefore the one set of isoperimet.ric 
cumes, and the other set is given in direction by the same relation 

tan u’=2 tan J/ 

in which u’ is a negative angle measured from the tangent to the parallel at the point. 
For the new equivalent projection with the Lambert spacing on the central merid- 

ian, it would be necessary first to compute the directions of the axes of the indicatri.. 
ellipse and then get the directions for the isoperimetric curves from them. For ths 
point +30’ and X=6Oo which we have computed we found 

x2 cos p = X , 2  

tan [u’+ (34’32’52U10)]=0.65876178 tan [u+ (46’15’53’!67)], 

A(:-:)= f (39’03’51117). 
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Hence for one curve 
u'+ (34'32'52110) =39°03'51'!17 

U' =4'30'59!07 
and 

u'+ (34'32'52'!10) = -39°03'51Y17 

u'= -73'36'43'!27 

This is a sufficient number of examples to indicate t,he general method of handling sut:h 
problems in equivalent projections. 

It should be noted that there are innumerable other projections of the equivalent 
class that could be devised but we have given the most important that are in use today. 
Of those given, various transformations could be devised by transversing the elements 
in various ways. The conic projections can have the apex of the cone in any desired 
latitude and longitude, but as a prelude to such a projection the arc distance and azi- 
muths of great circles emanating from this point would have to be computed. These 
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computations could be made on the authalic sphere and in this way take account of the 
ellipsoid if it is deemed of sufficient importonce to do so. We are includbg such tabies 
computed for a point on the Equator and these could be used €or any transverse map 
with this point serving as the pole. We are including a couple of illustrations of such 
maps on the Mollweide projection that were adopted from the work of Colonel Close. 
(See figs. 18 and 19.) These illustrations serve to  show what peculiar distortions may 
be found in a map that is still strictly equivalent in a mathematical sense. 

FIGURE 18.-cohose’s transvcme h:ollxeide projection, after steers. 

FIGUEE IQ.-Col. Close’s oblique Mollweide projettion, after Steers. 
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TABLES 

Transformation f r o m  geographic to a h m t h a l  coordinates on the authalic sphere-Center 
o n  the Equator 

VALUES O F  THE AZIMUTH RECKONED FROM T H E  NORTH, a; TAN (?(=SIN COT p 
- 

I 
Latitude I O0 

I Latitude 

0 , ,I 

90 00 00.00 
75 42 49.04 
62 49 56.63 
52 02 63.82 
43 20 55.34 

36 22 57.26 
00 4.5 22.52 
25 os 09.30 
22 16 00.59 
18 57 40.71 

16 04 54.64 
13 31 36.16 
11 13 10.W 
9 06 07.2s 
7 O i  40.21 

5 15 35. 33 
3 2 3  00. i 8  
1 43 18. 17 
0 OD 30.00 

I 
. . . . . 

Lonpitudo 

50 

90 00 m.00 
45 01 13.97 
26 24 20.61 

13 3 "1.02 

10 33 01.48 
8 37 2 2  20 
7 07 ::?.'I3 
6 67 24.00 
5 00 12.52 

18 05 tO.61 

4 12 05.92 
3 30 23.06 
2 53 37.35 
2 20 16.25 
1 49 30.62 

1 20 37.93 
0 53 03.99 
0 26 19.93 
0 00 00.00 

25' 

100 

0 , tr 

co on 00.00 

33 03 51.72 

63 3i 50.20 
44 41 23.35 

28 36 23.58 

20 30 35.38 

13 59 19.X 
11 4 1  37.23 
9 53 41.65 

8 19 37.P8 
6 57 49.83 
5 45 03.28 
4 3s 00.91 
3 37 5s.10 

16 43 40.m 

2 40 33.81 
1 45 42.25 
0 52 27.60 
0 00 00.00 

Longitude 

0 , ,, 
"to 00 0o.co 
tS 21 13.77 
87 2G 41.84 
57 44 23.99 
49 23 32.51 

62 18 55.51 
36 19 39.81 
31 13 42.52 
26 50 12.49 
23 00 10.75 

13 36 26.40 
! G  33 19.03 
13 46 19.30 
11 11 51.57 
8 47 01.63 

6 29 22.05 
4 16 5i.64 
2 07 37.58 
0 00 00.00 

30' 

0 , ,, 
90 00 00.00 
EO 07 08.35 
70 !? 21.09 
61 03 18.07 
54 04 15.62 

47 07 34.85 
41 01 1S.67 
35 39 OR.%? 
30 54 14.23 
26 40 08.30 

22 51 11.44 
19 22 35.01 
is 10 15.93 
?3 10 54.28 
10 21 35.61 

7 39 53.83 
5 03 40.03 
2 30 58.03 
0 cil OO.w 

15' 

0 , ,, 
99 00 00.00 
71 21 OG.43 
65 51 18.11 
44 08 12.20 
35 32 Z1.3i 

?A 22 13.62 
17 12 55.80 
14 34 25.95 

12 18 24.67 
10 19 03.c2 
8 37 12. :1 
6 64 45.46 
5 24 20.Ski 

3 59 06. 26 
2 37 23.35 
1 18 1O.W 
0 00 00.00 

350 

0 , I ,  

90 00 00.00 
81 21 57.67 
72 53 04.05 
05 03 34.21 
57 43 10.57 

51 00 59.22 
44 56 30. i.5 
39 26 59.81 
34 28 33.59 
29 56 58.61 

25 45 08.88 
21 58 16.94 
18 24 0O.B 
15 02 19.98 
11 50 38.31 

8 45 35.09 
5 48 04.00 
2 53 08.83 
0 00 00.00 
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Transformaiion j rom geographic to azimuthal coordinates o n  the uuthcclic sphere-Center 
o n  the Equator-Continued 

VALUES OF THE AZIMUTII RECKONED FROM THE NORTH, a; TAN a=mr X COT 8-Con. 

Letitude 
Langitude 

450 

0 , I ,  

90 00 00.00 
82 58 41.99 
76 03 31.92 
69 19 55.2: 
82 52 08.94 

55 42 57.46 
50 53 43.97 
45 24 38.32 
40 14 55.12 
35 23 12.44 

30 47 45.71 
26 26 39.48 
22, 17 54.87 
18 19 34.27 
14 23 43.76 

10 46 34.05 
7 03 2% 36 
3 33 31. 76 
0 03 00.00 

0 , I ,  

90 00 00.00 
83 30 49.57 
77 05 33.90 
70 48 06.41 
64 41  12.07 

58 47 07.33 
53 07 12.53 
47 42 00.48 
42 31 23.91 
37 34 45.56 

32 51 01.88 
28 19 00.71 
23 57 17.14 
19 44 22.83 
15 38 47.86 

11 39 02.41 
7 43 37.60 
3 51 05.71 
0 00 00.00 

Loilgitnde 
_- Latitude 

EO' 

70° 

0 , I ,  

90 00 00.00 
84 42 17.28 
79 25 w.io 
74 09 13.95 
68 54 51.94 

63 42 39.63 
58 32 56.11 
53 25 58.00 
48 21 56.07 
43 20 55.22 

38 22 54.61 
33 n 48.02 
28 35 24.38 
23 45 28.27 
18 57 40.64 

14 11 39.34 
9 26 69.S6 
4 43 15.93 
0 0 00.m 

550 

0 , I ,  

90 00 09.00 
83 55 51.75 
77 54 16.48 
71 57 48.02 
66 08 21. E6 

60 21 37.67 
54 56 43.31 
49 36 15.9s 
44 26 25.53 
39 26 50.76 

34 37 26.03 
29 56 58.77 
25 25 41.88 
2Q 59 23.33 
16 40 22.61 

12 26 02.51 
8 16 20.37 
4 07 03.77 
0 00 00.00 

0 , ,, 
90 00 00.00 
84 50 52.17 
79 42 01.74 
74 33 45.47 
G9 26 18.92 

64 19 55.90 
59 14 48.04 
54 11 04.40 
49 08 51.27 
44 08 12.07 

39 09 07.23 
34 11 34.39 
20 15 28.46 
24 20 41.67 
19 27 04.89 

14 34 25.90 
9 42 31.75 
4 51 08.14 
0 00 03.00 
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Transformation from geographic to azimuthal coordinates on the au.thalic sphere-Center 
on the Equator-Continued 

VALUES OF THE AZIMUTH RECKONED FROM THE NORTH, a; TAN &!=SIN h COT B q o n .  

Longitude 

850 

0 , ,I 

90 00 00.00 
85 00 1284 
80 00 25.29 
75 00 36.97 
70 00 47.51 

65 00 56.61 
60 01 03.98 
55 01 09.41 
50 01 12.72 
45 01 13.81 

40 01 12.67 
35 01 09.32 
30 01 03.87 
25 00 56.48 
20 00 47.38 

15 00 36.85 
10 00 25.20 
5 00 12.80 
0 00 00.00 

900 

0 , I ,  

90 00 00.00 
85. 01 20.94 
80 02 39.44 
75 03 53.12 
70 04 59.75 

65 05 57.31 
60 06 44.06 
55 07 18.56 
50 07 39.76 
45 07 47.01 

40 07 40.07 
35 07 19.14 
30 06 44.83 
25 05 58.20 
20 05 00.63 

15 03 53.90 
10 02 40.02 
5 01 21.25 
0 00 00.00 

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, c: COS ? = COS h COS B 
Longitude 

50 

0 I P, 

5 00 00.00 
7 03 02.61 

11 07 45.90 
15 43 64.81 
20 30 36.05 

25 21 58.90 
30 15 53.83 
35 11 23.11 
40 07 57.35 
45 05 19.95 

55 01 52.43 
60 00 50.10 
65 00 09.31 
69 59 46.27 

w 03 m.64 

74 59 37.34 
79 59 39.00 
84 59 47.73 
90 00 00.00 

100 

0 , #, 

10 00 00.00 
11 09 32.44 
14 04 30.01 
17 54 37.36 
22 11 41.17 

26 42 51.78 
31 22 0 8 . 8  
36 Mi 29.20 
40 54 11.92 
45 44 17.19 

60 36 07.25 
55 29 16.83 
60 23 27.98 
65 18 27.24 
70 14 03.94 

75 10 09.10 

80 85 06 03 34.90 14.13 
90 00 00.00 

15’ 

0 , ,, 
15 00 00.00 
15 47 10.62 
17 56 23.32 
21 02 44.30 
24 44 65.40 

28 49 14.79 
33 07 37.38 
37 35 17.17 
42 09 20.37 
46 47 57.10 

51 29 54.89 
56 14 23.94 
61 00 48.54 
65 48 41.94 
70 37 43.31 

75 27 35.57 
80 18 04.22 
85 08 56.36 
90 00 00.00 
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Transformation from geographic to azimuthal coordinates on the authalic sphere-Center 
on the Equator-Cont.inued 

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, c ;  cos c = cos cos P-Con. 

Latitude I 
Longitude 

0 I #' 

25 00 00.00 
25 27 33.93 
26 47 25.91 
28 62 23.44 
31 33 32.94 

34 42 31.87 
38 12 28.39 
41 58 08.18 
45 55 38.77 
50 02 09.72 

54 15 35.36 
58 34 21.74 
62 57 17.23 
67 23 25.87 
71 52 02.80 

76 22 30.83 
80 54 18.17 
85 26 56.58 
90 00 00.00 

300 

0 , ,I 

30 00 00.00 
30 22 19.77 
31 27 43.99 
33 11 58.20 
35 29 20.30 

38 13 52.86 
41 20 10.38 
44 43 39.23 
48 20 39.42 
52 08 17.94 

56 04 19.67 
60 06 58.71 
64 14 61.16 
68 26 49.44 
72 41 68.04 

76 59 30.10 
81 18 44.96 
65 39 00.20 
90 00 00.00 

Longitude 

350 

0 , ,, 
35 WI on.00 
35 18 20.67 
36 12 50.05 
37 40 33.73 
39 37 55.09 

42 00 48.88 
44 44 53.53 
47 46 40.09 
51 02 59.19 
64 30 41.81 

68 08 01.27 
61 52 58.74 
65 44 03.73 
69 40 00.85 
73 39 46.45 

71 42 25.57 
81 47 09.75 
85 53 14.63 
90 00 00.00 

450 

0 I I t  

45 00 00.00 
45 12 56.40 
45 51 23.07 
48 54 15.44 
48 19 55.05 

50 06 20.5s 
82 11 19.Oi 
54 32 35.51 
57 07 59.73 
59 55 ao.58 

62 63 17.91 
65 89 42.97 
69 13 17.74 
72 32 43.72 

79 24 34.46 
82 54 56.84 
86 27 02.82 
90 00 00.00 

75 cie 50.56 

500 

0 , t, 

50 00 00.00 
50 10 51.84 
50 43 12.64 
51 36 19.74 
52 49 06.67 

54 20 09.02 
56 07 50.80 
58 10 30.75 
60 26 26.64 
62 53 59.42 

65 31 35.21 
68 17 46.40 
71 11 12.05 
74 10 37.51 
77 14 63.87 

80 22 57.05 
83 33 46.94 
86 48 26.34 
90 00 00.00 

65' 

0 , I ,  

55 00 00.00 
55 09 04.16 
55 36 06.91 
56 20 39.80 
57 21 67.74 

58 39 0209 
60 10 44.25 
61 55 49.21 
63 52 58.77 
66 00 54.10 

68 18 17.72 
70 43 51.71 
73 16 33.41 
75 66 05.66 
78 38 26.71 

81 25 34.85 
84 15 30.96 
87 07 17.94 
90 00 00.00 
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85' -- 
0 P #I 

85 00 00.00 
85 01 08.05 
85 04 31.72 
86 10 09.55 
85 17 59.10, 

U. S. COAST A N D  GEODETIC SURVEY 

900 

o , , ,  

90 00 00.00 
90 00 00.00 
90 00 00.00 
90 00 00.00 
90 00 00.00 

Transformation from geographic to azimuthal coordinates on the authulic sphere-Qen ter 
o n  the Eqmtor-Continued. 

VALUES OF THE GREAT CIRCLE DISTANCE FROM THE CENTER, r ;  cos r = cos h cos P-Con. 

85 27 56.99 
85 39 58.87 
85 53 59.49 
86 09 52.66 
86 27 31.36 

Latitude 

90 00 00.00 
90 00 00.00 
90 00 CO.00 
90 00 00.043 
90 00 00.00 

I Longitude 

86 46 47.71 
87 07 33.06 
87 29 38.00 
87 52 52.50 
88 17 05.91 

0 ,  , , l o ,  ,, 

90 00 CQ.00 
90 00 00.00 
90 00 00.00 
90 00 00.00 
90 00 00.00 

60 00 00.00 65 00 00.00 
M 07 28.82 65 05 02.58 
60 29 48.79 65 24 06.00 
61 06 40.88 65 53 57.56 
61 57 34.49 66 35 16.62 

88 42 07.08 
89 07 44.44 
89 33 46.12 
90 00 00.00 

Latitude 

90 00 00.00 
90 00 CO.00 
90 00 00.00 
90 00 00.00 

I 800 

70' 

0 , I ,  

70 00 00.00 
70 04 43.05 
70 18 49.37 
70 42 10.59 
71 14 32.69 

71 55 37.86 
72 45 01.95 
73 42 18.00 
74 46 55.27 
75 58 20.12 

77 15 56.52 
78 39 06.54 
80 07 10.77 
81 39 28.69 
83 15 18.97 

84 53 59.67 
86 34 48.49 
88 17 02.84 
90 00 00.00 

Longitude 

750 

0 I ,, 
75 00 00.00 
75 03 28.40 
75 13 51.80 
25 31 04.86 
15 54 58.75 

76 25 21.33 
77 01 57.29 
77 44 28.42 
78 32 33.79 
79 25 50.11 

80 23 51.89 
81 26 11.79 
82 32 20.84 
83 41 48.68 
84 54 03.85 

86 08 33.93 
87 24 45.SO 
88 42 05.82 
90 00 00.00 
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Functions of aGthulic latitude f o r  map of  world on  proposed equal-area projection 

0 00 00.0000 
4 55 40.%05 
9 57 30.1200 

14 56 37.9720 
19 56 20.1180 

24 56 03.9H5 
29 56 37.6830 
34 87 29.6535 
39 58 39.S915 
45 00 00.0000 

73 

0.0000WI 
0.1735414 
0.3453651 
0.5i574X 
0.681945E 

0.6432141 
0.998%J% 
1.145?561 
1.2842601 
1.414213i 

Latitude 

Long. OD 

Latitude 

Long. 10" 

!! 2 1 2  2 sin 

m 
0 
0 
0 
0 
0 

0 ,  " I 

m 
1,111,919 
l,(M9,35l 
1,OGl,4M 

897,910 
907,794 

0 
0 
0 
0 
0 

I 
I 

790,320 
613,801 
465,392 
253,085 

0 

Latitude I y  

cos Bicos e 2 

COS B 
2 

1 . 0 0 0 0 ~  
0. 9SE22S31 
0.9249336G 
0.06ElXSS 
0.944iiOi322 

0.90Gi7254 
0. 866515G6 
0.61856982 
0.70628372 
0.707i0878 

0. oooooooo 
0.08700923 
O.li5577m 
0.256a%fjS 
0.36270861 

projection spucing 
; 

Long. 90° 

m 
10. CCi. ,539 
9, 694, :Go 
9,552.992 
8,9F.0, 293 
6, 170, 1% 

7,112, Si6 
5, i54.206 
4, 193.032 
5 2i7,764 

0 
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M. 
15,011 
14,841 
14,329 
13,470 
12,255 
l0,SsQ 
8,691 

0 
2% 

TABLE OBTAINED BY MULTIPLYING THE ABOVE VALUES BY 1.5 X IO-' FOR A CON- 
STRUCTION TABLE I N  CENTIMETERS (WITH ADDITIONAL COLUMNS) 

em. 
30,023 
29,682 
28,658 
26,941 
24,510 

21,339 
17,353 

0 
l g  

Latitude 

0 cm. 
0 

1,658 a 305 
$E 
s, 058 
9, 540 
IO, 951 
12,280 
13,515 

0 
0 I :  0 

Long. loo 

Em. 
1,868 
1,649 
1,592 
1,497 
1,362 

1,185 
966 
699 
a80 

0 

Long. 30' 

Em. 
5004 

4: 776 
4' 947 

4 490 
4086 

3553 i 897 
0 

2% 

0 


