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PREFACE 

This publication presents results of a project which originated with efforts b y  Dr. 
I?. Webster McBryde, of the Bureau of the Census, to produce a world projection for 
international census preparation and plottings, especially for use in the 1950 Census of 
the Americas, on the program of which he is geographer-consult’ant.’ 

McBryde considered Eckert’s No. 6 to be the best of any existing type of projection 
for fulfilling the requirements,2 but he desired to improve the scale and general propor- 
tions of regions in high and low latitudes. 

For the mathematical formulas of flat-polar designs similar to Eckert’s projections 
but with shorter polar lines and, in most cases, meridians of greater curvature, he is 
indebted to Mr. Paul D. Thomas of the Division of Geodesy, United States Coast and 
Geodetic Survey. The mathematics inpolved in deriving formulas for the correct 
poleward diminution of the intervals between parallels is outside of the gkneral geogra- 
pher’s field of training. 

The formulas developed by Thomas not only provide the specifications requested 
by McBryde for statistical use but also can be employed in producing any desired 
shapes and proportions in this type of projection. Thomas, in addition to deriving the 
formulas, computed the tables for construction and plotted some of the projections. 

McBryde, as representative of the Inter-American Statistical I n ~ t i t u t e , ~  presented 
the flat-polar quartic authalic projection (fig. 26 in this publication) in Buenos Aires at  
the Fourth Pan American Consultation on Cartography, sponsored jointly by  the 
Pan American Institute of Geography and History and the Government of Argentina, 
in October-November 1948, with the following proposal : 

“It would seem desirable to adopt a common base for a general map of the Americas, 
especially for census purposes. It should show 
areas with minimum distortion of shape, and should also indicate true east and west 
for purposes of latitude comparisons and for ease of construction. For world compari- 
sons, it would be well to use a single, uninterrupted world graticule. The use of a 
central meridian of 90’ west longitude would distribute the distortion equitably through 
the Americas. 

“On such a map a country could determine with considerable accuracy the territorial 
extent of its political subdivisions through the use of a planimeter. Population densi- 
ties and other data could be plotted correctly. If each country were mapped on such 
a base, the maps could all be placed contiguously to form a single equal-area map of 
the Americas. :If possible, it would be well to agree upon a common ultimate scale; 
preferably 1 : 1,000,000. Larger scales could be used for plotting minor civil divisions.” 

Though considerable interest was manifested in this proposal when i t  was presented 
before the Committee on Special Maps (Cartas), no formal action was taken by the Pan 
American Institute of Geography and History towards the adoption of a statistical 

Such a base map must be equal-area. 

I Cooperation with the American Republics program of the Interdepartmental Committee on Scientific and Cultural Coopera- 
tion, operated by the United States Bureau of the Census. 

I F. W. McBryde. A Map of the World in Perspective. Ohio Journal of Science, Vol. 42, No. 2, pp. 63-64, March 1942. 
8 Report in press, Estadistica No. 23, Vol. 7, June 1949. 
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base map. The proposal, however, led to the formulation of Resolution 68 of the Final 
Act of the Fourth Pan American Consultation on Cartography, which is as follows: 

“That the members of the Committee on Special Maps (Cartas) look into the matter 
of a special projection which in the future might be used as a Base Map for census 
purposes. ” 
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EQUAL-AREA PROJECTIONS FOR WORLD 
STATISTICAL MAPS 

EVOLUTION OF WORLD STATISTICAL MAPS 

F. WEBSTER MCBRYDE 

PROJECTION REQUIREMENlS 

A graticule for a world statistical base map should be authalic, or equivalent (equal- 
area, preserving areas in true proportions as to size), in order to bring out correct ter- 
ritorial relationships, isorithms, and all distributiond aspects of regional phenomena. 
Data such as population densities and producing areas cannot be graphically depicted 
for comparative purposes unless the base map shows the correct relative sizes of political 
units. 

A statistical map for the Americas, or any comparable portion of the earth, should 
be drawn on a projection having .(1) world scope, to indicate world distributions and 
inter-relations when desired; (2) equivalence, for regional measurements and size com- 
parisons; (3) equal-spaced meridians and straight parallels, so as to show true scale 
and directions along east-west lines, in addition to comparable latitudes, and to facili- 
tate construction; (4) equitable distribution of scale and shape distortions over the 
entire map; (5) unbroken graticule lines, so that maps of different countries on the 
same scale can be placed side-by-side to form one continuous map. 

A common base to satisfy each country would have to be one which represented 
good scales and shapes for equatorial as well as middle-latitude regions, since most of 
Latin America lies within the tropics. Tropical proportions comparable with those 
on the globe cannot ordinarily be obtained without greatly compressing and distorting 
high-latitude regions (as on the sinusoidal) or excessively shortening the longitudinal 
axis (as on Lambert’s equivalent cylindric), or both. 

THE PROBLEM OF WORLD REPRESENTATION O N  A PLANE 

The problem of representing the entire surface of the spheroidal earth on a place 
surface is one of the oldest and most difllcult with which geographers have had to 
contend. Few will question the importance of having some sort of flat map of the 
world on one continuous projection for plotting world data. Not only is the terrestrial 
globe limited of necessity to small size, but for navigation, for scientific and educational 
displays on wall, screen, or book page, and for similar purposes, a map on a plane 
surface is needed. Not even a full hemisphere can be shown in a photograph or can 
be seen at  one time while viewing a globe a t  close range, and distortion due to fore- 
shortening is great in all directions away from a small central area; this is also true on 
the orthographic projection (representing the globe as seen from infinity), as in figure 1. 

No representation of the whole sphere on a plane is without various distortions, 
such as those of azimuth, scale in various directions, size of areas, and shape of areas, 
and no one flat map can show correctly both areal and angular data. Most errors 
increase with the size of the territory included, so that distortions reach a maximum on 
world maps, all of which show great aberrations of scale and over-all shape of surface 
f eat,ures. 

1 



2 U. S. COAST AND GEODETIC SURVEY 

FIGURE 1.-Orthographic projection. 

SPECIAL-PURPOSE PROJECTIONS NOT SUITABLE FOR GENERAL STATIS- 
TICAL USE 

Mercator's chart (fig. 2), which alone shows rhumb bearings as straight lines 
throughout, is invaluable for navigation and is approximately correct for plotting 
angular data. It is not adaptable to maps of the entire earth for general statistical 
purposes, because large areal plottings, such as of continents which extend into high 
latitudes, are so distorted in shape and size as to be misleading. 

FIGURE 2.--l\lercator projection. 

The gnomonic projection (fig. 3) alone shows the orthodrome, or great-circle 
sailing route, as a straight line on any part of the map, but distortions of shape and 
size of areas are even far greater than on the Mercator, and it can be used only for 
portions of a hemisphere. Such special projections as the two mentioned above were not 
intended for world areal plottings and should not be used for general statistical maps. 
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FIGURE 3.-Gnomonic projection. 

WORLD PROJECTIONS WHICH ARE NOT EQUAL-AREA 

Intermediate cylindrical projections such as Gall's and Miller's (figs. 4 and 5), on 
which meridians as well as parallels are straight parallel lines, have been devised for 
better representations of high-latitude regions, with parallels spaced much closer 
together than on Mercator's, to reduce excessive latitudinal expansion, and farther 
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apart than on the Lambert’s equal-area cylindrical, to avoid extreme polar flattening, 
Obviously these cannot be equivalent, and hence they are not suitable for general 
statistical use. 

Van der Grinten’s projection (fig. 6) is another type which develops somewhat 
better shapes for small high-latitude areas, but it shom enormous distortions of size 
and over-all shape of continents, as well as scale and bearing, and it is more difEcult to 

FIGURE 6.-Van der Grinten‘s projection. 
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construct than a straight-line graticule. It has none of the properties desired in map 
projections for scientific uses, and there is no real justification for its widespread 
popularity. 

Denoyer’s semielliptical projection (fig. 7) is a flat-polar parabolic type, somewhat 
similar to  figures 22, 24, 26, and 27 in this publication. It has been used frequently 
in text books and for wall maps. The poles are shown as lines one-third the length of 
the equator, but parallel spacings do not diminish poleward to maintain equivalence, 
and meridian spacings widen toward the edges of the map in high latitudes. Though 
the representation of the continents on this projection is of pleasing appearance, the 
projection is not equivalent, and so is of limited value for statistical plottings. 

FIGURE 7.-Denoyer’s semielliptical projection. 

SOME COMMONLY USED EQUAL-AREA MAPS AND THEIR LIMITATIONS 
FOR WORLD STATISTICAL PLOTTING 

A requisite property of any general world statistical map of the type discussed 
here is equivalence. On such a map, all areas appear in their true proportions as to 
size, though in order to have this quality they must be variously compressed in some 
directions and expanded in others. The number of square miles within a country’s 
limits and the general relationships with other countries are, from a statistical stand- 
point, of greater value than approximation of the true form of the country; the latter 
characteris tic is needed where esthetic interests and over-all scale are important, 
and it cannot be approached on any world equivalent projection without breaking 
the continuity of the graticule. 

HEMISPHERICAL PROJECTIONS 

A hemispherical equal-area projection, even though it may preserve excellent 
shapes for the continents, as Lambert’s azimuthal (fig. 8) does, cannot be used satis- 
factorily to present distributions of world data, trade routes, and the like, for relation- 
ships between hemispheres are not well portrayed. 

OVALOIDAL AND ANALAGOUS WORLD PROJECTIONS 

The several equal-area ovaloidal and analagous world projections offer the most 
desirable compromiscs for general statistical purposes. 

Oldest of this group, and still one of the best, is the sinusoidal (fig. 9), first used 
by Mercator in 1538, but usually credited to Sanson and Flamsteed, much later users 
of it. Since the midmeridian and all parallels are straight lines drawn to correct 
scale, map properties are excellent near the central portion along both axes, but main- 
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tenance of true spacing of all parallels results in the poles being pulled out to distinct 
points, with steep meridian sine curves joining them. This means excessive longitu- 
dinal crowding in high latitudes. 

FIGURE S.-Laiubert’s azimuthal projection. 

FIGURE 9.-Sinusoidal equal-area projection. 

At the opposite extreme from the sinusoidal is Lambert’s cylindrical equal-area 
projection (fig. lo) ,  in which polar regions are shown with great latitudinal crowding, 
caused by successive narrowing of spaces between parallels. 

FIGURE 10.-Lambert’s cylindrical equal-area projection. 
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Mollweide’s homalographic project.ion (1805), similar to the sinusoidal but with 
ellipses instead of sine curves to represent meridians (fig. 1 I), develops high-latitude 
quadrants much more amply, though there still is excessive crowding in polar margins. 
In addition to this, parallel intervals are arranged to diminish poleward and expand 
equatorward, so that the ratio of loo of longitude to 10’ of latitude at  the Equator is 

FIGURE 11.-Mollweide’s homalographic equal-area projection. 

only about 0.75 to 1.00 as against approximately 1 to 1 on the globe. For plotting 
countries within the Tropics, this means scale and shape distortion along the full length 
of the Equator. Africa, for example, is much elongated to the north and south, even 
when plotted in the. center of the projection. 

OTHER OVALOIDAL TYPES 

In  recent years improvements in this type of projection have been made through 
using various algebraic curves similar to the parabolic to represent meridians, with 
less high-latitude compression and better shape than on the older types. Craster, 
Boggs, and Adams haye contributed notably in this regard. (See figs. 12, 13, and 14.) 

FIGURE 12.--Craster parabolic authalic projection. 
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FIGURE 13.-Boggs eumorphic authalic projection. 

FIGURE 14.-Adams quartic authalic projection. 

Another variation of the elliptical type of projection (fig. 15) was produced by 
Aitoff and Hammer, employing the same outer dimensions as on the Mollweide, but 
with parallels as curves derived from Lambert’s azimuthal projection. Though this 
makes possible better representation of high-latitude land m+sses, while preserving 
equal-area there is nevertheless excessive stretching of latitude along all margins, with 
the additional objection of curved parallels which are not true to scale, whereon com- 
parisons are much more difficult and the construction is far more complicated. 

FIGURE 15.-Aitoff-Hammer authalic projection. 
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GOODE’S “INTERRUPTED” PROJECTIONS 

Goode hit upon a technique for remedying the excessive compression of high- 
latitude margins. He repeated the pole a t  intervals, establishing two points at the 
north and four a t  the south, extending independent midmeridians to  each, and drawing 
meridians on either side to converge a t  these points from breaks at the Equator, SO 

that the earth was represented on six broad lune-like sections extending poleward. 
The first published example of this type was the “interrupted homalographic” (fig. IS), 

FIGURE 16.--Goode’s interrupted homalographic projection, 

which appeared in 1916, followed by the similarly interrupted “homalosine,” a composite 
of the homalographic and sinusoidal designed to retain the best qualities of each. 
Meridians are sine curves from the Equator to 40’ latitude, and ellipses from 40’ to 
the poles. 

Goode’s basic idea of interrupting the graticule has been widely adopted by 
American geographers, who have made frequent use of the sinusoidal and of the Aitoff 
in breaking the entire graticule into the same six segments employed by Goode, but 
keeping uniform meridian curves throughout. 

Though much better continental shapes are obtained by interrupting the graticule, 
the wide gaps in high latitudes cannot be effectively bridged by the eye. 

INTERRUPTED AND CONDENSED MAPS 

A common space-saving device consists in the partial deletion of oceans and 
piecing together of the major groups of land masses as in figure 17. This permits 
larger scale in a given area, but transoceanic relationships are destroyed so that  no 
continuous distribution lines can be drawn, and a misleading picture results. Such a 
map is desirable only where local regional details are more important than entire yorld 
patterns, which require a continuous and unbroken world projection. 
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ECKERT’S PROJECTIONS 

A different approach to the problem of developing high-latitude margins without 
sacrificing equivalence was that of Eckert, who in the early twentieth century used the 
principle of opening up the poles as straight lines one-half the length of the Equator. 
This represents a compromise between the ovaloidal types, with curved meridians 
converging at the poles, and the cylindrical graticules, on which the poles are lines as 
long as the Equator, and all lines are straight with right-angle intersections. The best 
known of Eckert’s projections are his No. 4 (fig. 18), on which the bounding meridians 
are ellipses (a modification of the Mollweide) and No. 6 (fig. 19), derived from the 
sinusoidal, with meridians as sine c u ~ v e s . ~  On both, the midmeridian is one-half the 

FIGURE 18.-Eckert’s ATo. 4 authalic projection. 

4 M. Eckert, Neue Entwilrfe fur Erdkarten-Petermsnns Mitteilungen Aus Justus Perthes’ Qeographischer Anstalt-52. Band 
1906. 
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FIGURE 19.-Eckert’s No. 6 authalic projection. 

length of the Equator, as on the ovaloidal prototypes, and parallel spacings diminish 
poleward as they do on the Mollweide, at  rates by which equivalence is maintained. 

Eckert’s No. 4 has been used. widely in Europe, and also to some extent in the 
United States during recent years; No. 6 is somewhat less common in Europe, and 
occasionally appears in South American atlases, and as a base map in this country. 
Though good for the upper middle latitudes, as of Eurasia and North America, Eckert’s 
projections show excessive longitudinal expansion in higher latitudes, because the 
poles are represented as extremely long lines and, owing to compensatory latitudinal 
stretching near the Equator, have equatorial distortions comparable with those of the 
Mollweide. 

SOME NEW FLAT-POLAR PROJECTIONS BASED ON THE ECKERT PRIN- 
CIPLE 

By inspection it seemed to the writer that a shortening of the lines representing 
the poles on Eckert’s maps, to one-third the length of the Equator instead of one-half, 
might reduce the latitudinal distortion near the Equator by as much as one-half. A t  
the same time it would diminish the longitudinal strehching in high latitudes. As the 
length of the line representing the poles is reduced, steep meridian curves should be 
avoided in order to prevent high-latitude crowding such as that seen on the sinusoidal. 
Sine curves would thus appear less desirable on world projections having narrow polar 
regions. Nevertheless, a modification of the Eckert 6 (itself a modified sinusoidal) 
was decided upon as a point of departure. It was evident a t  the outset that a similar 
projection with parabolic-type curves, preferably the fourth-degree (quartic) curves 
of Adams’ projection, to represent meridians, would give a more satisfactory over-all 
compromise. A further reduction of north-south stretching in low latitudes seemed 
desirable through shortening the midmeridian and lengthening the map Equator, even 
though this increases the conventional true-to-scale 2-to-1 ratio of Equator to polar 
axis. It is not necessary to maintain this relationship by showing the Equator as 
twice the length of the midmeridian semicircle. Linear scale is incorrect on most parts 
of all equal-area world maps, whether or not the correct axis ratio is preserved. For a 
modification employing the meridian curves of the projection shown in figure 20 of this 
publication, polar lines one-fourth the length of the Equator were used, producing the 
flat polar graticule herein presented in figure 22. 

8384370--4-3 
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a x  ay 
ax ax 
a x  by 
E&?& 

-_  
where Jf$)= 

Although the flat-polar quartic (fig. 26) was selected as the base for plotting hemi- 
sphere census maps, it is believed that the other four new projections presented in 
this publication (figs. 20, 22, 24, and 27) will provide useful bases for world statistical 
maps. 

Figure 28 shows the evolution of equal-area world projections as generated from 
the sine and tangent functions. Although this publication contains an independent 
mathematical development, these series are mentioned in an article by E. J. Baar.6 

The following section, by P. D. Thomas, contains the mathematical development 
for the new projections. 

is the Jacobian functional determinant. 

DERIVATION OF FORMULAS 

PAUL D. THOMAS 

A complete mathematical discussion of authalic projections is presented by 0. S. 
Adams in United States Coast and Geodetic Survey Special Publication No. 236, 
General Theory of Equivalent Projections. References in the following development 
and the bibliography indicate other sources. Since we are concerned here only with 
orthembadic (equal-area) projections whose parallels are straight lines, the subsequent 
mathematical development is restricted to this class of authalic projections. 

The element of area on the sphere, when referred to its meridians, X, and 
parallels, 4, is R2 cos 4d+dx where R is the radius of the sphere. If x = x ( X ,  $), y= 
y(X,+), then the corresponding element of area in the plane is J ts) d$dX, whence 

the condition for equivalence is the partial differential equation 

If the map parallels are to be straight lines, then y must be a function of + 
alone, y=y (4) and bY -=y’(4), bY a = O ,  so that equation (1) becomes 

a4 

(2) 

If the central map meridian is to be 

The mapping equations are then, 

bx R2 cos 4 -- 
ax- Y’(+> e 

+A(+).  
R2X cos 4 

Y ‘ (4) 
Integrating (2) gives x= 

the y-axis, then x=O when X=O, so that A (4) = O .  

, y=y(4), which may be written in the equivalent form R2X cos 4 
x= Y’(4) 

E. J. Baar, The Manipuletiou of Projections for World Maps. The Geographical Review, American Geographical Society of 
New York. January 1947. 
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From (3, if the x-axis is to be the map Equator, then y=O when 4=0, hence 
If the parameter 4 is eliminated in (3), there / ( O ) = O .  

results the equation of the map meridians which is of the form F ($ y)=O. 

For 2 to be finite/’(4) # O .  

n- From equations (3), with the pairs of values c # J = ~ ~  X=O; + = O ,  X = s  we have the 

ratio of the axes of the projection which is 

If equations (3) are to be modified, maintaining the equal-area property, so that 
the poles of the projection will be-replaced by lines of given length parallel to the map 
Equator, the mapping equations are of the form 

x=RC ( k i - 7  :;;> X,y=Rf(a), (5) 

The area of the zone of the sphere from the Equator to latitude C$ is 2rR2 sin 4. 
where j ( 0 )  =0, j’(a) # O .  

From (5), with X=T, we have 2sR2 sin 4 = 2 l  zdy=2n-CR21 [kj’(a)+cos alda, or 
II 

sin c$= C[kj(a) +sin a]. (6) 

’ and (6) may then be written 7r. Placing r#~=a=- in equation (6 )  gives C= 2 

n sin +=kj(a)+sin a, (7) 

Consequently equations (5) may be written as 

where M and k are arbitrary parameters, j ( a )  is the same function asf (+), but the 
values of the auxiliary parameter a must be obtained by solving equation (7) for a. 

n- For the pairs of values a = ~ ’  X=O; a=O, X=n we have from (8) the ratio of the 

axes of the modified projection, namely 

where m=k/’(O)+l. 

as in the original projection, we find from (4) and (9) that 
If it is desired that the ratio of the axes in the modified projection be the same 
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With condition (10) we may write equations (8) as 

z=’* m (k+-), y=RMj(a) .  

a From the x-coordinate in (11)) with X = r ;  a=O, -me have 2 

which is thc ratio of the line segment, which has replaced the pole, to the map-Equator 
length . 

APPLICATION TO AUTHALIC PROJECTIONS 

Consider the two functionsj($)==psin -) 4 .  F(4)  = p  tan - a  4 We havej’(+)= P 4  - cos -, 
P P P P  

These functions satisfy the requirements that j’(4) zO,  j ( O ) = O .  

00 for p= 1, 4= E hence if p= 1 in F(+) the map poles are infinitely 

P 4 F’(4)=- sec2 -. 
P P 

However F(4) 
distant. 

2 

Equations (3) become respectively 

RP 4 4 x=- X cos 4 sec - J  y=Rp sin - 
P P P 

RP 4 4 x=- X cos 4 cos2 -7 y=Rp tan - a  

P P p. 

From (4) the ratio of the axes in each case respectively is 

Since we have two arbitrary parameters p and p in equations (13) and (14) it is 
seen that any number of projections may be constructed of these types. Imposing 
arbitrary desired conditions’ on certain of the elements of the projection will usually 
cause p and p to be irrational. Examples will be subsequently given of such projections 
as well as those in which p and p are rational or integral. These will then, in some 
cases, be modified according to the development of equations (7) through (12). Pro- 
jections based on equations (13) will be designated the sine series; those based on 
equations (14) the tangent series. 

As p becomes large, it  is seen that for both types (13) and (14) a limiting case is 
4 4 P P obtained by placing sin -=tan -=-9 cos -= 1 whence x=R - X cos 4, y = R  - 4. 
P P P  P P P 

If the ratio of the map axes, 3, is t o  be g, then from either (15) or (16) one finds 

that p=q, whence we have the mapping equations of the Mercator sinusoidal authalic 
2 0  
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Y The equation of the meridians is x=RA cos -. R projection,B x=RX cos 4, y=R4. In 

this casej(4) =+, j’(+)=lJ f’(O)=l,j(;)=;- For the modified projection, equations 
(7) ,  (IO), (11),  and (12) become 

(17) 
1 
2 n sin +=ka+sin a, n=- (kr+2).  

To solve equation (17) for a we may use the Newton-Raphson  method.? For the 
first approximation we may use the first few terms of the series expansion for a in 
terms of sin 4. This may be obtained by writing the series expansion of sin a in (17), 
then reverting the resulting series (see the appendix for the formulas) to obtain 

u9+. . . 
(21) 

225-54k+k2 11,025-4,131k + 243k2-k3 
u7+ 9! (k+ 1)‘ 

u3 9-k 
3! (k+ 1 )  +5! (k+ 1) 2u6+ 7!(k+1)3 a=u+ 

where 
n sin 4 sin 4 1 

k+l  - M2 2 u=--- n=- (kr+2) .  

An alternative method of obtaining a first approximation is to graph the simultane- 
ous equations y= -ka+n sin 4=sin a on millimeter paper. This gives intersections of a 
family of parallel straight lines with the sine curve, thre.e-significant-figure estimates of 
the abscissae of the intersection points being the estimates for a. 

If we demand that the ratio (20) shall be %, then k=1, M2=- M=0.8820, 

and equations (19) become x=- (1+cos a) ,  y=RMa which are the mapping 

equations of Dr. Max Eckert’s No. 6 authalic project i~n.~ 

r+2’ 
RMX 

2 

Note: The appendix gives a special development for a general fiat-polar sinusoidal authalic projection which avoids approxi- 
mation methods. 

THE SINE SERIES PROJECTIONS 

Consider first equations (13) with p=q=l. We have x=RX, y=R sin 4. The 
meridians and parallels are straight lines parallel to the coordinate axes. The result- 
ing projection is the Lambert authalic cylindrical projection lo and the modification 

e Oscar S. Adams, General theory of equivalent projections, U. S. Coast and Geodetic Survey Special Publication No. 236, p. 17. 
7 Fr. A. Willers, Practical analysis, p. 222; J. B. Scarborough, Numerical mathematical analysis, p. 178. 

8 T. J. Bromwich. An introduction to the theory of infiniteseries, p. 156. 
9 Dr. A. Petermann, Mitteilungen Aus Justus Perthes’ Geographischer Anstalt, 52. Band 1906, p. 106. 
10 Oscar 8. Adams, General theory of equivalent projections, U. 6 .  Coast and Geodetic Survey Special Publication No. 236, p. 9. 
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n- devised here does not apply. Since - - Z +  Z 5 this projection is the upper limit- 

P 

2 2 
ing case for the function sin -. 4 We have seen that for p’very large (for p=30, 

4 4  
9 1 P  

sin -=- in radians to five decimals approximately), the form of the meridian is the sine 

curve. Between these limits lie a 
number of curves of varying degree given by A 5 q > l  , where A& a. Hence it is seen 
that the modification devised here and represented by equations (7) through (12) 
actually accomplishes a combination of the Lambert authalic cylindrical projection and 
a given authalic projection whose parallels are straight lines. 

For p=l ,  the form of the meridian is a rectangle. 

4 4 Placing p=q=3, equations (13) become x=RA cos 4 sec 37 y=3R sin 3- The 

equation of the meridians is -= 5 1 -- 4Y which represents a family of parabolas. A RA 9R 
particular case is obtained by placing p= 3 and demanding that the ratio given by (15) 

4 shall be g. We find that p= 1/3?r and equations (13) become then x=RA - cos 4 sec -, 

y = R C T  sin - which are one form of the mapping equations of the Craster para- 

bolic authalic projection.” Heref(+) = 4% sin 3’ f’(4) =- 3 d3T COS 3’ f (i)=;z 1/g, 
f ’ ( c ~ ) = ~  6. Equations (7), (IO), ( l l ) ,  and (12), become 

I .  4: 3 
4 
3 

4 1 -  4 1 

1 

(22) 
a! 1 
3 2 n sin 4=2(n- 1) sin -+sin a, n=- kJ%+ 1. 

- 
z = ~  2n+ 1 ( k + d ?  T cos a! sec 1 y=J% RM sin E. 3 

With the substitution sin a!=3 sin E-4 sin3 2 placed in (22) one obtains the cubic 3 3 

(26) 
a 4x3- (2n+ l)x+n sin d=O, where x=sin -. 3 

To solve (26) one may employ Homer’s contracted method, or some other numer- 
ical method,12 after three-significant-figure estimates are obtained from the abscissae 
of the intersection points of the graphed simultaneous equations 

11 Geographical Journal, November 1929. 
1s Mathematical tables and other aids t o  computation, National Research Council, Vol. I, p. 441f; Vol. 2, p. 28f. 
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2n+l  n sin 4- x+ ___ - 23. Y ' T  4 

However, it is possible to avoid approximation methods in solving equation (26). 
The discriminant of equation (26) is 

27n2 4-(2n+1)3 5 0  for all n>O and for all 4. 1,728 

Hence a trigonometric solution may be used. If we let 

3n 1/3(2n+1) sin 4, 
(2n+ 

sin u= 

then . a 1/3(2n+1) u 
3 . sin x= sin -= 3 

is the required solution of equation (26). 

1 5 then n=Z- If we demand that the ratio given by (25) be 

and placing x = ~  Y we find that equations (26), (27) and (28) 

With t'his value of n 

become respectively 

(i) 3 Y  -6  5 + 5  sin 4=0, sin u=@ sin 4,  y-2@ sin 
8 h- 3 

These last three equations are given, for this particular case, on page 9 of a paper by 
W. Werenskiold entitled A Class of Equal Area Map Projections, Oslo 1945. How- 
ever, Werenskiold credits R. V. Putnins with the invention of this particular case citing 
Putnins' two papers, Jaunas projekcijas pasaules kartem and Nouvelles projections 
pour les mappemondes, Geografiski Raksti, Folia Geographical I11 un IV, Riga 1934. 

If p=q=2, equations (13) become x=RX cos $ sec - 1  y=2R sin - which are the 

The equation of the 

4 4 
2 2 

mapping equations of the Adams orthembadic pr0jecti0n.l~ 
meridians is -2=z2. 

x2 2R2-y2 
X 4R-Y Hence the meridians are curves of fourth degree. 

4 4 
2 For this projection j (4)  = 2  sin 3' j ' (4)  =cos --' f'(0) = 1, f = 42. Equations 

(7), ( lo),  (11) and (12) become respectively 

n sin 4=2k sin ;+sin a, n=kfi+l.  (29) 

18 Oscar 8. Adams, General theory of equivalent projections, U. S. Coast and Geodetic Survey Special Publication No. 736, p. 46. 
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is placed in (29) and the resulting equation is 

rationalized one obtains the quartic 

(33) 

Equation (33) may be solved by Horner’s contracted method14 (which is easily 
adapted to machine computation) or by other numerical  method^,'^ after three-signifi- 
cant-figure estimates have been obtained by graphing the simultaneous equations 

y= --kx+- sin C$=ZJ- analogously as described for the sinusoidal projection. 

. a !  x4+ (k2- l)xz- (nk sin #)x+ 

n 
2 

If the series estimate is desired, one may write (29) with sin a = 2 x w ,  as 

- sin 4=kx+xJF?,  and expanding 4- by the binomial formula, reverting the 2 
resulting series in x, one obtains finally 

n 

a u3 k+7 k2+10k+33 u,+5(k3+13k2+67k+143) u9+. . . , 

(34) 
2 2 ( k + i )  +23(k+1)2 u5+ 24 (k  + 1 ) 3  27(k+ 1 1 4  

x=sin -=u+------ 

; n=k&+1. n sin 4 sin 4 where u=-=- 2 ( k + l )  2M2 
3 .  24 If p = q = ~  in equations (13)’ oneobtains the mapping equations x=Rx cos cp sec - 7  3 

y=- 3 R sin -. 24 The equation of themeridiansis 9R2 - 9R2]’ = (9Rz- 4yy2). 2 3 
(9R2-16y2)2. Thus the meridians are curves of eighth degree. j (+ )  = 3 sin 3 j  24 

f’(+)=cos 24. 3 7 f r ( 0 ) = 1 ,  f(;)=T- 3 4 3  Equations (7), ( l o ) ,  ( l l ) ,  and (12) become 

respectively 

(35) 
3 2 a  3 4  n sin 4=- k sin -+sin a, n=- -  k+ 1. 2 3 4 

x = E x  @+cos (Y sec - y=- 3 RM sin 2a 7- 
k+1 “) 3 2 

a a! With the identities sin - = 2  1-sin2 9. sin-, sin a = 3  sin E-4 sin3 - 9  equation (35) 
2a 3 J 3 3 3 3 

16 H. B. Fine, ColIege algebra, p. 457. 
16 J. B. Scarborough, Numerical mathematical analysis, Ch. IX. 
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may be written 

(39) 
ff 

n sin 4 - - 3 x + 4 $ = 3 k x J ~ ,  x=sin -. 3 

Rationalizing (39) leads to the sextic equation 

16x6+3(3k2-8)x4+8n sin +.sC3+9(l-k2)x2-6n sin +.x+n2 sin2 4=0. (40) 

Equation (40) may be solved by Horner's contracted method, or some other 
numerical method, after three-significant-figure estimates are obtained from the 
abscissae of the intersections of the graphed simultaneous equations y= -32 +n sin d= 
3kx w- 42.  

For the series estimate, we may expand by the binomial formula to obtain 

from (39) the series u=-=x-- 

and then revert this series to get the expansion 

., n sin 4 3 k f 8  x3--- kx5 kx7 5kx9 . 

3(k+1) 6(k+1) - 8(k+I)  16(k+1)-128(k+l)- ' ' 

u7+ . . . , 
(41) 

. a  3k+8 u3f 21k2+ 99k+ 128 297k3+ 2010k2+4809k+4096 
x=sin -=uf- 3 6(k+1) 24(k+ 1)2 144(k+1)3 

n sin 4 -sin 4 where u=---------------' 3(k+1) 3M2 

4 34 With p=q=- ,  equations (13) give the mapping equations x=RX cos 4 sec -7 3 4 
4 34 y=- R sin -. 3 4 The equation of the meridia.ns is 

R2~2 -e ( l-W2 'y2 )[% E 2 1 2  ( - 2  16R 9y2 )- 312=[ 8 (L-W)'- 2 16R2 The meridians are tlius 

4 34 34 seen to be curves of twelfth degree. f ( 4 )  =3 sin -7 f ' (4 )  =cos -7 f'(0) = 1,f (E)= 

$ 4 2 + f i .  

4 4 2 

Equations (7), ( lo),  (11), and (12) become respectively 
3 

(42) 

(43) 

4 3a 2 -  
3 4 3 n sin 4=- k sin -+sin CY, n=- 1/2+ JZ k+1. 

M2= k + 1  -. 
n 

4 3ff x = K X  @+cos sec - , y=- RM sin T a  k + l  3a) 4 3 

ff 3a a 
4 4 4 With x=sin -7 we write the following identities: sin -=3 sin --4 

I--- _. 

(44) 

a a! 3x-42, sin a=2 sin - 2 2  cos -=4 l/l-sin2 f(1-2 sin2 

83843i'--4- 
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3cY 
With these values of sin a and sin 4 placed in equation (42) one obtains 

3n sin +=4kx(3-4x2)+ 12x(1-2x2) 1/1-52, x=sin 4 

Ratioiializing (46) leads t o  the octic equation 

576x8+ 128 (W- 9)x6 t 48 (15- 8k2)x4+ 96 (kn sin +)$+ 

144(k2-l)2-72(kn sin +)x+9(n sin 4)'=0. (4 7) 

Equation, (47) may be solved by Horner's contracted method, after obtaining 
threc-significant-figure estimates from the abscissae of the intersections of the graphed 

simultaneous equations y=- 12kxS3n sin +=12x(1-2x2) JE2- 16kx3, x=sin - a  4 

from (46) the series 

a 

For the series estimate we may expand 1/- by the binomial formula to obtain 

3x7 +... .  n sin 4-  8k+ 15 7x5 -x-- u=- 
6 (k+ 1) x3Ss(k+l)S 16 (kf 1) 4(k+ 1) 

Reverting this series one finds that 

. a  8k+15 u,+128k2+459k+429 u5+ 

24 (k+ 1)' x=sin -=u+- 
4 6(k+1) 

u7+. . . , 4096k'+ 21669k2+39282k+24453 
144(k+1)3 

n sin + -sin cp where u=---. 4 ( k + l )  4 M 2  

The evolution of the sine series from the Lambert authalic cylindrical projectioii 
to the Mercator authalic sinusoidal projection is shown in figure 28. The inter- 

1 1  1 1 2 3  mediate projections shown are those discussed above for -=-=-) -7 -7 -. p p 3 2 3 4  

THE TANGENT SERIES PROJECTIONS 

The meridian curves for the tangent series have inflection points, and although 
partially concave toward the x-axis, the net result is a convex appearance which dis- 
torts the continents in higher latitudes. This would necessarily be so, since we have 
seen that the Mercator authalic sinusoidal projection is the upper limiting case. 

We have arranged in a tabular manner the corresponding projections for the same 
values of p and q as used for the sine series. The mapping equations are obtained from 
equations (14). The modification, equations (7) to (12), will be subsequently illus- 
trated on only one example of the tangent series. 
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Mapping equations 

X= Rx cos3 4 

y= R tan 4 

x=RX COS 6 COS’ 3q 2 

y=- 4 R tan- 3 4  
3 4 

~ ~ 

2 x = R x  COS + cos2 -5 3 
3 24 

y=- R tan - 2 3 

z=ax cos 4 cos2 9 2 

y=2R tan 9 2 

4 X= RX COS + COS’ 3 

y = 3 R  tan 1 3 

Axes 

xQ= R r  

yo-+ m 

a== R r  

yo=; R tm- 377 
8 

xQ= R7r 

yo-543R 3 

Equation of meridians Degree 

I- 
15 
I l 2  

(1 +&)‘&’ =(1- &)’ 

As a special case of the abovc tabulated projection for p=2, let p = l  instead of 
p = 2 .  The mapping equations (14) becomc then 

9 x=2RX cos.4 cos2 91 y=R tan - 2 2 

which are the mapping equations of the Foucaut stereographic authalic projection.16 

For this projection F(4)  =tan 2’ F’(9) =z see2 2’ F’(0) =z’ F (2) -= 1 
9 1 4  l a  

Equations (7), (lo), (ll), and (12) become respectively 

CY ( k + l )  sin $=k tan -+sin a 2 (49) 

16 Norbert Herz, behrbuch der LandkartCnprojektionen. p. 167. 
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a 
2 t?nB 

1+tan2Z 
Let sin a= in (49) to obtain a 

which, clearing of fractions, becomes 

(54) 

Equation (54) may be solved by Homer's contracted method or by some other 
numerical method l7 after three-significant-figure estimates are obtained from the 
abscissae of the intersections of the graphed simultaneous equations 

a! k l - ( k + 1 )  sin 4 . x 2 + ( k + 2 ) z - ( k + 1 )  sin + = O ,  z=tan2. 

X sin 4=-- 1+2 
. k x  ( k + l )  

?Jy=--+2 
2 

If a series estimate is desired we may write from (53) ( k + l )  sin 1$=kx+22(1-x~+ 
z4--2'j+9-. . .), and reverting t,his series obtain 

2u3 2(4 -k )  u,+2(10-k)(2-k)  2(112-l12k+24k2-k3) ug+. . . , 
(k+2)4 u7+ 

a 
. (k+2)3 

z=tan-=u+ -+- 
2 k S - 2  (k+2I2 

(55) 

The relation of the tangent series of projections to  the sine series of projections 
through the Mercator authalic sinusoidal is shown in figure 28. 

A,UTHALIC PROJECTION OF THE SPHEROID 

Thus far, only the authalic projection of the sphere has been considered. If it is 
desired to apply the modified projection to  the oblate spheroid one has only to sub- 
stitute for the geodetic latitude, 4, the authalic latitude p .  The authalic latitude, 0, is 
obtained by projecting the spheroid authalicaUy upon a sphere of equivalent sul'face. 

The area of a zone of the oblate spheroid is 27rb2 

where b and e are the semi-minor axis and eccentricity respectively of the meridian 
ellipse. The area of a zone of the authalic sphere is 2aR2 sin 8. Demanding these two 
zones be equal gives 

+L In ('+e sin ">I. sin 9 
2(1-e2 sin2 6) 4e 1-e sin R2 sin p= b2 

1 ( l + e  sind)-si;d( e2 e4 e6 
G In 1-e  s i n 4  1 +- 3 sin2 d+- 5 sin4 d + - 7 sin6 9 + . . .)* These expan- -- 

sions placed in*(56) give 

(57) 
3 4 
5 7 e* sin2 $+- e4 sin4@+- e6 sin6 ++ . . .) sin 4. 

$1 See footnote 12 on p. 16. 
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so that (57) may be writ- 7r. b2 1 Placing p=4~= - in (57) gives - - 2 
R2-1 +: e2+: e4++ e6+ . . 

l + ~ e 2 s i n 2 ~ + - e 4 s i n 4 4 + - e s s i n e ~ +  2 3 4 . , 
sin 4. 5 7 

2 3 4  1+,ez+-e4+-e6+ . . . . . 5 7  

computed. It has been done and tabulated in 30-minute intervals.'* 

ten finally as sin p= -- 

For specific applications, the values of the authalic latitude do not have to be 

SUMMARY 

The modification of authalic projections devised here and represented by equations 
(7) to'(12) may be applied to  any equal-area projection whose parallels are straight 
lines. It actually accomplishes a type of combination of the given projection with 
the Lambert authalic cylindrical proje~tion,'~ whose parallels and meridians are straight 
lines. It may be considered a generalization of the method of Dr. Max Eckert in 
obtaining his No. 6 projection, although he derived mapping equations of this kind 
for only a particular case of the modified sinusoidal projection. 

EXAMPLES OF MODIFIED AUTHALIC PROJECTIONS 
PROJECTION NO. 1 

I From equations (13) we have the mapping equations of a n  authalic projection 
wit,h two arbitrary parameters p and q. Let us compute the values of p and q for a 
projection where we impose the following conditions: 

The x-coordinate a t  4=80° shall be >i, the equatorial x-coordinate. The ratio 
x/y for 4=0, 'X=2O0; 4=2Oo, h=O shall be 0.85. 

From equations (13) and the first given condition we have, for $=O, that 
RPX cos whence RqX 'Os 3 A, which reduces 

80° -3  p 
Ra x=- h;  for 4=80°, that x= 

p C O S T  
80° p cos q- P 
I I 

80° to 3 cos 8oo=cos - 9  and solving for p 
P 

Again from equations (13), with the second of the given conditions and the value 
of p from (58) we have (with the value of 20°=0..3490659 radian) placing z/y=0.85, 

1.365086 X 0.3490659 - 2oo _ _ .  R 1.365086X0.3490659, whence p2= o.85 sin 14.651090 - Oeg5 Rp sin 1.365086-p 
2.2163809, and 

p= 4-9=1.488751. (59) 

With the values of p and p from (58) and (59) the mapping equations (13) 
become 

(60) 4J x=0.9169337RX cos 4 sec 1.365086 ' 7 y=1.488751R sin 1.365086* 

Coordinate table I and figure 20 correspond to mapping equations (60). 
Oscar S. Adams, Latitude developments connected with geodesy and rartography, U. 6 .  Coast and Qeodetic Survey Special 

Publication No. 67. 
18 See footnote 10 on p. 15. 
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TABLE I.-Projection No. 1 

1.365086 ~=14.88751 sin ___ [z=9.169337X cos 4 sec 1.3650861 + 
Area ratio 1 to  the square of 60,000,000 

6 

0 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

2 

cm. 
28.806 
28.755 
28.602 
28.344 

. 27.979 

27.500 
26.902 
26.174 
25.305 
24.278 

23.072 
21. 661 
20.007 
18.060 
15.750 

12.980 
9.6021 
5.3952 
0.0000 

Y 

em. 
0.0000 
0. 9511 
1.8983 
2. 8377 
3.7655 

4.6780 
5.5713 
6. 4419 
7. 2862 
8. 1007 

8.8821 
9. 6272 

10.333 
10.997 
11. 615 

12. 186 
12. 708 
13. 177 
13. 593 

PROJECTION NO. 2 

We now apply the modification given by equations (7) through (12) to the auth- 
alic projection given by equations (60). From equations (60) it is seen that /(4)= 

1.488751 sin 4/1.365086. f’(4)=1.090591 cos 4/1.365086 ,j‘(0)=1.090591, and/ - = 

1.359300. We will demand that the ratio given by (12) shall be %) which gives 

3 

(3 
-0.3056447, whencen=k./ +1=1.4154628,andm=kj’(O)+l=-. 4 1 k= -- 

35’ (0)-3.27 17 7 3- 



FIGURE 20.-Proj~ction No. 1. 838437 0 - (Face p. 24) 
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Demanding that the ratio of the axes in the modified projection shall be the same 

as in the original projection (60), we have from (10) that 

M = ~0 .941976~=0 .9705550 .  

The mapping equations (1 1) become with-the above values 

(61) 

(62) 

CY ~=0.2224837RX 1+3 COS a S ~ C  9 y=1.444915R sin 1.365086- 1.365086 
The equation (7) becomes 

1.415463 sin +=0.4550289 sin 1.3G086+ sin * C Y .  

In  order to solve equation (62) !or CY, we will use a numerical method, with the 
aid of a desk calculator, after obtaining estimates from the abscissae of the intersec- 
tions of the graphed simultaneous equations 

a! y=1.415463 sin (5-0.4550289 sin 1.365086=sin CY. 

Figure 21 shows the graphical solution, the estimates being listed in table I1 with the 
computed values of a! for 5' intervals of 0<(5<90'. 

T o  iIIustrate the ReguIa Falsi 'O method used to compute a, we will compute its 
value for I$=55'. With this value of I$ we may write equation (62) in the form 

(63) 
CY f (CY) = 1.159479-0.4550289 sin 1.365086 -sin a. 

From table 11, the graphic estimate is a1=58'18'. Now sin 58°18'=0.8508111 

and sin -___ -0.6782614. 58'18' With these values equation (63) gives 1.365086- 
f(~111) = 1.159479 - 1.159440=0.000039. 

20 Numerical Mathematical Analysis-J. B. Scarborough-p. 174. 



FIGURE 21. 
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TABLE 11.-Graphic and computed values of a for Projection No. 2. 

27 

- 
4 - 
0 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 
- 

a (Graph) 

0 1  

0 00 
5 18 
10 36 
15 54 
21 12 

26 24 
31 48 
37 00 
42 24 
47 36 

53 00 
58 18 
63 30 
68 42 
73 54 

78 48 
84 00 
88 00 
90 00 

a (Computed) 

0 I I f  

0 00 00.0 
5 18 28. 7 

10 36 56. 8 
15 55 23. 7 
21 13 48.7 

26 32 10.5 
31 50 27.4 
37 08 37.0 
42 26 35.5 
47 44 17.5 

53 01 34.0 
58 18 10. 5 
63 33 43. 6 
68 47 30. 1 
73 58 05.5 

79 02 25.4 
83 52 27.1 
88 02 01.0 
90 00 00.0 

From an examination of the differences in the trigonometric table being used, it 
is seen that a close value will be given by (~~=58~18’11’’. With the values 

sin 58°18’11‘’=0.8508391 and sin (58018f11”)=0.6782900J 1.365086 we have from (63) that 
~ ( c Y Z )  = 1.159479- 1.159481 = -0.000002. 

( a z - 4  l f ( 4  I 
Ih) I + If(%) I’ By the Regula Falsi method a better value of a is given by a3=al + 

the process being repeated until the desired accuracy is obtained. Using the above 

values of al, a2, j (a l ) ,  j(a2) we obtain a3=5~018’~ll‘’X0~000039=58018’10’15. 

Sin 58°18’10’!5=0.8508379J sin (58018’10”)=0.6782887, 1.365086 and with these values we 

have from (63) that f(a3)=1.159479-1.159479=0, hence the correct value is 
a=58°18’10‘!5. This accuracy is sufficient since we are computing our table for this 
projection to only five significant figures. 

It will be noticed that only one Regula Falsi estimate was necessary since the 
graphic value, aIJ was close and a judicious choice of az, by use of differences in the 
trigonometric table, was made. Hence a careful graphic solution should be con- 
structed, preferably on millimeter paper, and careful use should be made of the tables 
in choosing the next-best estimate for a. 

Table 111 and figure 22 correspond to mapping equations (61) and the computed 
values of Q from table 11. 

0.000041 

838437’41t-5 
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TABLE 111.-Projection No. 2 

X,y=14.44915 sin ____ 1.3;086] L 

0 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

Area ratio 1 t o  the square of 60,000,000 

0 I I f  

0 00 00.0 
5 18 28.7 

10 36 56.8 
15 55 23. 7 
21 13 48.7 

26 32 10. 5 
31 50 27.4 
37 08 37.0 
42 26 35.5 
47 44 17. 5 

53 01 34.0 
58 18 10.5 
63 33 43.6 
68 47 30. 1 
73 58 05. 5 

79 02 25.4 
83 52 27.1 
88 02 01.0 
90 00 00.0 

X 

em. 
27.958 
27. 916 
27. 791 
27. 579 
27.278 

26.883 
26. 388 
25. 784 
25. 059 
24. 199 

23. 182 
21.983 
20. 568 
18.888 
16.886 

14. 492 
11.670 
8. 660 
6. 990 

Y 

em. 
0.0000 
0.9798 
1. 9552 
2. 9214 
3.8741 

4.8088 
5. 7211 
6. 6069 
7. 4617 
8. 2817 

9.0626 
9. 8007 

10.492 
11. 132 
11.717 

12. 240 
12. 691 
13.040 
13. 193 

PROJECTION NO. 3 

For an example of the modified sinusoidal authalic projection we demand that 
the ratio given by (20) be jg, whence k=% Demanding also that the ratio of the axes 
be the same as in the original sinusoidal projection, we have from (18) that 
M2=6/(n+4) =0.84014872, .whence M= 40.84014872=0.9165963. The mapping 
equations (19) become 

~=0.3055321R)\(1$2 COS a), ~=0.9165963Ra. (64) 

Equation (I 7) becomes' 

1.785398 sin +=0.5a+sin a. (65) 

The series (21) becomes 

1 17 793 72,161 
9 540 68,040 u7+14,696,640 u9+ * * 

ff=u+- u3+ - us+- 

where u=- sin ' = ss-4 ~ sin 4=1.190265 sin 4. M 2  6 
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The series (66) may be used to obtain first estimates for a, or a graph of the simul- 
taneous equations y=-OO.5a+1.785398 sin $=sin a, as shown in figure 23, may be 
made, three-significan t-figure estimates of the abscissae of the intersections being the 
f i s t  estimates for a. In  either case a variation of the Newton-Raphson method may 
be advantageously employed, with the aid of a desk calculator, to  complete the solution 
to the required accuracy. 

If a is an approximation to the required value 
of the root of an equation f(z)=O, and A a  is a small correction which must be 
applied to a to give a more accurate approximation to the required accuracy of the 
root, then z = a + A a  and j ( a + A a )  =O, very nearly. Expanding j ( a + A a )  by Taylor’s 
theorem one obtains 

The Newton-Raphson Method, 

Now consider A a  to be expanded in a power series in f ( a ) ,  namely 

Substituting the value of A a  from (68) in (67) one obtains 

In  equation (69) we now place the sums of the coefficients of like powers of j equal 
to zero, and solve for the values of a, b ,  c-as follows: 

I I :  l+aj’=O, a=--- I’ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The values of a, b ,  e-returned to equation (68) give 

, whence 

(70) 

For practicable use of the higher order terms of (70), the derivatives f” ,  f”’- 
must be easily computed. Otherwise all terms involving higher-order derivatives 
than the first in equation (70) may be ignored and successive approximations made 
with the resulting formula, which is the Newton-Raphson Method.21 Of course the 
accilracy required may not marrant use of the higher-order terms in any event. 

L ~ ~ = ( Y + A ( Y = ( Y - T - - - - - - .  I r”/” J 3  
(-.,’5 ( 3  f “ , 2 - - J ~ j ” ‘ )  - . . . . I 2 . ~ 3  

21 Practical .4nalysis, Fr. A. Willers, p. 222. 
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For the solution of equation (65), the successive derivatives are easily obtained. 
We may write (65) in the form j(a)=0.5a+sin a--1.785398 sin 4, whence j’(a)= 
0.5+cos a, j”(a)=-sin a, etc. We will not need /”’(a) since we are going to us0 
seven significant figures in the computations in order to obtain five-significant-figure 
values to be listed in the coordinate table for the projection. 

With the above values of j’(a) and j”(a),  ignoring all terms involving derivatives 
higher than the second, we may write equation (70) as 

j j 2  sin a 
0.5+cos as2(0.5+cos a)3’ at=a-- 

wherej(a)=O.5a+sin a--1.785398 sin 4. 

obtained by means of equation (71). 
Table IV lists the graphical estimates from figure 23, and the computed values 

TABLE 1V.-Graphic and computed values of a for  Projection No. 3 

4J 

0 

0 
5 

10 
15 
20 

25 
, 30 

35 
40 
45 

50 
55 
60 
65 
70 

75 
80 . 
85 
90 

(Y (Graph) 

O f  

0 00 
6 00 

11 54 
17 48 
23 42 

29 42 
35 30 
41 30 
47 18 
5 3 . 0 0  

58 42 
64 12 
69 42 
74 54 
79 36 

83 36 
87 00 
89 12 
90 00 

~ 

CY (Computed) 

O f  I t  

0 00 00.0 
5 57 03. 3 

11 53 57.2 
17 50 31. 3 
23  46 32.9 

29 41 45. 2 
35 35 45.5 
41 28 02.2 
47 17 50.7 
53  04 07.1 

58 45 18. 6 
64 19 09.0 
69 42 15.6 
74 49 34.9 
79 33 32. 4 

83 43 01. 2 
87 02 39.2 
89 13 54.3 
90 00 00.0 

~ 

01 (Radians) 

0.0000000 
0. 1038629 
0. 2076805 
0. 3114023 
0.4149662 

0. 5182910 

0.7237403 
0.8254955 
0. 9262224 

1.0254711 
1. 1225813 
1. 2165699 
1. 3059662 
1.3885665 

1. 4611375 
1. 5192084 
1. 5573879 
1.5707963 

0: 6212667 

As an example of the use of (71), we now compute the value of a for 4=50°. 
Sin 50°=0.7660444, and we have from (65) 

j(a) = 0.5atsin a- 1.3676941. (72) 

Born table IV the graphic estimate is 0l,=58~42~=1.0245083 radians. Sin 58’42’= 
0.8544588 and cos 58°42f =0.5195191. Equation (72) gives with these values j(al)= 
-0.0009812= -9.812 X With this value of j(q) and the other above-needed 
values equation (71) becomes 



IU I i.. ’ 
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9.812X 10-4+0.8544588X (9.812)2X lo-*  
~~2=1.0245083+ 1.0195191 2 (1 .O 195191)3 

a2= 1.0245083$9.624X 10-4+4.0X lop7 

a2= 1.0254711 radian~=58"45'18~!6. 

Sin 58°45'18r!6=0.8549586, and equation (72) gives f ( a q )  =0.5127355+0.8549586 
-1.3676941=0. 

I t  will be found that no  repetitions are necessary for O<+<90° if equation (71) 
is used with the graphic estimates as listed in table I V .  I f  available, a seven-place 
table giving the natural trigonometric functions for radian arguments is very useful. 
However, it is not difficult to convert degrees to radians by the formula 
l0=0.0174532925 radian, since it is assumed that a desk calculator will be used. 

Table V and figure 24 correspond to the computed a values of Table I V  and to 
the mapping equations (64) for *this example of the modified sinusoidal projection 
which we will call the flat-polar sinusoidal authalic projection. 

Hence the correct value is a2=58045'18r!6. 

TABLE V.-Projection No. 3, $at-polar sinusoidal authalic projection 
[x=3.055321(1+2 COS a)X; ~=9.165963a] 
Area ratio 1 to t h e  square of 60,000,000 

0 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

' f f  

O I  r r  

0 00 00.0 
5 57 03. 3 

11 53 57.2 
17 50 31.3 
23 46 32. 9 

29 41 45. 2 
35 35 45.5 
41 28 02. 2 
47 17 50.7 
53 04 07.1 

58 45 18. 6 
64 19 09.0 
69 42 15.6 
74 49 34.9 
79 33 32.4 

83 43 01.2 
87 02 39.2 
89 13 54.3 
90 00 00.0 

radians 
0.0000000 
0. 1038629 
0. 2076805 
0. 3114023 
0. 4149662 

0. 5182910 
0. 6212667 
0. 7237403 
0. 8254955 
0. 9262224 

1.0254711 
1. 1225813 
1. 2165699 
1. 3059662 
1.3885665 

1. 4611375 
1. 5192084 
1.5573879 
1.5707963 

X 

cm. 
28.796 
28. 692 
28.383 
27.872 
27. 166 

26. 275 
25. 209 
23.984 
22. 618 
21. 133 

19. 556 
17. 918 
16. 257 
14. 623 
13. 078 

11.699 
10.588 
9.8560 
9.5986 

Y 
- 

cm. 
0.0000 
0. 9520 
1.9036 
2.8543 
3.8036 

4. 7506 
5.6945 
6.6338 
7. 5665 
8.4897 

9.3994 
10. 290 
11. 151 
11.970 
12. 728 

13. 393 
13. 925 
14. 275 
14.398 
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PROJECTION NO. 4 

For a n  example of the mod5cat.ion of the Adams authalic projection, we make t*he 
same requirement as for the sinusoidal, namely, that the ratio given by (32) be )$ and 
that the ratio of the axes in the modified projection be the same as in the original 
Adams projection. Hence from (32) we find k=)4 and with this value of k, equation 
(30) gives W=3/(f i+2)=0.878679657,  whence M=0.93737914. The mapping 
equations (31) become 

x=0.31245971 R k ( l + 2  cos a sec a/2),  y=1.87475828 R sin a/2. (73) 

Equations (29) and (33) become respectively, since n=-+ JZ 1 = 1.70710678, 
2 

1.70710678 sin +=sin CY+sin 2 a, (74) 

x4-0.75 x2- (0.85355339 sin +)x+0.72855339 sin2 +=O, (75) 

a where x=sin - a  2 

The series estimate from (34) is 

a 1 5 17 7195 
2 3 12 24 5184 x=sin -=u+- u3+- u5+- u7+- u9+. . . , 

where u=(n sin @I) /3=0.56903559 sin @I. 

Figure 25 is the graphic solution of the simultaneous equations y= -0.5x+0.85355. 
sin +=xJ=. The curve y = x d m  is easily constructed from a table of natural 

trigonometric functions since x=sin - 9  - x p = s i n  - cos -=- sin a. It needs to 

be constructed only from the origin to its maximum point x=--, y=-. 2 2 

CY a a 1  
2 y- 2 2 2  

1 / 2 1  

While the series (76) will give good estimates for a for +<45', it is evident that 
as + becomes large and as ++goo, too many terms of the series would be needed. The 
graphic estimates are consistent over the entire range of 4, although only three-signifi- 
cant-figure estimates are obtainable from a graphic solution carefully constructed on 
millimeter paper. 

I n  table VI are listed the graphic estimates, at 5' intervals, with the computed 
values of a. 

Since Horner's contracted method is well known and described in most college 
algebra textbooks,22 the mechanics of the method will not be described here. It is a 
good machine method for use with the graphic or series estimates to solve equation (75). 
We will describe a comparable method based on equation (70) to solve equation (74) 
for a. It is assumed that a desk calculator and eight-place tables of natural sines and 
cosines are available. 

E. B. Fine, College Algebra, pp. 456-457. 
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From equation (74) we have j(a)=sin ?+sin a--1.70710678 sin 6. 2 

With these l a !  cos 2-cos a!. 
I f f  1 . a  
2 2  4 2  j’(a) =- cos -+cos a, j”(a) = -- sin --sin a, j”’(a) = -- 

values of j‘, f ”, f ”’ we may write equation (70) as 

(77) 
/ (a>  v j2( f f> (3u2+W0./3(4 

q = f f - - - - + - - - -  
6 d  ’ w 2w3 

CY wherej(a)=sin ?+sin a-1.70710678 sin $I, ~ ~ 0 . 2 5  sin 2+sin a, 2 
a a! tc0.125 COS -+COS CY. 2 ~ ~ 0 . 5  COS -+COS a, 2 

TABLE VI.-Graphic and computed values of a for Projection No. 4. 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

’ 0.000 
0.049 
0.099 
0. 149 
0. 198 

0. 246 
0.294 
0.340 
0.386 
0. 431 

0.474 
0.516 
0.555 
0.593 
0. 628 

0. 658 
0. 684 
0. 700 
0.707 

a Sin 5 
(Computed) 

0.00000000 
0.04963551 
0. 09913758 
0. 14837208 
0. 19720334 

0.24549317 
0.29309936 
0.33987360 
0.38565828 
0. 43028132 

0. 47354791 
0.5 1522630 
0. 55502285 
0.59253633 
0. 62717148 

0. 65797562 
0.68335568 
0. 70076993 
0.70710678 

0 I I f  

0 00 00.000 
2 50 42. 267 
5 41 22.238 
8 31 57. 353 

11 22 24. 476 

14 12 39. 530 
17 02 36. 965 
19 52 09.024 
22 41 04. 608 
25 .29 07:494 

28 15 53. 448 
31 00 45. 295 
33 42 44.237 
36 20 13.924 
38 50 30.286 

41 08 44. 392 
43 06 23. 138 
44 29 19. 710 
45 00 00.000 

a 

0 I I f  

0 00 00.000 
5 41 24. 534 

11 22 44. 476 
17 03 54. 706 
22 44 48.952 

28 25 19. 060 
34 05 13. 930 
39 44 18.048 
45 22 09.216 
50 58 14. 988 

56 31 46.896 
62 01 30. 590 
67 25 28.474 
72 40 27. 848 
77 41 00,572 

82 17 28.784 
86 12 46. 276 
88 58 39. 420 
90 00 00.000 

As an example of the use of (77), we compute the value of a for $I=45’. 

Sin 45°=0.70710678, whence f ( a )  =sin e+sin a- 1.20710678. From table V I ,  the 

graphic value is sin - = 0.431,. whence a=51°03’43‘!484=0.89120140 radians. 

Sin a=0.77782737, COS (r=0.62847800, COS %=0.90235193, 

~(a)=0.431$0.77782737--1.20710678= +1.72059)< 
f2(a)=2.9604X IOp6, f3(a)=5.0936X 

2 
a! 

2 
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a! ~ = 0 . 5  COS -+COS a=1.07965396, W3=1.259, W5=1.5, 2 

2 
a! v=0.25 sin -+sin a!=0.8856, 3u2=2.353, 

t=0.125 cos -+cos a!=0.7413, and 3v2+wt=3.2. a! 

2 
With these values equation (77) becomes 

1.72059X 0 8856X2.960X10-6 - 3.2X5.1X10-g 
1.07965396 + . 2X1.259 6X1.5 ai=0.89120140- 7 

a!, = 0.89120140- 1.59364 X 
al = 0.88O60880 radians= 50°58'14'!988 , ?= 2j029'07'!494. 

sin a1=0.77682546, sin %=0.43028132, and we have f ( a ! , )  =0.43028132+0.77682546- 

1.20710678=0. Note that the last term of (77) was not necessary to give an eight- 
place check. In  general, if the graphic estimates from table V I  are used, equation (77) 
will give a check to eight significant figures without the use of the last term. The 
values of a thus computed will give, when used in the mapping equations (73), co- 
ordinates to six significant figures. 

After the 5" intervals have been computed, the estimates for the 1" intervals may 
be obtained by differencing and interpolation, the values then being computed to the 
required accuracy by equation (77). 

1.04X lo-'-- 2 X IO-', 

TABLE V1I.-Projection No. 4, pat-polar quartic authalic projection 
[z=3.1245971(1+2 cos a sec 3 a)X; y=18.7475826 sin 4 a] 

Area ratio 1 to  the square of 60,000,000. 

4 
- 

0 

0 
5 

10 
15 
20 

25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

U 

O f  ' I  

0 00 00.000 
5 41 24.534 

11 22 44. 476 
17 03 54. 706 
22 44 48. 952 

28 25 19. 060 
34 05 13.930 
39 44 18.048 
45 22 09.216 
50 58 14. 988 

56 31 46.896 
62 01 30. 590 
67 25 28. 474 
72 40 27. 848 
77 41 00.572 

82 17 28.784 
86 12 46. 276 
88 58 39. 420 
90 00 00.000 

2 

em. 
29. 4486 
29. 3760 
29. 1580 
28. 7943 
28. 2843 

27. 6273 
26. 8224 
25. 8686 
24. 7651 
23. 5117 

22. 1093 
20. 5614 
18. 8767 
17. 0741 
15. 1929 

13. 3133 
11. 5923 
10. 3073 
9.8162 

* Y  

cm. 
0.00000 
0.93055 
1. 85859 
2. 78162 
3. 69709 

4. 60240 
5. 49490 
6.37181 
7.23016 
8.06673 

8.87788 
9. 65925 

10.4053 
11.1086 
11. 7579 

12.3355 
12. 8113 
13. 1377 
13. 2565 
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Table VI1 and figure 26 correspond to the computed values of a listed in table VI 
and to the mapping equations (73) for this example of the modified Adams projection 
which we will call the flat-polar quartic authalic projection. In table IX, computed 
in 1’ intervals for this example of the modified Adams authalic projection, the corre- 
sponding authalic latitudes 23 were used, thus taking into account the spheroidal shape 
of the earth to improve the accuracy in compiling large-scale maps. 

PROJECTION NO. 5 

For a final example of the computation of the coordinates for a flat-polar projec- 
tion we choose the parabolic type of the sine series given by p=q=3 in equations (13). 
This is not the Craster parabolic projection. I n  the Craster projection q = 3 , p =  JX 
so that the ratio of the axes is f h .  If the Craster projection is opened at the poles to 
produce the flat-polar type projection, it naturally shows greater north-south stretch- 
ing in equatorial regions as did the sinusoidal whose axis ratio is also %. (See fig. 24.) 

4 The sine series parabolic projection, whoseaapping equations are x=RX cos sec -, 3 
y=3R sin $7 whose meridians are the parabolas -= 1 -- 7) and whose axes ratio is 

3 1 
- or < - 7  gives less north-south distortion in equatorial regions when opened a t  the 279 2 
poles. 

X 4 Y2 
3 RX 9 R  

; (9 ; 4 
3 For this projection ,f(+) = 3  sin -7 f’(4) =cos -7 j =-) j ’ (0)  = 1.  We may use 

equations (22) to (28) but with a different value of n. Requiring that the ratio given 

by (25) be 55 and with n=kj (:)+ 1 = 2  k+1 we have k=-, n=1.75. From (23) 

M2=2nfl=!=0.857142857, whence M=0.92582010. 

3 1 
2 

3n 7 
The mapping equations become 

X= 0.30860670RX (’+%), y=2.7774603R sin 3’ a 

Equations (26), (27), and (28) become respectively 
a x3-1.125x+0.4375 sin +=O, x=sin -. 3 

7 
18 sin u=- & sin+) 

To illustrate the computations by means of equations (80) and (81), the value 

of sin - for ~$=65O w q  be computed. From (80), with J6=2.44948974 and 

sin 65O= 0.90630779, we have sin u=sX2.44948974 X 0.90630779= 0.86333008, whence 

u=5go 41’ 33”.237, -=19O 53’ 51”.079, sin -=0.34033888. From (81) x=sin -= 

a 
3 

7 

U U a 
3 3 3 

1.22474487 XO.34033888=0.41682830. 
B S e e  footnote 18 on p. 23. 
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25 
30 
35 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 

Table VI11 gives the computed values of a! and the mapping coordinates computed 
from (78) for this modified parabolic projection which we will call the flat-polar para- 
bolic authalic projection. Figure 27 illustrates this projection. 

0. 16861261 9 42 25.787 
0. 20174312 11 38 20.078 
0.23452334 13 33 48.699 
0,26686694 15 28 40.499 
0. 29866761 17 22 39. 339 

0. 32978893 19 15 21. 474 
0. 36004757 21 06 11.223 
0.38918631 22 54 13.962 
0. 41682830 24 38 04.222 
0. 44240196 26 15 26.051 

0,46502555 27 42 42.753 
0,48336972 28 54 20.578 
0,49563642 29 42 42.211 
0. 50000000 30 00 00. 000 

TABLE VII1.-Projection No. 5 ,  $at-polar parabolic authalic projection 

X,y=27.774603 sin 

Area ratio 1 to  the square of 60,000,000 

0 

0 
5 

10 
1.5 
20 

-0.00000000 
0.03392862 
0.06780697 
0.10158364 
0.13520480 

0 1  I !  

0 00 00.000 
1 56 39. 623 
3 53 16. 930 
5 49 49. 336 
7 46 13. 667 i 

ff 

O I  I /  

0 00 00.000 
5 49 58.869 

11 39 50.790 
17 29 28. 008 
23 18 41.001 

29 07 17. 361 
34 55 00. 234 
40 41 26.097 
46 26 01. 497 
52 07 58.017 

57 46 04. 422 
63 18 33.669 
68 42 41.886 
73 54 12. 666 
78 46 18. 153 

83 08 08. 259 
86 43 01. 734 
89 08 06. 633 
90 00 00.000 

X 

cm. 
29.0855 
28. 9962 
28. 7289 
28.2851 
27.6676 

26.8804 
25. 9287 
24. 8195 
23. 5617 
22. 1668 

20. 6499 
19.0309 
17. 3376 
15. 6095 
13.9052 

12. 3130 
10. 9636 
10. 0321 
9. 6952 

Y 

cm. 
0.00000 
0.94235 
1.88331 
2.82145 
3. 75526 

4. 68315 
5.60334 
6.51379 
7.41212 
8. 29537 

9. 15976 
10.0002 
10.8095 
11.5772 
12. 2875 

12. 9159 
13.4254 
13. 7661 
13.8873 

It will be noted that the computed values of the coordinates, in all the tables 
except table IX, have been multiplied by 10. Then the coordinates as listed in the 
tables if taken in centimeters give a projection whose area ratio is 1 to the square of 
60,000,000. This is assuming that the radius of the earth, considered a sphere, is 
R=6,000,000 meters. In  table IX, since we used the authalic latitudes in the com- 
putations, we should in scaling use the radius of the authalic sphere which is 
R=6,370,997.2 meters with respect to the Clarke 1866 spheroid. In  addition, it 
should be noted that for all the tables, except table IX, only the coordinates of the 
bounding meridian have been computed, since the meridians are equally spaced for 
each parallel of latitude in all the authalic.projections for which tables are given. 

The choice of numerical method used above for any particular projection was of 
course arbitrary and we have by no means exhausted the methods by which coordi- 
nates may be computed for modified projections as described here. Obviously there 
are functions other than the sine and tangent which may be employed to generate 
series of such projections. 
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FLAT-POLAR QUARTIC AUTHALIC PROJECTION TABLE FOR WORLD OR SECTIONAL 
MAPPING 

Table VI1 was computed for 5-degree intervals only, without using authalic lati- 
tudes, the earth being considered a sphere whose radius is 6,000,000 meters. 

The following table, in 1-degree intervals, for the construction of the flabpolar quar- 
tic authalic projection (Projection No. 4, fig. 26) for world or sectional mapping was 
computed with the corresponding authalic latitudes 24 to take into account the spheroidal 
shape of the earth, the spheroid of reference being the Clarke 1866. For this spheroid 
the radius of the corresponding authalic sphere is 6,370,997.2 meters. The coordinates 
as listed are in centimeters and give a map whose area ratio is 1 to the square of 1,000,000. 

'4 See footnote 18 on p. 23. 
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TABLE IX.-Flat-polar quartic authalic projection (1 O interval). 
[x= 199.06799 (1 f2cos a sec a/2)X; y= 1,194.4080 sin 421  

- 

,at 
ud  
4 
- 

0 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 
45 

- 

lY 

0 I I f  

0 00 00. ooc 
1 07 58.536 
2 15 57.064 
3 23 55. 556 
4 31 54.016 

5 39. 52. 425 
6 47 50.764 
7 55 49.02c 
9 03 47. 17f 

io 11 45.21a 

11 19 43. 106 
12 27 40. 842 
13 35 38. 394 
14 43 35. 744 
15 51 32. 848 

16 59 29.678 
18 07 26.216 
19 15 22.406 
20 23 18. 218 
21 31 13.602 

22 39 08.506 
23 47 02.882 
24 54 56. 664 
26 02 49.800 
27 10 42. 204 

28 18 33. 812 
29 26 24. 526 
30 34 14. 272 
31 42 02.940 
32 49 50.422 

33 57 36. 602 
35 05 21.356 
36 13 04. 550 
37 20 46. 016 
38 28 25.606 

39 36 03. 136 
40 43 38.420 
4 1  51 11.244 
42 58 41. 376 
44 06 08.580 

45 13 32. 584 
46 20 53.096 
47 28 09.800 
$8 35 22. 356 
49 42 30.380 
50 49 33.474 

x coordinate 

180° 

cm. 
1,876. 172 
1,875.988 
1,875.438 
1,874. 521 
1,873.237 

1,871.586 
1,869.568 
1,867. 182 
1,864.429 
1,861.309 

1,857. 820 
1,853. 963 
1,849. 737 
1,845. 142 
1,840. 178 

1, 834. 844, 
1,829. 140 
1,823.065 
1,816. 619 
1,809.801 

1,802. 611 
1,795.048 
1,787. 112 
1,778. 802 
1,770. 118 

1,761.058 
1, 751. 622 
1, 741. 810 
1,731. 621 
1,721. 054 

1, 710. 108 
1,698. 783 
1,687.079 
1, 674. 993 
1, 662.527 

1, 649. 680 
1, 636. 450 
1,622.837 
1, 608. 841 
1, 594. 462 

1,579. 699 
1, 564. 551 
1,549.020 
1, 533. 105 
1, 516. 805 
I, 500. 122 

Longitude from ct 

goo 

cm. 
938.08f 
937.994 
937.71s 
937. 261 
936. 619 

935.793 
934.784 
933.591 
932.215 
930. 654 

928.910 
926. 981 
924.868 
922.571 
920.089 

917. 422 
914.570 
911.532 
908.309 
904. 900 

901. 306 
897. 524 
893. 556 
889.401 
885.059 

880.529 
875. 811 
870. 905 
865.810 
860. 527 

855.054 
849.392 
843.539 
537.497 
531. 264 

524. 840 
318. 225 
311.418 
304. 421 
797. 231 

789.849 
782. 276 
774. 510 
766. 552 
758. 403 
750. 061 

60' 

cm. 
625. 391 
625. 329 
625. 146 
624. 840 
624. 412 

623. 862 
623. 189 
622. 394 
621. 476 
620. 436 

619. 273 
617.988 
616. 579 
615.047 
613.393 

611. 615 
609. 713 
607. 688 
605. 540 
603. 267 

600. 870 
598. 349 
595. 704 
592. 934 
590.039 

587. 019 
583. 874 
580. 603 
577. 207 
573. 685 

570.036 
566. 261 
562. 360 
558. 331 
554. 176 

549. 893 
545. 483 
540. 946 
536. 280 
531. 487 

526. 566 
521. 517 
516. 340 
511. 035 
505. 602 
500. 041 

tral meridian 

30" 

cm. 
312. 69: 
312. 665 
312. 57% 
312. 42C 
312. 20f 

311. 931 
311. 595 
311. 197 
310. 738 
310. 218 

309. 637 
308. 994 
308. 289 
307. 524 
306. 696 

305.807 
304. 857 
303. 844 
302. 770 
301. 634 

300.435 
299. 175 
297. 852 
296. 467 
295.020 

293. 510 
291. 937 
290. 302 
288. 603 
286. 842 

285. 018 
283. 131 
281. 180 
279. 166 
277. 088 

274. 947 
272. 742 
270.473 
168. 140 
165. 744 

263. 283 
260. 759 
258. 170 
255. 517 
252. 801 
250. 020 

5O 

cm. 
52. 116 
52. 111 
52. 096 
52. 070 
52.034 

51. 989 
51.932 
51. 866 
51.790 
51. 703 

51. 606 
51. 499 
51. 382 
51. 254 
51. 116 

50. 968 
50. 809 
50. 641 
50. 462 
50. 272 

50. 073 
49: 862 
49. 642 
49. 411 
49. 170 

48. 918 
48. 656 
48. 384 
48.101 
47.807 

47. 503 
47.188 
46. 863 
46. 528 
46. 181 

15. 824 
i5. 457 
15. 079 
14. 690 
$4. 291 

$3. 881 
L3. 460 
L3. 028 
L2. 586 
42. 133 
L1. 670 

lo 

cm. 
10. 423 
10. 422 
10. 419 
10. 414 
10. 407 

10. 398 
10.386 
10.373 
10. 358 
10. 341 

10.321 
10. 300 
10. 276 
10.251 
10. 223 

10. 194 
10. 162 
10. 128 
10. 092 
10.054 

10. 015 
9.972 
9.928 
9.882 
9. 834 

9.784 
9. 731 
9. 677 
9. 620 
9.561 

9. 501 
9.438 
9.373 
9. 306 
9. 236 

9. 165 
9.091 
9.016 
8.938 
8.858 

8. 776 
8. 692 
8. 606 
8. 517 
8.427 
8.334 

y coordi 
nate 

cm. 
0.000 

11. 809 
23. 616 
35. 421 
47.222 

59.019 
70. 809 
82.593 
94. 368 

106. 133 

117. 888 
129. 631 
141. 361 
153. 076 
164. 775 

176.458 
188. 123 
199. 768 
211. 392 
222.995 

234. 575 
246. 130 
257. 660 
269. 162 
280. 637 

292.081 
303.495 
314. 877 
326. 225 
337. 538 

348. 814 
360.053 
371. 252 
382. 411 
393. 527 

404. 600 
415. 627 
426. 608 
437.540 
448. 422 

459. 253 
470.030 
180. 752 
191. 417 
502. 023 
512. 568 
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- 
a t i .  
udc 
4 
- 

0 

45 
46 
47 
48. 
49 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67. 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

85 
86 
87 
88 
89 
90 
- 

TABLE 1X.-Flat-polar puartic authalic projection (1 O interval)-Continued 

Q 

0 I I f  

50 49 33.474 
51 56 31. 188 
53 03 23.036 
54 10 08.490 
55 16 46.978 

56 23 17.858 
57 29 40. 438 
58 35 53. 962 
59 41 57. 604 
60 47 50. 436 

61 53 31. 464 
62 58 59.572 
64 04 13. 522 
65 09 12.000 
66 13 53.476 

67 18 16.316 
68 22 18.672 
69 25 58. 508 
70 29 13.546 
71 32 01. 256 

72 34 18.814 
73 36 03.040 
74 37 10. 412 
75 37 36.960 
76 37 18.206 

77 36 09. 166 
78 34 04. 214 
79 30 56.992 
80 26 40. 410 
81 21 06.486 

82 14 06.202 
83 05 29.552 
83 55 05.312 
84 42 41.032 
85 28 02.962 

86 10 56.088 
86 51 04.098 
87 28 09. 596 
88 01 54.388 
88 31 59.762 

88 58 07.078 
89 19 58.488 
89 37 17.678 
89 49 50.784 
89 57 27. 126 
90 00 00.000 

z coordinate 

180" 

cm. 
1, 500. 122 
1, 483. 056 
1,465.608 

1,429. 571 

1,410. 984 
1,392.023 
1,372.688 
1,352.983 
1, 332.913 

1, 312. 482 
1, 291. 695 
1, 270.560 
1, 249. 082 
1,227.272 

1,205. 140 
1, 182.697 
1, 159. 958 
1, 136. 939 
1, 113. 658 

1,090. 137 
1,066. 402 
1, 042.481 
1,018.407 

994. 219 

969.962 
945.686 
921.450 
897. 322 
873. 379 

849.708 
826.410 
803.598 
781.400 
759.959 

739.432 
719. 992 
701. 824 
685. 126 
670.099 

656.947 
645.866 
637.035 
63.0. 607 
626.701 
625. 391 

1,447.779 

Longitude from central meridian 

90" 

cm. 
750. 061 
741. 528 
732. 804 
723.890 
714.785 

705.492 
696.011 
686.344 
676.492 
666. 457 

656. 241 
645.848 
635. 280 
624. 541 
613. 636 

602. 570 
591. 349 
579.979 
568.469 
556.829 

545.069 
533.201 
521. 240 
509.203 
497.110 

484. 981 
472.843 
460.725 
448. 661 
436.689 

424. 854 
413. 205 
401. 799 
390.700 
379.980 

369.716 
359.996 
350.912 
342. 563 
335.049 

328.474 
322. 933 
318. 518 
315.304 
313. 351 
312. 695 

60' 

cm. 
500.041 
494. 352 
488. 536 
482.593 
476.524 

470.328 
464.007 
457.563 
450. 994 
444. 304 

437.494 
430. 565 
423.520 
416.361 
409.091 

401.713 
394. 232 
386. 653 
378.980 
371.*219 

363.379 
355.467 
347.494 
339. 469 
331.406 

323. 321 
315. 229 
307. 150 
299. 107 
291. 126 

283.236 
275.470 
267.866 
260.467 
253.320 

246.477 
239.997 
233. 941 
228.375 
223.366 

218.982 
215. 289 
212.345 
210.202 
208.900 
208. 464 

30" 

cm. 
250. 020 
247. 176 
244. 268 
241. 297 
238. 262 

235. 164 
232. 004 
228. 781 
225. 497 
222. 152 

218. 747 
215. 283 
211. 760 
208.180 
204. 545 

200.857 
197. 116 
193. 326 
189. 490 
185. 610 

181.690 
177. 734 
173. 747 
169..734 
165.703 

161. 660 
157. 614 
153. 575 
149. 554 
145. 563 

141. 618 
137. 735 
133. 933 
130.233 
126. 660 

123. 239 
119.999 
116. 971 
114. 188 
111. 683 

109.491 
107. 644 
106. 172 
105. 101 
104.450 
104. 232 

5O 

cm. 
41. 670 
41. 196 
40. 711 
40. 216 
39. 710 

39. 194 
38.667 
38. 130 
37.583 
37. 025 

36.458 
35.880 
35. 293 
34. 697 
34.091 

33.476 
32.853 
32. 221 
31. 582 
30. 935 

30. 282 
29. 622 
28. 958 
28. 289 
27. 617 

26. 943 
26. 269 
25. 596 
24. 926 
24. 261 

23. 603 
22. 956 
22. 322 
21.706 
21.110 

20.540 
20.000 
19.495 
19.031 
18. 614 

18. 249 
17.941 
17.695 
17.517 
17.408 
17.372 

1" 

em. 
8.334 
8. 239 
8. 142 
8.043 
7. 942 

7.839 
7.733 
7. 626 
7.517 
7.405 

7. 292 
7. 176 
7.059 
6. 939 
6.818 

6.695 
6.571 
6.444 
6.316 
6. 187 

6.056 
5. 924 
5.792 
5. 658 
5.523 

5.389 
5. 254 
5. 119 
4.985 
4.852 

4.721 
4.591 
4.464 
4. 341 
4.222 

4.108 
4. 000 
3.899 
3. 806 
3.723 

3.650 
3.588 
3.539 
3.503 
3.482 
3.474 

y coordi- 
nate 

cm. 
512. 568 
523.051 
533.468 
543.819 
554.101 

564.311 
574.447 
584.507 
594.488 
604. 387 

614. 201 
623. 927 
633.562 
643. 102 
652. 544 

661.883 
671.114 
680.234 
689.237 
698. 117 

706.869 
715.486 
723. 960 
732. 283 
740.447 

748.441 
756. 256 
763.878 
771.295 
778.491 

785.450 
792. 153 
798.581 
804.710 
810.516 

815. 973 
821.050 
825.718 
829.944 
833.695 

836.938 
839.643 
841.780 
843.326 
844.261 
844.574 



APPENDIX 

ALTERNATIVE DEVELOPMENT FOR THE FLAT-POLAR SINUSOIDAL AUTHALIC 
PROJECTION 

The following development for a general flat-polar sinusoidal authalic projection 
was suggested by a particular case developed by W. Werenskiold in his paper, A Class 
of Equal &-ea Projections, Oslo 1945. 

The meridians of the Mercator sinusoidal authalic projection are the sine curves 
Y given by the equation x=RA cos E. Let us introduce an arbitrary 

parameter c into this equation and write 

(See p. 15.) 

x= RA cos 9. (82) 

From (82), with A = r  and y=O, it is secn that the map equatoriaI semiaxis isxo=Rr. 
If we desire the length of the map polar semiaxis to be some factor m(O<m<l) t' imes 
the length of the map equatorial semiaxis we must have 

yo=mxo=mRr. (83) 

If we desire the x-coordinate a t  +=goo,  X=r, to  be some factor n(O<n<l) times the 
length of the map equatorial semiaxis, then placing the value of yo from (83) in (82) 
we must have 

x,=Rr cos (cmr) =nx,=nRr. (84) 
2 

Solving (84) for c we find 
cos-'n 

m r  
c= -. 

The area of the sphere from the Equator to  latitude 4 is known to be 2rR2 sin 4. 
Hence to mainhin the equal-area property we must have from (82) and (85) 

or 

y cos-'n 

m r  y cos% 

2R2m2 sin (" cos-ln), 
Rmr 2nR2A2 sin 4=2Rr 

A2 sin 4=- cos-In sin (-t;.I;;;;-)J 

where A2 is the area scale factor. 
n- Now when y=yo=mRr, then 4=5 and with these values equation (86) gives 

m r  
cos n A2= 7 sin (cos-In) 

With the value of A2 from (87), equation (86) becomes 

Now let 

sin (=)=sin y cos-'n (cos-ln) sin 4. 

and (88) becomes 
sin a=sin (cos%) sin 4. 

42 

(87) 
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From (82), (83)' (85) and (89) the mapping equations become 

Y a  cos a, -=-. 2- 
yo mn yo cos-'n 
--- 

Consider the particular case m=n=1/2. Equations (S?), (go), and (92) become - 
respectively A2=@, sin a=sin 60' sin 4, -=p x x  cos a, --- Y- 

4 Y o  yo 60'' This is the case 

discussed on pages 9 and 10 of Werenskiold's paper. 
The obvious advantage of equations (90) and (91) is that the parameter a may 

be computed without recourse to  approximation methods. 
The coordinates as computed by equations (90) and (91) will vary slightly from 

those found by using equations (17) and (19) where the same conditions are imposed 
on each set of equations with regard to axes ratio, etc. However, the difference in 
shape of the two projections so produced is negligible. 

Werenskiold uses advantageously the above method of beginning with the alge- 
braic equation of the meridian curves to obtain particular cases of the flat-polar para- 
bolic and flat-polar ellipsoidal projections, but does not avoid approximation methods 
for the ellipsoidal type. Where the degree of the meridian curves is greater than fhe 
second, the method would be impracticable except for some special cases. 

FORMULAS FOR REVERSION OF SERIES 

The formulas for reversion of series whose terms are in ascending order of odd 
powers of the variable are included here for convenience. 

If the series u=x-b3x3-b5x5-b7xi -bgx9-  . . . . 
is reverted to obtain the series 

~=u+a,u~+a,u~+a,u~+a~u~+ . . . . 
then the formulas for the a's in terms of the b's are 

a3=b3 
a5= 3bi-t b5 
a7=12bif8b3b5+b7 
a9 = 55632(b32+ b5) + 10b3b7+5b52+ba. 
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- SINE SERIES 

LAMBERT CY LlNORlCAL 
x=RX 

y=R sin + 9 x=RX cos + secn + 10 9 
y = 5 R sin,;?. (b 3 4 3 

x= R X cos t j  see 7 + y = ~ R s i n ~ t . )  

TANGENT SERIES 

AOAMS QUARTIC 

X=RXCOS+ seck+ y=ZRsin$+ 

CRASTER I PARABOLIC * 
x = R x cos 4 secF+ y = 3 ~  sin f + 

FOUCAUT STEREOGRAPHIC * 

FIG. 28.-GENERATlON OF EQUAL-AREA PROJECTIONS FROM THE SINE AND TANGENT FUNCTIONS. 

"Nofe that the numes Crosfer and Foucaut huve been used io show ibe positions of their projecfions in the series, the actual mapping equations differing slightly from fhose given above. 

Y =4 x = f? x cos c# 

MERCATOR SINUSOIDAL 

838437 0 - (Face p. 44) 


