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PREFACE.

In this publication an attempt has been made to gather
into one volume all of the investigations that apply to the
system of polyconic projections. This was undertaken
mainly for the reason that no such treatise has ever
been produced in the English language. No adequate
treatment even of the ordinary, or American, }]))0137—
conic projection has been given in any separate publica-
tion. The work by Thomas Craig entitled ‘A Treatise on
Projections,” published by the United States Coast and
Geodetic Survey, 1882, gives almost no treatment of the
;Smlyconic projection. as used by the Coast and Geodetic

urvey, but merely makes reference to the various yearly
reports of the Superintendent of the Survey for informa-
tion regarding it.

The subject of projections as a whole seems to have been
considerably neglected by authors who emI}I)llexK the English
language. A small work by Arthur R. Hinks, published
by the Cambridge University Press in 1912, is an excellent
introduction to the general subject, and 1gnres promise of
some awakened interest in this branch of applied mathe-
matics.

In the preparation of this publication the followin,
works were especially.consulted: The most excellent wor.
by M. A. Tissot, Mémoire sur la Représentation des Sur-
faces et les Projections des Cartes Géographiques, Paris,
1881; Traité des Projections des Cartes Géographiques, by
A. Germain, Paris, 1866 (?); Lehrbuch der Landkartenpro-
jektionen, by Norbert Herz, Leip%i‘g, 1885; Notes on Stere-
ographic Projection by Prof. W. W, Hendrickson, U. S. N,

It is hoped that the treatment of the various classes of
polyconic projections may be found complete enough to
serve all practical purposes,
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GENERAL THEORY OF POLYCONIC PROJECTIONS.

By Oscar S. Apawms,
Geodetic Computer, U. 8. Coast and Geodetic Survey.

DETERMINATION OF ELLIPSOIDAL EXPRESSIONS. -

In the consideration of the subject of map construction,
the initial question to be decided is the manner in which
the meridians and parallels are to be represented in an or-
derly way upon the {plnne surface of themap. This is done
by the adoption of some mathematical expression that
determines & one-to-one relation between the meridians
~ and parallels and their corresponding curves in the plane.
In the consideration of this determination, the earth can be
looked upon either as a sphere orasan ellipsoid of revolution.
When especial accuracy is desired, the eccentricity must be
taken into account. If the formulas are determined for the
ellipsoid, they can be reduced to those for the sphere by
setting the expression for the eccentricity equal to zero.
Since the ellipsoidal form is to be taken as the basis of
" most of the following discussions, a preliminary determi-
nation of the necessary lines will be given.

In figure 1 let EPS represent & quadrant of the generat-
ing ellipse. P and P’ are contiguous points; PK is the
normal at P and P’ K the same at P’. If the equation of
the ellipse be given in the parametric form

T=a COS ¥
y=bsin y,

a will represent the equatorial radius or the semimajor axis,
and b the polar radius or semiminor axis; y is the eccentric
angle as indicated in figure 1  If ¢ is the latitude of the
point P, it will be seen that :

tan <p==—dx;
dy
but ,
dx=—asin ¢y dy

dy= b cos y dy.
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X
‘“

~

X
Hence
tan_¢=% tan .
We denote the eccentricity by e and define it by the
equation '
, 02—b? b

€= az —&5!

hence

. —g:m.

¥i16. 1.—Generating ellipse with the radii of curvature of the earth.
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By substituting this value, we obtain
tan ¥ =+/1—¢ tan o.

- tan _ J1—é tane '=—_\/"1—¢’ sin ¢
S14tan?y +/14-tan’p—é tan?p /1 —e sin’e

sin ¢

1 - 1 _ cos ¢
J1l+tan?y +/1+tan’e—é tan’py +/1 —é sin’p

cos Y=

secy dy = VI—¢ sec?o do

_ Ai=ésectpdp  J1—€dp
" 14 tanZp—¢® tan?p 1 — ¢ sin’e

‘d,//

If we denoﬁe' the radius of curvature’P‘K of the meridian
bﬁ’ pm, We have from the general theory of plane curves
the relation ppde=ds. : o

But « o .
ds = V@@ + dy* = V¥ SiY F I cos'y Y = ayI— ¢ cos'y dy.

Also )
Vv1—é

| NT=F o= e

4 1—¢ ain?e
. an
7 g, (1—&)dp
VI=é cos?y dy = = sintg)™
or: : ;
_a(l-&)dy
o == asinig)™’
Hence

_ a(1-¢
Pn =T =@ sin?g)"

. Tha normals at any two points on the same parallel circle
Intersect in a point gﬁ" of the axis of rotation. If we pass
a plane through these two normals and then let the nor-
mals approach each other until they finally coincide, we
obtain a vertical plane tangent to t%e given parallel and
}i‘erpendicular to the meridian at the point of tangency.

he radius of curvature of a small arc‘in this direction is

given by PK’ because the normals of two contiguous
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oints of this arc intersect in X’. If we denote this radius
Y pn, We have

_ & _acosy a
cos ¢ cos¢ (1—é sinp)h

Pn

If the eiement of length of the meridian is denoted by dm,
we obtain '

a(l—e?) do

dn=m_"g sP)™ "

This is an elliptic integral that it is not necessary to
evaluate in this place, since we shall have occasion to
employ it only in the differential form.

DEVELOPMENT OF GENERAL FORMULAS FOR THE POLY-
CONIC PROJECTIONS. '

Tissot defines a polyconic projection as one in which
the parallels of latitude are represented by arcs of a non-
concentric system of circles, with the centers of these
various circles lying upon a straight line. This line of
centers is generally called the central meridian; but it is
not necessarily the central meridian of any given map
and in cases d};es not appear upon the map at all.

In the following discussion the latitude will be denoted
by ¢, and the longitude out from the central meridian
will be denoted by A. ,

In figure 2 let ¢ M be the arc of a circle that represents
a given N on the parallel of latitude ¢, with radius SQ
and center at 8. Let R M’ be an arc of equal A on the
parallel of latitude ¢ +dg, with radius 8’ and center at S’.
0 is the point of intersection of the central meridian and
the Equator. Let OS be denoted by s. Then since s is &
decreasing function of ¢, S8’ is equal to —ds. If the
angle @SM is denoted by 6, we have

'SP= —ds cos 0.
S’P= —ds sin 0.
M'N=S"M'x £ M'S’N.
But
L M8 N=/LOS'" M — LOS'N -
= £08'M'— LOSN— £8'NS,
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since .
LOS'N= LOSN+ £S'NS.
But f
L0S' M/~ L0SN=2 g,
@
S’ M'=8"N=p+dp,
at the limit
8’P_~—dssiné
LS'NS——gTJ—V—~————p+dp ’-

. (o]
1@, 2.—Differential elements of a polyconie projection,
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Therefore

v a0 [ (e 4257)

or, at the limit,

M/ N () -+ds sin 0.

MN=8M-SN=8M~-8'N-SP,
since at the limit
S8’N=PN.
But
SM—8 N=—dp.

By substituting this value and the value of SP, we obtain

MN= —~dp+ds cos 6.
If wo denote Z M’ MN by ¢, we have at the limit

o6 ds .
.M’N ps;'*'d_é sin 0
N Y=TpN = dp
= CO8

de

If we denote the change in scale or the magnification
along the meridian by km and that along the parallel by
kp, we shall obtain the following expressions for these
quantities: »

M' M= MN sec ¢=(ds cos 8—dp) sec .
The are of the meridian on the earth that is represented
by M M is given by
_ a{l—¢e) de
dm=pude =g g,y
Hence we have

_(1—~ésinp)"s (ds (_Z_p)
by =y ai—e) do °°° e—d(p ) sec .
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The arc of a parallel on the map between the meridians
of longitude X and A+ d\ is equal to

p (g;) d), since ¢ is constant.

This arc upon the earth is equal to the expression

a d\ cos
p2008 ¢ N = (T goratse
Therefore ,
0 (1= sinp)s20
P” acose oM
The ratio of increase of area, denoted by X, is given by

K= kmkp sin (%——1[/>=_kmkp cos ¥,
or
s P st (ds o d5)dg.
a?® (1 —¢) cos p\de deo/) ON

CLASSIFICATION OF POLYCONIC PROJECTIONS.

08 8

_The general division of polyconic ﬁ)rojections is sub-
divided mto the following classes which are not, however,
mutually exclusive:

(1) Rectangular polyconic projections.

(2) Stereographic meridian and horizon projections.
(3) Conformal polyconic Frojections.

(4) Equal area or equivalent polyconic projections.
(5) Conventional polyconic projections.

(6) Ordinary, or American, polyconic projection.

The general differential formulas developed above will
now be applied to these classes in the order named.
RECTANGULAR POLYCONIC PROJECTIONS.

- The condition that must be fulfilled if the meridians and
parallels of the map are to intersect at right angles is
expressed analytically by

y=0.

Since this condition requires, whatever the value of s and p,
at

tan ¢y =0, .

o  ds . .
pa—‘-F**'a;aSln 0=0.

We must have
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14
Let us introduce as a new variable a function of ¢
denoted by u and defined by the equation ‘ .
lds_1du
pde ude

But
1ds 1 06
"~ 8in 6 O

hence
1 06 ldu
sin 8 Oy u do

By integrating this partial differential eﬁmtion with respect
to ¢, we obtain the required relation. is integration may
be carried through in the following manner.

1 28 du
d(P-“—‘ —f—:l';

sin 6 e

(* 22 220
vt _  (du
sin 6 DT u

6 d¢

log sin %—10g cos—§-= —log u-+log T(N).*

sa function of A that is added since the integration
with respect to ¢. The function T'(A) is as yet

LogT(\) i
is partial
undetermined.
' log tan % =log 1;1(3\_)
or
tan _0_ — E@_ .
2 Uu

*This function has no connection with the gimma function defined by the second

Eulerian integral,
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Sinee for A=0, § must also be zero, the function T'(A) must
vanish with A, This is the only condition that is required
to give a rectangular Eolyconic projection.

we choose an ar itrarg function for I'(A) that van-
ishes with A and another arbitrary function of ¢ for u and
set

i‘llll which s is also an arbitrary function of ¢, or provided
at

_ (e du
with p arbitrary. )
_Since in this case of the rectangular polyconic projec-
tion ¢ =0 and sec ¢y =1, we have

_ (1—=ésin® ¢)'h (ds dp
k==& («7&00.8 07?0)

=p(l —sin? ) T/(\) .

p a cos ¢ ) o8 6,
since
of T'(\) .
a—x——f—(—x)—' sin 8.

If we wish the parallel of latitude ¢ to lie on_the developed
ase of the cone tangent to the earth at latitude ¢, we
must have
___acoty
P A—ésin? gy’

11, besides, the parallels are to be spaced along the central
‘meridian in proportion to their true distances, we must
0 take
8=f”’ a (1—¢) de + a cot ¢ .
o (1—ésin? p)’h " (1~ ¢ sin? p)'h
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With these values we obtain

ds___a(l—¢) __ acosec’yp 4 208 o
de (I—esin2e)t (1—esin? ¢)f ' (1—e sin? )’

=a(l —cosec? p)  acot? o
A=esin? g)h-  (I—é sin? o)’

hence

Therefore

by integration, we obtain
log u= —log sin p=log cosec ¢,

- or, passing to exponentials,

2% == Ccosec ¢.
But- -
6 T\ .
tan 3 =~§T) =T(\) s;n @.

The length of an arc of the developed parallel is given by

2a cot ¢ ‘0 % 2a cos ¢ “261
p0=~—~———————~——-~tan§ 8= T\
(1— ¢ sin® @)/ tan ) (1 —é sin? )" tan 5

-

@
.

On the equator, since ¢=0 and §=0, we obtain for an arc
from A =0 to \ the value

equatorial arc=2a I'(\).

If we now add the condition that the equatorial arcs are
to be preserved in their true length, we have

2a T(\)=a\
or

r(x)=§-
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This value gives

tar L.
an 5 =7 sii ¢.

This gives tho full determination of the projection. With

these values wo shall now determine the magnification
along the meridians and parallels. '

()=

DO =

dp _ _@cosec® ae® cos? ¢
do (1—ésin? @)'fi ' (1 —é? sin? p)*h

— @ cosec? o+ aet+ae® cos? ¢
(1—¢® sin? o)™

and

ds___acotte

de (A —ésin? o)l
Substituting these values in the differential formulas on
pages 12 and 13, we obtain

cosec? ¢ €(l+cos®p) 1—ésin’p -
Z'lll"— 1—e - 1 — ¢ - 1—& cot <p0080
o — sin 0
P )\sin¢

The formula for kn shows that the value of &y along the
central meridian is equal to unity; that is, the scale is
maintained constant along this meridian as was provided
by the choice of the value for s. This means that the
parallels are spaced along the central meridian in pro-
portion to their distances apart upon the earth. Since

is is true, with the known radii we can construct the
parallel arcs either by drafting or by plotting by means of
computed coordinates. The only things remaining to be
determined are the points of intersection of the meridians
with these parallels. .

In order to determine these points, we have first

tan _q= an cos ¢
PR G T (I —sin? o)
112948°—19——2 )



18 . 8. COAST AND GEODETIC SURVEY.

But the right-hand member of this- equation is equal to
one-half the arc of the parallel of latitude ¢ from A=0 to
the value \. If then in figure 3 we lay off the distance M N
on the tangent to the parallel drawn from the point where
it crosses the central meridian and take it equal in length
to one-half the arc of this parallel up to the given longitude
A\, the angle MON will be equal to one-half of 6. To de-
termine the point of intersection, from M as center with a
radius N M construct an arc intersecting the parallel at .
The point M, is then the intersection of the meridian A
with the parahel .

This projection has been much used by the English War
Office for the construction of maps.

M

Y

Fra, 3.—~Construction of arc of parallel on rectangular polyconie projection,

We can easily determine the radius of curvature of the
meridians in this projection. In figure 2

M’ M= (ds cos 60— dp),

since in this case cos y=1.

3
1—- tan’% 1 —72- sin? ¢
cos 0= =

= . .
1+ta.n’% 1 +£~sin’ @

The angle between two successive radii of curvature is the
angle between the tangents to the parallels of ¢ and ¢ +dy
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at the points M and M’, respettively, since the projection
.is rectangular. This angle is evidently equal to d6.
By differentiation we obtain

0d0 A
seC’; 5 =% C0S ¢ do,

since X is & constant for a given meridian.
Hence :

d0=)\ cos ¢ drp.

1-- %zsinzga

The radius of curvature of the meridian, denoted by p,.
is given in the form

d d 2.
M’.M (d_tsp cos 0"‘&7’;) <1 +% Slnz ¢>
=Tde A COS @ —

f

Ps

By substituting the values of (—%Z‘i; ) g‘—’;, and cos ¢ and reduc-
ing, wefind ‘
N, N2 .
afl—&4+(1— e")z sin? ¢ - 5 €0s? o (1—éesin? )]

8= .

A cos ¢ (1—¢® sin? ¢)3?

The magnification of area becomes

K= :
cosec? p. & [l+4cos? ] 1—ésinZp . sin 6
1—e 1—¢ [—a  °ot’ ¢ cos 0))\singo'
But
2
l—lSiI).”(p
cos f=—
142- sin?
+4 sIn” ¢
and
. Asin o
sin 0 =——g5—-

1+% sin? ¢
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By substituting these values we obtain

2 2 2
K [(cosec ><1+——s1n2 ) € (11-|-cos ) <1+—-s1n2 ‘p)
— 2
—1 ; sin cot? ¢ (1——— sin? )] (l +~ sin? )

or, on reduction,

N, N 1—esin?e
1+ sin go+2 o8’ o5

4
2 2
(1 +% sin? ¢)

If we equate this to unity, we shall find the equation of a
curve along which there is no exaggeration of area. On
reduction this equation becomes

K:

2 2
"\ sint o +4N2 sin? o — 8N co? ¢ (1 € sm ) 0,
which is satisfied by A=0, or by the equation
— 2 sin?
N ginf o4 sin? o — 8 cos? e (l_le_:si?_">=o.

The areas of all sections north of this curve are diminished
and those lying south of it are increased in their represen-
tation on the map.

1f we confine ourselves to the consideration of the sphere
K may be expressed in the form

NN
1+Z+ZOOS¢

2 2°
(1 + % sin® ga)

The differential element of area of -the representation is
given in the form
}1
1455

4 +t1

7 N L N\2
(1 +a—sin2¢)

K:

cos2 )

dS =a? cos ¢ do d\.
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If the whole area of the sphere is represented on one con-
tinuous map, one-fourth of the area of the representation
will be given by integration of this expression from A=0

to A= and from ¢=0 to =12r.

To obviate the use of the fractions, it is better to let A =2y;
y will then range from 0 to % -and dA=2 dy.

The total area 8 is given by
= 1422 cos?p

—8a? | T .
8 Sa,j;* cos ¢ do T (g om? )

T 1+y*+y® cog?e = — x cot? ¢
2 Qin2 2 2
o (l4g'sin’o) 2(1 +%sin2¢)
+cosec® ¢ tan —? (—725 sin ¢)-

. - 2
S g2 f—;[_w+2 cosec %¢ cot ¢
0

™ .,
(1 +Z sSin qo)
tan —! (g sin ¢ ) de.

x

S =4a2"-_.—12£ cosec ¢— cosec? ¢ tan ("2~r sin (p)]?
2 1 7|,
+(~4- + 2) tan 2}
The quantity in brackets has to be evaluated for the lower
limit, since 1t takes the form o —oco at this point. Let us
write it in the form

. mw .
325 sin ¢ — tan (—?: sin (p)

sin? ¢ !

which takes the form —8— at the lower limit.

T . tan —1 T .
Jim | 380 ¢—tan (g5 sne

@0 sin? ¢
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zr‘COS
T cos ¢ 2 ’
2 - ™ ., ol
=lim 1+~1-sm ¢ _1. l- —l—é-smgo -‘=0
=0 2 8In ¢ €OS ¢ T e=0 ., '
1+Zsm ©
Therefore,

S =a’[(4 +?) tan™ -72£+27r].

This value is greater than the surface of the sphere in the
ap&)‘roximate ratio of 8 : 5.

he length of the outer meridian for the representation
of the sphere is given by four times the integral of a ku de

ki3

from ¢=0 to =75

with A== in the value of 6.

For the sphere kn= cosec’® o— cot? ¢ cos 6,
and for the outer meridian

7r2
1+7£ (14 cos? )
k= - .
. 1+I sin? ¢

The length of the meridian is, therefore, given by

2 d‘P-

.’rﬂ
*1+Z(1+ cos? ¢)
l=4af7 p
° 1+j4— sin? ¢

By means of a table of integrals we find that the value of
this integral is given in the form

1=2an[(4+ ) — 1].

The length of a great circle at the outer limit of the map
18 increased in the ratio

(44+7*)% —1 : 1 or about 2.72 : 1.
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STEREOGRAPHIC MERIDIAN PROJECTION.

In the discussion of the stereographic meridian and
horizon projection, it is probably best.to consider first the
sphere and later to indicate the manner in which the
ellipsoidal shape can be taken into account. To employ
the differential formulas given before, we need only to
set e equal to zero.

Any stereographic projection is a perspective projection
of the sphere, either upon a tangent plane or quon a dia-
metrz‘tllr})lane, with the center of the projection lying upon
the surface of the sphere in such a way that the diameter
through the point of projection is perpendicular to the

ID

Ti¢. 5.—Radias from center on stereographle projection.

plane upon which the projection is made. 'We shall make
use of the diametral plane since there is only a difference
of scale between that and the tangent plane.

In figure 5 let the circle QMRP be a plane section
of the sphere determined by the diameter PQ and the
projecting line PM. P is the point of projection, O is
the trace of the diametral plane upon which the map is to
be constructed, and the point @ profected into O forms
the center of the map. Let the angle QOM be denoted
b ﬁ; then the arc QM is the measure of p. All points
og the sphere at the arc distance q from @ will lie upon a

e

circle the plane of which is parallel to the plane OR. The
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lines that project the points of this circle will all lie upon
a right circular cone that will cut the plane OR in a circle
the radius of which will be equal to ON. OP is equal to a,

and the angle OP N is equal to 123
Hence

ON=p=atan ZQ)

If wo denote the angle between p and the X axis in the
mapping plane by », we have

s=p cos w=a tan L cos wza_,_s_ir_x_wg_g
pEm = 2 “1+cos p

~psin w=a tan £ sin w__a_____g_____sin sin
y=psme 2" T+cos p

T

Fiq, 6.—Transformation triangle for meridian stereographic projection.

. If the point of projection lies on the Equator as it does
In the stereographic meridian projection, the values of
he functions of p and « must be determined in terms of
¢ and A, ’ . '

In figure 6, let WQV be the Equator and T the pole
and let 7°Q project into the central meridan of the map.
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P is the point that we were considering in the previous

figure, :
PQ=p
- TQ =‘21£
TP=3—¢
LPTQ=\
4PQT=§—M

From the trigonometry of the spherical triangle we
have the relations ‘

€08 P =08 N\ CO8 ¢
sin p sin w==sin ¢
sin  cos w=sin \ cos o.

" If these values are substituted in the equations for z
and ¥, we obtain

asin \ cos ¢
i+cos A cos ¢

_ asing
¥ 1+4cos A cos ¢

From these equations, by solving for sin N and cos },
there result

. i
sin A==— tan
Y ¢

_as8in p—y
a co8 A= y cos ¢
ence
2o, (asin o—y)?

or, by reduction,
_ 2?49 —2ay cosec ¢= —a’
or, as usually written,

2?4 (y —a cosec ¢)? =da’cot’p.
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This equation shows that the parallels are circles, and that
the parallel of latitude ¢ has the radius @ cot ¢, and that
the center lies at the point z=0, y= a cosec . The paral-
lels are therefore circles, nonconcentric, but having their
centers on the line z=0. The projection is thus seen to
be a polyconic 1;l)l'ojection in the sense of Tissot’s definition.
g %y solving the original equations for sin ¢ and cos ¢ we
n
. y sin A
S ¢=4 sin A—z cos
[ __.__.___._.m .
€08 €= 7 'sin N—g cos \
By squaring and adding, the equation of the meridians is
«obtained.
42 sin®\ 22 ~1
(@sin A\—z cosM\)? ' (asin A—z cos\)? 7’

or, on reduction,
:;c”+y3+2a:c cot A==qa?
or, as usually written,
(z+a cot N\)?+y*=a? cosec\.

The meridians are thus seen to be circles also; the circle for
the longitude A has the radius @ cosec ), and the center lies
at the point z=a cot \, y=0.

In this projection we have, therefore,

p=a cot ¢
. 8=0 COSecC ¢

. x sinAsin ¢ .
sln f =~ = —
p l4cosAdcose

§_Q= sin A
O¢ 1-4coshcose

@— —a cot c
do= @ cosec ¢

g)+¢1§ i asinhcote asinAcobty _
P Tde S =T cosncos ¢ 1+coshcose
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Therefore
- tan ¢ =0, or y =0, and the projection belongs in the class
of the rectangular polyconic projections. S
The equations for the ma.gnj.ﬁ]ca,tion'along the parallels
and along the meridians, respectively, are for the sphere -

éﬁ cos 0—@
b de do
" a cos ¢
k =__P_.; o8,
? acos ¢ ON
But
dp "
7e —a coseC®p
-, COSA+cCos ¢
cos 0—1 +cos \ ¢cos ¢
and

00 _ sin ¢ ]
OM 14cosXcos e

By substituting these values in the formulas for %y, and %,
we obtain

. —a cot ¢ cosec ¢ {cos A+ cos o)

2
) 1-4-cos A cos ¢ ' T4 cosec’y
k= o
-1
1+cos A cos ¢
_acoty sin ¢ 1

PTG cos g 1+FCOSACOS g 14COSACOSg

The projection is therefore conformal, since the meridians
and parallels form an orthogonal net and the magnifica-
tion along the meridians and along the parallels is the same.
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§0°

30

90°

(1

30°

oo

0%~

Jo

60

or

30°

F16, 7.—~8tereographic meridian projection of & hemisphere,
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DERIVATION OF STEREOGRAPHIC MERIDIAN PROJECTION
BY FUNCTIONS OF A COMPLEX VARIABLE.c

; The element of length upon the sphere is given in the
orm

dS?=a? (dp? +d\? cos?p)=a? cos?p (czsz + d)\’)
If we set ‘
cos ¢
dS becomes

d8?=a? cos? ¢ (do®4-dN2).

Any conformal ¥>rOJect1on may then be expressed as a
function elther of o+4 X or of o—4 ), in which 4 denotes as

usual 4/ —1.
os
co8 ¢ fSln(z-’r(p
=fcos”(4+ -!-assm”(4 >
2 sin (4 2) cos (4+2)
. T, P
cos <4 2)d sin <Z+'2—)(_Z‘<_p
an (5 9 J e
sin\7+3 COS\172

o=+ log, sin (£+-g)—log,a cos (£+§)

o=log, tan <g+ g),

a See General Theory of the Lambert Conformal Conic Projection, Special Publication
No. 53, U, 8. Coast and Geodetic Survey.
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or, on passing to exponentials,
¢’ =tan (—g + g—)
&’ 4+ ¢ = tan (i—r—i-g)-i- cot(£+§)
_ sin? (i—r + g) + cos? (z + g)

) T,
81N (Z'I"z—) cos (‘I-*_E)
2

2 2
in (T+2) cos (+2) sin("to) ¢
| 2sm(4+2>cos(4+2) sm(2+<p)

+o -
e e
—"_42——-—' =86C ¢

or

cosh o=sec ¢

e+a _ e—a

2
sinh ¢ = /cosh’s—1

=sginh o

sinh o= +/sectg— 1 =tan ¢.
sinh 1\ =14 sin A,

I cosh I\ =c¢os .
f we take
ai [e+% (o—iN) e—% (a-—-ik)]

241y = -
4 ARG | G-

We obtain the stereographic meridian projection.
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This can also be written in the form
z+iy=ai tanh (";'M)

ai sinh (U;?»‘)

B4 Y =7 X"
cosh (a 5 ’b)\)

" @t sinh (L—Q—E) cosh (%ﬂ)
cosh (5:2—%—)—\> qosh (a—;—zk)

a4 (sinh ¢ —sinh 4\)
" cosh o+4cosh 4\

‘@i (sinh ¢—4 sin \)
"~ cosh s4cos A

_ @ sin A {-ai sinh o
"~ cosh g+cos N

_asin M+ai tan ¢
sec ¢+ Ccos A

_ @ sin \ cos ¢+aisin ¢
B 1+4cos X\ cos ¢

By equating the real parts and the imaginary parts this
becomes
__asin \cos ¢
T=1Tcos X cos @

___asing
y—1+cos)\cosup

We thus by. this method .arrive at the same values that
were obtained before by expressing analytically the results
of the direct projection. The fact that the projection can
be derived by the use of functions of a complex variable
establishes the conformality of the projection.*

*See Coast and Geodetic Survey Speclal Publication No. 53, The General Theory of the
Lambert Conformal Conic Projection.
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In order to take into consideration the ellipsoidal shape
of the earth, we proceed in the following way. . If we
‘deni)lte the element of length upon the ellipsoid by az,
we have

dz?=

(1-é)2de? | coslp dN? ]

(1 —e sin%p)® ' 1 —¢é sin’e

a? cos’e (1—e)? dy? »
%= 2 ],
dz 1—é sin’p I:coszgo (1-& sin2¢)3+d}‘

Iﬁ this case
do =

(1—¢) de

cos ¢ (1 —é sin’p)

_ (1 —é& sin?p—¢ cps%) deo
cos ¢ {1 ¢ sin’yp)

- do __e2 cos ¢ de
cos ¢ 1—é sinp

de _ €& (ecos ¢ do GCOS~¢(Z<p)
sin<12_r+(p 2\1—¢sing: l4esing

[cos’(4 5 +sin? (4 2) do
Zsln<4 2)cos(4 2)

ecos pdp  €CO8 <pd<p>
Z\I<esin ¢ 1+€sln(p

cos (4 2) d sin (Z+§> @‘—p
sin (4 2) J con (5 %) i

ecos(pdga E e cos pdop
1—esm¢ J 1+esing

o=log, sin ( ) 2) log, cos ( its 2 loge (1—esin ¢)

__10g9 (1+esin o)
1—-es1n<p
| U—lOge [t&n (4 2) (1+€ Sln ‘P> ]
. 1—esin ¢\3
tan (4 2) (1+e sin so>

112048°—19——38
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We can now map the ellipsoid conformally upon: the
sphere by the relations S
M=

A
and
T\ o (T2 . (L=esine\g,
tan(4+2 )—tan(4+2> <+esin¢>

The latitudes ¢’ are computed for the parallels that we
may wish to map; that is, for 10°, 20°, etc., or for what-
ever interval we may choose. This sphere may then be
conformally mapped upon the plane, the values of ¢’ bein
employed 1n the computation. Each step is conformal;
hence the plane map is a conformal representation of the
ellipsoid.
he magnification upon the sphere is given by

¢ ’ j!L _'_ d)\2>% X

s @ cos ¢’ \ goio “
dZ~  acose (1—€)2dp? e ’

(1— ¢ 8in%p)”4 | _cos?p (1 — ¢ sin?p)?

_¢os ¢ (1 —¢ sin?p)¥
cos ¢

The total magnification is equal to the product of the
values obtained for the ellipsoid upon the sphere and for
the sphere upon the plane. The total magnification,
which we shall denote by %k without subseript, since it is
the same at any point in all directions, is given in the form

__cos ¢’ (1 — € sinZp)¥
" cos o (1+cos X cos ')

CONSTRUCTION OF STEREOGRAPHIC MERIDIAN PRO]ECTION.

It is a very easy matter to construct a stereographic
meridian projection graphically. Divide the meridian
circle into equal arcs at whatever interval it is desired
to construct the meridians and parallels. In figure 8 the
divisions are made at 30° intervals. QR’=30°; the tangent
at B’ gives the radius S’R’ and the center S’ for the
parallel of 30°; a similar arc with center distance to the
south equal to 0OS’ and with radius equal to §’R’. gives
the projection of the parallel of 30° 8. The tangent at
R or SE gives the radius for 60° of latitude, and the
same arc transferred to the south gives the Projeotion
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for 60°S. The center distance 0 7'=SR with radius TP’ =
TP gives the projection of meridian 60° west and 0T’
gives 60° east; also the center distance O U=S8'R’ per-
mits the construction of 30° W. and O U’'=8'R’ gives tho
meridian of 30° E.

[TA

Tia. 8.—Construetion of stereographic meridian projection.

Probably the most satisfactory way to_construct the
Projection is by means of a computed table of radii and
of coordinates of the center. The centers of the parallels
all lie on the Y axis and those of the meridians lie on the X
8x13, The radii and the distances of the centers of the



36 U. 8. COAST AND GEODETIC SURVEY,

parallels become, respectively, the distances of the centers
and the radii of the meridians. In the table p, and p,
denote, respectively, the radii of the meridians and of the
parallels; 8, and ap, the distances of the centers; 8y and
8,, the distances of the intersections of the meridians with
the Equator and of the parallels with the central meridian.
The table, of course, applies to the sphere and not to the
ellipsoid. The values are given in terms of the earth’s
radius, or they are the values for a sphere of unit radius.

TABLE FOR THE STEREOGRAPHIC MERIDIAN PROJECTION.

‘[In units of the earth’s radius.}

¢ OrA Ppm OF ap Pp OF B 8 OT 8p @ orX
Degrees. Degrees.
0 0 ) 0. 00000 0
5 11, 47371 11, 43005 . 04366 5
10 5. 75877 5.67128 . 08749 10
15 3. 86370 8. 73205 . 13166 15
20 2. 92380 2. 74748 . 17633 20
23° 27’ 307 2. 51204 2, 30442 20762 '|  23° 277 30
26 2. 36620 2, 14451 . 22169 25
30 000 1. 73205 26705 30
35 1, 74345 1.42815 31630 35
40 1, 55572 1.i9175 36397 40
1.41421 1 J41421 45
50 1. 30541 . 83911 46631 50
1,22077 . 70021 52057
60 1.15470 57735 57735 60
1.10338 . 46631 63707
66° 32’ 30 43395 65618 66° 32’ 30"
1.06418 . 36397 70024 T
75 1.03528 28795 76733 75
80 1.01543 . 17633 83010
g5 1. 00382 . 08749 .91633 85
00 1 1. 00000 - 90

STEREOGRAPHIC HORIZON PROJECTION.

In a stereographic projection the center of the map may
lie at anﬁ point upon the earth’s surface. We have just
treated the case in which the center lay upon the equator.
If the center is to be in latitude «, we start with the same
equation in terms of the arc distance from the center and
the azimuth reckoned from the great circle perpendicular
to the meridian through the center.

__asinpcosw
" l4cosp

_asin psinw
~ l4cosp
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In figure 9 let T'be the pole, @ the center of the pro;ectlon,
and let P be any given point.

T

~ Fi1q, 9.—Transformation triangle for stercographic horizon projectlon.

TQ=3—a

TP=—72-F-¢

QP=p
LQTP=X\
LTQP=% —o.

From the trigoniometry of the spherical triangle we have
cos p=sin a sin ¢ +cos o cos A ¢os ¢

sin p _sin A
COS ¢ COSW

, Or sin P cos w=sin N cos ¢,
and

sin p sin w=cos a sin ¢ —sin a cos A ¢cos ¢.
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On the substitution of these values we obtain as defini-
tions of the coordinates of the projection

_ a sin \ ¢os ¢
&= 1 ¥sin o 510 ¢+ C0S @ COS A\ cos ¢

__a(cos a sin p—sin a cos N cos ¢)
“14sin asin ¢-+€os @ cos \ o8 ¢

From these equations, by solving for sin ¢ and cos ¢, we
find

z sin @ cos A+ sin A :
@ €OS o SIn A — 2 oS A — ¥ SN « 8in

sin o=

T COS @
@ ¢os o 8in N — cos A—y sin o sin M

coS p=

By squaring and adding there results
(zsin a cos N+ sin N)? +a? cos? a

= (@ cos @ sin A —x cos A—y sin « sin N)3,

By performing the operations and collecting, we obtain
finally
22 4+9y? 4 2ax sec o cot A+2ay tan a=a?

which may also be written
(x+asec a cot N2+ (y+a tan a)?=a? sec? a cosec? \,
This is the equation of the meridians and they are thus
seen to be circles. The meridian of iongitude N has the
radius
pm=a sec & cosec N\, with its center at the point,
= —a sec a cot A,
Y= —a tan «a,

The centers, therefore, all lie on the line

Y= —a tan a.
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By solving the original equations for sin X and cos X we
get,

z(sin a+sin ¢)
@ SIn o cos ¢+ COS ¢ COo8 @

sin A=

@ cos a sin p—y—1 sin a sin ¢
@ Sin o cos ¢+ COS a €08 ¢

€o8 A==
By squaring and adding we obtain

2*(sin a+sin ¢)?+ (@ cos @ sin g—y—¥ sin a sin ¢)*=
cos? p(a sin a-+vy cos a)?,

or, on developing and arranging,

22(sin o +sin ¢)? +42(sin e+ sin ¢)?— 2ay cos a(sin o +sin ¢)
' =a?(sin? a cos? ¢— cos? a sin? )

or, finally,

. a cos a )2__ a? cos? ¢
CH\Y  Snatsing/  (En a+sin g)

The parallels are, therefore, circles with their centers all
lyl(;}g on the Y axis. The parallel of latitude ¢ has the
Tadius

a4 COS ¢
= ")
PP =gin a+sin ¢

with its center at the point
o 20,

. a cos’ «
Y=§n a+sin @

The parallel of latitude —« is evidently a straight line,
since the radius becomes infinite for this value, as does
also the distance of the center from the center of the
Projection.

he projection is seen to be a polyconic projection in
accordance with the definition of Tissot.
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For the parallels we have

__acos e
P=sinatsin @

____acosa
L. sln a+8in ¢
] T . sin M\(sin a+sin ¢)
sin §=-—= > :
p 1+4sin asin ¢4-cos o cos \ o8 ¢

§—1y_cos A+cCoS & ¢oS ¢ +sin « cos \ sin ¢

8 0= + .
co 1+4sin @ sin ¢+ cos o cos \ cos ¢

s in this case is not reckoned from the Equator; but,
since we need only the derivative of s with respect to ¢,
it will answer the purpose to leave it as it is. In fact, s
could be reckoned from any fixed point in the line of
centers and in this case it is reckoned from the origin
which lies at latitude a.

[ cos a sin A
O¢ 1l-+sin asin p+cos a cos N cos ¢
0 _ sin a +sin ¢
ON 1+sin asin ¢-+cos a cos A cos ¢
d_s____ @ COS @ COS ¢
de  (sin a-+sin ¢)?
dp __a(1 4-8in e sin 28
de (sln a+sin )2

These values may now be substituted in the general dif-
forential formulas and by that means we obtain the follow-
ing results:

o0 +d_§ sin o= @ cos « sin A cos ¢
Pode " dp (sina+sin ) (1 4-sinae sin ¢ + CoSa COS A COS @)

@ ¢cos « sin X cos ¢
— 0 O v 0 =
(sin a+sin ¢) (14+sin a sin ¢+ co8 a cos A ¢os ¢)

Therefore

Q-

tan ¢ =0
or
=0
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The parallels and meridians form, then, an orthogonal net
of circles.

L (‘—ZE- co 0—-d—’3>
’k__dtp 8 de/  cosacose
BT g cosy " 7 (sln a+sin ¢)?

cos N+cos o cos p+sin e cos Asin ¢ 1+sin « sin ¢
1-sin a sin ¢ -4 €0s @ Cos A €08 ¢ (sin a+sin ¢)?

1
“1+sin a sin ¢-+cos @ cos N co8 ¢

e 08
PTgcose OMN

k
_ 1 sin e -+sin ¢
Tsin atsin ¢ 14sin asin ¢+ c08 a cos\ cos ¢
_ 1 '
T 1-sin asin ¢+ Cos a CO8 A COS ¢

50°

/20

90°

60°

~30°

TFra, 10,—Stereographic horizon projection of & hemisphere—horizon of Paris.
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The projection is thus shown to be conformal, since the
meridians and parallels are orthogonal and the magnifica-
tion along both is the same. We might have taken this
for granted since we found that the stereographic meridian
projection was conformal and the nature of the projec-
tion is not changed by moving the point of projection to
a different point upon the sphere. : :

In taking account of the spheroid we proceed as in the
case of the stereographic meridian projection. The magni-
fication at a point (the same in all directions) would then be

e _cos ¢’ (1—¢ sin’p)'
c08 ¢ (1 +sin o’ sin ¢’ +cos o’ cos A cos ¢’)

DERIVATION OF STEREOGRAPHIC HORIZON ' PROJECTION
BY FUNCTIONS OF A COMPLEX VARIABLE.

The projection, being a conformal projection, can be ex-
pressed in terms of a function of a complex variable either
of o+i\ or of o—iX. Let us take

. ai sinh (a——————_ 'i;\ _‘8)
z+1y= oosh (o’—'i;-i-ﬁ)
—a/i sinh (E_’_‘%_:E) cosh (L‘i%ﬁ )
B cosh (T—oTE z\ +ﬁ) cosh (ZT2+F iz)\ +6)

_ai[sinh o—sinh i\ +8)]
" cosh, (¢+B) +cosh. A\

_axitsinh o—sinh 4\ cosh 8- cosh ¢\ sinh /3].
" cosh ¢ cosh §+sinh ¢ sinh 8+ cosh 2\

But

cosh o=sec ¢
sinh o=tan ¢ -
sinh iA=4 sin A

cosh i\ =cos A.
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By substituting these values we obtain

+i __ai(tan ¢—1 sin X cosh §—cos A sinh g)
2= ""5ec ¢ cosh B+ tan ¢ sinh -4 coS X

_asin \ cosh B+ai (tan p—cos A sinh B) .
~ " sec ¢ cosh B+ tan ¢ sinh B+cos A

By equating the real pdrts and the imaginary parts, we get

o a sin \ cosh B
“sec ¢ cosh B+ tan ¢ sinh B+ cos A

- a (tan o—cos A sinh §) ]
Y= Sec ¢ cosh § +tan ¢ sinh B+cos N

Let
cosh B=sec «,
then :

sinh B=tan a.

Substituting these values we obtain

_ @ sec asin A
sec a sec ¢+ tan o tan ¢-4-cos A

z

_ a(tan ¢—tan a cos A) .
Y sec a sec ¢+ tan « tan ¢ +cos A

On multiplying both numerator and denominator by cos «
€08 o, we derive . :
_ @ sin \ cos ¢

1+4-sin a sin ¢+ cos a COS \ €OS ¢

z

__a{cos a sin g—sin a cos A cos )
1+ sin « sl @+ CoS o COS N COS ¢

We thus arrive at the same equations that were ob-
tained before. ‘

PROOF THAT CIRCLES PROJECT INTO CIRCLES IN STEREO-
’ GRAPHIC PROJECTIONS, .

It can be proved in a general way that, in any stereo-
graphic projection, any circle upon the sphere is projected
Ito a circle upon the plane of the map. Straight lines
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must, of course, be considered as circles of infinite radii,
with centers at infinity. Any circle either great or small
which passes through the point of projection will be pro-
jected mto a straight line, since all of the projecting lines
will lie in the plane of the circle and will cut the mapping
plane in a straight line, which is formed by the intersection
of the plane of the circle with the mapping plane.

Let us now take any other circle upon the sphere. Make
a great-circle section of the sphere containing the point of
projection and the Fole of the given circle. This great
circle necessarily will also pass through the point that pro-
jectsinto the center of the map, i. e., the point antipodal to

|
{
|
]
|
]
|
|
|
I

[/]
F16. 11.—Proof that circles project into circlos on stereographic projections.

the point of projection. After this is done turn the great
circle section into the plane of the page. The plane of this
section will evidently be perpendicular to the plane of the
given circle, since the plane of any great circle containing
the pole of the given circle would partake of this property.

In figure 11 let O be the Boint of projection, KL the trace
of the mapping plane, BC the trace of the plane of the
circle, and let A be the point that projects into the center
of the map. The lines that project the circle under con-
sideration will evidently form an oblique cone that has the
given circle as a circular section. Any plane parallel to
the plane of this circle will also cut the cone in a circle.
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We shall now prove analytically that any such oblique cone
‘that has one system of circular sections has also another
System of circular sections. If we have a cone passing
‘through the circle 2=0, 2*+y?=a? it will be a perfectly
‘general one if we take the apex at the lpl)oint a=f, y=0,

2=} in the plane y=0. A line through this point is given
fby the equations

z—f=a(z—h)
- y=Be—h).

This line intersects the plane z=0 in the 1)0int the coordi-
‘Thates of which are

‘Since this point is to lie on the circle, we have

| — ah)?+ Bh2 =2,
Bug (fa)+ﬁc‘a

By substituting these values we obtain
(fz—hx)* + 12y = a’(zé h)3.

This is the equyation of a cone bearingy the same relation to
the plane y=0 that the projecting cone bears to the plane
?f the great circle. This equation may be written in the
orm \

h? (a2 + 12+ 22— a?) =z2[2fha + (@ —f* + h*)z —2ha?].
Hence, if the conical surface is cut by either of the planes,
or* Z=q

2fhz+ (@ —f* + 1?2 — 2ha? =3,

g)le points of intersection will satisfy an equation of the
- ;

T
B2 +y 2+ 245+ 2B2+ D=0
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for all values of v and 8, and the sections will therefore be
plane sections of a sphere. Therefore, there are two series
of circular sections made by two systems of parallel planes,
and both systems are parallel to the plane y=0.

The trace of the cone upon the plane ¥=0 has for its

equation:
(fz—hz)*—a*(z—h)? = 0.

This is, therefore, the equation of the two generating lines
which lie in that plane.. The equation of the two planes
in opposite systems giving the circular sections is

(e—) [2fha+ (@@ —f2 + 1) 2— 2ha?— 8] =0.

By adding these two equations we get an equation of the

form
' ©?+22+Az+By+ 0 =0.

This shows that the four points in which the two generating
lines in the plane y =0 meet the planes forming the circular
sections lie upon a circle. Hence the first system of
lanes makes the same angle with_the one of the generating
ines that the second system makes with the other. We
will now show that the mapping plane fulfills the conditions
for the second system of circular sections. The mapping
plane is evidently perpendicular to the plane of the great
circle ALOK, ang 1t thus fulfills the first condition. The
further condition is that it must make the same angle with
one of the elements of the cone lying in the plane of the
great circle that the plane of the circle on the sphere makes
with the other element in this plane. In figure 11 :

Z O'BO=% arc OLAC= %(arc OLA+arc AO) ——y-z2—r+%ardhAfC’
ZKFO=% (arc O K+ arc LA0)=-72—r+% arc AC, |
Therefore
LOBO= /£ KFO
and
LBCOO= £ F@O.,

It is thus seen that the points B, O, F, and @ lie upon a |
circle and all the conditions are fulfilled for a circular
section. ST

Construct tho tangents BD and CD, draw EM parallel
to OD, and draw EH parallel to BD,
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Then
: DC:EM=D0O :EO=DB: EH,
but
\ DC==DB.
Therefore -
EM=FH,

AEGH=% (arc OL +arc KB)=§+%— arc KB

/EHG =7~ /EHO=n— 4D30=r-%am OLACB

=1r—--% (arc OLACBK—src BK)

L= —%w +—;— arc BK =Z—+% arc BK,
Therefore
LEGH= £ EHG
and
LFH=EQ.

In a similar way it can be proved that

EM=EF.
EH=EM,
EG=EF,

But, since

therefore the projection of D is the center of the circle that
Maps the given circle. D is, of course, the apex of the cone
t&nﬁ?nt to the sphere along the given circle.

.'The stereographic horizon projection can be constructed
®lther by computation of the radii and centers or directly
by %mp ic construction. The formulas for computation
are for the meridians

Pm=G@ S6C o COSec A
ZTm = — @& 86C a cOt A
Ym= —¢ tan o
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and for the parallels

po= ' dcos:,o _ @ cos ¢
P gin sine - . fa a—
sl o+ ? 9gin (_jz-_qo cos( ‘0.) .

2
Xp=

__acosa  _ @ €08 :
¥»=35in a+sn ¢ 9gn a+go) cos (a-—q:).
2 2

The forms last given should be used for logarithmic com-
putation. ' ‘ '

CONSTRUCTION OF STEREOGRAPHIC HORIZON PROJECTION.

The method of graphical construction for the parallels
ig as follows: Let us suppose that we wish to censtruct a
projection for =30°. In figure 12 the point of projection
18 supposed to be in the perpendicular to the plane of the
paper at K. Let the plane of the central meridian (that
through the fpoint of projection) cut the mapping plane or
the plane of the paper in the line Y'Y’. This central
meridian section is then turned upon ¥ Y’ as an axis until
it falls in the plane of the paper. The eye will then be at
0, and A will be the point that progec’cs into the center of
the map. Construct.the angle AEQ equal to 30°; then
QQ’ is the trace of the equitorial plane upon the plane of
the central meridian. The diameter PP’ perpendicular to
QQ’ is the axis of the earth turned with the plane of the
central meridian. Y'Y’ is the projection of the central
meridian, since the plane was turned upon this line as an
axis; hence, if any point is projected upon this line the
corresponding point upon the map will be determined.
P and P’ are the poles; draw OP and OP’. Then p is the
North Pole of the map and p’ is the South Pole of the
same.

To determine the circle that forms the projection of any
parallel, lay off the arc €@ equal to the latitude; in the
figure (Q = 45°, Construct OB perpendicular to PP’ and
construct tangents at B and € meeting in the axis pro-
duced at D. g.DraW OB, 0C, and OD; then B’ and ¢’ are

oints on the circle, and [’ is the center of the same.
%Vith D’ as center and with radjus D'B’ or D’c¢’ construct
the circle, and the circle so drawn in the figure is the
projection of the parallel of 45° of latitude. 0@ deter-
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ines the point ¢ on the Equator, and OF drawn parallel
0 PP’ locates the center at F; with the radius Fgq draw
he arc OgA; this arc is the projection of the Equator.

4

AF

B

P
Y

* F1a. 12.—Construction of parallels on stereographio horizon projection.

N In a similar manner the projections of any desired parallels
o2 bedrawn, Itis evident that any two of the points B,
» and D’ will be sufficient to determine the circle, since

112948°—19——4
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we know that the center lies upon Y Y’. The circlé
which represents the parallel of latitude —a has an infinit¢
radius with center at infinity on the line Y Y”; it is there
fore a straight line perpendicular to Y'Y’. The lowet
point at which the parallel crosses the central meridian if
given by ’

~ '+ a(cos a—cos @)
BT sinatsme

This takes the form 0/0 for o= —a, and the limit musfi
be determined for t_his point.

. alcos a—cos ¢) . a sin. ¢
1 —_—— Pl ———=—¢q tan a
i
o= —a sSin a--sin ¢ o= —a cos ¢ -

or, otherwise,

a(cos a—cos ¢) 1

smatsmne O tan 5 (p—a), |
which for ¢ = —a becomes —a tan a. o
The straight line parallel, therefore, conicides with the
line of centers for the meridians; and hence must be the
per%endicular bisector of pp’. It is the line RR’ drawn
n the figure.

In figure 13 the details of the construction of the merid-
ians are given. p and p’ are determined in the same way
as in figure 12. " To determine the coordinates of p and
of p’, we set =0 in the equation of the meridian and
solve for y. We thus find that

Y = —a tan atasec a;
therefore

Ep=—a tan a+asec a
and

Ep’=—a tan a—a sec a,

The middle point of pp’ is given by
%(Ep + Ep’)= —a tan a.

The perpendicular bisector of pp’ is, of course, the line ofg
centers of the meridians, since they must all pass throughi
the points p and p’ and they thus have pp’ as a commoy,
chord. This line of centers is the line RR’ in the figure;
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The length of Fp’ is equal to the length of Ep’ minus the
length of EF; hence the length of Fp’=a sec a. The
center for the arc that is the projection of the meridian
of longitude A lies on the line RR’ at the point gm=—a
Sec @ cot \. With p’ as a center and with any convenient
radius construct a circle; divide this circumference into

Fuws, 13,—Construction of meridians on stereographic horizon projection.

‘t’qual: arcs for whatever interval it is desired to construct

t}ﬁe meridians, the initial point of the subdivision being

Ine ﬂomt where this circle Intersects the central meridian,
- the figure we have

. __ ’ [ N
but | BF=Fp' tan £ Bp'F;

Fp’ =a sec a.
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If then the angle Bp’Fk=%-7\,’vs.re shall have

BF=asec o cot N,

The arc G@H must be taken as thé complement of the
longitude, for which we wish to construct the meridian.
q Ig is 30°; therefore C is the center of the meridian for
A=60° The meridians all pass through p and p’, so
that they may be constructed as soon as we have located
the centers. F is, of course, the center for the meridian

of A=90°,

F16. 14.—Elements of a small circle on stercographic projection.

SOLUTION OF PROBLEMS IN STEREOGRAPHIC PROJECTIONS.

We shall now give the demonstration of the solutions
of a few problems connected with stereo%raphic projections.
The plane of the projection is' called the primitive plane,
and the circle formed by the intersection of the primitive
plane with the sphere is called. the primitive circle. The
polar distance of a point on the sphere is the angular
distance on the sphere from one of the poles of the primi-
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tive circle. The polar distance of a circle is the angular
distance of any point of its circumference from either of
lts own poles, The inclination of a circle is the angle
between its plane and the primitive plane. It is meas-
ured by the arc distance between the pole of the given
circle and the pole of the primitive circle,. since this
measures the angle between the perpendicuja,rs to ‘the,
blanes of the two circles,

In figure 14 let NESW be the primitive circle and let.
QR be the trace of the plane of a small circle, with P as
1ts pole; then PR =PQ is its polar distance and PN is its
Inclination. Thediameter WE is called theline of measures
of the circle QR; NS is perpendicular to WE at the center

D

E :
Fig, 15.—Detormination of the arc distance from the centar;on stereographie projection.
°f’ the primitive circle. 8§ is the {)oint‘ of projection and

and R’ are the projections of the extreme or principal
elements of the oblique circular cone S@R which is formed
DY the projectinF Lines of the points of the circle QR.

enoting the polar-distance of the circle by x and the
Wclination by £ we have

OR'=a tan%(x—s) ’

. 0Q’=a"t'§m %(x—l—f).

- Problem 1.—To determine the shortest distance between
t»h‘?..,(BBILter_of the map and another point the projection of
"hich is given; that is, to determine the arc of a great
Circle between them: ‘
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Infigure 15 let DBEA be the primitive circle and let' AB
be the line of measures; ¢ is tIIie given point. Construct
(g’ equal to Cg and draw Lg’ from the point of sight F
and prolong it to meet the primitive circle at ¢/; then DG
is the arc distance, since all points of Polar distance DG
are projected into the circle of which the arc %q’ forms a
part. 'Therefore, the great circle distance of Cg and Cy’
are equal; D@ is evidently the polar distance of ¢, and
hence also of g. If the given point lies on the line of
measures the construction is the same as that given for
the determination of the great circle distance of ¢’,

3

Fia. 18,~Projection of a clrcle with given Ili\irojectlon of pole and given polar distance o
stereographio projection. .

Problem 2.—To construct the projection of a given circle,
its polar distance and the projection of its pole being

ven:
glIn figure 16 let P’ be the projection of the pole, NESW
is the primitive circle with NS passing through P’ and
with WE perpendicular to NS; NS is then the line of
measures, with W as the pomt of projection. Draw
WP’P and from P lay off the'arcs Pp and %equal to the
given polar distance. Draw Wp and Wy, thus locating
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?’ and ¢’ in the line of measures. A circle constructed
on p’q’ as diameter is the required -projection, since
ﬁ;q' is the projection of the diameter of the circle on the

e of measures. This circle can be determined 'in another
way by locating p and p’ as before; then at p draw the

g

4

. S
Fia. 17.—Projection of circle whose pole projection lies on the primitive circle on stereo-
: graphic projectlon.»

B

ta~n§ent p@ meeting OP produced at Q; then WQ locates
O the center of the reéquired circle. With C as center and
With Cp’ as the radius, we can construct the circle, If P’

€8 on the primitive circle, P and P’ will coincide, and the
Construction is evident from figure 17.
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Problem 3.—To project a great circle, the projection of
the pole being given:
™

~ In this case the polar distance is 5 and Pp=Pg=7§r in

figure 18. The circle passes through W and X; hence it is
sufficient to locate either p’ or ¢’; WC is parallel to OP,

¢

9

r

M) .
Fi1a, 18.—Projection of a great circle with given pole projection on stereographic projection.

and in this manner C can be located; with C as center, with
CE as radius, the circle can be constructed. ,

Problem 4.—To find the locus of centers of all great circles
passing through a given point: ‘
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N

F16. 19.—Locus of centers of great circles through a glven point on stersographic projoction.

In figure 19 let P’ be the projection of the given point

ough which the great.circles are to pass; draw the diam-
eter NP’S and the perpendicular diameter WE. The pro-
Jections of all great circles through P’ must also pass
through a point at the distance of = from P’; accordingly
draw the diameter PQ and draw WQ, cutting NS the lime
of meagures in Q’; then @’ is the projection of the antipode
of P. Since all the required circles {)ass through P’ and’
@', their centers must lie on the straight line perpendicular
to P’Q’ at its middle point ¢; this line is called the line of
Centers.

Since a great circle may always be drawn through the
Doints W, P/, and E, the point ¢ may be found by drawing
& perpendicular bisector to WP’ intersecting NS in c.
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The triangle WP’cis isosceles, and the angle P’ Wp equals’
the angle WP’S, which is measured by % (72—':+ are PN>

=-;— arc PN W; that is, the arc PEp=arc PNW. Hencelay

off the arc PEp=arc PNW and draw Wep. This is the
same a8 laying off a polar distance PN W from P; thus the
line of centers is the projection of a small circle passing
through the line of sight and having the polar £stance
PNW=nx~—¢, where ¢ denotes the inclination of the circle.
From ﬁgure 19 WQ=PE; @QSp=nw— (pE+ WQ)=n—
PEp=n—PNW= WQ; hence lay off WQp=2PE, and
draw Wp, thus locating ¢. Wp is evidently perpendicular
to P@, so that ¢ can be located in that way.
L WEp= £ POE= £ WOQ; hence a line joining E and p
is parallel to PQ; this gives another method for locating c.
roblem 6.—To draw a great circle through P, making a
given angle with NS:
In figure 19 the tangent to the required circle at P makes
the given angle (m) with P’OS; the perpendicular to the

tangent makes with P’OS the angle g —~m. Hence con-

struct SP’R=—72f —m with P’R intersecting the line of cen-

ters at R, the center of the required circle. .
The projection of a great circle always meets the primi-
tive circle at the extremities of a diameter as MM’ in
figure 19. :
) Plroblem 6.—To find the projection of a pole of a given
circle:
In figure 18 let Wp'E be a Zgreat circle; draw the per-
pendicular diameters WE and NS, and draw Wp’p; lay off

PP equal to 27[ and draw WP, thus locating P’, the required

pole.
In figure 16 let 9’q” be a given small cirole; through its
center ¢ draw NS and draw WE at right angles; draw Wp’
to locate p and Wg’ to locate g; bisect the arc ¢ NEp, locat~
ing P, and draw WP, thus locating P’, the projection of
the required pole. o

Problem 7.—To construct the projection of a great circle
passing through the projections of two given points:
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Fra, 20.—Projection of o great circle through the projections of twa given points on stereo-
- graphic projection,

In figure 20 let ORO’S be the primitive circle and let
P and Q be the projections of the two given points, and
let A be the center of the projection. The'lincs that pro-
Ject any two antipodal points are perpendicular to each
other; we can then easily determine the projl(:ctions of
the points antipodal to P and @ through which the pro-
Jected circle must necessarily pass. Draw P4 and prolong
1t beyond A, at A érect the perpendicular A0, intersecting
the primitive circle at-O; draw OP and erect upon it the
Perpendicular-OP' intersecting PA produced in P’; P’ is
then the projection of the point antipodal to P. The tri-
angle OPII)" 13 the projecting triangle turned on the pro-
}ected line PP’ as an axis into the plane of the paper.
n a similar way @’ can be determined, but a circle passed
through P, @, and P’ is the required projection. It may
8 seen that the construction is correct from the considera~
tion that AP’ must be a third proportional to AP and A40.

the point of which P is the projection has the polar dis-
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tance p, then A_P=a tan 123 and AP =a tan'% (r—p)

=a cot g; but OA =a, and so we have
OP:0A=0A:AP’.

This establishes the validity of the construction.

F1G. 21.—Plane through the poles of two great circles.

As a basis for the next problem we shall prove that if a
plane passes through the poles of two great circles it cuts
off equal arcs on the two circles.

In figure 21 let P be the pole of the great circle CE(”
and let P’ be the pole of DED’ with the center of the
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sphere at 0. The triangle OPP’ is isosceles; therefore, the
line PP’ is equally inclined to the planes of the great
circles, since it is equally inclined to their perpendiculars
OP and OP’. Produce PP’ in both directions to intersect
the planes of the circles, the one at @ and the other at @’.
The triangle OPQ=the triangle OP’Q’, since OP=0P’,
LOPQ=/OP'Q’, and /POQ= LP'0Q’. Therefore,
Q0=Q’0 and QD=Q’(’. Pass a plane through PP’ and
let QGHG’ be its trace on the plane of DED’ and let
Q’ FH F'be the trace on the plane of CE(’. - Then Z0QH =
Z0Q’H, since the corresponding right triangles are equal.
The arc D@ will therefore equal the arc C'F , and the arc
G'D’ will equal the arc CF, since @ and @’ are the same
distance from their respective great circles. But the arc -
GEG’ =n— (DG@+ D'G')and the arc FEF' =« — (F' " + OF).
Therefore, the arc GEG’ is equal to the arc FEF’, and the
Proposition is proved.

roblem 8.—To determine the shortest distance between
two points whose projections P and @ are given; that is,
to determine the arc of a great circle between them:

N

Fia, 22.—Great circle arc between two points on stereographic projection.
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In figure 22 construct the projection of the great circle
passing through P and @, the projections of the two given
points, by the method of problem 7. Draw NS the diam-
oter determined by the intersections of this great circle pro-
jection with the primitive circle and draw the perpendicu-
fa,r diameter WE. This diameter is then the line of meas-
ures. Locate the projection of the pole of SE N by drawing

SRT and by laying off TU=Z, and by then drawing S T,
3 . g

thus locating K, the projection of the pole. Draw P and
KQ and prolong them to intersect the primitive circle in
P" and @', respectively; then P’ W@’ is the great circle are,
between the given points of which P and € are the projec-
tions. KP’ and KQ’ are the projections of circles passing
through the point of projection and through the pole of the
great circle of which SPQN is the projection. But the
point of projection is the pole of the primitive circle; hence
the planes that determine the projections KP’ and KQ'
cut off equal arcs on the great circle, whose projection is
SPQN and the primitive circle. Therefore, the arc P’'Q’
is equal to the arc of which PRQ is the projection.

This problem can be solved, together with that of deter-
mining the projection of the great circle passing through
the projections of the two given points in the following
manner: : :
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Z
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£

F1g. 23.~Sphere showing intersection of given lines.

In figure 23 lot Z be the zenith and ' the center of the
Sphere and let M/ M’ be the arc of a great circle joining the
bomnts M and M’. If I is the point of projection, m and
m' are evidently the projections of M and M’. Produce
the chord MM’ until it meets mm’ produced in R, then
RQ is evidently in the plane of the great circle M.M’, and
also in the primitive plane. Therefore, the points O
and O’ lie on the projection of the great circle and the
Projection is fully determined, since 1t is a circle passin
through m, m/, 0, and 0’. If MM’ is parallel to mm’,
then evidently 00’ is also parallel to each of these lines.
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Now, in figure 24 lett NESW be the primitive circle and
let WE be the line of measures; also let m and m’ be the
projections of the given points. Take On’=Om’ and
On=0m; draw Sn’ to intersect the primitive circle in p’
and Sn to intersect it in p. On mm’ construct the tri-
angle Dmm/, having mD=8n and m/D=8n’; prolong
Dm’ to ¢’, making m’q’=n"p’, and prolong Dm to q, mak-
mg=np. Then g¢¢' 18 the chord distance between the
given points, and this chord being laid off anywhere on

N

Fi1a. 24.—Projection of great circle through two points and length of arc between them
’ on stereographic projection.

the primitive circle will*give the great-circle-arc distance.
The triangle Dgq¢’ is evidently the triangle EMM’ of
figure 23 turned on mm’ as an axis into the plane of the
projection or into the primitive plane. - Prolong mm’ and
qgq’ until they intersect at 2, and draw RO intersecting the
primitive circle in ¢ and ¢’. A circle made to pass
through ¢, m, m’, and (", is the required projection of the
great circle through the points M and M’ of the sphere.
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This same problem can be solved by the method of
descriptive geometry in the following way:

!
e (3

Fig, 25.—Projection of great circle through two_ points on stereographic projection,
second method.

In figure 25 RO is the trace of the great circle plane on
the horizontal plane; we need to determine, then, this
trace of the plane of M, M’ and the center of the sphere.
% and n/, p and p’ are determined as before; from p let fall
the erpendicular pg upon WE and from p’, the perpen-

lcular p’¢’; prolong Om to r, making Or=0q, and pro-
Ong Om’ to v/, making O’ =0¢’. r and r’ are then the
Orthographic horizontal projections of the given points M
?nd ’“on the sphere.” Draw S’U parallel to” WE; let
all the perpendiculars 's’ and rs and prolong them,
Making §" 77 =p’¢’ and 8 T=pg. T and T’ are the ortho-
€raphic verticaf projections of M and M’, and T'T” is the
112048°—19—5
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vertical projection of the line MM’ and 7’ is the hori-
zontal projection of the same line. Prolong 7’7" until it
intersects the line 8’8 at U and erect the perpendicular
UR intersecting #’r prolonged in B. R is the trace of the
line MM’ on the horizontal plane, which is here the
primitive plane. RO is then the trace of the great circle
plane on the horizontal or primitive plane. is deter-
mines the points € and (”, through which the projection
of the great circle must pass. A circle made to pass
through the points C, m, m’, and (” is the required pro-
jection. Note that m'm produced passes through the
point R, as it-should.

Problem 9.—To lay off on a great circle an arc of given
length from a given point P: :

etermine the projection of the pole of the given great
circle projection. ~ In figure 22 let K be the projection of
the pole of the great circle of which the arc SPRQN is the
rojection; draw KP intersecting the primitive circle in
%’ . Lay off the given arc P’Q’ on the primitive circle and
draw K?Q” intersecting the projection of the great circle
in Q; then P@ is the projection of the required arc.

Problem 10.—The projection of a great circle and that
of a point being given, to construct the projection of the

eat circle passing through the given point and perpen-

icular to the given great circle: :

Determine the projection of the pole of the given great
circle and then construct the dprojection of the great circle
passing through this pole and the given point; this is the
required projection. A

roblem 11.—To construct the projection of a great
circle which passes through a given point and which is
inclined at a certain angle z to the primitive plane:
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S

F1g. 26.—Projoction of great circle with glven inclination to the primitive plane
on stereographic projection.

In figure 26 if the given point lies on the primitive circle,
ag N, gl"law NS and WE, the line of measures. Construct
the angle ONC equal to the given angle z; then ( is the
Center and CN the radius of the required projection. If
he projection of the given point is not on the primitive
Circle, but is at some other point, as P, construct the arc
D with O as a center with OC as a radius.” Construct
&nother arc with P as a center and with ON as a radius:
Witersecting the first arc in D; then with D as a center
&nd with JP as a radius construct the re(}uired projection.:
Jemark.—If the given point does not lie on the primi-
Ive circle, the construction is not always possible; in
fact, the angle z can not be less than the angle WOA.) -
. Problem 12.—To determine the inclination of two great
Circles with respect to each other:
s problem is solved by determining the projections
(t)f the poles of the given circles, and then by measuring
ho groat-circle-arc distance between them. Apply the
Method of problem 6 and then that of problem 8, ~With
8eat circles the inclination of the planes is equal to the
8ngle between the radii of the two circles drawn to the
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point of intersection, since the inclination is equal to the
angle between the given circles. The method of the
problem can, however, be applied to any circles, either
great or small. LEven with small circles we may draw
the projections of the parallel great circles and then deter-
mine their inclination with respect to each other by the

F16. 27.—Dotermination of the inclination of the planes of two great circles on
g stereographic projection.

radii drawn to the point of intersection. In figure 27
let SHN be the projection of a great citcle, with (' as the
center for the arc; also let £’H’ W’ be the projection of
another great circle with (0’ as the center for the arc.
The angle between the arcs is then equal to CK''(", since
the angle between the radii is equal to the angle between
the tangents, and, the projection being conformal, the
angle between the circles is preserved in their representa-
tions. Locate the projection of the pole of each of the
given great circles; K is the projected pole of the first
circle and K’ is that of the second circle, A great circle
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Passing through the pole of a given great circle has its
plane necesgarily perpendicular to that of the given great
circle; therefore the great circle which }l)asses through the
poles of the two great circles has its plane perpendicular
to the plane of each of the given circles. I?” must then
be the projection of the pole of this great circle of which
IEKK'I" is the ﬁro'ected arc. GG’ is therefore the great
circle arc of which KK’ is the projection; or the angle
GO@’ is the angle that measures the inclination of the
Planes of the given great circles. The angle GOG” should,
therefore, equal the angle CK’’(”; the impossibility of
making a perfect construction may cause some deviation
from equality in the constructed figure.

. Problem 13.—The projection of a point being given, to
construct the meridian and parallel passing through the
boint: '

If the problem is to be determinate, we must have the
Pl'ilmitive circle given and the projection of one of the
DPoles,

In figure 28 let NES W be the primitive circle and let

be the projection of the Pole ; locate the south pole by
drawing WP 'and then WP’ perpendicular to WP; RR’ is
the perpendicular bisector of PP’, and is therefore the line
of centers for the meridians. Let @ be the projection of
the given point; pass & circle through P, @, and P’, and
this is the projection of the meridian through the given
point, Construct a tangent to PQP’ at @, meeting NS
In 7; then T is the center of the projection of the parallel
and 7Q is the radius; this fully determines the projection
of the parallel which is the arc Q@’.
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Fig. 28.;Projecuon of the meridian and parallel through a given point on stereographic
projection.
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Problem 14.—To construct the projections of the circles
parallel to a given circle: .

[y

v

F1a. 20.~Drojection of circles parallel to given circle on
stereographic projection,

In figure 29 let pp’ with center at ¢ be the given circle.
Draw Ne§ and the perpendicular diameter WI; draw
‘P’ and WpP; bisect the arc PP’, thus locating @ the
Pole of the given circle. From @ lay off the polar distance

of the required parallel circle. In the figure QR =QR’ =7§r ;

draw WR and WR’, thus locating the extremities of the
lameter of the given circle rr’; the center is given by
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bisecting this line. For the parallel great circle take
QT=’§’; WT locates ¢ and WU parallel to 0Q locates U,
the center of the required great circle projection.

CONFORMAL POLYCONIC PROJECTIONS.

Since we are to have a conformal projection, it is best
to treat the case for a sphere and then to take into account
the ellipsoidal shape in the same way that we did in treat-
in% the stereographic projections.

n the treatment of the rectangular polyconic projec-
tions, we found that

’

¥
tan _0_=I"()\)
2 u

and for the sphere that
1/ds dp)

‘m =" e cos B—Ep

T’ .
» g (:)S,tp ’ 1“(()\)) sin 6
also
lds 1du
pde udy

If the projection is to be conformal, it must be rectangular,
and, in addition, the scale at any given point must be the
same along the meridian that it 1s along the parallel, or

m P

Hence

ds dp\_ »p I‘f(X) .
(_l?a cos 0—(7;>——c*—08 p _—P()\) sin 6, )

or A , '
I"(>\)=PO‘) cos ¢ (ds cos 0_@,,)

psingd \dep de/’

*Bee p. 156,
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But
0
dnoe 03 _ 2uTQ)
- Tt 2
14toamig ¥ PN
]
— 2_
0—1 ta‘n2_'u,2—1‘2()\)'
cos ¥= AVES Iy

1 + tanz—Z

Substituting these values and the value of

ds_pdu
d<p—’u d(p’
We obtain

™) w2 +T2(\)] cos ¢ (p du uz-—I‘z()\)_(Zg)
T 2 u dp T TN do

cos ¢ dp
oot 8 A+ T (V)]

_cos pdu

=50 do [w*—-T*(\)]—

cos ¢ dp + cos ¢ d_u‘) +u2(cos edu_cos.¢dp

2ou de  2u? de \ 2u? do 2pu do
2(\) +uz_d_¢__‘,1$

' .(.lﬁ + @

Yo Pdy

=—wo(

dp du\cos ¢
~\“dp + p@) 2p%?

Sineg T'(A) is independent of ¢, I’(A) is also independent
of o, consequently the two expressions dependent upon ¢
ust reduce to constants. e can set one of them equal
O unity, because u can be multiplied by any constant
Without changing the value of either s or p; and if so,
\) would be multiplied by the same constant, so that
Wwould not be changed thereby.
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Accordingly let

or

Ndp . (du 1 du
(“—a do =" @+u2d¢)

(e-brere)

1

@ d(u—-ﬁ
P _1
YU

by integration
1 ¢
log, » =loge( —,‘—L>+ log, 5
in which the constant of integration is taken in the form

log, % It determines the scale of the projection. Passing
to exponentials, we obtain

=5( "%)’

But
1ds_1du
pde udp
or
ds=£ du,

substituting the value of p, we get

ds=%(1 —ég)du
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Therefore, by integration,

T
§=3 u+u>,

In which the constant of integration may be taken as
zero, since the addition of any quantity would only serve
to change the point from which s is reckoned.

From these results we obtain :

st+p=cu
¢
§—p =a
or, by multiplication,
§2—p?=¢2,

This equation shows that the circle with the origin as
Center, constructed with the radius ¢, cuts all the parallels
at right angles. Any circle drawn through the two points
of intersection of this circle and the line of centers of the
parallels will also cut the parallels orthogonally, for the
tangents drawn to it from any point in this line of centers
are equal. Therefore, these circles, since they form the
orthogonal trajectories of the parallels of the map, are
hone other than the projections of the meridians. The
two common points in the line of centers of the parallels
are the poles of the map.

If, then, we take two arbitrary points to represent the-
two ‘poles, the meridians of the map will be the arcs of
Circles which pass through these two points and the
barallels will be other arcs of circles having their centers
at various points of the prolongation of the line of poles
and each passing through the point of contact of the
tangent drawn from the center to any one of the merid-
iflns; for example, to the circumferencé described upon the
ne of poles as diameter. -

e have yet to find the expressions for u, p, and s in
termg of ¢, and that for T' (A) in terms of A, by which expres-
Slons we may be able to tell, in the first series of arcs,
the one that corresponds to a given meridian M and,
In the gsecond series of arcs, the one that corresponds to
he parallel of latitude .
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In the expression for I (\) on page 73, if we let g
represent the second constant, we have

dp, du\cosg n
U 3e) Tt =

or, by substitution in the equation on page 73,

I’ ) =51+ )]

I'MNd\ _n

1412 (x)':id"’

by integration,

tan—t T'(\) ==g M-ef
or -

1 ’
T'(\) =tan 3 A+ )

Hence :
tan -1 B te)
tan 5=u tan (2 ANte )

Since for A =0, we have 6=0; therefore, ¢’=0 and

T(\) =tan 3’2-‘ A

and
6 1. n
tan ) tan 3 A
To determine u, we may write

- dp duNcosge n

Yo tP3s) o = T2

in the form
d (up) cos ¢ _n
; de 2pu* 2
But
. C 2
up= 5('"’ - 1)
and
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By substituting these values, we obtain

cos ¢ d__u_= n
w—1 do 2
du —n de

w—1 2 cose

1fdu du\_ _n _ de
2\u—1 u-+1 2sin(;—r+ ‘p)

[0053(4 2>+s1n2(4+2>]d¢
2 281n<4 +5) cos (F+)

du  du cos (4 2) sin (4 2)

1
2 u_l u+1 - sin cos )
, its its

or
du cos (4 2) do , sin (4 +2) do

u+1u1 ()2 08()
zt3 cos{zt3

By integration

log, ;Li-—i— =n [log,, sin (Z{ + g) »——log., cos <g + "2—0)] +log, %,

log, % being the constant of integration. Passing to
®Xponentials we obtain

vl g ann (48
u—1 "k tox (4+2>




78 U, 8. COAST AND GEODETIC SURVEY.
or
ktan® (£+§)+ 1
ot (T O)
k tan <4+2> 1
2 n _75 g
c 1 ¥* tan? (4+2>+1
2 2n § . R D
. k? tan <4+2> 1

- n 1['_ _(p.
c 1 2k tan (4+2>
p=2 'u,.——?-z = ; - o g
2n — I
k2 tan <4+2>+1

I\ = tan—g)\

| n (T 2)_
0 TO) k tan (4—{-2) 1 "
T NI tan S\«
k tan’ <Z+§>+1

2

The value of s gives the distance of the center for the
circle that is to represent the parallel of latitude ¢ from the
intersection of the central meridian with the parallel that is
represented by a straight line; p is the radius of this
parallel; the parallel is therefore fully determined by
these two quantities, since the centers of the parallels must
lie on the central meridian. In order to construct the
meridians, we must-determine on the parallel of ¢ the
value of 8, the angle at the center of arzHlel‘ ¢, that corre-
sponds to the meridian of longitude \; this method of
E otting the meridians by coordinates will be unnecessary,

owever, if we determine the equation of the meridians. |

‘We have

tan

x - psin . -
Y =8 — pcosd.
But )
0 T(\
tan é‘——'—'lz-—
or
] n 0
U = I‘()\) COt'é = tan 5)\ cot E'
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Henqe

c 1 c n 9 n A
p gi(u — a): E(tan §)\ cot 3~ cot -2—) tan —2—)

or
1 ﬁ)\ Q. z_ ﬁ)‘ i 6)’
s sin & 0052 cosy 810 5 -
p=zc sin n\ sin @ !
also
. n a\? n, . O\
o2 (sm ix cos 5) +<cos §)s Smﬁ).
- sin 7\ sin 0
.n 6 n,.. N . n 0 n, . 0
o 2c(sm§)\ 008 5 —COs §)\ sin —2-)(sm §>\ cos §+ cos -2-)\ sm§>
sin n\ sin 8

.1 .1 |
§2csm 5 (@)\—0) s 5 (n>‘+a)=c(cos f—cos n\)
sin n\ s 0 sin 7\ sin ¢

: 2¢ . n A
8—~p cos @ = n N el (sm -2-)\ cos —2-> 2 sm’-é
n, . 0\ ,0
| +(cos§)\ sm—2-> Zcos-é]

..0 8/ . m n
2 2 2. 2.
4¢ sin 5 C€Os 2—{ sin 2>\+cos 2)\>

sin wA sin @

csin g
= -5 — .
sin NA

sin 6 __¢(cos 6 —cos nr) —z
P sin A !
Op

ccosf
gi—n—-ﬁx==m+c cot n\.

Therefore A
Y2+ (2 +¢ cot nh)?=c? cosec® mA.
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Since this equation contains only A and is independent of
¢ and 6, it is the equation of the meridians. The meridians
are therefore circles with centers upon the X axis (the
straight line parallel of the map) lying at the distance
= —¢ cot nA from the origin a,mi7 having the radius
= ¢ COSecC TA. . :

- Since for =0, y = ¢, all of the meridians pass through
the two points which are distant +c¢ and —c from the
ori%in; 2¢ is therefore the length of the central meridian
included between the poles. .

As an aid to construction, we may assume the equation

k tan “(z—+-§)=tan (£—+g>,

8=¢ cosec ¥

then

and
p=2¢ cot .

A special case of this projection is given by the values
k=1 and n=1;in which case ¢ = ¢, and

§=c cosec ¢
‘ p=2¢ cob ¢
and the equation of the meridians becomes
1%+ (@ +¢ cob \)?=¢? cosec? A,

This is evidently the stereographic meridian projection
which has already been discussed under that heading.

DETERMINATION OF THE CONFORMAL PROJECTION IN
WHICH THE MERIDIANS AND PARALLELS REPRE-
SENTED BY CIRCULAR ARCS.

This projection is the one devised by Lagrange. His
problem was to determine the general conformal projec
tion in which the meridians and parallels were bot
represented by circular arcs, )

Since the projection is to be conformal, we can express it
in the form of a function of a complex variable*

*See The General Theory of the Lambert Conformal Conic Projection, Special Public#
tlon No. 53, U. 8. Coast and Geodetic Survey.
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Let 1 denote as usual 4/ — I and assume the relations,

z—1y =f,(c +1N)
x+iy=j;,(0—'5>\),

then 1, and f, are conjugate functions of a complex variable
that are only limited to being analytical functions. From
these we find at once.

z=3Lfile +iN) +h—iN]

=~%[ﬁ(a +i) —fo(e =N},
or, denoting f,(¢ +1i\) by f; andfz(av—'ik) by f»
2= (fi+1)
ty= 5 (i)
% AT
5_;=gm_ g
Wi,

e A}

From these equations it follows that

oz _ y ba:_*_av/
5~ ~on and 53 }-ba

112948°—10——6
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From these we obtain at once

o%y ok 0%y

| oot T3 on oM |
s (92 L (O¥Y (9% , (Y %z 0y _ 0z dy
W ‘(m) +(bo’> “(ax) +(a“x =5 00 00 O\
1 (4 4 '’ 4 4 7
=Z[(f1+fz)z—(.fl_'fz)Z]:flfz-

Therefore

W=7 (o +N) [ 3(a— ).

If the coordinates of a-plane curve are expressed in
terms of an independent variable ¢ in the form

r=p(t)

the expression for the radius of curvature is given in the

form
dedy _dy d's
dt d* dt dit®

T@&-@T

Since in the expressions for # and y in terms of f, and f,,
o is a function OF the latitude and X is merely the longi-
tude, ¢ is constant along a given parallel and A is constant
along a given meridian; in other words, ¢ remaining con-
stant, we obtain a parallel by variation of X\, and \ being
constant, we get a meridian by variation of ¢. Therefore,
if we neglect the sign

0z 0% Oy Oz
1 d0ds 050
=[G -GOT
Oc oo
1  OMOM OMON

ST

L
R
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or by substituting the values on page 82

1 _ 1[0z o oy 0%l _10W
B~ W 90 55 ON ' 00 ds OX | WEOA

1 _ 1[0 ¥ 2y ¥y |_13W
R, WY ONOXJs ONONOs| W?0s'

or, again paying no attention to sign,

1.9 (_l)
 Rn M\W
L 2(1)
7, =3\ W)
We=~f" (e +N) fy(e—N).
If the meridians and parallels are to be circles, R,, must

be independent of o, and R, must be independent of \.
8 fact is analytically expressed by

20 w340

These two conditions lead to the same condition; that is, to

o)

Oc ON\ W ’
from this it follows that, if the projection is conformal,
bhe condition that one system of curves forming thenetis to
% made up of circles, makes it necessary that the other set
Should also be circular arcs; this includes, of course, straight
les as gpecial cases of circles with infinite radii and with

‘enters at infinity.
f, in order to simplify the analysis, we set

in which

1 .
1/f’:(a+ix)=g‘(°+“‘)

1 .
m=ga(v—1>\).
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. then

1 . .
W=gl(d+@)\) (o0 —13N\) .

i ‘ . . s :
Sb& ”W>=9’1(<r+m) 9.(e—N) +¢,(s +A) g'3(v—iN)

2 (IN_. o '
dc 3X(W> =1g,"" (o +1\) g,(o —I\) —ig, (o +1\) gzl-l(o, —i\)
so that from the required condition we have

0@V g =)
ACEI) g.(a —1\)

The two members of this equation are conjugate complex
functions, and the equality can only exist on condition that
the members are each equal to a real constant. Let us use
B for this constant and, for the sake of abbreviation, let
us denote the variable ¢4i\ by 2z and ¢,(2) by Z. The
differential equation then becomes

>z
3‘27=ﬁ2Z.

Multiply both members by 2% and we have

2d7 d*Z azZ
& dF g

(%y =BZ =

—v? being the constant of integration.

_az_
T

By integration,

dz

or

gdz
71527—5—_-:—"_’)” =pdz.
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Integrating again, we obtain

log.(BZ + B ZF —?) =fz+8
or

BZANFZ ==,
Taking reciprocals we get
A a
By addition, we obtain - _
2 ,—8

e’ ye —Bz
= — ﬂl .
26(3 + 98 e

- Now, for abbreviation let

Z

ed

2e—-6
2 A, and 12—=B?

B

and we have
Z=Aef" +Be*"

or
1(0 +iN) = AP+ | B e—Blo+N),
Bug,
E y 1
Tt =g
Hence .
dfiel_ -1
dz (A6 + Bef)?
e2ﬁz
T (4,1 B,

1 d(A@ 4B,
AEN=ga5 AT B
By integration

1 1
,f‘](z) = —"—“—2A1“"‘B A“"‘lezﬂz +Bl+ 0.

85

It we set —2A4%8= M and —2A4 B,8=N and restore the

vf"lue“of z, we obtain
. 1 .
j;(o’ +'Ll\) = 0"*“ “M;‘Qﬂ(‘,,f_b\) + N‘
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Since f,(¢ +19\) is equal to z—1y, the constant C tends
only to translate the origin. Let us suppose that Cis a
complex quantity in the form of a+1b. If we transpose
C to the left-hand member, we have

. 1
m—d—’b(y+b)=7ﬂ—e~2§m'

a and b may be either positive or negative and either or
both may be zero. No generality is lost if we set them
both equal to zero, since they may be accounted for by a

mere translation of axes.
Now, let M= —Ai and N= —Bi and we get

. ie—ﬁ(°‘+”\)
W= AP+ | Bghloting’

By multiplying both terms of the fraction by Aefe=in) 4
Be—Bl—iN we get,

o ide—0 | i B2
W= Az { 2 AB cos 2PN+ Bre—%s

_ A sin 28\ +1 (4 cos 28N+ Be-%).
A?¢% 12 AB cos 28\ + B2e—2

By equating the real parts and the imaginary parts, we
obtain
_ A sin 28\
T= 4227 13 AR cos 2B\ I Be—7

__ A cos 28\ 4 Be~%e .
¥ A?e?e +2ARB cos 2B\ + Be—2

On the sphere

TP
o =log, tan (;1- + §) .
and on the ellipsoid

_ T, e 1—esin ¢\*? .
a—loge[tan (4+2> . (1 Fesin ‘P) ]

That the meridians and parallels are both circles, we
already know, since the function f; was determined on
this condition; but in order to obtain their equations, we
must proceed in the usual way. If we eliminate o, we
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shall have the equation of the X meridian and, By the

elimination of \, we may obtain the equation of the
parallel of latitude ¢.

2. g Al 3+ 2ABe=%7 cos 28\ + Bre—be
¥+ Y = (Aig#> + 2AB cos I8N+ Bre )
e—ZBcr
= A%¢%7 1 3AB cos 2PN+ Bre2

Therefore

= _/‘I{_yz= — (Ae*7 cos 28N+ B)

z = 280 &)
Py Aee gin 2@)\.

From these, by the elimination of ¢, we obtain
y+B (z’+y’);

p —cot 26\
or

m’+y’+%y+l—1;m cot 28A=0.
cot 28N\ 1\ 1
(“’ 7B -+<y+27§> = IB"sin® 9B\

This is & circle, the center being at the point

) cot 26N
W=—"3g—
1
Yo= 5B
and its radius being
1

Po=95B sin 2B\
This equation is identically satisfied by the values z=0,

Y=0, and by =z=0, y=—%; since all meridians pass

tlll'ough these points, they represent the two poles; the
Y axis is the contral meridian.
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- If we eliminate N\, we get
(#+B) + b o
Developing and arranging, we get
@+y*+2B @ +y)y+ B (2 +12)2 = A% (2 +1)%
Dividing by :c’—l-'y”., since this can only vanish for =0,
y=0, we get (A% — B?) (x*+y?)—2By=1

or

. 2By 1
x2+y2_A”e4ﬂ‘—B2=A"e4ﬂ‘—B’

or

2 B 2_ A234ﬁ1
VY~ e =1 ) = (At = B*)?

This is a circle with center at the point

B
%0=0s Yo= Zogm —

and with radius
Ae?e
Po= Azgise — °

Since we know that the projection is conformal, it is
known that the magnification is the same at any point
in all directions. e can determine its value along a
parallel and in that way determine its value in all -
directions.

Oz _248 c0s 20\ (Asetr + Blg~%) +44°Bf
ON (A% 1-2AB cos 2B\ + Bte—%7)3

© dy_24B sin 26\ (A2 | Bre=%7) — 4 ABBe* sin 28\
on (AzeZﬂ.r +2ARB cos 26N +Bze_2g¢>z

d_S 2_ bx)z_{_(ga_/ 7_ 4Azﬂz .
d)‘) _<5$‘ ON/ (A% +2AB cos 28\ + B?e—27)?
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But on the earth
) _ @ cos’ o
1—é sunz
from which it follows that

as, ) 248 {J1—€sin’ ¢
dS a cos ¢ (A% +2AB cos 26N+ Ble —lﬂa)

k=

In order to derive the equations.in thelr usual form,
Wwe shall move the origin down to the pomt—@ The value
of ¢ will remain the same, but the new value of y will
equal the old value of ¥ increased by 51]—3 or vy’ =y+§1B
The equations are. therefore, -

A sin 28\
=A% 1 2AB cos 2\ + Be—%7

A28 __ B2g—2%0
Y= 5B (A%%" 1 2AB cos 20\ + Bie—27) -

The equatlon of the meridians now becomes

cot 28\\2 - 1
(“’ 5B ) TV " iB s 28
and that of the parallels

R A2e4ﬂ¢ +B2 2— A264ﬁa ]
CH Y 5B A —BY | T (A —BY)?

To identify this projection with the one formerly
Obtained, let

1_ ¢, 28=n, and -4—7(3.
2B B
Then
L 2¢k sin n\
=T 12k cos nA + e
c(kzenﬂ e—nd)
Y= T2em 1 2k cos nh +e5°

(z+ ¢ cot n\)2 412 =c* cosec® nA

c(k2e2nd+1) 2 402kze2nw
m2+[y_ T2e2no _ =(kze2n¢__1)2'
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v tann (T4-2
e =tan ( i + 2)
or for the spheroid ‘

v torn 1 —esin o\
e =tan (4 2) (1+esm<p

Therefore, for the sphere

But for the sphere

2¢k sin n\ tan® (—Z + g)

k? tan™ (;:—r + %) +2k cos n\ tan® (g + g) +1
[-k’tan2“<£ g)—- 1]

k? tan® ( )+ 2k cos n\ tan® ( i 2)—!— 1

oaly— [kz ta,nz"(—-{- )-!-j | 4¢? k* tan = (i—r+§) 2
k? tan’"(;— —2-)— 1 [k’ tan?® <g +g>— 1]

We thus see that
k? tan®® ( )-l— 1

8§=¢
k”tan”"( ) 1
n (7T ¥
2ck tan <4+2)
k? tan?® (§+-§)—1

If we denote that intersection which lies nearest the origin
by ¥, (that is to say the ¥ value for A=0), we have

r=

o=

p=
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By performing the indicated operations, we obtain

nf T8N

g K tan (4*2) Lo

tan 5= p— tan 5"
ktan“(z+§>+1

The projection is thus found to be identical with the one
previously obtained by a different procedure.
_With these values the magnification (denoted by &’ for
distinetion) for the ellipsoid becomes

) 2ckn+/1 — € sin®p
@ cos ¢ (k*e™ +2k cos n\+e7)’

ne tern T © 1 —esin p\%
e f—tan (4+2) . (1————————_*_e o ‘p)2
If the parallel, the latitude of which is —«, is to berepre-
sented by the circle of infinite radius or by the straight
ne, among the circles of parallels, which forms the perpen-
dicular bisector of the line joining the poles of the projec-
tion, then the radius of this parallel ang the distance of its

center from the origin must become infinite. This will be
the case if ‘

» in which

c
spoponf T @Y
ktan“<4 5 1
hence . ‘
2 2 ?I:_E N [ e
~ktan“<4 3 1=0

' T a afT @
k=cot"(‘—l—§ = tan (71+2>

If, for the sake of abbreviation, we set

k tan“(l—r + g) = tan® (—E + g) tan® (% + g) =1m,

the expression for the center of the parallel becomes

o .
=e0 ,‘

or

) 2 .
To=0, yo=9%n:-—i‘1-), ‘and the radius becomes p°=—1376_7fb-1o
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The equation for the parallel becomes -

-5

The equation of the meridians remains as before
(z4c¢ cot mA)? - y? = ¢* cosec? nA.
The coordinates expressed in terms of m become

2¢m sin 2\
14+ 2m cos N\ +m?

€=

‘ c(m" 1)
y= 1+42m cos nk—i—m"’

and tne magnification for the sphere becomes

_ 2emn
“acos ¢ (14+2m cos nn+m?)’

and for the spheroid

. 2emn A/T— ¢ sinep
" acos ¢ (14+2m cos nh+m?)

with the value for m in the last form
 m=k t’m“(z; Nz) (1 e ::II: ZZ)
Since both ¢ and « must be less than 12£: if ¢ is greater than
tan (g—k—g) >tan (-Z~g
tan (£+§) tan (§+g)> 1

m>1.

—a, then
or
and

In a similar way it may be shown that when ¢< ~a, then
m<1.
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. The parallel circles whose latitudes are greater than —e

lie on tll)xe positive side of ({1/ ; those with latitudes less than
~a lie on the negative side.

In the expressions for the projection to which we have
arrived, ¢, e, and n are constants that we can determine to
it such conditions as we may require the projection to
fulfill, these being limited, of course, to the conditions
that are possible in a conformal map.

¢ determines the scale of the projection and it may be
any real constant, so that it only remains to determine «
and n. If a=0, then the straight line parallel represents
the equator and m becomes

— tanD I‘ L4
m=tan (4+2>,
80 that k=1..

SPECIAL CASES OF THE PROJECTION.

If n converges to zero, and -at the same time ¢ converges
to w in such a way that cn=2a, we obtain a projection
In which the parallels are represented by straight lines
Rerpendicular to the Y axis since their centers lie at
Infinity on the Y axis. In the same way the meridians

ave infinite radii with centers at infinity on the X axis;
consequently they are perpendicular to this axis.

To %etermine the values we have

= 2cm sin 7A ]

p=q L1+2m cos nh+m?
en=2q
m=1

SRR L
2mcn(k—-—%+ . )
z=lm .
142m cos n\ +m?
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The limiting value of this is seen to be =

T=aA.:
—hm - c(mz—l) o .
y_;bio 14+2m cos A +m?
cn=2q ’
m=1

=lim [e(m?—1)]

n=0 4

cn=2q

m=1

m (T, PY_ :
1 tim [m {t’m " (4+2) 1}]
Py -

n=0 NN
cn=2q

tan?® (1—r+‘£>—1 B
lim[ _\+ 2] ).
o - ‘

m (T, ¢ TLEY)
- 2tan®™ (4 +2)‘logB tan (4+2>]*
‘ ‘ 1

=0

a
2
n

==

I i

The value of this expression at the limit is
y=a log, tan (Z{ +§) :

We have thus arrived at the Mercator projection as &
special case of Lagrange’s projection. Although it is
not a polyconic projection in the accepted sense, yet it
a?pears a3 a special case of one of the important projections
ol the polyconic class. Lambert's conformal conic pro-
%actlon can also be obtained as a special case by lefting

become equal to zero in the equations containing the
A and B constants.

Y

"‘[Since H%: ax==ax log, a.]
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If n becomes equal to unity, we obtain the stereographic
Projection and the equations take the form '

- 2¢m sin A
. 4 T=142m cos N+ m?

_ e(m?—1)
y-1+2m cos A+m?

with m = tan (;15 +%> tan (%r + -g)

Substituting this value of m and reducing, we obtain_

_ ¢ cos a sin \ cos ¢
1-+8in o 8in ¢+ cos . cos A CO8 ¢

x

- ¢ (sin a-sin ¢) .
Y=ifsinasn @-+cos & cos \ cos ¢

If we now let 1f =y —sin a, which merely moves the origin
and does not change the nature of the projection, we
Obtain after dropping the primes

o= € coS a 8in \ €08 ¢
¥ 1+4sin @ 8in ¢ +cos & cos'N o8 ¢

¢ cos a(cos & cos ¢ —sin @ cos N cos ¢)
1+4sin « sin ¢ +cos a cos N cos ¢

Now by replacing ¢ cos @ by @, we arrive at the values pré«
Viously obtained o '

g @ sin'\ cos ¢
" 1+48In « 8IN. ¢ +COS & COS A COS ¢

u=a(cos a co8 ¢ —sin « cos X cos ¢)
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" GENERAL STUDY OF DOUBLE CIRCULAR PROJECTIONS.

1

In order to enter upon some points not yet discussed,
we shall study in general those projections in which the
meridians are represented by a system of circles passing
through two common points which form the poles of the
projection and in which the parallels are represented by
a system of curves orthogonal to the meridians. The
centers of the circles forming the meridians will all lie
u}i(j)n the perpendicular bisector of the common chord
which forms the line joining the poles of the projection.
The tangents drawn to the various circumferences from
any Poir_xt, of the prolongation of the common chord are
equal, since they are in each case a mean proportional
between the same secant and the external segment of the
same. If from this point as center, with a radius equal
to one of these tangents, we describe & circle, it will inter-
sect all the circular arcs representing the meridians at
right angles. We thus see that the orthogonal trajec-
tories of the meridians of the map—that is, the parallels—
are also circumferences, 8o that they belong to the poly-
conic projections. The locus of centers of the parallels
is & straight line passing through the projections of the
two poles and perpendicular to the locus of centers of
the meridians. i

Every point of either prolongation of the line of poles of
the map can be considered as the center of the projection
of one of the parallels, and the radius of this projection is
then equal to the tangent drawn through the point in
question to one of the meridians of the map; for example,
to the circumference described upon the Iine of poles as
diameter. Reciprocally, if in a projection with orthogonal
curves the parallels are circumferences having their centers
upon the prolongations of one of the diameters of a given
circumference and as radii the tangents drawn from the
various centers to this eircumference, the meridians will
also be circumferences which pass through the two extrem-
ities of the given diameter. This will not be true if the
radii of the parallels are determined by any other condition
than the one mentioned. The rectangular polyconic pro-
jection of the English War Office, already discussed, fur-
nishes an example of an othogonaf projection in which the
parallels, but not the meridians, are circumferences,

The properties which we have just pointed out are not
the only ones which we can extend from the stereographic
projection. to all conformal projections with -circular
meridians and from these to projections with circular
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meridians and orthogonal {pa.rallels. In figure 30 let P
and P’ be the projections of the poles, O the middle point
of the line PP/, APA'P’ the circumference described upon

P’ as a diameter, A4’ the diameter perpendicular to
PP’. in addition, let S be the center of the projection of any
Parallel, U and U’, D and D’, F and F” the points where
this projection intersects, respectively, the circumference

DO

A
p (]
F1q. 30,—Geometrical relations botween-brthogonal clrcular meridians and parallels,
first figure.

4p A’P’, the line PP’, and the perpendicular erected at S
Upon this line; finally, let V be the intersection of PP’
With U7, and let U, be symmetrical to U with respect to

» 80 that U'U, is parallel to PP’. ‘

.The point ) being the bisector of the arc UDU’, UD
Will bigect the angle formed by the chord UU’ and the
ngent, OU; the point A’ being the bisector of the arc

112048°—19——7
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U’ A'U,, UA’ also bisects the angle U'UU,; therefore, the
three {)oints U, D, A’ lie on a straight line which makes it
possible to construct the point D without -describing the
circumference S when Uig given. Since the angles AUA’,
DUD’, each being inscribed in a semicircle, are right!
angles, the three points 4, U, D’ also lie on a straight line;’
which is the bisector of the angle formed by one of the
siies of the triangle U'UU, with the prolongation of the
other.

The angle PUA’, which subtends, upon the circumfer-
ence O, an arc equal to a quarter of the circumference, is
equal to the half of a right angle; the same is true of the
angle DUF’, which subtends upon the circumference S
an arc equal to a quadrant; the two angles are, therefore,
equal, and, as two of their sides UA’ and UD coincide, the
two others, UP and UF”, also coincide; that is to say, that
the points U, P, I are in a straight line. Since UP’ is
perpendicular to UP and UF to U%", the points P/, U, I/
are also in a straight line. It follows from this that UD
is the bisector of the right angle PUP’ and UD’ of the
adjacent angle PUF; therefore, DP : DP’'=D'P : D'P’'=
UP : UP'. 'The projection of each parallel is the locus of
the points the distances of which to the rojlections of tho
two poles have a given fixed ratio. The lines UP and
UP’ are in their turn bisectors of the right angles DUD’
and DUA; therefore, the ratio of the distances of an
point of the circumference Q to the two points D and D’ 1s
. constant. ‘ : R

In figure 31 the letters already appearing in figure 30 are
employed with the same signification. The semicircum-
ference PAP’ is the projection of 8 particuler meridian.
Let us now consider the projection PMGP’ of any meridian.
Let T be the center, ¢ and M its intersections with 4.4’
and the circumference S, respectively, and, finally, let &'
and M’ be the points of intersection of the are which com-
pletes the circumference 7'with the same two lines, respec-
tively. With regard to the two circumferences § and 7,
we should have to point out the same properties that were
gomted out as obtaining between the two circumferences

and O. It will be sufficient to indicate the following®
facts: Since M lies on the parallel circle which is the locus’
of points with distances from P and P’ in the ratio DP to
DP’, the ratio of MP to MP’ is the same as that of DP to
DP’; therefore, the line MD is the bisector of the angle
P MP’, and it should pass through the mid-point G’ of the
are PG’P’; then the three points M, D, G’ arein a straight”
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line; the same is true of the three points D/, M, @,
as also of @, D, M’ and of @', M’, D’." The three points
D’ @, @ are thus the vertices of a triangle the altitudes of
which intersect in. D and the feet of these perpendiculars
are at 0, M’, and M. )

- Let us construct the angle POI equal to that which the
meridian PMP’ makes with the straight line meridian
PP’; the three points P’; &, I will be in a straight line,

0 L[4
i
8
M
U )
/
[2} A
s .
° A TN | J N
L
P [
Fig. 81,~Geometrical relations hetween orthogonal meridiansand parallels,
second figuro.

becau*_se the angle OP’'G which subtends the arc PMG upon
‘{)he circumference 7' is equal to half the angle formed
ty the chord PP’ with the tangent at P’; that is, to half
he angle POI; hence upon the circumference O 1t ought
10 Subtend an arc equal to PI; that is to say, that the rx;ro-
Ohgation of P’ ought to pass through 1. "'We have, then,
0 determine directi:’y the point G, a process analogous to
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that which may be made use of in the stereographic pro-
jection upon a meridian. C

" Let us construct 7L perpendicular to TP and inter-
secting in L the projection PMP’" of the meridian; the
three points P’, L, A are in a straight line, for the angle
PP’L, which has its vertex upon the circumference 7" and
intercepts the same arc as the angle at the center PTL, is
equal to half this angle or to half a right angle; therefore,
the prolongation of P’ ought to pass througﬁ the point A.

The radius OP or OA of the circumference described

upon the line of ﬁpoles as diameter be'mF taken as unity, we
define the modified latitude of a parallel as the arc AU of
this circumference comprised between the stmlght line
parallel AA’ of the map and the projection UDU’ of the
parallel in question. This arc which we denote by ¢ is
also the half of the angle at which, from the center of the

rojection of the para]fel, one would see the circumference
](?iescribed upon the line of poles as diameter; this arc varies
with ¢, from 0 to 5 and from 0 to ~5. For the abbrevia-
tion of the formulas we shall often use in them in place of
the arc that has just been defined the modified colatitude
p’, which is the complement of ¢’ and which represents the.
arc PU comprised between the projection of the pole and
that of the parallel; p” can then vary from 0 to = with the
colatitude p. - =~ : v :

Every circumference described from a point § of the pro-

longation of PP’ as center, with the tangent SU for radius,
is, in any system of projection with orthogonal intersec-
fions and with circular meridians, the projection of a par-
allel; that which varies from one system to another is the
position of this parallel upon the globe, or, inversely, it is
the expression of ¢’ or of p’ as a function of ¢ or p, respec-
tively. Whatever this expression may be, if we call » the
radius SD or SU or SM of the projection of the parallel
and s the distance OS from its center to the center of the
map, we shall have from the right angled-triangle OSU

r=cot ’

8= cosec ¢

g—ri=1.
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- Since the three points A, D, U’ are in a straight line,
the angle at A of the triangle OAD is equal to %; and it
result§, in this triangle,a.nd the triangle 0AD’, that OD =
tan %, and QD' =cot %- We thus have OD X 0D’ =1, as

1t ought to be, since the tangent OU is the mean propor-
tional between OD and OD’. - , ‘
~ The constant ratio of the distances of any point of the
projection of a Barallel to the projections Pp and P’ of
the two poles will be ‘ ‘ '

UP

’
P= tan PP'U=tan L,

2

Let us now consider the meridians. The longitude will
e reckoned as starting from that meridian the projec-
tion of which is the straight line PP’, and we shall define
the modified longitude of a meridian the angle at which
ts projection intersects the projection of the central
eridian, an angle which we shall denote by \’; this a,n%ie
18 also half the angle at which, from the center of the
.Projection of the meridian, we should see the line of
poles of the map. Therefore, for the meridian projected
Into PGP, A’ will be the angle which PP’ makes with the
tangent at P to the arc PGP’, or, what amounts to the
Same thing, to the a.ng;le OTP. The projection can vary
without the arc PGP’ ceasing to be the projection of a
Meridian; that which will vary will be the position of this
eridian upon the earth or, inversely, the expression of
A as a function of \. Whatever this expression may be,
If we call B the radius TG or TP or TM of the projection
of the meridian, and S the distance O I’ of its center from
the center of the map, the right-angled triangle O TP will
give :

R =cosec N’
S =cot \'
Rog=1,

and the triangles OP@ and OPG@’ will give

N o N
0@ =tan —2—,0G =cot &+
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We thus have OG X 0G” =1, which ought to be so, since
OP is a mean proportional between OG and OG'.

The coordinates ¢’ and N or p’ and A’ determine the
position of any point of the map; however, we shall make
use also of a third variable depending upon the first two.
This will be the angle OSM formed by the radius SM of
the projection of the parallel with the straight line meridian
or, what amounts to the same thing, the angle QTM
formed by the radius TM of the projection of the meridian
with the straight line parallel. We denote this angle by
#; it is the angle at which one would see, either from the
center of the projection of a parallel or from the center
of the projection of the meridian, the distance of any
point M to the center of the map.

Half of 9 is equal to the insecribed angle OG’M, which.
subtends upon &le circumference 7' the same arc as the
angle at the center QTM, or to the angle 0OG’D, since
the three points G', D, M sare in a straight line; but the
tangent of this angle is given by the ratio of 0D to 0G.
We have, then, : '

8 N o
A tmi—tang tang-

Trom this equation we deduce

0
. 2 tan 5 sin N\ sin ¢’
sin 0= = 7 14
1+tan2—2q 1-+cos’ cos ¢
1 -—tan’—q
2 cos N +cos ¢’
o8 0 = = .
6  1+4cos )\ cos o

1 tan? 5

The coordinates of M with respect to the axes OA and
"OP are ‘
sin A\’ cos ¢’
1+cos N cos ¢’

z=rgin =

sin ¢’
1+cos N\ cos ¢’

y=R sin 0=
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We have for the square of the distance OM to the origin

1—cos N\ cos ¢’

2 > Bt
vty 14+cos \ cos ¢’

We should note that the general equation of the circles
traced upon the sphere an§ that of circles traced upon
‘the map have exactly the same form when we take for
coordinates ¢ and A on the sphere and ¢’ and A" upon the
Plane. - On the unit sphere we have .

Z=C08 X COS ¢
Ay=sin \ cos @
z=sin o.
If we substitute these values in the equation of a plane

Az+By+ Cz+ D=0,
We obtain

(A cos A+ B sin \) cos ¢+ Csin ¢+ D=0,

This} is the equation of a circle determined by the inter-
Section of the plane with the sphere,
The general equation of a circle in the plane is given by
(@—a)’+@y—-br=c,

Or on substitution of the values of ¢ and ¥ in terms of
#" and N we obtain

sin N cos ¢’ 2 sin ¢’ 2
___7_!17__,____(?_7 —-a) + :P 7 b)= 62:
1+4cos N cos ¢’ 14cos AN cos ¢

or on development

l-cos A’ cos ¢’ 2asinN cose’  2bsin ¢’
ltcog N cos ¢’ 1+cosh cose’ 1+cos A cos ¢

S=C?— P )2

:_1 ~-e08 N cos ¢’ —2a sin N cos ¢’ —2b sin ¢’ =c—a*—P?
+ (2 —a*—10%) cos N cos ¢’
(@432~ 2~ 1) cos )\ cos ¢’ —2a sin N cos ¢’ —2b sin ¢

+a@+b—ct41=0
or

(A’ cos M +B’ sin ) cos ¢’ + " sin ¢’ +D’ =0,
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A’,B’,.C", and D’ being constants depending upon the
position of the center and the radius of the circle. In
the meridian stereographic projection we have ¢’=¢ and
N =)\, so that it is only necessary to take 4’, B’, ¢V, and
D’ proportional to 4, B, C, and D, respectively, in order
that the two circles may correspond to each other. There-
fore, in the stereographic projection on a meridian, and
as a consequence also upon the horizon of any place,
every circle is projected into a circle. This fact has’
already beem proved in another place by the use of ana-
lytic geometry *

Let us now determine the expressions for the scale
along the meridian and for that along the parallels, When
the point M is displaced infinitesimally upon the projection

of the meridian, the arc described is equal to R(;:}) de’

and when displaced upon the parallel the arc described is
o) ,

equal to 7(53\—,) d\’; therefore, we have

n=H(30) %
k =_7'_(_a_9 N’
P cos o \ON'/ d\
Now, if we take the logarithms of the two members
of the formula which gives the value of tan -g and then
differentiate, we obtain

dg . av de’

sind sin N " sin ¢

which gives for the partial derivative values the following
expressions:

08 _ sin @ N d_@g=§in0_

d¢ sin ¢ IV Tein N
On substituting these values and the values of r and B
we obtain

T = sin 6 de’

™ gin N sin ¢’ de
sin, 9 az’

kp:cos @ tan ¢ sin N dN

*Bee p. 43.
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or, on substituting the value of sin 6,

R N
T 14cos N cos ¢ do

L

_ 1 cos <p’,gl;)\_’-
T 14cos N cos ¢’ cos ¢ dN

ky

CONFORMAL DOUBLE CIRCULAR PROJECTIONS.

In the conformal polyconic projection the condition
m=k, gives in the case of the double circular ortho-
gonal net ‘

The left-hand member of this equation is a function of
¢ alone and the right-hand member a function of A alone;
1t iy, therefore necessary that they should be equal to the
Same constant n; hence o

AN =mn d\

do’ 0o
cos ¢’ cos g

and |

By integrating the first equation we get
‘ O M=m,
W0 constant of integration being ihtroduced, since M

Vanishes with A. In the second equation let ¢’=-12£— p’

and et :p"—“% —p and we obtain
ap’ _, _4p_
sin p’  sin p

Le..t us wyrite this in the form

' dp’ ' ’ dp’ d‘ ': )
cot%i—%+tan%~g—=ncot§—§+ntang%p;
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on integration this becomes

4 ’
log, sin %—loge cos % =n log. sig —g—n 1o.ge cos g

‘—Vn‘log‘3 sin‘%’+n log, cos %’;
or
log, tan %;n log, tan g—vn log, tan %‘l;

or, on passing to exponentials,

y n
. , tan l,f— :
tan % ={ — ) -
wn )
The constant which enters into the expreésion for tan

’
%, denoted by tan %, is determined by the fact that the
straight line parallel is to have the colatitude p,. When

p is equal to p,, p’ becomes equal to % and r=o. In the

' further discussion we shall .consider p0>% and reckon P

and p’ from the North Pole. That will throw the straight
line parallel into the Southern Hemisphere.

The angles are everywhere preserved except at the
poles; in order that they may be preserved also at these
two points, it is necessary that we should have n equs
to unity, and then we have the stereographic projection
upon the horizon of the place of the central meridiad

which has the latitude ¢,=p, —g.

CAYLEY'S PRINCIPLE,

This puts us in position to explain what is sometime?
called gayley’s principle.* Since in the stereographi¢
projection n must equal unity, the meridians in the hori
zon projection are simply the same arcs as those of the

* Soe Cayley’s Collected Mathematical Papers, Vol, VII, p, 397. Also mentioned in the
ninth edition of the Enc{clopmdin Britannien, Vol. X, p, 203, in which place some astoB
ishing mathematical analysis is given in explanation of the principle.
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stereographic meridian projection. The parallels are
determined by the equation :

- . p

Parallels constructed for 2’ on the meridian projection are
the parallels for p on_the horizon projection. The circle
constructed with its diameter consisting of the chord for.

€°o=p0—1§r in the meridian projection becomes the projec-

tion of the horizon circle in the horizon projection. In
figure 32, pMp’N is the meridian circle of the original
Weridian projection and PQP’Q’ is the horizon circle for

Poég:;—r constructed on the chord of the meridip.n circle for

%=% - Tangents to the computed p’ points of the meridian

(’ircle'wduld_ determine the centers and radii of the arcs
or the horizon projection; or the Tadii and center dis-
fnges can be computed from the expressions for r and s in

terms of ¢/ =T — /.
 If we let Do become—g and then let n cbnverge to zero

While leaving constant the product of n by the length OP in
figure 31, which we have chosen as unity in the former
nalysis, we obtain again Mercator’s projection. If we
Maintain this product equal to two, we shall have con-

Stantly
/7 n
tan Z‘2~ 2 1 —(tan g)
0G@ =\ " and 00:7& —_——
5 1 +<tan g) .

The limiting values of these expressions as n==0 are given
n the form :

0@ =), and 0D =log, cot —g*

* For the derivation of these limits see p, 04.
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F10, 32.—~Cayley’s principlo.
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DISCUSSION OF THE MAGNIFICATION ON. THE :CONFORMAL
: DOUBLE CIRCULAR PROJECTION.

The values which we have found for %y and %, in any
System of rectangular projections with circular meridians
&nd parallels have now become equal ‘to each other and
We have for the ratio of the lengths at each point of a
onformal projection :

_ n sin 0 ]
, " cos ¢ tan ¢ sin N
}ct results from thispé[uabion that, upon any given parallel,

increases or din}lmshes_ at the same t_ime as A. ‘When
the value of sin 8 is substituted, we obtain

___msece n sin p’
sec ¢’ +cos A’ sin p (1+cos N sin p')-

A point of discontinuity is found when cos A’ sin p’= —1-
ithin, the limits of the map this can happen only when:
P'= % and M=%x. In the ‘stereographic pi‘ojectionythis

foint is the antipode of the center of the map. If = is
€88 than unity it would fall outside of the map. of the.
Whole surface; but if n is greater than unity it would fall
Inside of the map of the earth’s surface, since we should
8ve n\= Lt . o

g, or convenience we will write the above expression in
he form )

A ol
%= sin p [é(tan %——i— cot %—)—i—cos x']-
I this expression we need only to replace N’ by n\ and
. 7 n R
W;}%by (cot %9 tan —g) to obtain k& directly as a function.
zf P and \. In order to see immediately what happens to

th&t the poles, we shall make this substitution ancf) express
9@ result in the form . e

o n (e () (eed)

' n/ 1- ; 14n
+<tan %’) (sin g) (cos g) ¥ +sin p cos nA+



110: U. 8. COAST AND GEODETIC BURVEY,

We shall need the derivatives of k with ‘réspect, to p of the
first two orders; we have

sinpok  mcosp’

T 8];—-1+Syin p/ cos )\1'—008 Y4
or -
2(1): —cot ’-;—l (cosec p’.+cos ) cos
op\k Pa P P
n sin p sin » O l>=n’-—n cos p cos p’
—sin? p (14cos\' sin p’),
or ‘

1 1 4 lﬂ_g ak)z]_" 2 7o ’
nsinpsinp’ | 355 kﬂ(bp =sin? p (1+cos \ sin p’)
' “+mn cos p cos p’—nl.

Let us first suppose n<1. Then at the two poles, that-
is, for p=0 and for p=m, we should have k= o; within
the interval £ would pass upon each meridian through &
minimum. Denoting by a subscript m the value which
applies for # a minimum, we should have, by equating to:
zero the first derivative of k with respect to p, o

€08 P'm _ €08 Pm
1+cosNsinp'm, n
_tan p'm
™ 7 tan Pm

. .., [1 0% cos p’ m_
8N Do SI0 P/ [7;2 o |~ cos py ™
The corresponding point is situated in the Northern Heriti-
sphere. ' _
The values which the above expression for S—l%z-) gjﬁ asri

sumes for p=0 and for p=n are, respectively, n— 1 and
1—n, so that the first is negative and the second is positive.

But for p'=;—ry p(=1p) >-§ ; hence the expression is pos-

itive for p'=12—', and, in fact, it is positive for p=-’2£- The
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Roint at which the minimumis found lies, therefore, in the
orthern Hemisphere. o o

.The values of pn and p'y, for a given value of # on any
Biven meridian would have to be determined: by successive
&pgroxjmati'ons until the equation containing pm, p'm, N,
and n would be satisfied %y the value obtained. Ior
}i‘&rt‘;icular meridians the-equation becomes much simpler. .

hus for the central meridian it becomes

, : .
tan ¢.m__ 510 &m
: n

When_this value is substi_tuted*l in the equation for the
8econd derivative, we obtain

) ] 1 azk 1+COS¢ —n?
sin P SN P'm [p W]m?n[m].

Itiis upon this meridian that we obtain the smallest of all

8 minima. Co L

Let us now suppose n>1. The conditions are now
¢thanged, since k=0 at the poles. The value of % upon
ach “meridian passes through a maximum instead of a
Minimum; this maximum is found in the Southern Hemi-
Sphere and lies between the colatitude p, and.the South

Pols. This is shown by the fact that \SH;CP g—’—; “is equal ‘to

"fl for p=0, a positive result; for p=p,, p’=1§ry and the

Value is --cos p,, still positive, since ;po>zr2-; for p=m the

Yalug hecomes 1—n, a negative result. Hence the maxi-
gl(l)llm lies between the straight line parallel and the South
0. - o .

" When = is slightly greater than unity, it may ha,pi)en
h&t,. starting at zero, the value of & would pass through a

8Ximum in the Northern Hemisphere; then it would fall
tﬁ & minimum in the same hemisphere, and finally pass
X rough a maximum in the Southern Hemisphere to return
0 Zero at the South Pole. This depends upon whether

20§y o «

R& becomes greater than n; this may well happen if
a m .

7?’,\131 ut slightly greater than unity. ‘
L grange proposed to ‘profit by’ the fact that n and p,
Ore arbitrary parameters to so determine them that k
ould yary as slowly as possible at a given point upon the
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meridian and u};])on the parallel in the vicinity of the prin-
cipal place of the country the map of which he wished to
construct. One part of the condition is fulfilled by making
the meridian of the place become the central or straight
line meridian, for in that case the derivative of k& with

. Y
[ (el
1
S |
L
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i
i
1]
P {
Qi
. {
3 i 3
t
i
S
Q
3
‘ A
S [
? i
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respect to N becomes zero for \=0. We can now equate
to zero the first derivative of & with respect to p upon. this
meridian; it would merely be necessary to consider ¢, as
the latitude of the given place. The second derivative will
also become equal to zero if we take ‘

ot least o)

T W Useranewa, Qt()\'&‘\ihn ~¥n Poariam os
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= /1+cos’pp.

Having thus found n, we would calculate ¢’y by means of

the formula
e _sin on,

) tan )
Then we should have for the determination of p,
1
Po_ tan Pm b)‘
tan % tan 5 cot )

For example, if the principal pla;ce was found on the
Equator, we should have i

om0, 1=Z, =0, 1nd .=

The Equator would then be represented by a straight line
and the system of projection would be defined by the

equations N
M =Ay2
an % =(tan g
A special case considered by Lagrange is given by the
values of definition
- ¥
s=cob 3
A
S=cot 5

Hence
cosec ¢’ =cotb —g

N
cot M =cot 3

or

’ \Vé
tang =(tan g) .

112948°— 108
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Hence po=% and the Equator is represented by a straight

line. The whole sgrféce of the earth may be represented
on a unit circle with the projection as defined, and the
projection is so given in figure 34.

Fiq. 34.—Lagrange's projection, earih’s surface in a circle.

EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS.

An equivalent or equal-area projection, is one in which
the proportion of areas is preserved constant; that is to
say, that any portion of the map bears the same ratio to
the region it represents that any other portion does to the
region which it represents, or the ratio of area of any part
is equal to the ratio of area of the whole representation.
This is expressed analytically by the equation

Tk, cos Y =1.

In the polyconic projection this becomes for the sphere
— ds cos0~§ﬂ a—0-—1-
"a*cos o\ dp doJON
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Integrating partially with respect to N and 8 with ¢ re-
maining constant, we obtain

P (98 gng B ) -

Zo0s p\dyp sin § d‘oﬂ ) Y]
no constant being added, since 6 and A vanish together.
In this expression s and p are any function of ¢ that we
may choose. 6 would then be determined by the above
equation. Inversely, if we give the relation which should
obtain between 6, ¢, and A subject to the condition that
A should be a linear function of # and sin 6, there would be
an infinity of equal-area Ifolycomc projections which
would satisfy this relation. In fact, © and v being given
functions of ¢, the assigned relation would be

wsin §—v0=X\,

in which
__ P ds
U= aPcos o do
v= P dp’
a?cos ¢ dp

or . 4
, Cre

p* = po? + 2a? v cos ¢ de.
(/4

L% ;
s—__-so—i-a”f ;COSgodgo
o

po and s, denoting the two constants of integration.
There is no equivalent polyconic projection that is at the
same time rectangular. In a rectangular polyconic pro-

jection we have
ds_pdu

de ude
_Iroy
T

and
L’/
tan. 5
o8 TY(\)

—>—~-sin 4.

ON T'(N)
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By substituting these values we obtain

psind /p du d\T'(V) .
a"cos«:(udgp COSG_&; r(\) =1
but '
_2uTQ)
S 6= 5 1200
W =T2(\)
cose—mf
Hence . ‘
207 du w—T2Q\) 201 1 dp 1

B et

@ cos ¢ de [u2+1‘2()\)]’— Fcose WP deo T/(\)

This is an equation that must be identically satisfied by the
values of % (a function of ¢) and I'(\) (a function of ).
The right-hand member is independent of ¢; hence the left-
hand member must also be independent of ¢. The condi-
tion will be identically satisfied if » equals a constant and
i aTcz'gng %’ is equal to a constant.

If u is a constant, s is also a constant, and the projection
would pass into one of the limiting cases of the pofyconic
prglject}ons. ) .

he integration of the equation

2p dp=a’c cos ¢ do
gives o
p*=po’ +a’c s, .

By assigning particular values to the constants p, and c,
we may obtain Lambert’s central equal area projection,
Lambert’s isospherical stenoteric projection (sometimes
called Lambert’s fifth), or, finally, Albers’ projection.
None of these are polyconic projections in the accepted
sense, and hence no investigation of their properties will
be given at this time. ~

o one of the strictly polyconic equivalent projections
has ever become of practical importance, because they
would generally be complicated both for computation and
construction. .
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Let us investigate the case in which the scale should be
held constant along the parallels. We should then have

' - kp=1and kmcqswr-l,

or
;,% cos 0—%);-1
ds cos 0—dp=a dp
or

s cos 0=dp+a de.

On any given parallel the rig;_ht-hand member of this equa-
tion is a constant, since dp 1s a function of ¢; but § 1s a

function of ¢ and A, for we have
" __p_Ob_
P71 cos @ ON
or, by integration,
0= a cos gp)\)
: P

no constant being added, since ¢ and X vanish together.

Tt follows that the left-hand member of the above equa-
tion must vanish identically; that is to say, ds=0. The
circles of parallels are, therefore, concentric and

dp= —a de,

or, by integration,
p=rotaleo—¢)- .

This is Bonne's projection; but, of course, it is not a polly-
conic projection, since s is constant; that is, the parallel
arcs are concentric. It appears, however, in the attempt
to attain certain things by means of the equal-area poly-

conic projection and can be looked upon as a limiting case

of the same.

If we assume
p=a cot ¢
s=a(e+cot o),
then ;

= —q cosec® ¢

=@ (1 —cosec? ¢) = —a cot? ¢.

dp
dy
ds
de
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If these values are substituted in the equation of condition

P (48 g %Pp)
7 cos p\do sin 6 d¢0> A,

we obtain for the determination of 6 the equation

0 —cos? ¢ sin 8=\ sin? o.

In this case
1—cos? ¢ cos 6
= 86¢
.k’“ sin? ¢ v
sin? ¢
kp = T"——z_—'—’
—cos? p cos 0

so that we have as required'
Erky cos P=1,
and both &y, and %, are equal to unity for 8=0.
If, on the other hand, we assume
p=a coty

§==@ COSeC ¢

dp

L, 2

To a cosec? ¢

(}—‘ = —=¢q cot ¢ Cco

do @ COsec ¢

these values bemng substituted in the equation of condition
give as the formula for 6

#—cos ¢ sin f=Asin® ¢

and
1 —cos ¢ cos 8
km‘_ sin? 0 sec ¥
e sin? ¢
P~ 1—cos ¢ cos 0’

so that km kp cos ¢ =1 and kp,=1 for 6 =¢, and ky=sec ¢ at
the same point.
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CONVENTIONAL POLYCONIC PROJECTIONS.

There is a class of projections that are not strictly equal-
area, but which have the property that they preserve the
area of the zones between the j{)amllels and that of the
lunes between the meridians. Any equal-area projection
possesses this property, but it is not conversely true that
any projection possessing this property is also an equal-
area projection. Tissot calis projections of this class
atractozonic. It can be rigidiy proved that no rectangular
polyconic projection can be an equal-area projection.  We
can, however, have an atractozonic projection in the

polyconic class that $
also has circular
meridiang forming &
rectangular net with ‘
thecircular parallels. (ad
In those that we
shall study first we ,
shall take the Y > v
straight-line paral-
lel of the map to T
represent the Equa-
tor, and the circum- |
ference described A
upon the line of
poles of the map as
diameter to repre-
sent the meridian the
longitude of which is
90°, reckoned from
the central meridian .
or the line of poles. P
We shall determine Fi.ss.—Goometricalrelationsofatractozonlc projections.

¢’ as a function of ¢ ) o y
in such a manner that, in the hemisphere limited by this

meridian, the area of the half zone comprised between any
two parallels will be preserved, and we shall determine \’
as a function of N, so that the area of the lune formed by
any two meridians may be preserved. The equal-area
projections not only have the zones and lunes equal, but
also in them the meridians of the earth and those of the
map, respectively, divide each zoneinto proportional parts.
This latter property is not found in the atractozonic

projections. . <
In figure 35 we shall suppose the radius OA or OP equal
to /2, so that the hemisphero and the circle which serves as

1ts projection are equivalent, since the radius of the globe
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is taken as unity. The half zone with a base limited by the
parallel of latitude ¢ has the area (1 —sin ¢). It is pro-
jected upon the portion of the plane PUDU’ which the
chord UU’ divides into two segments of circles; the one
UPU’ is the difference between the sector OUPU’, meas-

ured by % OP? times the arc UPU’ or by =—2¢’, and

the triangle OUU’, which is measured by % oUx0U’ x

sin ZUOU’ or by sin 2¢’; the other segment is the difference
between the sector SUDU’ and the triangle SUU’; the
angle USU’ is equal to 2¢’, and the radius SU of the par-
allel is equal to /2 cot ¢’,s0 that the area of the segment
is equal to (2¢’—~sin 2¢’) cot? ¢’. By equating the area
of the zone to the area of the projection of the same, we
obtain the relation .

T—78in g=7—2¢’ —sin 2¢’ + (20’ —sin 2¢’) cot? o’

or v
T _ 8in2¢’ —2¢' cos 2p’
gsme 1—cos 2¢’

According to the second condition, the area of the segment
OPG@P’ ought to be equal to that of the lune formed by the
central meridian with the meridian of longitude N. ~ The
angle PT@ is the angle N, so that 7P = /2 cosec A’. The
area of the segment OPGP’ is equal to the areaof thesector
TPGEP’, minus the area of the triangle TPP’,

TPGP' =3 TP x arc PGP’
=% X 2 cosec® N X2\’
=2\’ cosec® N/
ATPP'~5TP x TP’ sin £PTP’
=-21- >< 2 cosec? A’ sin 2\’

TPP’ =cosec®\’ sin 2)\’,
Hence for the area of the segment we obtain

OPGP’ =2\ cosec?\’ — cosec?\’ sin 2)\’.
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The area of the lune upon the unit sphere is equal to 2);
hence by equating this area to the area of the projection

of the same we obtain
2N —sin 207
A=

or
A__2)»’ —sin 2\
" 1—cos 2\

These two expressions may be written

. sin 2o’ —2¢’ cos 2¢’
gin p= o' —2¢ L

 sinZp’
/
M= Chon

By computing by means of the first equation the values of
¢, which correspond to a sufficient number of values of o/,
we could construct a table which, reciprocally, would make
own the values of ¢’ corresponding to given values of ¢,
The second equation would make it possible to solve the
same problem with respect to X and )\’.
With these relations we obtain

—cot N\ ‘

ﬂlf_’,_l" cos ¢ (1 —cos 2¢')
de 4 sin 2¢"(2¢' —smm 2¢") °
ax' sin®A”

dx " Z(I=N cot &)

_ wcos psin ¢’ tan p’ sin @
42 sin N (20" —sin 2¢')

_ 1 sin M’ sin ¢

P72 cos ¢ tan ¢’ (1 -\ cot N)

«km

k

or
T cos ¢ tan ¢ 1

mT = 7 ’

2+/2 2¢,_12£ sin o 1+4cos A cos g

=L COS o' sin®\ 1
P /2 cos ¢ I—N cot N’ I+cos A’ cos ¢

’

1 ecose’ - 1 1

/2 cos @ I—Ncot A 1+cos N cos ra
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By setting aside the condition that the principal meridian
should be represented by the circumference described
upon the line of poles of the map as diameter, we could
obtain a series of atractozonic projections instead of a
single one, and in this group some would certainly be found
the alterations of which would be less than those of the

rojection that we have just studied. We could still
urther increase the indetermination, and we could intro-
duce two 1Ezn'.suneters in the place of one by not fixing in
advance the parallel, the projection of which should be a
straight line. This remark applies also to the remaining
projections in this class, .

In a rectangular circular projection, in place of deter-
mining ¢’ as a function of ¢, so that the projection of each
zone should be equivalent to the zone it represents, we
can bring about that the ratio of the surfaces should be
continually equal to unity along a given meridian or that
the length should be preserved upon this meridian.
Similarly, we could determine A" as a function of A in such
a way that, upon a given parallel, the same conditions
should be fulfilled. By combining each exPression of ¢’ so
obtained with one of the expressions for A’ we ¢ould form
several kinds of projections, each of which would possess
the two properties in question, ,

Let us continue to represent the principal meridian by
the circumference described upon the line of poles of the
map as diameter, the Equator by the diameter perpen-
dicular to this line, and let us call R the radius of the cir-
cumference. ‘ :

The ratio of surfaces at each point, in one of these rectan-
gular circular projections, is

K= 9% ¢’ 1 __de"dN
T Cos o (1+cos N cos o) do dn

We now propose to bring about that it should remain equal
to unity along the central meridian. For A=0 we have
N =0, and the derivative of A’ with respect to N assumes a
known value n, depending on the nature of the function of
A which has been adopted to represent the value of \'.
The condition is then :

cos ¢’ do’

2
nie (1+cos ¢’)?

=¢cos ¢ dp

or, by integration,

. . 2 c "
sin <p=7—-b§—<1 w% tan? %-)tan %_ :
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No constant of integration is added, since ¢ and ¢’ vanish.

at one and the same time. If each pole is to be a single

point this equation must be valid for % or ~ % This gives

nR?=3. If we wish that the ratio of surfaces should be

equal to unity along the Equator, it would be necessary to
ave

ay’
’ [ v o
n R (1+OOS }\/)z dk:

n’ being the value of the derivative of ¢’ with respect to
¢ for ¢=0. We deduce from this equation, by integra-

tion, the relation

R L1 )oan
)\—T 1+-3~tan 3 tanz,

no constant being added, since N and A’ vanish together.
Since the meridian of 90° of longitude is to be represented
by the circumference described upon the line of poles of
the map as diameter, it is necessary that this equation
should Ee satisfied when we make in it at the same time

)\==1§r and N\ =§; we have then
n’R2=§41—ro

We can unite the two conditions; then the mode of pro-

Jection will be defined by the two relations which we have

Just obtained, the first %etwaen ¢’ and ¢, the second be-

tween A’ and ); in addition, #’ will be found joined to n

by the relation nn’R?= 4, which we obtain either by making
; ,

»=0 and %%=n’ ip the first differential equation or by

: ’
making A\=0 and %-vn in the second. From this we

conclude that



124 U. 8. COAST AND GEODETIC SURVEY.

-The two equations are

/ ’
sin o= %(‘3 - tan? %)tzm %

™ N N
A =—8—(3 + tan® 5)‘0&1} 5"
kwm and k&, have now become

V7 cos ¢ (1+cos o’)?

b=

4 cos ¢’ (1+cos N cos ¢)

I 1 cosg’ (1+cos M)
P yrcos o (14cos N cos ¢’)

1 (1+cos\) (14cose’)]?
K=kmkp_[§ 1 +COS )\/ cos ‘pl *

The latter formula can be written

e 1~__1_ (1,—0,08 N) (l—éos @' ’.
2 1+4cos\ cos ¢’

In this form we see that K is everywhere less than unity,
except on the Equator and upon the central meridian, and
that the alteration of surface increases with the longitude
a{)ld _with, the latitude. On the principal meridian we
obtain :

7
K écos‘ %-

Let us further examine how ¢’ ought to vary with ¢ in‘
order that the areas should be preserved along the prin-
cipal meridian. If we denote by n’’ the value which the

derivative of A’ with respect to A takes for )\——=%, we should
have E

ens ¢ do=n"" R? cos ¢’ dy’
or, by integration,
sin p=n'" B? sin ¢/,

" no constant being added, since ¢ and ¢’ vanish simul-
taneously.
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If ¢ and ¢’ are to beéomeig— simultaneously, we shall

have the condition ,
. n'! RB= 1,

and in this case the pole will be represented by a single
point. The equation then reduces to

¢ =
If to this equation we add the following:
T by N
=-§(3 -+ tan? :‘2—) tan 57
we know that the surfaces will also be preserved along the

Squator; this equation was derived from the differential
equation ‘ ' ‘ )

a4 na
T (1+4+cos N)

which gives n'’ =§%-r when in it we make )\=g, N =%, and
@:_ ’
"

This value of 2"’ gives
R—1 3.

) The values for the magnification along the meridians and
Parallels now become

o = Y37 1
™ T2 T4cos ¢ cos N

2. .(1+cosr')?
kpm o _—-"———“———",’
/37 1+cospcosh
and from these we derive

1-+cos L‘_)’
K=(1+cos¢cos A )
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The ratio of surfaces is greater than unity everywhere
except on the Equator and upon the principal meridian.
The alteration increases with the latitude; on the other
hand, it diminishes when the longitude increases. This is
shown at once by writing the above expression in the form

X ’ 2 sin? g 2
= sec¢? S———
sec e\ 1 1+4cos ¢ cos N

Upon the central meridian, where the greatest alteration is
produced, we have

—gact P
sect 5

The .conditions to insure that the areas should be pre-
served along the meridian of longitude )\, and along the
parallel of fatitude ¢, give, respectively, the differential
equations ‘

. 5y, COS @' 1 do' _
4 SID® Ny cos ¢ (1+cos N, cos o' )dp

B sin ¢’y tan ¢’ 1 N’
To (1+4cos ¢’y cos V)2 dA

=1,

The integration of the first equation gives

‘sing=A sin ¢’ —2cot Ay tan—1{ t n—z‘ﬂt n—“—’~,> )
S =2 T cos N, cos ¢’ 0 a5 tany

and from the second we get

_pl_ 4 -1 ¢’ A')__. - gin\
)‘“Bl:sin 20, tan (tan 3 tang )=y +c0s ¢’y oSN |

The quantities ¢,, ¢’y, A, M’y and the constants A and B are

oined to each other by the four relations that are obtained
{)y expressing that the first equation is satisfied for =g,

with ¢’ =¢’,, as also for ¢=g with ¢’ =1§r and the second for
A=5 with X" =3, as also for A=X, with A" =)\,
The ratio of surfaces has now become

Ke (1+cos N, cos¢’) (1+cos ¢’y cos\) ’_
T L1 +cos ¢’y cos Ny) (T+cos N cos o)
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In the parentheses of the second member the factor which
Varles with ¢’ is :

14+cos M, cos ¢’ .  cos Ny—cos )\"

14cos N cos ¢’ cos N +sec ¢

We see, then, that upon each of the meridians for which we
have A <),, the ratio K is less than unity and increases from
the Equator to the pole; for A>\, we have K>1 and A
. Increases from the pole to the Kquator. We should see in
& similar manner that, upon each parallel whose latitude is
loss than ¢,, X is smaller than unity and increases with the
longitude, while, if ¢ is greater than g, K will be greater
than unity and will increase as the longitude decreases.
Thus X aitains a minimum X, at the center of the map, and
another K, at the pole on the principal meridian; it attains
& maximum kX, at the pole on the central meridian; and,
finally, a socond maximum X, at the intorsection of the
Equator with the principal meridian; these values are

(1+cos Ny (1+4cos <p’o)]’

k= 901 +cos My cos ¢’y)
K=y —
27 (T4 cos Ny cos ¢,)? ,
Ko 1+cos ¢y )’
37\ 1+cos N cos ¢’y
K 1-+cos Ay )"_
' 4\ 1+cos Ny cos ¢,
. Let us still consider the rectangular circular projection
In which the hemisphere is represented by a complete

circle, and let us now suppose that we wish to develop
the ‘central meridian with its true length. In order to
do this we take the radius of the map equal to »275 « In

figure 80 we have soen that the three points A’, D, and
are in g straight line; hence the angle OA’D is equal

to the half of ¢’. Moreover, we have here 0A’ =g and
OD =y; the right trianigle OA’D will thon give

tang-r=
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If we also wish to develop the Equator with the true
length, we should have in figure 31 OG =)\, and, since the
angle OP@ is equal to the half of )\, the triangle OP@
will give in turn

From these two equations we obtain

8 Ao
tan -2- = *;; y
and also
de’ =sin I’y
de ¢
d\' _sin )
ax ~ N’
so that we obtain
sinf & sin ¢’

w
k"‘=§ esin N 2 @(l+cos N cos @)

_m sin @ T sin N’/ .
" 2Xcos ¢ tan ¢’ 2 A1 +cos N\ cos ¢’)

ko

At the intersection of the Equator and the principal
meoridian, we have

=2
k=1
K =2.

The Equator being developed with its true length, if
we make tho second condition no longer apply to the
central meridian, but to the principal meridian, and if
we wish that the arcs of this last have for projeotions
arcs that are proportional to them, the relation between
A and N will remain the same, but that which exists
between ¢ and ¢’ will be replaced by ¢’ =¢, which rela-
tions give ,

o 2
gy =

6 _2) @
tun2— - tan—2--
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We have then v
_m__snf .= 1
B2 sinesin A 2 14cos N cos ¢

T sinf = sin N’/
P72 Nsineg 2X{+cosN cosg)
K—Ez sin N’ .
4 N(1+cos \ cos )3

This projection is somotimes called the stereographic pro-
jection with modified meridian.

NONRECTANGULAR CIRCULAR PROJECTIONS,

Let us always suppose that to each point of the globe
there corresponds one point of the map, and only one, so
that the circumferences which serve for the projections of
the meridians all pass through two points P and P’ in
figure 36, which are the ]tgrojeotions of the two poles.
Let APA’P’ bo the circumference described upon PP’ as
diameter, O its center, AA" the diameter perpendicular
to PP’, UDU’ the projection of the parallel of latitude ¢
or of colatitude p, tfle point in the prolongation of PP’
which serves as the center for this projected parallel, V
the middle point of the chord UU’ common to the two
circumferences APA’P’ and UDU’. Further, let PGP’
be the projection of the meridian of longitude \, reckoned
from the central meridian projected into the line PP’ and
let T be the conter of the circumference PGP’. Let us
continue to define this last by the angle N at which it
Intersects PP’, which is equal to the angle OTP, so that
in the triangle O TP we have, as formerly, on taking OP
as unity and on denoting by I and S, respectively, the
radius 7P and the distance OT)

R =cosec N, 8 =cot N, R2-§2=1.

. As to the projection UDU’ of the parallel, we can define
1t by the two lengths r and s, as we have done up to this
time, or by the two angles which the sides of the triangle
OSU make with each other. Let us call the angle SOU,
1’()' ; its complement, ¢’; the angle OSU,  ¢; and, finally,
et v denote the angle which one of the radii OU and SU
Makes with the prolongation of the other. Since we have
OU=1, the triangle OSU is dotermined by two of the
112948°—19——0
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P

Fig6. 36.—Geometrical relations of nonrectangular double-clrcular projections.

uantities r, 8, p’, ¢, and v and it is easy to express the
three other quantities as well as the various lines of the
figure in functions of the first two. We have especially
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4
Y=¢€+p
_'sin p’
T sine

sin
g=o
Sin €

'v+p’)

COS(
OD=s—p=— 2/

€
cos §

!
sin (7————-—; 4 )
€

sin =
2

§4r=

The ratio of the two parts DP and DP’ into which the
line PP’ is divided by the projection of the parallel is
expressed very simply by moans of %’ and vy. In fact,
this latter angle is equal to that of the two tangents at
U to the two circumferences, which angle is divided into
two parts by the chord UU’, the one of which is the double
of tEe angle DUU’, and the other of the angle PUU".

The angle PUD is then equal to % ; but of the two comple-

mentary angles PP'U and P'PU the first is equal to 12{'
It comes about, then, in the triangles DPU and DP'U

that .
DU sin g=DP cos ?21

7 .
DU cos %=DP’ sin% ’

from which, by-dividing member by member and on
denoting the ratio by &,

P 2 tan 2.
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The alteration ¢ of the angle of the meridians with the
parallels is the excess of the angle SMT over g « In order
to obtain it simply, let us note that, M, being the second
point of intersection of SM with the circumference PMP’,

we have
SMxSM,=SPxSP’,

if M is displaced by changing the meridian but, remaining
on the same parallel, 8]/ 1s constant; then the same is true
of SM,; consequently, also of MM,. Then the projection
MN of the ragius TM of the variable meridian of the map
upon the radius SM of the fixed parallel has a constant
length. At the point M this length is expressed by B sin ¢

or by 511111—)1‘/7’ and, at the point U, by cos v; it thus results

that

sin ¢ =c¢os y sin A,
In the triangle OST tho angle at 8, which we will call o
may be immediately obtained, for we have :

\
tan a=9--
8

Let us now designate By 0 the angle OSM and by & the angle
O TM, which we shall need for calculating the ratios ks
and k,. The triangle ST M gives

8ln (0+a)=% cos Y

cos (6 +o) =—1—CS cos ¢}

but we have in the triangle OST

T8=S 8

¥ - ’
Sino C¢coso

so that woe have

sin (0+0‘)=% sin o cos ¢

cos (§4+o) =g cos o cos P



THEORY OF POLYCONIC PROJECTIONS, 133

or )
. sin o cos ¥
sin (0+0) =5
3 7
o8 (6+a)=sm p’ cos o cos ¢

sin vy

It is, however, sufficient to calculate one of the angles 6
and §; we have, in fact,

6— 9=‘¢’7

for, I being the point of intersection of T'U/ with PP’, the
two triangles OIT and IS M have the angles at I equal, and,
by expressing that the sum of the other angles are the
same 1n the one triangle as in the other, we obtain the
relation which we have just written. ‘

The rectangular coordinates of the point M with respect
to the axes 0A and OP aro

z=7rsin 6

y=1R sin 8.
We now have

05
-t 08
®"sin p OA

By faking, with respect to p and with respect to A, the

derivatives of the logarithms of the two members of each

of the relations which we have establgshed between the
0

different variables, we obtain g_a and >V which figure in
the values of ky and %p; but it is more simple to obtain
kwn by making use of the formula

km =(Ed£—(%§ 008 0) sec ¥,

which has been demonstrated with regard to polyconic
prOJiections in general. Since the meridians are also
circles with their centers upon the same straight line,
we can form an expression for k, by replacing in the
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expression for ky, » by \, r by R, s by 8, and 0 by §, and by
dividing by sin p; this gives
dR- d8 sec
kp=(d—x"a—): [¢18]:] 5) gm—p'
The projection of "M upon OT being equal to TO plus the
projection of SM, we have

R cos §=8-+rsin 6.

. Substituting for cos §, in the expression of k;, the value
which results from this last equation, and observing that
R‘%-S%SX is zero, since R?—8? i3 a constant, we have

b T sind  dS,
P Rsin pcosy dN’
but
1dS 1 a4
Rdx™ “snN A\
so that

_rsin 0 sec ¢ AN’

Jep = sin\ sin p dn’

The expression for k,, can be written

km= d(sd—; ) -2 %:i sin? %—] sec Y.

Let us examine in particular what these ratios become
upon the straight-line parallel of the map which we shall
make, for example, correspond to the ]Equator. Let us
call A the value which is assumed for ¢ =0 by the deriva-
tive of OD or s—r with respect to ¢ and — B the limit

toward which tends the ratio of gg to 2r* when ¢ tends
toward zero. Since at the same time 78 tends toward 0@

4
or tan %, wo find that on the Equator
I =A 4+ B tan? %

Bl g2 M AN
» =3 8¢ 5N’

since y =0 at that point.
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The condition that the areas should be preserved along
this line will then be :

1 N NdN
§(A+B tan? 5) sec"‘—z- Zﬁ\——l

or, by integration,
B A A
(A—l—-3— tan? E) tan 5 =),

no constant being added, since A and A’ vanish simulta-
neously. :

There is an infinity of circular projections with oblique
angles that are atractozonic. If we suppose the meridian
of 90° of longitude represented by the circumference
described upon the line of poles as diameter, these pro-
jections are furnished by the following equations:

. 2e—sin 2 .
2¢’ +-sin 2¢" — (1 +cos 2¢')—f—_—_—c%r—;~2—§= 7 8in ¢

2\ —sin 2\’ -\

1—cos 2\ ™
The first leaves yet undetermined one of the two quantities
; ) - 0 qua
¢’ and e as a function of ¢; as to the second, it 1s incom-
patible with the condition of preservation of areas along
the Equator, which proves that no circular projection
with oblique angles can be equal-area in the complete
sense.

PROJECTION OF NICOLOSI OR GLOBULAR PROJECTION. . .

In this projection the Equator and the central meridian
are found developed in straight lines and with their true
lengths; the principal meri%ian is represented by the
circumference described upon the line of poles of the
map as diameter; and, finally, the arcs of this meridian
and the corresponding arcs of the circumference are pro-
portional. We therefore have '
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R=% cosec A/
=-_72_r cot N
8in ¥ =cos v sin \’
tan cr=§
, s

sin ¢ cos ¢

sin (f+4¢)= coR N

d=0+y
™
o 5 8cos p—r 0
k= 1+2———f——sin2»2— sec ¢
%Singo—-go

- 7 8in 9
P7"N cos ¢ cos ¥

*3ee p. 128,
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The latter formula is ‘very easily deduced, since by
logarithmic differentiation we obtain

1 a1,
sin M dx N’

when this value is substituted in the general formula, we
obtain the relation as given above. The formula for %, is
somewhat more complicated in its derivation. 'We have

from the a priori conditions

§—r=g¢
or

e-n-1.

From the triangle OSU we obtain

3

. v r"=s’+%—-1rs sin ¢;
but
§—r=9
. . 2
(s—¢)’=s"+7 —mssing
: ,
(« sin ¢—2¢)s=% —?
or
7!'2
il

8= sin o—2¢

_@n —2¢  8(mcosp—2)
de wsine—2p w8 p—2p

__2r—mxs cos go.'
7 8l ¢ —2¢

When these values are substituted in the general formula on
Page 134, we obtain the value of k., as given above. A
circle constructed upon the line of poles of the map as a
diameter gives the projection of the principal meridian. A



138 T. 8. COAST AND GEODETIC SURVEY.

diameter perpendicular to this is the projection of the
Equator. Both of these diameters are divided into equal
arts and the projection of the principal meridian is divided
- Into the same number of equal parts. The parallels are
arcs through the divisions of the line of poles passin
through the corresponding divisions of the principa
meridian. The meridians are arcs passing through the
poles and through the divisions of the Equator or the
diameter perpendicular to the line of poles.

Fia. 37.—Nicolosi’s projection or globular projection,

PROJECTION OF P. FOURNIER.

Another conventional projection is that proposed b
P. Fournier in 1646, which is a polyconic projection Witﬁ
meridians that are ellipses. The Equator and the central
meridian are developed with their true length on two
straight lines perpendicular to each other; the central
meridian serves as the major axis of all the ellipses for each
of which the corresponding N\ serves as the semiminor axis.
The principal meridian ig a circumference of a circle. The
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pr?f ections of the parallels interceptupon thiscircumference
and upon the projection of the central meridian lengths
proportional to the corres,ponding arcs of the globe.

In figure 38 let APA’P’ be a circumference the radius of

which OP is equal to % ; it will représent the principal
meridian. Let PP’ be the central meridian of the map

Fig. 38.—Geometrical relations of Fournier’s projection.

and let AA’ be the Equator. If we take OD equal to o,
and if we make the angles AOU and A’OU" also equal to o,
the circumference passing through the three points U, D,
U’ will be the projection of the parallel of latitude . By
taking O@ equal to N and constructing a half ellipse havin

or vertices P, @, and P’ we shall obtain the projection o
the meridian of longitude \. Let M be the point where it
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intersects the parallel, and let S be the center for the latter;
draw the abscissa MN of the point M and the tangent M T
to the ellipse; also draw SU and SI/.

- The parallels are the same as those in the globular pro-
jection, so that we have, as before, v

) 3—7'=<p .
2
o
7‘2=32+Z——7rs sin ¢

or, by combining the two equations,

2
o(r+8) —ws sin ¢+%=0

1|'2
T
8= m———
7 8ln ¢—2¢

By taking the derivatives of the two members of these
equations with respect to ¢ we obtain

ds_2r—mscose
de wsln o—2¢

The angle OSM is still denoted by §. The triangle SMN

gives for the rectangular coordinates of M with O as an

origin : _
z=7gin 0

Yy=8—1 CO8 0,

The elliptic meridian has the equation

By substituting the above values of z and y in this equa-
tion; and then solving for cos 6, we find ,

o /AN + 2702 (28 8ID @ — ) + wort — 40%s. .
cos U= : 7 (r2—4N?%)
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By using this equation we can compute the angle 8 as well
as the values of x and y. If we denote by n the angle OTM
formed by the tangent to the ellipse at M and the Y axis,
we know that we have

ANy

iy’

tan n=

but the departure ¢ of the angie of the meridian from an
orthogonal intersection with the parallelis the angle SMT,
which is equal to the difference between the :m§les oTM
and OSM; we have then

Y=1—0.

Everything is now known in the expression for &, namely

fom= g; cos 0—%) sec Y.
By substituting the values this becomes

_ ‘rscos«:—2r . g)
7cm-(1 +2—-———————-—1r P sin’y ) see ¥,
an expression that has the same form as in the case of the
%l_obu ar projection; but, of course, the angles 6 and ¥ have
ifferent values from what they had in that projection.

kp= T(%%) sec ¢.

By differentiating the equation for cos 6 with respect to A
we obtain the value of g—g which may be reduced to a con-

venient form by substituting for sin 6 its value in terms of
Z and y; this form is much more readily obfained by dif-
ferentiating the expressions for z and y with respect to
A, and then the differentiation of the equation of the ellipse
bartially with respect to N will furnish the equation for

determining g—-z In this way we get

0
g%c=r cos 0 %’= (s—v) %\

oy . .00 09
57\=r sin, 0,6—)-\=a:57\
and . : ’
20z % ﬂ,aﬂ_-:o
MNON N xtON
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By solving these linear equations for Ba";“f we obtain,

29__ Ty
ON A[rPs— (" —4N%) ¢]

Hence
oo — TrE 86C ¢ .
PUN s — (7P =482 9]

Upon the central meridian we have
0=07 ‘/’=07 km= 1:

kp=scc <p-\/1 —(27‘0)2:

upon the principal meridian

and

o 6?—l s———;fsi )
co8 =7 3 el

a relation that is evident from the figure.

F1q, 39.—Profection of P, Fournler.
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. 1 2 .
£ —— :r —
sin ‘Il~1rrl:¢ (r+s) 4]

. d
km=se(;, L4 [((pe—g sin go) a§+r]
oot

P g

ORDINARY, OR AMERICAN, POLYCONIC PROJECTION.

This is the pro}ection that is generally referred to in this
country as the polyconic projection; but we have attempted
to show that the polyconic projection class is an exceed-
ingly broad one and that it contains examples of almost
every kind of projections: The name American polyconic
_Erojection‘has been given to it by European writers chiefly
ecause it has been extensively used by the United States
Coast and Geodetic Survey; in fact, the projection seems
to have been devised by Supt. F. R. Hassler to meet the
requirements in the charting of the coast of the United
States. :
For convenience of reference we shall give again the dif-
ferential formulas developed on pages 10-13:

pé?+ ds sin 0
tan ¢=-———————a‘p de
.fi.‘f‘ g.‘_éf
7o cos 2o

(1—=¢ sin*p)" (' ds @)
km =W d¢ cos @ d<p sec lﬁ

PP (1-—¢ sin%p)* Of

r @ cos ¢ O\

_p (1—¢ sin®p)? /ds _dp\ 08
K_az (1 —¢) cos ¢ \de 050 do/ O\

The characteristics of this projection are that each par-
allel is the developed base ofp the cone tangent along the
barallel in question; that the parallels are spaced along the
central meridian in proportion to their true distances apart
along this meridian; and, finally, that the scale is main-
tained constant along the parallels,
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With these conditions we have

___acote
P= A= ¢ sinZp)%

e de a cot ¢
— — 2
s=a(l—e )L 1— & sintg)h + (1—¢ sin?p)*

o, =L (L —€ sin’p)"é 06

p a coS ¢ Y 1
or ,
o0 .
'a—x—"- sin. ¢.
By intergration
f=0X\ sin ¢,

no constant of integration being added, since 8 and N vanish

simultaneously. ngce the parallels are represented by

circles and since the scale along the parallels is to be main-

tained constant, the last relation can be obtained :ny

ﬁquating an arc of the projection to an arc of the parallel;
ence .

-
H

0 al cos ¢
PP==e s o) %
acot o a\ cos ¢

(I=&sin® g% (1—¢ sin® p)¥
or '
0=\ sin ¢.
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These values fully determine the projection, and all of the
elements can at once be computed.

-dp @ cosec® ¢ aé® cos® p
de~  (I—ésm? ¢)% " (1—¢ sin® p)h

—a cosec® p+a & (14+cos? o)
(1 —¢* sin? o)™

ds  a(l—e) —a cosec® p+ae (1 - cos? ¢)
de (1 ~& sin? o) (1 — € sin? o)

a (1 —cosec? ¢) +ae cos? ¢
(1—=¢sin? o)

=

—a cot? <p+ae cos? ¢
(1 — ¢ sin? )%

_—6cot? ¢ (1—¢ sin’ o)
(1—¢€sin? )™

o —a cot? ¢
(1 —¢ sin? ¢)¥

0 _ in
SN
%—-i::)\ cos .

112048°— 19— 10
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By substltut,mg these values in the differential formulas
we obtain
a cot ¢ a cot ¢

(1 —é sin? o)’ A cos o — I=¢sin? p)% "1 9

tan Y=
4 __acot’ o cos 04 @ cosec 2p—ae® (14 cos? p)
(1 —¢€? sin? ) (1 —¢ sin? )"
tan ¢ = A cos? ¢ sin ¢ — cos? ¢ sin. §
—Cos? o cos 64 1 € (14cos? o) sin® ¢
® 1—€sin® ¢ 1 —esin? o
_ X 8in g—sin ¢
- 2 QT2
: __ésin’ g
sec? p—cos 0 T—esn g
_ 6—sin 0
n e sin® ¢
sec? p—cos f— —————
@ 1-€esin? ¢
1—ésin? o)V a cot? ¢ d cosec? ¢
k ( -_ g e v e V2
N § ) (1= sin? g)% 0+ (1 —¢€* sin? @)%
ae? cos? ¢
T =Esin? o)k | 50C v
_sec
=1{= 'p (1 —e?8in? ) cot? ¢ cos 0+ cosec? o (1 — e sin? o)
] —é* cos? ¢]
sec ¥ s 2 s 2 2 ain?.
=72 cosec’ p—¢ —€ cos’ p—cob (1 — e 8in? )
. .0
— 2_
(1 2 sin’ 2)]
sec
=1 _f cosec? ¢ — e — e? cos? g — cot® g+ € cos? ¢
2 2 2 2 o
+ 2(cot? p— € cos? ¢) sin 5
see ., 0
=3 _fz [1 —e+2 (cot? o — € cos? ) smz§:|
kp == 1

2 (cot? ¢ — ¢ cos? p) sin? %
=1+ 1-¢é )
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When ) is small—that is, when the map is not extended
far from the central meridian—an approximation in a
series in terms of X is very convenient. If we neglect 6
and higher powers, we obtain

3
T
tan ¢ = ) € sin? ¢ 0%
6C 0~ omn o

esin’ g

Asind ¢
6
tan ¢ = € sin?e | A?sin? e
a2 ono d
tan® ¢ 1—e*sm? e 2

or approximately
XS ns
Slf? °q
ban ¢ = fan? o (1 —¢€? sin2 @) —e 8in? ¢

8 1—¢? sin? ¢
=Zsinpcos’ o (=

—esin? )

6
X 1-- ¢ gin? ga).
12sm2 peos o\ —y—35

For smaller values of ¢ this can be still further approxi-
mated by the form

3

P= T% sip 2¢ co8 ¢;

A

for the sphere k,, becomes
kn=sec ¢ (cosec? ¢ —cot? ¢ cos 6).

To obtain an approximation we let sec ¢ =1 and wo get

' 2
km==<cosec2 o —cot? o+ cot? ¢ %" ce )

2
= 1+Z‘2- cos? .
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In these approximations N must of course be expressed in
arc. o '
An approximation for ky, was determined by A. Linden-
kohl, of the United States Coast and Geodetic Survey, that
is remarkably close to the one given above. This was given

in the form
_ A° cos o\
E=+0.01 ( oo )

in which \° is the distance from the central meridian in
degrees of longitude. In this form E corresponds to the
2

term 7 cos %p in the first approximation.

The projection is generally fplot;ted from computed coordi-
nates of the intersections of the meridians and parallels.
If we take as origin the interesection of the central meridian,
and the Equator, we shall have

x=p sin 6
Y==8—~p cos f.

It is the more general practice to compute each parallel
with its own origin; that is to say, by using as origin the
intersection of the parallel in question with the central
meridian. : ,

In this case

z=psin 0

. .0 0
e ) e — 2 = —
Y=p—p cos f=2p sin’ 2—-:81)&112

The 6 angles have to be computed for each parallel that it
is desired to map by computation. If these are to be at
frequent intervals, it is customary to compute certain
coordinates and then to interpolate the intervening values.

The meridional-arc values are tabulated in meters from
minute to minute in the Polyconic Projection Tables,
Special Publication No. 5, United States Coast and Geo-
detic Survey. If it is desired to refer the coordinates of -
the various parallels to a common origin, it is merely
necessary to add the meridional-arc values reckoned from
the chosen origin to the % values as determined above; this
is true because the value of s is given as equal to the
meridional arc from the Equator to the parallel of latitude
¢, with the addition of the value of p in terms of ¢. It is
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‘customary, however, in the construction of the projection
to locate the various origins on the central meridian by
their meridional-arc values and then to use the coordinates
as originally computed. It is, in general, not necessary to
compute the p, values since the tabulated 4 factor values
given in Special Publication No. 8, United States Coast
and Geodctic Survey, are connccted with them by the
relation
L1 .
" pasin 177
or ‘ N
1

‘ Pn=A‘ P 177"
Hence
' log p,=colog A+ colog sin 1",

The logarithms of the A factors in meters are tabulated for

each minute of latitude in Special Publication No. 8, as

referred to above. 'With these values as given the formula

for p becomes . ‘
p=pn COt @.

A great advantage of this projection consists in the fact
. that a universal tagble can be computed that can be used
anywhere upon the earth’s surface. Almost every other
Frojection has special elements that must be determined
or each projection. These elements are generally certain
arbitrary constants that enter into the formulas for compu-
tation. The Mercator projection is another projection that
can have a universal ta]Ble. ]

If the whole earth’s surface were mapped in one continu-
ous projection it would be interesting to know what would
be tlll)e length of the meridian that forms the outer boundary
of the representation and also how many times the area has
been increased. Such a projection of the sphere is shown
in figure 40. By approximate measurement on a plate of
such a projection it was found that the ratio of increase of
length of the outer meridian was about 3.2 to 1.

The element of area of the representation being given in
the form

dS=a? K cos ¢ de d\
for the sphere, we have

K= (cosec? p —cot? ¢ cos ),
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F16. 40.—~0rdinary or American polyconic projection of the entire sphere.
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80 that
dS = a? [cosec? p— cot? ¢ cos (A sin ¢)] cos ¢ de dA.

One-fourth of the area is given by ihtegrating between the
limits A\=0 to A== and ¢=0 to ¢=7§r. The total area § is
therefore given by the formula : :

S=4q? f 7 o8 ) d¢ i [cosec? p—cot? ¢ cos(N sin ¢)] dN

=4a? f ['w cosec? go— Zsm (7 sin ¢):| cos ¢ d#’

x T cos?
=40? [— 7 cosec cp]2——4a’f 3 ® gin ( sin ) (Z(p
o o SIn® ¢

In the latter integral let = sin ¢

then
dz
cos pdp= P

and

0s?
—4a2 |79 ® sin(r sin o) cos ¢ de
o sm 4

= —4qg*

“Fr2 17 .
=—4a2f [@—-ijsmmd:c

=4a22[1smw+lcosx + @' +4) g fsmxdw.

Hence the value of S becomes
S =4a?[— cosec ¢] 2+ 21r”a”[§y~1,,—:~v+ w]r '
0 & z |

*gin 2
—dx

+ @21 +4)a? f

The integrated terms assume the form w —o0 at the lower
imit, and must be evaluated for that point. The last term
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of the expression is the transcendental function known as
the integral sine; it is represented by the series

0 3-3!

The value of this series for =~ is approximately 1.852.
To aid in the evaluation of the infegrated part, we shall
restore the value of z=r sin ¢

% gin, a® 2 2 x°
j; _dx=-x— +5.5!—7.7!+9'9!— ejm a0 v s e

[—41:' coéec o+2 cos (v sin ¢) %

sin ¢ 0

sin (r sin ¢) |
S @ + 27

_[2 sin(x sin ¢) + 2 sin ¢ cos(r sin ) —4 sin 7
- sin? ¢ o

2 gin’ (7 sin ¢) + 27 sin ¢ cos (7 sin p) —47 sin, (p]

limit a
sin? ¢

¢=0

_ ] . it 2% €08 p 6ns(x 8IN @)+ 27 €08 ¢ COs(x sin ¢)—2r25ln ¢ €0S p SIn{mrsin p)—4x cos -p]
- 2sin ¢ cos ¢ .

¢=0

=limit

[21r ¢08 {7 sin ¢) — 72 sin, ¢ sin (r sin ¢) -—27r:|
¢=0

sin. ¢

_ E ing' [—w 08 o 8in (7 5in @)—x 008 @ sci:s(; $in ) —x9 sin ¢ 008 ¢ €03 (x sin qp)]
=0,
Therefore
S=[—4r—27r+ (2n?4-4) 1.852] a?

={—6r-+ (2n*+4) 1.852]a?

=[—67r+23.74 X 1.852]a?

= (—18.85+43.97)a?

_ =25.12 a®.

Area of the sphere=4ra?=12.57 a?.

Area of map _ 25.12
Aresa of sphere 12.57

The area is therefore increased approximately in the ratio
of 2:1,

=2 very nearly.
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TISSOT’S INDICATRIX.

To represent one surface‘uﬁon another we imagine that
each surface is decomposed by two systems of lines into
infinitesimal parallelograms, and to each line of the first
surface we make correspond one of the lines of the second;
then the intersection of two lines of the different sys-
tems upon. the one surface and the intersection of the
two corresponding lines upon the other determine two cor-
responding points; finally, the totality of the points of the
second which correspond to the points of a given figure of
the first forms the representation or the projection of this
figure, We obtain the different methods of representation
by varying the two series of lines which form the graticule
upon one of the surfaces.

If two surfaces are not a%plicablg to each other, it is
impossible to choose a method of projection such that there
is similarity between every figure traced upon the first and
the corresponding figure upon the second. On the other
hand, whatever the two surfaces may be, there exists an
infinity of systems of projection preserving the angles, and
as a consequence, such that each figure infinitely small an
its representation are similar to each other. Thereis also an
infinity of others preserving the areas. However, these
two classes of projections are exceptions. A method of
projection being taken by chance, it will generally happen
that the angles will be changed, except, possibly, at par-
ticular points, and that the corresponding areas will not
have a constant ratio to each other. The lengths will thus
be altered.

Let us consider two curves which correspond to each
other on the two surfaces. In figure 41 let O and M be two
points of the one, 0’ and M’ the corresponding points of
the other, and let O T'be the tangent at O to the first curve.
If the point M approaches the point O indefinitely, the point
M will & proaci)l indefinitely the point 0, and the ratio of
the lengdrl) of the arc O’M’ to that of the arc O.M will tend
toward a certain limit; this limit is what we call the ratio of
leggths. at the point O upon the curve O or in the direction
OTI7 Inasystem of projectionpreserving the angles the ratio
thus defined has the same value for all directions at a given
point; but it varies with the fosition of this point, unless
the two surfaces are applicable to each other. When the
representation does not preserve the angles except at par-
‘ticular points, the ratio of lengths at all other points
changes with the direction,
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The deformation produced around each point is subjected
to a law which depends neither upon the nature of the
surfaces nor upon tEe method of projection.

Every representation of oné surface upon another can
be replaced by an infinity of orthogonal projections each -
made upon a suitable scale.

We note, first, that there always exists at every point
of the first surface two tangents perpendicular to each
other, such that the directions which correspond to them
upon the second surface also intersect at right angles.
In figure 42 let CF and OD be two tangents perpendicular
to each other at the point O on the first surface; let C'E’
and O’D’ be the corresponding tangents to the second.

01

F1a. 41,~A curve and its projection.

Let us suppose that of two angles ("0’D’ and D’O’E’ the
first is acute, and let us imagine that a right angle having
its vertex at O turns from left to right around this point
in the plane ODE, starting from the position COD and
arriving at the position DOE. The corresponding angle
in the plane tangent at O to the second surface will first
coincide with ¢'0O’D’ and will be acute; in its final position
it will coincide with D’0’E’, and will be obtuse; within the
interval it will have passed through a right angle. There-
fore, there exists a system of two tangents satisfyin%‘ the
condition stated, except at certain singular points. From
this property we conclude that in every system of repre-
sentation there is upon the first of the two surfaces a
system of two series of orthogonal curves whose projec-
tions upon the second surface are also orthogonal. The
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two surfaces are thus divided into infinitesimal rectangles
which correspond the one to the other.

0

c o - £
Fia. 42.~Two tangents at right angles and thelr projections.
This fact being established, let M be a point in figure 43
infinitely near to O upon the first surface and let OPMQ

be that one of the infinitesimal rectangles which we have
just described that has OM as a diagonal. Let us move

Q m
ol Ml
0 P P

- Fia, 43,—Projection of infinitely near points.

the second surface and place it so that the projections of
the sides OF and 0@ fall upon the sides themselves pro-
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longed if necessag' then let O'P’'M'Q’ be the rectangle
corresponding to OPMQ; let us call N the point of inter-
section of the lines OM' and PM. We can consider this
point as the orthogonal projection of the point that M
would be if we should turn the plane of the rectangle
OPMQ through a suitable angle with OF as an axis. But
this angle, which depends onﬁy upon the ratio of the two
lines NP and MP,is the same whatever point M may be;
for denoting, respectively, by ¢ and d the ratios of the
lengths in the directions OF” and OQ-—that is, on setting

OP’ 0Q"
0P =¢ and 00 =d,

we should have

NP _OP _1 ndﬂf__Q;Q_;_l_
P ToP T MY PTTog T d

and, consequently,
4 NP d

MP™C

Thus if M moves on an infinitesimal curve traced around
0, we shall obtain the locus described by N by turning this
curve through a certain angle around OP as an axis and
by then projecting orthogonally upon the plane tangent
at 0. On the other hand, we have '

oM’ _or’ _
ON~O0P=%

so that the locus of the points M is homothetic to that of
the points N; the center of similitude is O, and the ratio of
similitude has the value ¢. The representation of the
infinitesimal figuré described about the point M is then in
reality an orthogonal projection of this figure made on a
suitable scale, or the fr;gure formed by the points N and
that formed by the points M’ are formed by parallel sec-
tions of the same cone. Any geographic map can, there-
- fore, be considered as produced by juxtaposition of orthog-
onal projections of all the surface elements of the country,
provided that we vary from one element to the other both
the scale of the reduction and the position of the element

with respect to the plane of the map.
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Of all the right angles which are formed by the tangents
at the point O those of the lines OP and 0OQ and their pro-
longations are the only ones one side of which remains
parallel to the tangent plane after the rotation which was
described above; ézhese are the only ones then which are
projected into right angles. We can now state an addition
to the proposition which has just been proved, and we can
express the whole in the following form: At every point of
the surface which we wish to represent there are two per-
pendicular tangents, and, if the angles are not preserved,
there are only two, such that those which correspond to
them upon the other surface also intersect at right angles.
So that, ipon each of the two surfaces, there exists a sys-
~ tem of orthogonal trajectories, and, if the method of rep-

Tesentation (i;oes not preserve the angles, there exists
only one of them the projections of which upon the other
surface are also orthogonal. o

We shall denote, by first and second principal tangents,
the two perpendicular tengents the angle between which is
not altered by the projection. . We shall continue to denote,
respectively, by ¢ and d the ratio of lengths in the direc-
tions of these tangents, and we shall suppose that ¢ is
8reater than d. ) )

If the infinitesimal curve drawn around the point O is a
circumference of which O is the center, the representation
of this curve will be an ellipse the axes of which will fall
upon the principal tangents, and these will have the values
2¢ and 2d, the radius of the circle being taken as unity.
This ellipse constitutes at each point a sort of indicatrix
of the system of projection. ’ o

In place of projecting orthogonally the circumference,
the locus of the points M in figure 43, which %ives the
ellipse the locus of the points N, then increasing this in the
Tatio of ¢ to unity, which gives the locus of the points M’,
We can perform the two operations in the inverse order.
We should then in figure 44 obtain the point M’ of the
elliptic indicatrix which corresponds to a given point M
of the circle by prolonging the radius OM until it meets at

> the circumference described upon the major axis as
diameter, and then by dropping a perpendicular from R
Upon OA, the semimajor axis, and, finally, by reducing this
Perpendicular RS, starting from its foot § in the ratio of d
It30 ¢ The point M’ thus determined will be the required

omt, ° ’ , ,

In figure 44 let us draw OM", and let us call, respectively,
% and w’ the angles AOM and AOM’ which correspond
Upon the two surfaces, Inasmuch as the second is the
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R'
Fiq. 44.—Tissot’s indicatrix.

smaller of the two, we see that the representation dimin-
ishes all the acute angles one side of which coincides with
the first principal tangent. Between w and 4’ we have,
moreover, the relation

d
tan u’ =3 tan u,

since

RS

an ’LL—OS
M'S

til.n ’II/’= OS ’

and, consequently,
4

d
. —_
tan u =RS tan w p tan u.

Let us prolong the line RS to R’ and then join O and R
The two triangles OR M’ and OR’M’ give

c—d
c+d

sin (u—u')= sin (w--u),



THEORY OF POLYCONIC PROJECTIONS. 159

which is obtained by equating- two expressions for the
ratio of the areas of the triangles, The same relation fol-
lows at once analytically from the tangent relation first

given. The angle w increasing from zero to -275, its alteration

-’ increases from zero up to a certain value w, then
decroases to zero. The maximum is produced at the

moment when the sum % +u’ becomes equal to ~27-r Let U

and U’ be the corresponding values of w and u’. We find
from the tangent formula that the following are their

values: j )
| tan U==~:/7§~ and tan U’ =-~:—//—§.

The quantity » can be computed by any one of the formulas

i v w\ @
tan £+g>=7§ and tnm(ﬁ4 3 )= w/z’

From the last two equations since the sum of U and U’ is

“equal to %r and their difference is equal to w, we have

T, W -,_‘Z_F__g.
=Z+§, &Ild U——4 )

From the tangent relation we see that when we change u
to g —u’ it is sufficient to change ' to % —u. The same

Substitutions being effected in w-+wu’, give for result
T— (u+u’), so that the sine formula shows that the value
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of the alteration is not changed. Thus of two angles
which are found to be changed by equal quantities each
is the complement of the projection of the other.

If we wish to calculate directly the alteration which any
given angle u is subject to, we should make use of one of
the two formulas -

c—d) tan u
tan <u—u’>=§+—dﬁ

{¢—d) sin 2u
c+d+ (c—d) cos 2u’

tan (u—u'")=

which follow immediately from the previous formulas by
easy analytical reductions.

8

m

o
Fi1a. 45.—Angular change in projection, first case.

Let us now consider an angle MON in figures 45 and 46,
which has for sides neither one nor the other of the prin-
cipal tangents OA and O0B. We can suppose the two
directions OM and ON to the right of OB and the one of
them OM above OA. According as the other ON will be
above 0A (fig. 45) or below OA (fig. 46), we should calcu-
late the corresponding angle M’ 0]5’ b,y taking the differ-
ence or the sum of the angles AOM’" and AON’, which
would be given by the formula stated above. The alter-
ation MON—M'ON’ would also in the first case be the
difference; and in the second case would be the sum of
the alterations of the angles AOM and AON. When the
angle AON (fig. 45) is equal to the angle BOM’, we know
that its alteration is the same as that of the angle AOM,
so that the angle MON will then be reproduced in its true
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magnitude by the angle M'ON’. Thus to every given
direction we can join another, and only one other, such
that their angle is preserved in the projection. However,
the second direction will coincide with the first when it
makes with OA the angle which we have denoted by U.
The angle the most altered is that which this direction
forms with the point symmetric to it with respect to 0A4;
it is representeé) upon the projection by its supplement.
The maximum alteration thus produced is equaf to 2a.

8
M
M

”I

N
F1g. 46.—Angular change in projection, second case.

This can nevor be found applicable to two directions that

are Eer endicular to each other. )
The length OM in figure 44 having been taken as unitv,

the ratio of lengths in the direction OM is measured by
OM’. Let us denote by = this ratio; we can calculate it
by means of one of the formulas

r cos U =c¢ cos %
rsin w =d sin 4
or
72 =¢? cos 2 +d? sin *u.
112948°—19—11
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We have also among r, u, and the alteration u—u’ of the
angle « the relation

2r sin (u—au’) = (¢c—d) sin 2u,

which expresses that, in the triangle ORM’, the sines of
two of the angles are to each other as the sides opposite.

The maximum and the minimum of » correspond to the
principal tangents and are, respectively, ¢ and d.

Let us call » and », the ratios of lengths in two directions
atright angles to each other and let ¥ be the alteration that
the right angle formed by these two directions is subjected
to. From the well-known properties of conjugate diam-
eters in the ellipse we have

7.2+7.21=cz+d2
rry cos y=cd

or, in terms of the scales along the parallels and meridians,
the semiaxes are given by the equations

02+d2=k2m+k2p
ed =knk, cos ¢.

For all angles not, changed by the projection the product
of the ratios of lengths along their sides is the same.
In fact, let OA (fig. 45) and OB be the two principal
tangents; let MON be any angle whatever; and let
M'ON’ be its projection. Iz,et us denote by ' and '/
the ratios of lengths along OM and ON and by « and «’
the angles AOM and AOlf’ .

Then RS

' v cos u' =c cos u

7" sin £ AON’ =d sin £ AON;

but we know that, when the alteration MON- M'ON’
is zero, the angle AON is the complement of u’ and the
angle AON’ is the complement of u; so that the second
-equation gives .

7'’ cos u=d cos u'.

By multiplying these equations member by member we
obtain

' ' =cd,
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which proves the statement. It results from this property
that the ratio of lengths in the two directions the angle
of which undergoes the maximum alteration is equal to
+Jed; for the angle which is not altered and which has for
side one of these two lines reduces to zero, and it has the
same line for second side, so that 7' =r""=+/ed. .
In the ordinary, or American, polyconic projection we

have
kn=IKsecy
kEy=1.
Hence '
e+dr=14 K?sec? ¢
cd=K
or

ca% (VIF 2K+ K7 sec® g+ 1 -2K+ I*sec’ §)

d;% (VIToKF e §— VI—2K + I 560 ¥).

By means of these formulas the semiaxes could be
computed for any {)oint on a continuous map of the
sphere or of the ellipsoid if it 1s desired to take into
account the eccentricity of the generating ellipse. As a

ood approximation for projections extending no farther
rom the central meridian than is usually the case, we

may take
c=Ksec Y=k
d=1.

The effect of this approximation becomes barely }})lerceptible
in the third place o? decimals for A =45°, so that the approx-
imation is exceedingly good for projections of less extent in
longitude. . ) .

ith this approximation for the semiaxes it only remains
to determine the angles through which the axes of coordi-
nates should be turned to make them coincide with the
directions of the axes of the ellipse. The angle through
which the axes must be turned to make the z axis be tan-
gent to the parallel at the point we shall denote by ¢; its

value is given by the formula

£=2\sin .
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If 4 is the angle between the conjugate axes, and if 4
is the angle between the major axis and the  conjugate
axis of z, we have from the theory of conjugate axes

2

d
tan y tan (n++v)= -

By developing this expression we get
d?+¢* tan? 9,

tan y= — -(c?'—dz_) tan 77’
but

T
7=3 +y.

Therefore 2
_ d*4-c tan? g
cob ¥ = (c?=d*) tan 9

By solving this for tan » we get

2__ 2 2. J2)2 ]
tann=c-—2—cg— cot ¥ — (e 402“ cotzxp—-%,

from which n can be determined. The angle between the
minor axis and the conjugate minor axis is e(}ual to n+y.

If £ is counted positive for points east of the central
meridian, the axes must be turned through the angle
£—n—y. Wae shall then have

&' =z cos (§—n—y¥)+ysin (§—n—9y)
Y =—zsin (—n—y¥)+y cos E—n—y).

For points west of the central meridian £—5—y¢ can be
considered negative in the transformation formulas.

If geodetic azimuths are given, they should first be
referred to the parallel as initial line; that is, they should
be reckoned fIr)om' the east around counterclockwise
through north. If the 5+y¢ angle is added to these
azimuths we shall obtain the angﬁa w. Since the elliptic
indicatrix has the minor axis in the direction of the
initial line, we have

tan u’ =% tan u.
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The ratio of scale is given by the equations

rsin 4’ =c¢sin ¢

or
r cos u’ =d cos u.

If it is desired to determine the azimuth of the line from
a point to a near point from their coordinates on the

map, we have approximately )
tan u'/ =%”

&' and y’ being the coordinates of one of the points with
respect to the other as origin in the transformed system;
that is, after the axes have been turned to make the axes
of the ellipse coincide with the axes of coordinates. Then

d
tan U= tan »’’.

The azimuth reckoned from east to north is given by
a=uy-+E—9n—y.

If the map does not extend more than 5 degrees beyond
the central meridian, the angle 5 can be considered zero
and the reductions become comparatively simple.

The theory of the elliptic indicatrix can be applied to
any projection that has a change of scale at any point
for different directions; that is, f%r any projection that is
not, conformal. It has been applied only to the ordinary
polyconic projection in this gug ication, since for practical
purposes that one is probably the most important of the
nonconformal projections treated under the polyconic pro-
Jections.

The appended tables of the elements of the ordinary
polyconic projection are taken from Tissot’s work. They
are computed for the sphere but can safely be used for
ordinary computation work. If more exact results are
desired the computations should be made from the first
by employment of the spheroidal formulas.
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TABLES OF ELEMENTS OF THE ORDINARY OR AMERICAN

POLYCONIC PROJECTION.

Values of y.
A
']
0° 15° 30° 45° 60° 75° 90°
o © ’ o 7 o ’ o ’ o e’ Q 13 o ’
0 00! 00| 00| 00| 00| 00| ooo
0 00| 0 02| 0 18/ 0 521 1 45! 2 52! 4 o9
0 00| 004 0 28] 1 23 2 53] 4 50| 7 08
0 00 004 0 27] 1 24| 2 59| 5 10| 7 51
0 0] 002 0 17| 0 55| 2 01| 3 38] 5 46
0 00| 0 0L 005 017{ 0 30( 1 13| 2 00
0 00] 0 O] 000 000 0 00)] 0 00] O 00
Values of k.
A
v
0 15° 30° 45° 60° 75° 90°
o
1.000 | 1.034 | 1.137{ 1.308{ 1.548 | 1.857| 2.234
1.000| 1.032) 1.128| 1.287| 1.500 | 1.794| 2.141
1.000 | 1.026| 1.102 1.220| 1.404| 1.628| 1.803
1,000 1.017| 1.068| 1.151 | 1.204] 1.404| 1.571
1.000 | 1.009[ 1.034 | 1.074| 1.129| 1.195| 1.270
1.000 | 1.002| 1.000| 1.020| 1.034| 1.050 | 1.069
1.000 | 1,000{ 1.000 | 1.000 | 1.000| 1.000| 1.000
Values of Zw.
»
p .
0° 15° 30° 45° | 60° 750 90°
o ° ’ ° ’ o ’ L] ’ a 7 L] ’ © ’
0 00| 1 65| 7 21)15 20]24 50|34 55/ 44 &1
0 001 48| 6 53114 2623 20|33 09| 42 49
0 00) 1 27) 5 3611 52)19 33|28 01| 36 43
0 00] 0 58] 3 45{ 8 09|13 42{20 04| 26 52
0 00) 0 200 1 5| 4 11| 7 13]10 50 14 51
000 008 031 10 157(3 04 4 18
0 oc| ool oodofooo| 000 o000 00
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Values of e.
’ )
@
0° 15° 30° | 45° | 6o0° 75° 90°
o
1.000 | 1.034 | 1.137] 1.308| 1.548| 1.857| 2.204
1.000 ] 1.032] 1.1281 1.287 | 1.510| 1.705] 2.143
1.000 | 1.026 [ 1.102| 1:220| 1.405{ 1.620] 1.899
1,000 | 1.017{ 1.068 [ 1.152| 1.206 | 1.410| 1.560
1.000 | 1.009 [ 1.034| L.o75| 1.131| 1.200{ 1.280
1.000 | 1.002{ 1.000 | 1.020| 1.034| 1.053| 1.073
1,000 | 1.000 | 1.000 | 1.000| 1,000 | 1.000 | 1.000
Values of d.
k‘
]
' 0° 15° | 80° 45° | 60° 75° 90°
°
1.000{ 1.000| 1.000 | 1.000| 1.000]| 1.000]| 1.000
1.000 ] 1.000 | 1.000| 1.000| 0.909 | 0.958 | 0.997
1.000 | 1.000 ) 1.000 | 0.999 | 0.997 | 0.994]| 0.989
1.000 | 1.000| 1.000 | 0.999 | 0.998 | 0.992 | 0.084
1.000 | 1,000 1.000] 0.999 | 0.907] 0.993 0.987
1.000 | 1.000 | 1.000| 1.000| 1.000| 0.998| 0.905
1,000 | 1.000 | 1.000 | 1.000| 1,000 | 1.000 | 1.000
Values of K.
A
"]
0° 15° 30° 45° 60° | e %0°
o
1.000 | 1.0341 1.137| 1.308( 1.548| 1.857| 2.234
1.000f 1.032§ 1.128) 1.287| 1.508| 1.792| 2135
1.000 | 1.026] 1.102) 1.228| 1.402| 1.620 1.879
1.000 | 1.017| 1.068] 1.150 | 1.202} 1.399| 1.556
1.000 { 1.0001 1.034( 1.074| 1.128] 1.192 1.2064
1.000 | 1.002 | 1.009| 1.020| 1.034| 1.050] 1.068
1,000 [ 1.000| 1.000{ 1.000 | 1.000]| 3.000| °1.000

TRANSVERSE POLYCONIC PROJECTION,

If the earth is considered as a sphere, there is no reason
why the tangent cones that determine the projection
should necessarily be tangent to the earth along parallels
of latitude and should have their apexes in the axis of the
earth. Any diameter prolonged might just as well serve
as the line of apexes, and then the cones would be tangent
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P

Pl

TF16. 47.—Construction of transverse polyconic projootion.
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along a system of small circles that would correspond to
the parallels of latitude in the ordinary projection. Some
great circle of the earth would correspond to the central
meridian. By this scheme a map of great extent in longi-
tude could be constructed without the usual trouble due
to the longitudinal scale error. The error in scale in this
_case would appear along the great circles of the projection
that correspond to the meridians in the ordinary projection.

The most feasible plan for the construction of such a
projection would seem to be the followin%: _Since such a
map would, no doubt, be planned.for a large section of
the earth’s surface, the ellipsoidal features would be neg-
ligible, and thé ordinary tables could be emplo%(xard, just as
if they had been computed for the sphere. ith these
tables construct a projection in the usual way. After it
is constructed turn the projection so that the poles fall

Fiq. 48.—~Transformation triangle for transverse polyconic projection.

upon the Equator and then by means of the formulas for
the transformation of coordinates the intersections of the
parallels and meridians can be computed in terms of the
parameters that correspond to latitude and longitude on
the ordinary projection. After the projection has been
constructed and turned into the new position, the ¢ and A
values become what we shall denote by ¢ and n. The
values in degrees will be just the same as before, but the
will have the new designation. Figure 47 represents suc
8 scheme in outline. PP’ is the central meridian, and
QQ’ represents the Equator in the projection as constructed.
he projection is now turned and PP’ becomes the chosen
great circle, and @@’ becomes a meridian on the map;
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is measured to the right and left of @@’ and 7 is measured
up and down from PP,

In the figure 48 let P be the pole and let RBR’ be the
Equator and also let ABA’ be the great circle that we
wish to make correspond to the central meridian of the
ordinary projection. BR and BA are quadrants, and AR
measures the inclination of the given great circle to the.
plane of the Equator, and PMA becomes the Equator on
the transverse projection. Let @ be the intersection that
we wish to compute. We have BQ=90°—¢; QP =90°—¢;
BP=90°; /BPQ=90°—\; /ABR=8; /PBQ=90°—
B+1). hy the trigonometry of the spherical triangle we
obtain from these results the relations

sin ¢ =sin N cos ¢
cos ¥ cos (B+1)=cos \ cos ¢
cos ¢ sin (8+7) =sin o,
or by combining the last two equations
tan (8+47%) =sec X tan e.

Bisaconstant the value of which is known from our choice
of the great circle that is to form the center of the map;
it is the value of the parallel of latitude to which the great
circle is tangent. ~ o

By use of the equations

sin ¥ =sin \ cos ¢
-

and
tan (8+7)=sec \ tan ¢

we can compute the ¢ and n values for any intersections of
the parallels and meridians that we may wish to determine.
The points are then plotted on the projection as originally
constructed; a smooth curve drawn through the points
corresponding to a constant value of ¢ will represent the
parallel of latitude ¢, and, similarly, the smooth curve
through the points corresponding to a constant value of
will represent the meridian of %ongitude . After these
curves are drawn, the original projection lines can be
erased, and then only the meridians and parallels will
appear on the projection. The folding plate represents
such a projection of the North Pacific Ocean, showing
the eastern coast of Asia in its relation to North America.
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The projection was constructed by Mr. Chas. H. Deetz,
cartographer of the United States Coast and Geodetic Sur-
vey, with the central great circle approximately the one
joining San Francisco and Manila. Another projection of
this kind was constructed by Mr. A. Lindenkoh], cartog-
rapher in the United States Coast and Geodetic Survey,
consisting of a map of the United States based on the

reat circle intersecting the 95° meridian at 39° of latitude.
n this projection B=39° and » is reckoned from the 95°
meridian. '

The meridian that corresponds to the Equator in the
projection as first constructed is an axis of symmetry for
the map, so that the coordinates of the intersections need
to be computed only for one-half of the map if the Equator
of the original projection corresponds to one of the meri-
dians that appear on the map, so that for each value of
+X we may Flave another intersection for —\, with the
latitude the same in both cases. In the ane constructed
by Mr. Lindenkohl for the United States the meridians
were constructed for every 5° of longitude, so that the
meridian of 95° appeared upon the projection. If 94° had
been chosen in place of 95°, we should have had a meridian
to compute for a X of 4° E. and one for a \ of 6° W., and
so on for the others.

In the construction of the projection of which the fold-
ing plate is a copy the central great circle is the one that
is tangent to the parallel of 45° of latitude at the point of
itg intersection with the 160° meridian west of Greenwich.
Mr. Deetz (in the construction of his projection) computed
the intersections of his original projection after it was
turned into the new position in terms of latitude and
longitude and then interpolated the even values of inter-
sections on this projection. From the original three equa-
tions we obtain

tan A =sec (8+7) tan ¢

sin p=sin (B414) cos .

In the case under consideration 8=45° and B+1 is the
latitude of the intersection of any given greab circle with
the 160° meridian. B4y i, therefore, constant for any
given great circle. The amount of computation required
1s about the same for either method of procedure. ‘
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PROJECTION FOR THE INTERNATIONAL MAP ON THE SCALE
OF 1 :1 000 000.

The projection adopted for this map is a modified
polyconic projection devised by M. Lallemand. The scale
is slightly reduced along the central meridian, thus bringing
the parallels closer together in such a way that the meridians
2° on each side of the center are made true to scale. Up
to 60° of latitude the separate sheets are to include 6° of
longitude and 4° of latitude. From latitude 60° to' the
pole the sheets are to include 12° of longitude; that is, two

" sheets are to be united into one. The top and bottom
parallel of each sheet are constructed in the usual way;
that is, they are circles constructed from centers lying on
the central meridian, but not concentric. These two par-

“allels are then truly divided. The meridians are straight
lines joining the corresponding points of the top and
bottom parallels. Any sheet will then join exactly along
its marging with its four neighboring sheets. The cor-
rection to the length of the central meridian is very slight,
amounting to only 0.01 inch at the most, and the change
is almost too slight to be measured on the map.

In the resolutions of the International Map Committee,
London, 1909, it is not stated how the meridians are to be
divided; but, no doubt, an equal division of the central
meridian was intended. Through these points circles
could be constructed with centers on the central meridian
and with radii equal to p, cot ¢. In practice, however, an
equal division of the straight-line meridians between the
top and bottom yaraﬂels could scarcely be distinguished
from the points of parallels actually constructed by means
of radii or by coordinates of their intersections with the
meridians. The provisions also fail to state whether, in
the sheets covering 12° of longitude instead of 6°, the
meridians of true length shall be 4° instead of 2° on each
side of the central meridian; but such was, no doubt, the
intention. In any case, the sheets would not exactly join
together along the parallel of 60° of latitude.

‘he appended tables give the corrected lengths of the
central meridian from 0° to 60° of latitude and the coordi-
nates for the construction of the 4° parallels within the
same limits. Each parallel has its own origin; i. e., where
the parallel in question intersects the central meridian.
The central meridian is the Y axis and a perpendicular to
it at the origin is the X axis; the first table, of course, gives
the distance between the origins. The ¥ values are small
in every instance. In terms of the parameters used

[
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throughout this publication these values are given by the
expressions :

z=p, cob ¢ sin (A sin ¢)

Y= pa cob ¢ [L—cos (A sin ¢)]=2p, cOb ¢ sinz(k S12n <p) .

In the tables as published in the International Map
Tables, the z coordinates were computed by use of the
erroneous formula :

z=p, cot ¢ tan (A sin ).

The resulting error in the tables is not very great and is
practically almost negligible. The tables as given below
are all that are required for the construction of all maps up
to 60° of latitude. = This fact in itself shows very clearly the
?dv?lntages of the use of this projection for the purpose in
hand.

A discussion of the numerical properties of this map
system is given by M. Ch. Lallemand in the Comptes
Rendus, tome 153, page 559. He finds that the maximum
error of scale of a meridian is 1 part in 1270, which
corresponds to 0.35 mm. in the height, 0.44 m., of the sheet.
The maximum error of scale of a parallel is 1 part in
3200, and the greatest alteration of azimuth is 6 minutes
of arc. These errors are much smaller than those occa-
sioned by the expansion and contraction of the sheet due
to atmospheric conditions.

TABLES FOR THE PROJECTION OF THE SHEETS OF THE
INTERNATIONAL MAP OF THE WORLD.

[Scale 1: 1000 000. Assumed figure of the earth: a==6378.24 km.; b=6356.56 km.)

Tasre 1.—Corrected lengths on the central meridian, in millimeters

Natural | Correc- |Correctod
Tatitude. length. | tion. | length.

o o
From Oto 4 442,27 -0.27 442,00
4to 8 412,31 <27 442.04
8to12 442,40 +26 442,14
12t0 16 442,53 .25 442,28
16 to 20 442.69 .24 442.46
20 to 24 442.90 .23 442,67
24 to 28 443.13 .22 442.01
2810 32 443.39 .20 443,19
32 to 36. 443.68 .18 443.50
36 to 40. 443.98 .17 443.81
40 to 44 444,20 .15 444. 14
44 to 48, 444,60 W13 444. 47
4810 52 444,92 W11 444,81
52 to 56 445.22 .09 445.13
58 to 60. 445, 52 -, 08 445. 44
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TaBLE 2.—Coordinates of the intersections of the parallels and the meridians,
in millimeters.

Longitude ité?m central
T .
Latf- | Coordi- meridian
tude. nates. .
1° 2° 3°
0 z 111.32 222.64 333.96
Y 0.00 0. 0. 00
4 T 111.05 222. 10 333.16
y 07 0.27 0.61
8 z 110.25 220, 49 330.74
¥ 13 0.54 1,21
12 T 108.91 217.81 326.73
i 20 0.79 178
16 z 107.04 214,08 321,13
v 1. 2.32
20 z 104. 65 209.31 313,98
Y 0.31 1.25 2.8
24 z 101. 76 203.52 305,31
v 6 1.45 3.
28 z 08.37 196. 75 285,15
¥ 0. 40 1.61 3.8
32 z 94.50 189,01 283, 506
¥ 44 1.75 3.9
35 z 90.17 180. 36 270. 59
y 0. 1.85 4.16
40 z 85.40 170.82 256. 29
Y 0.48 1.92 4,31
44 T 80.21 160. 45 240,73
Y 0.49 1.95 4.38
48 z 74.63 149,20 224,00
] 0.48 1.94 4,36
52 z 68. 69 137.40 206. 16
y 0.-47 1.89 4,
56 z 62,40 124.83 187.31
y 1,81
60 z 55.81 111.64 167.52
¥ 0.42 1.69 3.




