Special Publication No. 89.

UNIFILAR H VARIOMETER,



Serial No. 212

DEPARTMENT OF COMMERCE
U. S. COAST AND GEODETIC SURVEY
E. LESTER JONES, DIRECTOR

TERRESTRIAL MAGNETISM

HORIZONTAL INTENSITY VARIOMETERS

By
GEORGE HARTNELL

Obuserver in Charge
Cheltenham Magnetic Observatory

Special Publication No. 89 8 ,’5

no.§9
(1422)

PRICE, 10 CENTS

Sold only by the Superintendent of Documents, Government Printing Office
Washington, D. C.

WASHINGTON
GOVERNMENT PRINTING OFFICE
1922



National Oceanic and Atmospheric Administration

ERRATA NOTICE

One or more conditions of the original document may affect the quality of the image, such
as:

Discolored pages
Faded or light ink
Binding intrudes into the text

This has been a co-operative project between the NOAA Central Library and the Climate
Database Modernization Program, National Climate Data Center (NCDC). To view the
original document, please contact the NOAA Central Library in Silver Spring, MD at
(301) 713-2607 x124 or www.reference@nodc.noaa.gov.

LASON

Imaging Contractor

12200 Kiln Court
Beltsville, MD 20704-1387
January 1, 2006



Blank page retained for pagination



CONTENTS.

Tago.
007 06 AT Te1 A1) 1 O b
PART 1.—THEORY OF THE HORIZONTAL INTENSITY VARIOMETER PROPER.
1. Notation and fundamental equation................... ... ... .. 9
IR 3 % T - YU R 9
2. Constants of sample variometers......................... ... 10
8. Fundamental @quation.........veeeeeetneneeainnan ... 10
11. Characteristics of the bifilar variometer.................. 10
4. Equation of the bifilar variometer............... 10
5. Scale value of the bifilar variometer 11
6. Development of scale value in powers of the ordmates .............. 11
7. Characteristics of the bifilar scale value.. S £
8. Change in scale value due to turning torsion head................. 14
9. Scale value of bifilar variometer by oscillations..................... 168
10. Correction of period of magnet for damping................... ... 17
11. Stability of the bifilar variometer-........c..oovieiiiiinaan.... 21
12, Recording range of the bifilar variometer..................... ... 22
III. Characteristics of the unifilar variometer...........coooo oo il 22
13. Equation of the unifilar variometer.............ooiiiiiiiiiiiii.. 22
14. Development of the unifilar scale valuein powers of ordlnates ...... 23
15, Characteristics of the unifilar scale value.............. ceee. 23
16. Unequal deflections of the unifilar vmomowr ceee. 24
17, Condition for constant scale value in the unifilar variometer. ... ... 26
18. Control magnets for the unifilar variometer 26
19. Effect of control magnet on afactor............................... 28
20. Remark on best position of control magnet

................. P

21. (h}z;.ngg in scale value of unifilar variometer due to turning torsion

1 T T
22. Scale value of unifilar variometer by oscillations.................. 34
23. Stability of the unifilar variometer..........ccocovieiiniiain... 35
24. Recording range of the unifilar variometer...............c.. oo .. 37

25. Comparison of the characteristics of the bifilar and unifilar variom-
117 - 1 39
1V. Characteristics common to both types of variometers...................... 39
26. Temperaturo coofficient of bifilar variometer...................... 39
27. Temperature coofficient of unifilar variometer................. ... 40
28, Basc-lino drift.......coovniiniiiii it e 41
29, H variometer compensated for temperature.. e ce.. 42
30. Design for unifilar variometer.................cooiiiiiiiiiian.... 43
31. VAITOMIGUBIB - . - oo oot ieietiieniinenoerietastanaraaanraannnn 44
32, Bcale value of H variometer when megnet is in any posmon ........ 44
33. The declination variometer as an I intensity variometer. . ........ 46
34, Maladjustment.. ccu.viiier it i e 47

PART I.-THEORY OF THE SUSPENSIONS OF HORIZONTAL INTENSITY
VARIOMETERS.

V., Bifilar sUspension.. .. ... ... i i et 50
35. The ‘Shﬁed bifilar suspension...............ocooiiiiiiL 50
36. Potentl energy of the bifilar suspension....................... .. 51
37. The suspension couple, bifilar suspension..........co....vvvoiit, 51
38. Scale value of tho bifilar variometer for method of weights........ 53
39. Standard positions of the bifilar suspension...............0.. . ... 53

VL Umﬁlar BUBPBIBION . o e 56

0. QUArtZ fibDOIB. .o ene sttt e ieee e i 560

41. Coulomb’BIaW..o. oo e 57

42. Torsion factor of the unifilar variometer............................ 57

43. Size of fiber for a given base-line scale value....................... 67
44, Fraction of temﬁerature coefhaent. of unifilar vmometer dug to
temperature changes in fiber..... e

45, Useful formulas for reference ..................................... 60



Blank page retained for pagination



HORIZONTAL INTENSITY VARIOMETERS.

By Grorar HARTNELL, Ohserver in Charge, Cheltenham Magnetic Observatory.

INTRODUCTION.

The total intensity of the earth’s magnetic field at any place may
be resolved into & vertical intensity ?f) and two rectangular com-
ponent intensities in a horizontal plane. Choosing a pair of hori-
zontal rectangular axes, the X axis directed toward the geographical
north, and the Y axis directed toward the geographical east, the
horizontal components are X and Y. The resultant of the X and Y
intensities is customarily called the horizontal intensity (H). Its

magnitude is ‘
& H*= X34 Y?

*The angle H makes with the geographical meridian is the declination
(D), and its magnitude is

Y
tan D=~X

It is the direction asumed by a suspended magnet free to turn in a
horizontal plane; it is often called the variation of the com;lmss. The
maxnetic meridian is the vertical plane defined by the declination.

t magnetic observatories it has become the established practice
to record variations in D, H, and Z by means of a set of three instru-
ments, & D, an H, and a Z variometer, the set being called a magneto-
graph. The D variometer is essentially a horizontal intensity
variometer, as will be seen from the equation for tan D above; for
any changes in the X and Y intensities must also change D. The
choice of D and H was determined by the practical importance of
the declination in surveying and navigation.

As will be shown later, a set of two horizontal intensity variometers
may be arranged so as to record independently any desired pair of
horizontal components, such as X and Y for example.

The magnet of the D variometer lies in the magnetic meridian and
is suspended by a delicate fiber of silk or quartz, free from torsion,
and just large enough to sustain the weight of the magnet in safety.
The magnet of the H variometer, however, is perpendicular to the
magnetic meridian, and hence the couple acting on it must be counter-
acted by an equal couple in the suspension. That form of suspen-
sion in which the magnet is suspended by a single fiber, the counter-

5



6 U. S. COAST AND GEODETIC SURVEY,

acting couple being produced by the torsional rigidity of the sub-
stance of the fiber, 1s here called the wunifilar suspension. In the
bifilar suspension, the magnet is sustained by two fibers a small
distance apart. In practice the two fibers constitute a single con-
tinuous fiber which passes around a pulley attached to the magnet
system, and is fastened at two points vertically above the magnet.

he purpose of the pulley is to equalize the tension in the two halves
of the t?ber. In general there will be some torsion in each half of
the fiber.

To the magnets are fastened mirrors which reflect the light from
an illuminated slit onto a cylindrical revolving drum, covered with
photographic paper, which, when developed, 1s the magnetogram.

Attached to each variometer is a fixed mirror which produces on
the magnetogram a straight line—the base line.

In magnetographs, which record all the variation curves on one
sheet, the variometers are mounted in the magnetic prime vertical
either east or west of the recording apparatus. Except in special
types of D variometers, the D magnet points nortﬁward. The
north end of the H magnet may point east or west, depending on
the choice of direction for positive ordinates on the magnetogram.

Magnetographs which record each variation curve on a separate
sheet follow a somewhat different arrangement. In the Adie type
for example, the D variometer may be on the east side and the
variometer may be on the west side of the recording apparatus, or

vice versa. e Z variometer may be placed either north or south
of the recordin a(i)pa,ratus.
As distinguishe

from intrinsic constants there are two operatin
constants of the H and D variometers, namely, temperature coeﬁg
cient and scale value.

A correction for temperature is necessary because the magnets
become weaker by an increase in temperature. Since the direc-
tion in which the D magnet points does not depend on the strength
of the magnet, the temperature coefficient of the D variometer is
zero. The temperature coefficient of the H variometer is, strictly
sgeaking, the ratio of the apparent change in H per degree of change
of temperature to the absolute value of H, when the variometer 1s
subjected to a change of temperature only. Usually, however, the
temperature coefficient is expressed in gammas per degree of temper-
dture change. The commonly accepted unit of intensity in terres-
trial magnetism is the gamma (y), which equals 0.00001 of the
C. G. S. unit.

The scale value of the horizontal intensity variometer is usually
expressed in gammas per millimeter of ordinate on the magnetogram.
The methods most frequently used to determine the H scale value
consist in subjecting the variometer to a known change, AH, in the
field intensity by means of a magnet (method of deflections), or by
means of an electric solenoid placed at an assigned distance from the
H magnet. The scale value 1s then the quotient of AH divided by
the change in ordinate.

In the method by oscillations, the period of the magnet when
in place in the variometer instrument, is compared with its period
when it is removed and suspended north end north, and allowed to
oscillate under the influence of the H intensity.
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In another method (method by torsion angle) the scale value is
derived from & measurement of the actual amount of torsion in the
suspension when the magnet is in place in its recording position.

till another method (method by weight), which applies to the
bifilar suspension only, consists in placing on the magnet an extra
weight of known mass, the scale value being derived from the ob-
served deflection. The last three methods are not, in general, con-
venient or feasible, but when feasible, are sometimes useful as checks.

The scale values of D and H variometers depend on the distance
from the recordin ap;})lumt,us, and on the torsion factor of the sus-
pension. Obviously the most convenient scale value for the D
variometer is 1 mm. of ordinate per minute of arc. The torsion
factor being small, this scale value is attained by placing the
variometer at such a distance that the reciprocal of the distance in
millimeters is equal to 2 tan 1/, that is, at the distance of 172 cm.,
approximately. ’

{;Vhen all of the variometers of the magnetograph are mounted on
one side of the recording apparatus, so as to obtain a photographic
record of all three variation curves on one sheet, and when the sus-
pension of the H variometer is of the unifilar type, the distance of
the H variometer from the recording apparatus is restricted to a
small range. If the H variometer is too near the recording apparatus,
its scale value will be too large, and equal increments in ordinate
will not correspond to equal increments of angle at the center of the
H magnet. If it is too near the D variometer it will interfere with
the proper functioning of the D magnet. Moreover, it is seldom
practicable to select a fiber of just the right size to give the desired
scale value. Hence it is often necessary to use control magnets to
increase or decrease the scale value. Control magnets are placed
above or below the H magnet and parallel to it. en the north
pole of the H magnet and the north pole of the control magnet point
n the same direction, the control magnet tends to furn the A magnet
out of the prime vertical, and so decreases the scale value and this
increases the sensitiveness of the variometer. When the north pole
of the H magnet and the north pole of the control magnet point in
opposite directions, the control magnet tends to hold the H magnet
in the prime vertical, and this increases the scale value and decreases
the sensitiveness of the variometer.

The scale value of an H variometer having a bifilar suspension can
be readily adf{'usted to the desired value by changing the distance
between the fibers; no control magnets are necessary.

The value of D or H or Z corresponding to its respective base-line
is readily computed when the absolute value and the ordinates of
the variation curves on the magnetogram for the same time are
known, together with the scale value and the temperature coefficient.
Conversely, when the base-line values are known, the absolute values
of D and H and Z can be derived from the magnetogram which thus
provides a complete and continuous record of the state of the earth'’s
magnetic field. .

t is apparent that the theory of the bifilar and unifilar types of
suspension is an important part of a knowledge of the working of
the complete instrument.
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In discussing the theory of the horizontal intensity variometer,
then, the subject matter will be divided into two parts:

Part 1 will contain the theory of the horizontal intensity vari-
ometer proper.

Part 2 will contain the theory of the bifilar and unifilar suspensions.

Part 1 will be subdivided into the following sections: I. Notation
and fundamental equation; II. Characteristics of the bifilar vari-
ometer; III. Characteristics of the unifilar variometer; IV. Charac-
teristics common to both types of horizontal variometers.



Part . —THEORY OF THE HORIZONTAL INTENSITY VARIOM-
' ETER PROPER. :

I. NOTATION AND FUNDAMENTAL EQUATION.

1. Notation—
V =potential energy.
M =magnetic moment of suspended magnet.
M’ = magnetic moment of control magnet.
M, =magnetic moment of compensating magnet.
r=1distance between suspended and control magnets or be-
tween suspended and compensating magnet.

r =%=ﬁeld intensity of control magnet at the suspended

magnet.

I’”(,=g7—_,y!’=ﬁeld intensity of compensating magnet at the sus-

pended magnet.

H =value of the horizontal intensity in C. G. S. units.
H,=hase line or standard value at the station in C. G. S. units.
H., =horizontal intensity in gammas.

F,=field intensity of control magnet in gammas.

} = torsion factor of the unifilar variometer; also torsion factor
for both fibers in the bifilar suspension.
A =torsion factor of bifilar variometer.
n=ordinate in millimeters on magnetogram.
¢=angular value in radians of 1 mm. on magnetogram.
S =scale value in C. G. S. units per radian. '
S, =base line scale value in C. G. S. units per radian.
s=scale value in gammas per millimeter of ordinate.
8,=base line scale value in gammas per millimeter of orflinate.
8’=scale value in C. G. S. units per radian of unifilar with
control magnet. '
" =scale value in gammas per millimeter of unifilar having a
control magnet.
S’, =hase line scalo value, in C. G. S. units, unifilar with control

magnet.

§’o=base line scale value, in gammas, unifilar with control
magnet. _

a=a factor, coefficient of n in series development of scale
value.

p = coefficient of magnetic loss.
7g==tem erature coefficient.
t=1ree half period of suspended magnet.
Ta=damped half period of magnet.
Tz =half period of magnet due to H alone. i
Choosing the magnetic north for the +X axis and the magnetic
east for the + Y axis, we have for the angles counted from the + X axis
toward the + Y axis: \
@=nngle between suspended magnet and the magnetic

meridian.
9
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»=a particular equilibrium value of 6.
When ¢~ the recording spot of the li%lt is on the base line, and the
2 corresponding value of H is H..
¢ =a small angular displacement of the magnet:-from a position
of equilibrium. '
¢=angle between magnet and magnetic prime vertical,
counted from + Y axis toward — X axis.
d=angle through which the torsion head has been turned.
The fiber is assumed to be free from torsion when a
marked line on the torsion head and the magnet are
parallel.)
w
5°
x=angle between control magnet and X axis.
Other symbols will be explained 1n the text.
2. Constants of sample variometers.—Some of the cquations to
be developed will be illustrated by a concrete case of each type of
variometer having the following constants:

7=angular torsion in the fiber when 6=

Constants of bifilar. Constants of unifilar,
1 mm, of ordinate=1/13, M=10.
log e=6.51681. 1 mm. of ordinate=1/5,
7=60° 01/8. log ¢=6.63982.
log sin »=9.93765. 7=4,2063=246°186.
log cos r=9.69862. log r=0.63309.
8,=3.64y. 8,=1.957.
log 8,=0.5611. log 8,=0.29003.
q=0.00037. ¢=0.000677.
5=150° 01/6. 6=5.8671 radians.

H,=0.192 C. G. 8. units=19200y.

The standard position of the magnet is north end east. Increas-
ing ordinates correspond to increasing H. The + values of the
ordinate n are measured toward the top of the magnetogram.

3. Fundamental equation.—The fundamental equation of the
horizontal intensity variometer will be expressed in the form of the

o}exlllti.al energy ot the system of magnets and suspensions. Written
m full it is

4

=~ — MH cos 0+ M;f! cos (0—«) — A cos (6—6) +]2—b(6—0)’ (1)

The first term on the right is the potential energy of the suspended
magnet. The second term is the mutual gotential energy of the
suspended and control magnets. The third term is the potential
energy .of the bifilar suspension. The last term is the potential
energy due to torsion in the fibers.

II. CHARACTERISTICS OF THE BIFILAR VARIOMETER.

4. Equation of the bifilar variometer.—In discussing the char-
acteristics of the bifilar variometer, we shall not consider control
magnets, which are seldom, if ever, used on this type of variometer.
Furthermore, it will be assumed, either that the fibers are free from
torsion, or that the torsion factor % is so small as to be negligible.
The equation of the bifilar variometer thus becomes:

V=~ MH cos §—A cos (§—-96) 2)
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The couple tending to incroase 6 is

Y~ — Ml sin 0+ A& sin (5-0) (2)
~ For equilibrium, this couple is zero, so that the equation of equi-
librium is

MH sin 6=A sin (5—9) 3)

5. Scale value of bifilar variometer.—The scale value, that is, the
change in H corresponding to a unit change in 6, may be found by
differentiating equation (3) with respect to H, remembering that
6 decreases as H increases.

dH _MH cos 6+ A cos (6—96) H A cos (5—6)

S=—w Msm 6 =Heot 0+ gy @

From equation (3) we have

A H
Msin 0 sin 6—8)

Eliminating 4 from equation (4)
S=H [cot 6 +cot (§—6)] . (5)

The scale values of the bifilar variometer, expressed in the units we
shall have occasion to use, are

S =H [cot §+cot (5—8)] (C. G. S. units per radian) (5a)
s=H, e[cot §+cot (5—6)] (gammas per millimeter) {(5b)

One form may be converted to the other by introducing the appro-
grmte factors. Tor example, to convert the scale value expressed in

. G. S. units per radian into the scale value expressed in gammas
per millimeter, write H in gammas, and multiply by e. For the

base-line scale values we have, remembering that then 0=g» and
that 6—6=r
So=H cot 7 (C. G. S. units per radian) (6a)
so=H, € cot v (zammas per millimeter) (6b)

An inspection of equation (6b) shows that the scale value can be
determuned by measuring the torsion angle . This method may be
called scale value by measurement of torsion angle.

6. Development of scele value in powers of the ordinates.—Intro-
duce into equation (5) a small auxiliary angle ¢, which is the angle
between the suspended magnet and the magnetic prime vertical.
Then
T
2
d—f=7—0¢ (7)

0=p+
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We shall have frequent occasion to convert the angles ¢ and 0 into
millimeters of ordinates by means of the relations

0=%—ne and §—6=171+ne (8a)

also
—p=neand r—p=1r+ne (8b)

Substituting (7) into equation (5a),
S=H|[—tan ¢+ cot (r—¢)] 9

The expression in the brackets on the right is a function of (p,
and may be written:

flg) = —tan p+cot (r—¢) (10)

and may be expaﬁded in powers of ¢ by Maclaurin’s theorem:

fe) ~f(¢)¢-o+¢d% (d’f (11)

Performing the indicated operations

f(@)pmo=[—tan ¢+ cot (r—¢)l,—0o=cot 7

d 1

(d{;).,,-o_ [—sec? o+ cosec? (1—@)]pmo= —1+- sini T

& . 2 . _2cos7
<d¢2>¢-o=[~2 sec’ ¢ tan ¢+2 cosec’ (1—¢) cot (r—@)lpmp="_i 0 =

When these expressions arc substituted, equation (11) becomes
: ] 2
flp) = — tan ¢ +cot (r—¢) =cot T ¢<] ~ ain? ;) + @
and the scale value, equation (9), becomes
,CO8 T
8= [cot - w(l LY pplor (12)

Using equation (8b), we obtain for tho scale value expressed in
powers of the ordinates:

S= H[cot, r+ne(1 - >+ 2 2_(:95_'_] (13)

and for the scale value in gammas per millimeter

sin®

co8 T
s=8,+H e2(1 — )n -+ H.,e“—si—ns—;fn2 (14)
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This is of the form sought, namely:
§=8,+an+bn? (15)

As an cxample, use the constants of the sample bifilar variometer
given in paragraph 2.

s =3.64v — 0.0006907% 4 0.0000080247* (16)

7. Characteristics of bifilar scale value.—The term containing the
square of the ordinate n? is of course negh%ible.

As seen from equations (13) and (14), the coeflicient of n is minus
since sin?r is less than unity for scale values greater than zero,
according to equation (6b).

Hence the scale value of the bifilar variometer decreases with
ordinate. As the maﬁnet grows weaker, and the recording spot of
light drifts down on the maﬁnetogram, the trend of the scale values
during the course of time should be toward larger values.

It should be noted however, that the coefficient of n in equations
(13) and (14) is very small, so that the scale value is practically’
constant for all ordinary ranges of ordinate and for alY ordinary
ranges of H.

In the scale value equation (5a) the expression in the parenthesis
is never zcro for & ang 6 greater than zero. The limiting value of
the angle 6 is 8, as may be shown as follows:

For equilibrium,

MH sin 6= A sin (6~—6) 3)
When the magnet is in the magnetic prime vertical
MH,=A sin 7 (17)
By division H in (6-8)
— o 8N (0—0)
=% sin 8 (18)

If H could become zero then § must equal 6. Hence we tonclude
that tho bifilur variometer has a scale value greater than zero for
all values of H.

In determining the scale value by the method of deflections, the
magnetic field at the H magnet is increased and decreased by a known
amount, AH, which is small compared with the absolute value of
H, hence the original field is on the whole constant, and H, in the
scale value equation (5a), is regarded-as a particular constant.

The scale value is obtained from the relation

AR
n
and whon anauxiliary magnet is used the field strength of this

magnet is determined by placing it “end on’ in reference to the D
magnet. The field strength is, iIn gammas,

2.}’.)( 10°=AH=H, tan u,

u bﬁing the deflection of the D magnet. The scale value formula
18 thus:
= H, tan u

. (19)
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8. Change in scale value due to turning torsion head.—As the spot
drifts down on the magnetogram, it is occasionally necessary to
restore it to its normal position. Also, if the magnet is twisted on
its stem, a turning of the torsion head 1s necessary in order to bring
the spot back to its original position. The physical principles
involved will be more clearly understood by dividinF the adjustment
into two steps. First step: Let the magnet be held in place while
the torsion head is turned. The torsion in the suspension correspond-
ing to the base-line scale value will be changed, and consequently
the base-line scale value will be changed. Second step: Release the
magnet. The magnet will now move to its new position of equilib-
rium. The change in scale value will thus consist of two parts: (1) a
change in base-line scale value due to a change in the torsion cor-
responding to a zero ordinate; (2) a change in scale value due to tho
change in the position of the magnet. '

To determine the amount of the change in scale value due to turn-
ing the torsion head, let the equation of equilibrium, equation (3),
betore the torsion head is turned, be:

MH sin 8, = A sin (5,—8,) (20)
After the head is turned, the equation will be
MHA sin 8,= A sin (5,-6,) (21)
From these two cquations we obtain
sin (8, ~0) = sin (6,6 52 (22)
Noting that, from equation (8a)
6=5—ne and §—0=r+ne
we can write (22) in ordinates, as follows:
sin (7, +n,e) =sin (v, 4 n,e) Z—g:—;ﬁ:—: (23)

Since the last factor on the right is nearly unity for small changes in
8, we have
T,=7,— (N, —ny)e (24)

That is, the amount of change of torsion in the suspension corre-
s%onding to zero ordinate is equal to the change in ordinate brought
about by turning the bead.

That the head and magnet, for ordinary changes in ordinate, move
to%]ether practically as a rigid body, when the torsion head is turned,
will be made evident by differentiating the equation of oquilibrium

MH sin 6= A sin (6—106)
with respect to & and 6
_d_§=1+ MH cos 6 _
de A cos (3—-9)

The base-line scale value after tumin% the head will be found by
substituting 7, in the equation for base-line scale value

8 =¢ll, cot 7, (24"

”w
1 when 0—5
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The change in base-line scale value due to change in base-line torsion—
that is, torsion corresponding to zero ordinate, will be

So; — 8oy = €H, (cot 7, — cot 7,) (25)
The change in scale value due to change in ordinate will be
As=a (n,—n,) (26)

where ¢ has the value determined from equations (14) and (15).
The oquation for the scale value after turning the torsion head will
now be

§=8,+a (n,—n,) (27)

Changes in scale value due to turning the torsion head may also be
investigated as follows: '
The scale value is
S=H [cot 6 + cot (6—6)] (5a)

By substituting from equations (8a) this may be expressed in ordinates
S=H[tan ne + cot (r+ne)] (28)

The scale values before and after the torsion head has been turned
are, respectively,
S,=H [tan ne+cot (v, +n,€)]

S, = H [tan n,e+cot (r,+nge)]
and, therefore,

- 8,—8,=H [tan n,e—tan n.e+cot (r,+n.e) —cot (v, +n,6)]
By means of equation (24), this simplifies to
S, —8,=H (tan n,e—tan ne)

Using the trigonometric formula,

, _sin(4-B)
tan A —tan B= COS_A-COS_B

and making the substitutions 'rememberin:g that cos n,e and cos n.e

are very nearly unity, we will get approximately

S,—8,=H sin [(n, —n,)€]
or in gammas, . _
8,—8,=H, e sin [(n, —n,)€] (29)

Wo shall now exemplify tho use of equations (25), (26), (27), and
(29) by means of our sample bifilar variometer.

The problem is: Determine the change in scale value due to turning
the torsion head of the bifilar so as to bring the recording spot from
a minus ordinate of 80 mm. up to the base line.
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Here n,=0 n,= —~80 —ne=1°30".
From equation (24) the new base-line torsion is

7, = 58° 31./6.
This value substituted in (24) gives for the new base-line scale value
8,=13.86
The change in base-line scale value, is from (25):
3.86—3.64=0.22

The change in scale value due to change frém a minus ordinate of
80 mm. to zero is, from (26) or from (14),since the a factor is prac~
tically unchanged:

~0.0006907 X 80 = — 0.05.
The total change in scale value is
+0.22 -0.05= +0.17
The change in scale value from equation (29) is
8,—8,= H,esin 1° 30’ =0.17

The formula for the scale value now is s =3.81 —0.0007%. ‘
9. Scale value of bifilar by oscillations.—We have seen that the
couple acting on the magnet Is

_2_‘0@ — MH sin 6+ A sin (5—6)

The kinetic reaction of the magnet is K8, K being the moment of
. 2
inertia, and 8=%
Action and reaction being equal and opposite, the equation of
motion is
K6+ MH sin 6— A sin (5—6) =0 (30)
When the magnet is displaced through a small angle ¢ from a position
of equilibrium 6,, sin 8 becomes s8in 8, + cos 6, and sin (5 —6) becomes

sin (6—6,) — cos (5—6,)¢. Substituting these expressions, the equa-
tion of motion will be: :

K +[ MH cos 6,4+ A cos (6—0) W + MH sin §,— A4 sin (§—6,) =0 (31)

The period is _ :
T2 K (32)

*= MH cos 0, + A cos (5—6,)
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The scale value for the position of equilibrium 6, is from equation (4)

_ MH cos 6,+ 4 cos (6—6,)

§ Msin 6,

(33)
Combining (32) and (33)

S oK w KH

T TiMsine, T%MH sin 6,
The free period of tho magtr)lct, when it has been removed from the

variometer, and suspended by a single fiber so as to oscillate under
the effect of H alone, is

(34)

Y '
Tu=3m (35)
Substitute in (34) | :
., HITY HT: )
S= 1 o e T’;" (for small ordinates) (36)
From (32) when 00=Zr2—
_ K
T= A cos = @7
When M=0 or when H =0, and so §=46,
=0

So that (a) when the magnet lies in the prime vertical, and (b) when
no magnetic field exists or when the suspended body is not magnetized,
the oscillations are due to torsion alone. From equations (17), (35),
and (37),

]
Fg-=cot 7
T2

which equation provides a check on the scale value determined by
n;easuring the torsion angle, or rather, a check on the measurement
of 7.

10. Correction of period of megnet for damping.—The magnots of
variometers are surrounded, as far as possible, ﬁy copper; that is, they
are inclosed in coEpor damping boxes: The purpose of the damping
box is to check the free oscillations of the magnet; for it is only the
movements of the maﬁn t due to the changes in the earth’s magnetic
field that are desired. The damping box also has the effect of
slightly lengthening the free period of the magnet. In the equations
above for determining the scale value by osoillations, the period of
the magnet was assumed to be the free or undamped period; that is,
the period which the magnet would have if it were not inclosed in &
damping box. Hence, when the period of the magnet in place in the
variometer has been determined by oscillations, 1t will be necessary
to reduce the observed period to the free period. ‘

When the magnet is drawn to one side, a definite amount of
potential energy is imparted to it, and when it is released it will

873°—22-—2



18 U. S. COAST AND GEODETIC SURVEY.

continue to oscillate until all the energy has been dissipated. Recog-
nizing the fact that the magnet ang damping box constitute an
electromagnetic system, we can understand just how the energy is
consumed. :

Consider a small area of the damping box. Through this area there
passes a certain amount of magnet flux which is changing at a rate
proportional to the angular velocity of the magnet, and, therefore,
induces an electromotive force (E). Thus, around the boundary
of each elementary arca of the damping box there whirls a closed
electric current—the eddy currents of the electrical engineer. The
resistance being B and the current being / the current around the

. E . Cg . k2
area is p=1. The rate at which energy is dissipated is EI=—;

so that the rate of dissipation of energy is proportional directly to the
square of the angular velocity and inversely as the equivalent resist-
ance of the damping box. The more massive the damping box,
and so the less its resistance, the more rapidly the energy is dissipated,
and the more effective the damping box in checking the free oscilla-
tions of the magnet.

The total energy, at any instant, possessed by the magnet and

2
suspension is the sum of the kinetic enel‘gyigi and the potential

energy V. Therefore the above statement may be expressed:

.2 .
_g [—@-— MH cos 6§ — A cos (6—0):|=a8’
datl 2
where « is simply a factor of proportionality. Performing the differ-
entiation, and then dividing by ;
K6+ MH sin 6— A sin (5—6) = —of (39)
This equation means simply that a resisting force —af is acting to

hinder the free motion of themagnet. For the position of equilibrium,
6, such that 6 =6, +v equation (39) will become,

Ky +op+[ MH cos 6,+ A cos (5—0,)]y =0 (39")
Dividing through by K, the equation may be written in the form:
¥+200+/%=0 (40)
where 2c=% and f*= MH cos b +1;1 cos (08

The equation may be further simplified by substituting another,
variable © such that Y =e°tu where ¢ is the base of the natural
system of logarithms. :
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Thus the equation (40) becomes
4+ (P —cu=0 (41)

the solution of which is
w=P cos (wt—v»)

where P = un arbitrary constant, and » = an arbitrary phasoe angle, and
A
T
Tor simplicity, the time may be chosen so that
=P cos wt
The solution of oquation (39) is, now,
0=0,+¢=0,+c P cos wt (42)
or in ordinates, by means of equation (8a)
ne=nye — Pe—°t cos wi

To evaluate P, supposc ne=ne when ¢=0. Then —P=ne—ny
and (42) becomes
n=mn,+ (n, —n,) e~ cos wt (43)

n, — n, being the amplitude at the beginning of the motion, and =, the
equili%rium ordinate. 1f n, n,, ny, ete., are the ordinates correspond-
ing ‘to the elongations of tho oscillating magnet, which obviously
foﬁow cach other at intervals of time 7, apart, we obtain from
equation (43)
MM _ M= ote., = e

Tp— Ty Ng—Ty
or

Py =Ty Mg—Ny_ o

—_— P ol 4

Ny =Ny Ny—mny (44)
Now, evidently, n, —n, 7 —ny, 15 —n,, etc., are simply the differences
of the readings of the scale at the successivo elongations. Denote
them by 4,, 4,, 4,, 4,, etc. Then

Ao _ Al — AZ etc- y= GCTd (45)

A4, A
Taking the logarithms
r=log -i-‘:=log g—: =log %:, ete., =T} 46)
Another useful relation is
log i»: =N @7)

where N is the number of half periods.
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Mis the natural logarithm and is called the logarithmic decrement.
In practice N is most easily computed in common logarithms, and
then converted into natural logarithms by the formula

com. log A '
Nat. IOg A 0.4343‘— (48)

From equation (41) the damped period is

2
Tzd =f_2—§? (488.)
The free period is obtained from this by setting ¢?=0

2 .

Tzr=z;f§ . (48b)

Thus the damped period is longer than the free period by reason of
the quantity c.
From (48a) and (46)

2 &
253 2
O Pa= 5= 5= @ =
L
or . N
f2 N (49)
From (48a) and (48b)
) 2 ; 1
T2r= 1 dfz cz'_ [’Zd 1__6’

2
Eliminating the mtio]-c,, by equation (49), we have for reducing the
damped, or observed period, to the free period,
1

3
1+ 2\3 (50)
T

T21=T2d

The noteworthy feature of this equation is that to obtain the free
period all that is necessary is the observed period 73 and the logarith-
mic decrement N\, which is derived from scale readings at the succes-
sive elongations of the magnet. Substituting equation (50) in equa-
tion (36), we obtain for the scale value by method of oscillations:

s=H,e 17;5 (1 +Z‘;) (51)

In using the method of scale value by oscillations, it will be con-
venient to make observations for period, and separate observations
for elongations.
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As a concrete cxample, let us determine the scale value of our
sample bifilar variometer by the method of oscillations. The
observed periods are: T4=6.36s and T, =4.77s.

The tabulation will show about what order of accuracy may be
expected:

Scale readings. Log A. Mo

1 A 211 2.3243 [ 0.21711
186... .. . .

By means of equation {48) we obtain X =0.4923.

V‘Xa get the same value for A from the first and last differences by
means of equation (47). Substituting the known quantities in
equation (51), we obtain the scale value s=3.64.

11. Stability of bifilar variometer.—We have
T2,— K
MH cos 6,+ A cos (6—-6,)

and from equation (4)
MH cos 00+A cos (6"‘00) = M8 sin 00

This substituted in equation (32) transforms it to

D
= M8 sin 6,

If for any value of 6 greater than zero and less than =, and for values
of H greater than zero, the scale value becomes zero, the period will
be infinity, that is, the magnet will be unstable. The stability of the
variometer is thus seen to depend on its scale value. At any position
of the magnet where s is zero the variometer will be unstable.

In the bifilar variometer (see equation 18) 6 can range only from
0 to 8, at which position H must be zero also. In this range the
scale value is never zero. Hence the bifilar variometer is stable for
all values of H.

We note here some points in connection with the periods of a
bifilar variometer.

If no magnetic field exists, that is, if H is zero, or if the suspended
body is not & magnet, that is, if M is zero, the period is

3

The oscillations of the magnet are then due to torsion alone.

(32)

When the magnet is in the magnetic prime vertical, 8, =%

~ K
=T cos = _
The oscillations are still due to torsion alone, but are longer in the
ratio 1: cos
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12. Recording range of the bifilar variometer.—Since the bifilar
is stable for all values of H, it is capable of recording all values of
H. Or, practically speaking, a bifilar variometer can record all
values of H permitted by the mechanical construction of the instru-
ment. When the upper and lower limits of 6 have been determined,
the a(ctual range that can be recorded may be computed from equa-
tion (18).

III. CHARACTERISTICS OF THE UNIFILAR VARIOMETER.

13. Equation of the unifilar variometer.—Placing A=0 in the
fundamental equation (1) we obtain for the equation of the unifilar
variometer having a control magnet:

MM

7.8

V= — MH cos 0+72—b (6—6)*+ cos (0—«) (53)

We shall first discuss .the characteristics of a unifilar variometer
that has no control magnet. The equation is then

= — MH cos +% (6—6)* (54)

The couple tending to increase 0 is

av

—%=—MHsin0+h(8—0) (65)
For equilibrium this is equal to zero, hence

MHsin6=Fh (§—6) (56)

The scale value is '

dH MHcos0+h A h
Tdh T Msmo =HCOL0+Msin0 67)
From equation (56)
h _ H
Msing (6—06)

and substituting this in (57), we obtain for the scale value equation
of the unifilar variometer

S=H [cot 6+ (T—l'?)' (C. G. S. units per radian) (58)
and for the scale value in gammas per millimeter
s=H ,e (cot 0+3—i—0 (59)

The corresponding base-line values are

8= (C. G. 8. units per radien) (60)
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H,e
T

8= (61)

In these scale value equations H is regarded as a constant.

14. Development of unifilar scale value in powers of the ordinates.—
Introducing the angle ¢ into equation (58)

§=H( - tan p+—2-) 62)
The exgressxon on the right in equation (62) is a function of ¢,
and may be written
1
f ()= —tan ¢+:Tp (63)

and may be expanded in powers of ¢ by‘ Maclaurin’s theorem:

f=r @ wte(L) +5 G, 1)

Performing the indicated operations,

f <¢>¢.o=( tan gt ——) =1

T—=@)omd T

(%)M [ sect ot r—o)° ¢>] --14g
2

2
2 —
dqof)w-o [ 2 sec’ ¢ tan o+ (r— ¢)’] om0 T8

Making the substitutions, equatlon (62) becomes

seai-i-2)v2)

Changing this into ordinates, (o= —ne)
§=A[ L+ ne(1-3)+%F (65)
In gammas per millimeter this is
s=so+E.,e'n(1-—:—,)+}-Ii’—::—n—’=so+an+_bn’ (66)

For a concrete case, use the constants of the sample unifilar variom-
eter given in par a.graph 2.

8=1.95+0.003457n +0.00000002n? (67)

15. Characteristics of unifilar scale value.—Since for practical
scale values 7 is greater than unity, the coefficient of n in equations
(65) and (66) is positive. Thus tﬂe scale value of the. umﬁlar vari-
ometer increases with ordinate. Moreover, the a factor is so large
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that it must be taken into account in converting the ordinates of
the variation curve into absolute values of Z. As the magnet grows
weaker the recording spot drifts down on the sheet; the trend of the
scale values during the course of time should be toward decreasing
values. From the scale value equation

1' .
S=H ( cot 0+m)

we see that the scale value is large for small values of 6, that is, for
large ordinates; and that it becomes smaller with increasing 6, that
i, with decreasing ordinate. For H greater than zero and for a
value of 6 greater than zero and less than =, the expression in the
parenthesis becomes equal to zero when

tan 6=6—46 (68)

In the case of our sample unifilar variometer §=5.8671. The angle
at which the scale value is equal to zero is from equation (68), 6=
103° 51’.3, that is, when the north end of the magnet points 13° 51°.3
to the south of the magnetic prime vertical. That H is not zero
for 6 <7 may be shown as follows: For equilibrium

MH sin §=h(5—0) (56)
When the magnet lies in the magnetic prime vertical
- MH,=hr (69)
By division "
~Ho 00
T 8ind (70)

For practicable scale values, & is always considerably larger than 4.
Hence for § <, H is never zero.
We thus see that the unifilar scale value becomes zero for a small

ordinate corresponding to a value of # somewhat greater than g«

16. Unequal deflections of unifilar variometer.—When a deflecting
magnet is brought near the variometer an additional force acts upon
the suspended magnet corresponding to a change of AH in H. en
the magnet is reversed, but otherwise in the same position, the added
force corresponds to —AH. As the scale value changes with change
of ordinate, the angular deflection and the distance in millimeters on
the magnetogram will be different in the two cases.

Suppose that n, and —n, are the deflections in millimeters above
and below the undeflected position of the spot which for simplicity
we shall take as the base line. Then

AH= f(so +an,) dn, =8, + %n21 =1, (80 + %n:)
a
—AH = f (8p— ang)dn, = 851, —% n,=n, (80 - En,)
Solving these equations for n, and n,, we get,

| nl=-2’(1—‘/1—2“‘3y) ' (72)

8%

(71)
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n,=f;°(—1+\/1+2“8‘,ﬂg) (73)
1]
Alzo : %’ =ratio of deflections.

1

For a=0.003457, AH., =100, 5,=1.95, we find n, =49.15 and n,= 53.86
and for the ratio of the deflections

M 1.096
n

1

For a simple working formula, proceed as follows: From the last

members of (71)
a a \?
ﬁ,=s°+§"l=(s°+§"1>
.gl_’nzz

n, a

So= 5N 82— i
and dropping terms in a?
%142 n, (approximately) (74)
7 %

The unequal deflections of the unifilar variometer may also be in-
vestigated as follows: Equation (70) may be written

8-0_Hr

sing H,
where I1's are values in gammas.
Introducing the angle ¢

r—¢ Hr He 71—

c—o§a=7ﬁ=§=:
2

Solving for ¢, we have finally

% 8\? 2_A_jq
i Phe (E tH

_so_ 1+2AHH€’
=He(1*\/ )

In ordinates,

8 2 H ééaH
—n,=§:€,<1—\/1—2—g§zﬂ£) (76)

where H and H, refer to values of H corresponding to deflacted posi-
tion of magnet. For the values s,=1.95 and AH,=100 as in the
example given above

n,_54.00

o g9z~ 1oL
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17. Condition for constant scale value in the unifilar variometer.—
From equations (72) and (73) it is evident that the unequal deflections
depend on the a factor in the series development of the scale value,
viz:

o=Mé (1 -5 77)

The a factor equals zero when 7 equals unity. As 7 is not readily
determined in practice, we may express the a factor in a different form.
From equation (61)

=g
T 0

When 7=1, the condition for constant scale value is
8,=H,e (78)

In general this condition means either a larger scale vaiue than is
desired (about 8,=2.5 being the usual value) or that the variometer
will have to be placed at a distance so far from the recording apparatus
as to be impracticable. For example, in the case of our sample
unifilar variometer we obtain:

» 80 = 8 .38

Two questions now arise: (1) Can the scale value be reduced to the
desired value by means of control magnets? and (2) How is the a
factor affected by a control magnet? These questions lead to a
consideration of control magnets. |

18. Control magnets for unifilar variometer..—The equation of the
unifilar variometer having a control magnet is: -

MM

7.3

cos (0—x) (53)

V= — MH cos 0+%(6—-0)2+
To simplify this equation somewhat, let us make use of the identities

Ml
Fs—r‘;

’
F,==% x10°

where F is the field intensity of the control magnet at a point on a
line verpendicular to its axis, at distance ». Equation (53) is now

V=— MH cos 0+7§b(8—0)2+ FMcos (0—«) (80)
The equation of moments is
G =~ M sin 0+ (5-0) + FM sin (0—») 81)

The equation of equilibrium is
MH sin 6=h(5—6) + FM sin (6—«) (82)
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The scale value equation is

_dH
@

h F cos (0—«x) '
Msing sinf (83)

=8"=H cot 0+

From equation (82)

= MAsing n Mf;‘gr%—_x_)

When this is substituted in (83) the scale value equation becomes

o 1 \_Fsin (§—«x) Fcos (6-«)
. “H<c°t 0+5=8) " G-o) sm o sin 6 (84)
Tho scale value expressed in gammas is
v 1\ o osin (0—k) . cos (0—k)
o= Hype (cot 0+ 51 )~ Py~ P (85)

Corresponding to these two general scale value equations, we shall
have, when the suspended magnet is in the magnetic prime vertical

m™w
("=§

g HoFeose g (86)

T

o = H,e— F,e cos «
> 0_ T

— Flesink (87)

From equation (87) we see that the control magnet is most effective
when x==-12£: that is, when the control magnet is parallel to the sus-
pended magnet. The scale value will then be '

o = gfi‘— Fe (88)

Thus the scale value is decreased when suspended and control
magnets point in the same direction, and it is increased when they
point in opposite directions. The change in scale value due to the
control magnet is

So—8"g= Iy (89)

Let us note the effect of placing the control magnet in the magnetic
meridian =0, the control magnet then being perpendicular to the
suspended magnet. Equation (87) will become

8'y= @JLTEJ)_‘ ' (90)
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We observe that the base-line scale value is changed to the extent
the earth’s magnetic field at the suspended magnet is changed.
The suspended magnet will also take up another position of equi-
librium, as may be seen by putting =0 in the equation of equilibrium

M (H-F) sin = MH, sin §=1 (5—6) (91)
where H=H-F

The approximate displacement of the magnet is gl

0
Now, supﬁose the torsion head is turned so as to bring the magnet
back into the prime vertical. If s, and s, and H, and H, are the
base-line scale values and intensities before and after the control
magnet has been attached, we shall have:

He
8 =—r

T

_He
K T, (92)

8, H,r

_=F_.”
8 172
But from the equation of equilibrium,

MH,=hr,
MH,=hr,
qd, (93)
T
Combining (92) and (93) ‘
§;,=8;

The scale value remains unchanged. For the same reason we may
state that the scale value of a unifilar variometer s the same at
whatever station on the earth it may be placed, provided the torsion
head is turned so as to bring the magnet into the same position with
reference to the magnetic meridian.

19. Effect of control magnet on ¢ factor.—To answer the second
uestion at the close of paragraph 17, it will be necessary to develop
the scale value of a unifilar variometer having a control magnet in
the form of a series. Introducing the angle ¢ into the scale value
equation (84) we obtain

1 \_Fcos (k—g) Fsin (k—y)
—¢/ (r—¢) cos ¢ cos ¢

S’=H(—tan ot (94)
The first parenthesis on the right has already been dealt with (see
equation 86) so that it is only necessary to develop the second and
third terms, and add the results to equation (64). Moreover, we
may take advantage of the fact that as the coefficient of &' will
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clearly be negligible, the first differential coefficient in Maclaurin’s
theorem is sufficient. The function of ¢ is then

cos (k—¢) | sin (k—¢)
Jlo)= (r—¢) Cos ¢ cOS @

cos k+sin x tan ¢
k3

4-8in x—cos k tan ¢
T—@

K .
7o EE psin

By differentiating

df (r—¢) sin « sec® ¢+ cos x+sin x tan ¢ 2
o= ey —cos « sec? ¢
and
df 78D k+COS Kk
do)oco=" g TCOSK
Thus

S’=—Irg—» F(cos £ +sin x)—<p(H— F cos k+ FsTm L4 FCOST,K_H)

T

and in ordinates

S'=17{— F(S%S—K—Fsin k )+ ne (H— F cos x+£’s—-—ﬂ—x-+
F coszx——H (95)
T

The scale value in gammas is

H.e co
8 ==~ FLe

> K+sinx>+m2(H.,—F., cos K+E’jﬂ‘+

T

F 1,cos‘r:; - Hy) (96)

As the control magnet is most effective when parallel to the suspended

magnet, we shall only consider the case where x=32r-- We thus obtain

for the a factor of a unifilar variometer having a control magnet
F.¢

T

vee(m+B By (97)
T T

Iiquation (97) is the answer to the question as to how the a factor
is affected by the control magnet. The a factor is increased or
decreased by the control magnet, depending on the direction of its
field, that is, whether F is plus or minus, with reference to the sus-
ended magnet. This equation may be put in a more convenient
orm:

Let
a’ = e (98)



30 U. S. COAST AND GEODETIC SURVEY.

Then

%=;‘ —er+ 57 (99)
From equation (88)
y 84
T (100)
Combining (99) and (100)
’
= é—(g—ix) (101)
Solving (101) for & and multiplying by €
o =z = Heér—g' e
T
T2.2 _ o o
e — 58’ (102)
From equation (88)
= _%
T €
—a!
=§o_eu (103)
Also
F=Jlri.1 X 10° (104)

In equations (98-104), JI, F, and s arc expressed in gammas. The
condition for zero a factor may be found by equating the right-hand
member of (102) to zero. The condition is

§8’o=Her (105)

Now §/y=35, r=1 and log ¢=6.63982 are about the practicable values

for these quantities and for these values H,=11,459. Hence the
condition (f]or zero @ factor can not, in general, be satisfied. If,
however, we can tolerate a value ¢’ =0.001, which is as small as can
be derived from observations, we find that for r=1 and &' ,=35, in
equations (98) and (101), H,=16,700, approximately. Thus the
answer to the first q{uestion at the close of paragraph 17 is that the
condition for a negligible a factor can be sutigggd only at stations
where H is comparatively small, or at stations where H can be made
small enqugh by extra magnets.

Evidently, the required scale value can be obtained in two ways:
(1) By using a small fiber, giving a small scale value, in which case the
control magnet will increase the scale value; (2) by using a large fiber,
giving a large scale value, and reducing it to the desired value by a
control magnet. The preferable method will be the one that gives
the smaller value for the ¢ factor.

It is practicable to increase or decrease the scale value to the extent
of 4y by means of control magnets.
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As a practical example of the use of equations (98-104) let us
determine whether a large or small fiber will be preferable at a station
where H, =15,600, and a scale value of 4.45y (s’;) is required. The
control magnet is to make a change of + 3v say in the scale value.

In the case of the small fiber, we obtain from equation (102) second
form, a’ =0.0027, s, being in this case 1.45v.

. In the case of the large fiber, s,=7.45 and «’=0.0008. The
formulas for the scale values in the two cases will be

s’ =4.45+0.003n (small fiber)
s’ =4.45+0.0008n (large fiber)

80 that the large fiber will give practically a constant scale value
and is to be preferred. The field intensity F, of the control magnet,
will be found from the second form of equation (103), and the strength
and distance of the control magnet, if one or the other is given, may
be found from (104). .

As another example, determine whether it is preferable to use a
large or a small fiber at a station where H,=18,200, the required
scale value being 2.5y (¢)). Assume that the large fiber alone gives
a scale value s,=5.50, and that the small fiber alone gives s,=1.
From equation (102) we obtain for the scale values

8’ =2.5040.0035n (small fiber)
§' =2.50+0.0029n (large fiber)

There is a small gain in using the large fiber. If the scale value
without a control magnet was 2.5y, we would obtain from equation
(102), since §,=8'4=2.5

$=2.50+.00337n (no control magnet)

20. Remark on best position of control magnet.—In the preceding
investigation the control magnet was assumed to be vertically
above or below tho conter of the suspended magnet. If the control
magnet were placed in line with the axis of the suspended magnet,
it would be twice as effective, since its field intensity 1s twice as great
at a given distance.

Equation (104) would then be replaced by the equation

2M 5
L) S X4
F 5 X 10 (106)
By means of a control magnet so placed it would be practical to
increase or decrease the scale value at least by 6.0y and the a factor
could be correspondingly reduced. TFor example, for a scale value
of 2.5v(s’,) at a station where H,=19200, s,=2.5+6.0=8.5 and
from equation (102) we obtain: :

s'=2.540.0025n

The a factor decreases with increase of scale value. For a scale
value of 4.0y, and H,=19200, s,=10.0 and from (102)

&' =4.0+0.0016n

Furthermore, it is entirely feasible, by placing a control magnet in
the magnetic meridian north or south of the suspended magnet, and
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in the same horizontal plane, to reduce the earth’s horizontal inten-
gity by one-fourth of its value. Substituting H,=14400, s',=2.5,
and s,=8.5 in equation (102), we obtain:

s’ =2.5+0.0013n
Substituting H, = 14400, s’,=4.0 and s,=10.0, we got
s’ =4.0 (absolutely constant).

21. Change in scale value of unifilar due to turning torsion head.—
The equation of equilibrium of the unifilar without a control magnet
before turning the torsion head is:

MH sin 8, =h(3,—9,) (107)
After turning the torsion head, the equation is

MH sin 6,=h(5,—6,) (108)
From these two equations, by division,

sin 4,

5,—0,=(5,~0,) sn g,

(109)
Converting (109) into ordinates by means of the relation
g
0=~2——ne

COS Ti,€
Tyt Ne= (1, +N€) —= .
2 = (7 ‘)cosnle

or
7,— 1= (n,—n,)¢, nearly (110)

Thus the change in base line torsion is equal to the angular change
in ordinate. That the torsion head, fiber and magnet move together
very nearly as if they were parts of the same rigid body, may be
shown (ll)y differentiating the cquation of equilibrium w1_tﬁ respect
to & and 4.

ds MH cos 6 ™
ﬁ— 1 +—_h =1 for 0-—§
The base line torsion after the head has been turned, is
72::7'1_(7‘2_'”’1)5 (111)
. The base line scale value now is
_ He
e e (12).
The change in base line scale value is
H,e
g0 = 4 — g0
802 8 m 8% (113)

Also
a,(n, —n,) = change due to ordinate. - (114)
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The total change will be the sum of (113) and (114). The a, factor
ma\)lrl be computed from equation (102), but ordinarily the change is
negligible. In case (n;—mn,)e is small comlpared with =,, there will
be very little change in base line scale value and the total change
will be given approximately by equation (114).

Changes in scale value due to turning the torsion head may also
be investigated as follows: The scale value equation (59) in ordi-
nates 1s

1
8=H.,e(ta.n ne+1+ne) :

The scale value before turning the head is

1
8=H. (tan ne+ - n,e)

After turning the head it is

8= H.e (tan naet - +1 n,e)
2

The change in scale value is

1 1
8,—8,=H,e (t-an 1,6 — tan n,e-+ ¥ T n,e)

The last two terms on the right cancel in virtue of equation (111). Seo
8,—8,= H.,e (tan n,e— tan ne)
Using the trigonometric formula

_sin (4-B)
ton A~ tan B= o A eos B

and remembering that cos ne and cos n,e are very nearly unity, we
get, approximately,

8,—8;= H.e sin (n,—n,)e (115)

As a practical problem, let us determine the change in scale value due
to increasing the ordinate of our sample unifilar variometer by 200
mm. = 5°=.0873 radian. From equation (111) 7,=4.209. From
equation (112) &°,=1.99. The change in base line scale value is
0.04. From equation (114) the change due to change in ordinate
is 0.69. The total chango is 0.0440.69=0.73. The scale value
formula now is

8§=2.68+0.003457n.

The change in scale value from equation (115) is 0.73. An approxi-
mate value of the a factor mayqbe found by putting n,—n,=1 in
equation (115), inasmuch as the ¢ factor is the change in scale value
per unit change in ordinate.

873°—22—3
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22. Scale value of unifilar by oscillations.—Placing x=% in the
equation of moments (81), equating the resulting equation to K9

and transposing all terms to the left side, we obtain for the equation
of motion

K6+ MH sin 0 —h (6—8) + FM cos 6=0 (116)

If the magnet is slighth displaced from a position of equilibrium
6,, such that 6=0,+y, where ¢ is a small angle

sin § will become sin 6, +y cos 0,
6 —0 will become 6 —6,—y
cos 6 will become cos 6, — ¢ sin 6,

Substituting these into equation (116)

K+ (MH cos g+ h— F M sin 0)¢ =0 (117)
The period is
T
I¢= Ml cos 0 +h—FMsind (118)

# now indicating the position of equilibrium. Placing k== in the

2
scale value equation (83) we may write it
v MH cos 6+h—I"Msin 0.
5= Hsin 0 (119)
Substituting from (118)
2 2
5 m K m KH (120)

“TEiMsin6 T7MHsin 0

The period of the suspended magnet when removed from the vario-
meter and oscillating under the effect of ZI alone, and corrected for
torsion, is

m K

1= UH (121)
From (120) and (121)
§'= H._T“Z__
sz Sin 0
For the base line scale value 0=Z2—r
Ty
8, = thu

and in gammas
T3
o' = 11,%?1—, (122)
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The observed period 7y will require a correction for damping to
reduce it to the free period 7}.
From eqluatlon (118) we notice that when the control magnet is
t

laced in the magnetic meridian (8= 0) it has no offect on the period.
}i‘he period then is
e 5K (123)
' MH+R n

When the suspended magnet lies in the magnetic primoe vertical,
™ . s .
6=3, the period 1s

wt K 14
= —rm (124)

The oscillations are then due to the torsion and the control magnet.
The effect of the control magnet is to decrease or increase the period,
depending on whether it points in the same or in the opposite direc-
tion with reference to the suspended magnet. If there is no control
niagnet, the suspended magnet oscillates under the effect of torsion
alone.

23. Stability of the unifilar variometer.—Kquation (83) may be

written
MH cos 0+h— FMsin 0= MS’ sin 6

Substituting this in (117) the equation of motion becomes

Ky + (M8’ sin 6)y =0 (125)

in which sin ¢ is always regarded as positive. We thus see that the
scale value determines the character of the motipn of the magnet.
When the scale value is plus, the coefficient of ¥ is plus, and repre-
sents a restoring force which, when the magnet is displaced, tends to
restore it to its original position. In this case the solution of the
equation represents an oscillatory motion about a position of equilib-
rium. If the scale value is less than zero, or minus, the coefficient of
¢ represents a displacing force which tends to carry the magnet
farther and farther away from ils original position. In this case,
the solution of the equation is exponential in form, indicating that
the value of ¢ continually increases. Thus the critical value of S is
the scale value at which the magnet passes from a condition of stability
to one of instability.
When the scale value is plus, the solution of equation (125) is

. AY
y="P sm[ %S—;io) t+v:| , (126)
where P and » are constants depending on initial conditions. The
golution for 6 is ' i g\
§=0,+ P sin [(ngil—io>z+u] (127)

where 6, is determined by the condition
MH sin 6,— k(6 —06,) + F M cos 6,=0

wt .
= S sin 6 (128)

The period is
I
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When the scale value is equal to zero the period becomes infinitely
long, and when the scale value is minus, the period is imaginary.
We thus conclude that the criterion for stability is that the scale value
shall not be equal to zero for any value of H greater than zero.

To investigate the stability of the unifilar variometer, let us
return to the general scale value equation

I"sin (6-«) F cos (6-x)
(6—6)sin g sin 0

o 1 >_
§'=H (cot 0+ 52 (84)

Introducing the angle ¢ and assuming that the control magnet is

in the prime vertical, so that x=1§r,

S'=H(—tan<p+ 1 )—Ft“n“’—F (129)
T_(p T_(p

For instability, §”=0. Solving for tan o the critical angle of sta-
bility is found to be

H—-F(r-y)
tan CHG=g T F (130)
This equation can be readily solved by approximation, I, ¥, and =
being given. As a first approximation, assume that ¢ =0 in the right
hand member. Compute a value for tan ¢, then substitute the value
of ¢ thus obtained on the right again, and repeat the process until the
desired accuracy is attained. Biﬂgrom this equation we can infer the
effect of the quantities ' and 7 on the critical angle ¢. Without a con-
trol magnet, we shall have

(131)

tan ¢=T_‘p

In this case, the critical angle varies, roughly, inversely as r; that is
the larger the fiber the greater is the critical angle. The control
magnet (F) decreases the critical angle (if the control magnet and
suspended magnet point in the same direction). If the control
magnet is reversed so that F is minus, the critical angle is increased.
It should be observed that the scale value depends on F and 7, as
shown by the equation:

H.e

e
= Wl (89)

€

We have seen that a given scale value may be obtained either by
using a fiber of just the right size to require no control magnet, or by
using a sinall fiber and a control magnet to increase the scale value,
orlby using a large fiber and a control magnet to decrease the scale
value.
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As a practical problem, let us take 2.5y as our required scale value,
and determine from equations (130), (61), and (89), which of the
combinations just mentioned gives the greatest critical angle.

In the case where no control magnet is necessary we obtain from
equation (131)

¢=18°15" (no control magnet).

In the case of the small fiber, the scale value is, without the control
magnet 1.0v, say, so that the control magnet must increase the scale
value by 1.5y. From equation (61) r=8.377. From (89) F=
0.03438. Using these values, we obtain from equation (130)

e=17°12’ (émall fiber and control magnet).

In the case of the large fiber if it is assumed that the scale value
without the control magnet is 5.5v, the control magnet must reduce
this by 3.0y. Fromequation (61) 7=1.523. From (89) F'=0.06876.
With these values in ?130) we obtain

¢=21° 9" (large fiber with control magnet).

Thus the variometer having the large fiber has the greatest stability.

24, Recording range of the unifilar variometer.—fs the scale value
increases with ordinate the unifilar can manifestly record all large
values of H; that is, all values of H greater than the base line value.
When H is low enough, the magnet reaches a state of instability.
We wish to ascertain the value of H corresponding to the critical
angle, at which the magnet becomes unstable.

xpressing the equation of equilibrium (82) in terms of ¢

MH cos p=h (r— )+ FMsin ¢ (132)
When ¢ =0,
MH,=hr (133)
From (132) by transposition
MH cos p— FMsin o=h (r—¢)

From this equation and (133)

Hcosp—Fsing_7—9

H, T
(r—9)
H=—-TLC—OS—T+Ft&D? ‘ (134)
or S, ( )
=20 A\ T8
= eos + F tan ¢

From this equation we infer that, for eﬁ)articular value of ¢, H is
smaller in proportion as r is smaller. so that the critical value
of H is larger on account of the control magnet. If, however, the
control magnet is regersed, the critical value of H becomes less.

When the critical angle has been computed from equation (130),
the critical value of H is computed from equation (134).
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In the use of equations (130) and (134) it should be observed that
the value of H in (130) is the value of I derived from (134), so that
both equations must be simultaneously satisfied.

The desired accuracy may he attained by a process of continual
approximation.

et us now compute the critical values of I{ for three variometers,
each having the scale values of 2.5y in the three cases mentioned
above. It should be noted, however, that the critical angles have
been computed on the assumption that the low or critical value of
H is 0.192, which we have heretofore regarded as the base line or
station value. To save computations, we shall reverse the problem
and determine what the base line or station value must be in order
that H=0.192 shall be the critical value. For this purpose we may
write equation (134)

Hr cos o— Frsin ¢

H=
0 T— o

(135)

One other point is to be considered. The value of r computed from
equation (61) depends on the value of I, which we are seeking.

erely for illustration, however, we shall use = computed from
equation (61), with the value of H/=0.192. We thus obtain from
equation (135)

H,=0.20150, range =0.20150—0.19200 =950y (no control magnet)
H,=0.20070, range == 0.20070 — 0.19200 = 870~ (small fiber)
H,=0.20360, range = 0.20360 — 0.19200 = 1160y (large fiber)

As a matter of fact, the angle ¢, and hence the low value of H,
is limited by the anguiar spacing of the regular and reserve mirrors,
and by the mechanical construction of the variometer. When ¢ has
been determined, the lower limit of A may be computed from equa-
tion (134).

During a magnetic storm, when  reaches low values, the scale
value may become so small and the motion of the magnet so rapid
that the recording spot of light fails to make any impression on the
photographic paper. To meet this situation the scale value of the
variometer must be so adjusted that at low H the motion of the
magnet is slow enough to produce a record.

olving equation (134) for » we get,

r= e
H,— H cos ¢+ I'sin ¢

(136)

When ¢ has been determined from mechanical considerations, and
when the low value of A and the field intensity of the control magnet
have been decided upon, = may be computed {rom equation (136) and
the scale value may be then computed from equation (88).

For a single example, let ¢ =6°30", Hyy=19200, and H~y= 18400,
and F=0 (no control magnet). We obtain

8,=3.54

From equation (129) the scale value corresponding to Hvy= 18400
18 2.65
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For small angles, as in this case, it will be sufficient to compute
the scale value at low H by the usual scale value formula

§=3.54+.0035n
=8+an

Here n= —260, giving s=2.63.

The lower limit of H which the variometer can record may be deter-
mined experimentally by bringing the auxiliary magnet, which is used
in the usual scale value deflections, near enough to the variometer to
bring the reserve recording spot to its lowest possible limit. The
magnetic moment m, of the auxiliary magnet, is known from the de-
flections of the ) variometer. The change in the field intensity at
the H magnet is, in gammas,

The lower limit of H is then H,—AH.

25. Comparison of characteristics of the bifllar and unifllar vari-
ometers.— .

i
Biftlar variometer, i Unifllar varfometer.
|
Sensitiveness........ Adjusted by distanco between | Usually requires control magnet.
fibors. ¢ Requires no control i
magnet.
Bcale value.......... Increased by turning torsion head l Incroased by turning torslon hesd so as toin-
80 a8 to increaso ordinate. 1 _ crease ordinate.
Soale value.......... Decreases with ordinate........... " Increases with ordinate.
afaotor.............. Negativeand small................ Positive and rolatively large. Can bo reduced
! by contro]l magnet and large fiber.
Deflactions.......... Practically symmetrical........... Unsymmeotrical. Lack of symmetry can be
uoced by controlmagnet and large fiber.
Soale valuem=0....... Only whon H=0............... ...| Atlow H atcriticalangle.
Btabllity............ Stable for all valuesof H,highand | Unstablo at low H at critical angle. Stability
low. . inoreased by control magnot and large fiber.
Recording range....| All valuesof H, high and low..... All high values of H. No I{ less than that
I corresponding to tho critical angle. Lower
i rmhgo niay ho Increased by control magnet
| andlarge fiber.

1V. CHARACTERISTICS COMMON TO BOTH TYPES OF VARIOMETER.

26. Temperature coefficient of bifilar variometer.—Temperature
changes can affect the bifilar variometer by changing the distance
between the fibers, owing to the expansion of the metallic materials
used in the construction of the suspension system. Attempts
have been made to compensate a bifilar variometer for temperature
by using metals of different coeflicients of thermal expansion. Such
methods, however, have not proved satisfactory.

The effect of temperature on the bifilar variometer is chiefly due to
the change in the magnetic moment of the magnet.

The equation of equilibrium is

MH sin 6= A sin (6—0) (3)
Differentiate this with respect to 6 apd M
dO{ MH cos 8+ A cos (6—6)]= — H sinodM (137)
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From equation (4)

MH cos 04+ A cos (6—0)= MS sin 8 4)
From (137) and (4)

MSdf= — HdM
?‘ or small changes we may write Sdf = — AT and d M==A M, and there-
ore
AH AM
H™H (138)

In words, the proportional change in H equals the proportional
change in the magnetic moment.

Let

M=M, (1 —g) (139)
and so
AM=— Myt (140)

where t is the temperature, and ¢ is the temperature coefficiont of
the magnet. From (138) and (140) -

=5 (141)

Thus the temperature coefficient of the magnet may be derived from
the observed apparent change in H, when the variometer is sub-
jected to a change of temperature alone. ,

27. Temperature coefficient of unifilar variometer.——Temperature
changes can affect the unifilar variometer by changing the elasticity
of the fiber, but this effect is small. Thus the temperature coefficient
is chiefly due to the changes in the magnetic moments of the sus-
pended and control magnets. From (82) the equation of equilibrium,
when the control magnet is placed in the magnetic prime vertical, is

MHsin8=h (6—6)— FM cos 9 (142)
Under the same conditions (x =7§r) the scale value cquation (83) may
be written '
MH cos 0 +h— FM sin 6= MS’ sin 6 (143)
In equations (142) and (143)
MI
= - (144)
Let us adopt the relation
M=cM (145)
(143) becomes
2
MH cos 0-+h~ 5% sin 0= M’ sin 6 (146)

and (142) becomes

MH sin a=7L(a-o)—7% M2 cos 6 (147)
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Differentiate equation (147) with respect to 6 and- M and collect
terms. S o '

(MH cos 0-+h—5 M* sin o) o= —dM (Hsm 0+2 M cos o) (148)

Substituting from equation (146)

MS’ sin 6 do= -—dM(H sin 6+ 2 M cos o) (149)
For small changes we may write
'd9=A H
piTayy (150)

and (149) becomes
AH _ AMy.  2cMcotf

B OH\'"TES (151)
Using equation (140)
g= AH
bl ( 1 +2_°_é,!rg<_?£€ (152)
When there is no control magnet, ¢c=o0 and
AH
=TI (141)

It will be observed that the temperature coefficient in equation (152)
is affected by the control magnet. However, about the largest value

the term 26—%%“—0 could possible take is 0.006. Hence the effect of

the control magnet on the temperature coefficient, for practical pur-
poses, may be disregarded. '

28. Base-line drift.—It is well known that magnets gradually grow
weaker in the course of time. To show the effect of the slow loss of
the magnetic moment of the magnet, let us for simplicit% drop the

thr

control magnet term in equation (149), and divide through by
At,t representing time. We have

a8 daM :

M8 == -H > (153)

Now, if p is the coefficient of magnetic loss with time, the magnetic
moment of the magnet at any time 1s

M=M,(1-pt) (154)
and i -
= Mp (165)
Substituting this into equation (153)
My L~ m,ap (156)

dt
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showing that g—? is plus when p is plus. Thus, en account of the loss

of magnetic strength, the angle continually increases; that is, the
recording sf)ot continually drifts downward toward the base line.

Consequently there is a gradual increase in the base line values,
ﬁalled the base line drift. Multiplying both sides of equation (153)
y At

, aM
M8 di At=—H q At (157)

Now

, db

S T At=AH

and _

M

T At=AM
Substituting these in (157) we get

That is, the apparent fractional change in H—i. e., a downward drift
of the recomﬁng spot—equals the fractional change in magnetic
moment:

From (154) and (158)

sl
P . (150)

Comparing the equations in this section with those in the preceding
section we notice that they are identical. In fact, the temperature
coefficient and the coefficient of magnetic loss are due to the same
physical cause, namely, the weakening of the magnet, and manifest
themselves in the same way by an apparent decrease in H.

29. H variometer compensated for temperature.—Let us investigate
the possibility of compensating an H variometer for temperature b
placing a magnet north (or south) of the variometer, and wit
south end north. The equation of equilibrium is

(20222 sin 0 =16 -0) (160)

and this may be written
5= 1 2 MM, ,
sin 0=TL(MH_ 7 ) (1607)

Here M, is the magnetic moment of the compensating magnot.
Differentiating with respect to ¢t and M and M,

dd_1/HIM 2MdM, 2M.d
Og=i\"a 7 @ = @& (161)



HORIZONTAL INTENSITY VARIOMETERS. 43

Now let
M= M,(1-q¢t)
M= M:o(1—q.0) (162)
¢, and ¢, being temperature coefficients. From (162)
dM
dt T T e
d';%lp= = oon (163)
By substituting. (163) in (161) .
oy @01 2M, M,
f(a) Et=7;[—]1 Moq1+ ” ° (q, +qz)] (164)

If the variometer is not to be affected by temperature changesfg:
must bo equal to zero. Therofore,

2M._ Hg,
Slwo_ A - 165
r ¢+, i (165
And if the temperature coefficients are equal ¢,=g¢,
2Mco H )
5= F,=% (166)

That is, the field intensity of the compensating magnet at the center
of the suspended magnet must be one-half the earth’s magnetic field.
As the temperature coefficients of magnets vary considerably, magnets
of the same temperature coefficients might not be easily obtained.
However, by adjusting the distance the compensation could be
effected by trial.

In the case of our sample unifilar variometer, a compensating
magnet of magnetic moment M, =10 would be placed at a distance -
r=>5.93 cm. north or south of the suspended magnet provided the
temperature coefficients of both magnets were equal.

Tﬁe results above will, of course, hold true for t(}w bifilar variometer.

30. Design for a unifilar variometer.—In the equation of equilibrium
(160) it will bo observed that the effect of the compensating magnet
is to reduce the intensity of the earth’s magnetic field at the suspended
magnet. It is this reduced value that must be used in investigating
the scale value, the a factor, the critical angle, stability, and the
recording range. Denoting the reduced value by H’, tﬂe relation
of the reduced field to the base line or station value is

H=F,+H' (167)
When condition (166) is satisfied
H ’=% (168)

Assuming that equation (166) holds true, let us investigate the
ossibility of designing a unifilar variometer that will possess the
ollowing characteristics: An a factor equal to zero, and consequently

constant scale value, and symmetrical deflections; compensation for
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temperature; ability to record a range of 800y below station or base-
line value at an angle 6° 30’ =¢. The reduced value of H is here
0.09600, and the reduced value of H at the angle ¢=6° 30’ is 0.088.
Let us try these values in equation (136), assuming there is no control
ma%net, and use the value of = thus obtained in equation (681). - We
shall obtain a scale value of 3.3y. -

Turning to equation (102) we see that by using a scale value s,=5.0
(without a control magnet) and by reducing this to 3.5y (s’,) by means
of a control magnet, the a factor becomes zero. Our problem is
solved. Therefore, at a station where H,=19200, a unifilar vario-
meter so designed (a), will be compensated for temperature by a
magnet placed north or south of it, which reduces the earth’s field
by one-half (b), will have a constant scale value of 3.5v (¢), can
record at an angle considerably within the critical angle, a low value
H, equal to 18400, which is 800y .below the station value, and is as
low as is likely to be encountered in the severest magnetic storms.

31. X Y variometers.—Referred to XY axes directed toward the
geographical north and east, the couple acting on the suspended
magnet is evidently

C=— MX sin 6+ MY cos¥. (169)

If the X and Y intensities vary about & mean value, 6 will vary
about a mean direction. We may regard the angle 6 in this equation
as the mean direction of the magnet. The equation shows that the

effect of the Y intensity will be small or negligible when 6 is nearly 22[ .

In the same way the effect of the X intensity will be small or negli-
ible when 8 is nearly zero. Since the variations of the X and Y
intensities of the earth’s magnetic field are small, the magnet will
depart little from its mean position, so that the X variometer will
be practically unaffected by variations in Y, and the Y variometer
will be practically unaffected by variations on X. On the other hand,
if the mean position of the magnet does not coincide with the X or
Y axis, both X and Y are effective and the recorded variations are
to that extent erroneous.
" The same reasoning will apply to any other set of rectangular axes.
We conclude, then, that a suspended magnet will respond to and
‘eorrectly record that component intensity only to which it is per-
pendicular. Two variometers, whose suspended magnets are per-
pendicular to each other, will resolve the resultant horizontal inten-
sity into two rectangular components. Thus, it will be seen, that
the ordinary D and H variometers are but perpendicular kinds of
XY variometers. ' ’

The characteristics of XY variometers may be investigated in
the same way as the case of D and H variometers. Control magnets
may be used to increase or decrease the sensitiveness. Scale values
may be derived from the observed deflections produced by a known
chan%e in that component field intensity which the variometer
records.

32. Scale values of H variometer when magnet is in any position.—
It will be of importance to derive expressions for the scale values of
an H variometer when the suspended magnet is not perpendicular
to the magnetic meridian. For this purpose it will be necessary to
refer the suspended magnet to fixed axes. ‘
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‘A little consideration will show that the magnetic meridian, so
called; is not a fixed direction like the astronomic meridian. The
magnetic meridian, being defined by the declination, vaties periodi-
cally during the course of a day. We will, therefore, take as our
fixed axes the mean direction of the magnetic meridian, and the
mean direction of tho magnetic prime vertical. We shall denote
the northward intensity by N and tho castward intensity by E.
The following relations subsist between the H, N, and E intensities, ¢
being the angle between H and N.

H2=N2_+_E2
N =H cos ¢
E|=H sin ¢ (170)

In cases where ¢ is a small angle, N and H are practically equal in
magnitude, but differ slightly in direction, so that in the followin,
discussion N can be replaced by H without appreciable error. It wi
be sufficient to consider only one type of variometer, namely, the
unifilar variometer. .

The equation of equilibrium is

MNsin 06— MF cos0=h (6—6) . 171)
The N scale value is '

Sy= -%L N cot 6+ ﬂ%i;ﬁ_l«: (172)

From equation (171)
- MN sin §— ME cos 6

h 58 (173)
Substituting this into equation (172)
Sy= N(cot o+5—1—0)+ E(l - ‘;L_fg (174)
The I scale value is |
o= Bem N + o+ I tan 6 )
Substituting k, equation (;73)
SE=N(1+%‘%§)+E<tén 0—6—}77) (176)

We can make an interesting application of the F scale value,
equation (175). Suppose the magnet is at rest in the magnetic
meridian, which implies that §=E=0. Then from (175) '

Stk
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and this is the force per radian acting on the magnet. To determine

h, turn the torsion head 90°. The magnet will be deflected through
a small angle 1, and the equation of equilibrium for this case is

MHf=Hh (90°—f)

or
MHf
Substituting for &,
Su=H (1 +wa__f) (178)

And the couple or torque per radian is
T f )
MSy= MH (1 + 5=
If displaced the magnet will oscillate according to the equation
”" ___.]f__ ) _
Kb+ MH (1 +ggP=)8=0
From this equation we derive

_ @K
B (1 +Wf—‘7) (179)

33. The declination variometer as an [/ intensity variometer.—
From equation (170) we have

i

tan <p=% (180)

Regarding N as constant, we infer that E and ¢ change together.
In other words, it is changes in the [ intensity that cause changes
in the declination. Thus the declination variometer is, in fact, an
E intensity variometer. Let us determine its scale value in the
case where ¢ and, therefore, £ are both small. In this case 6 in
equation (175) becomes identical with ¢, and E tan ¢ is negligible.

As in the preceding section we get
- H( L)
or, in gammas,

SE=H.,(1+;)—_J:7 €
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where the general angle p has been written for the particular angle
90°.  If the recording box is placed at such a distance as to make
1 millimeter equal to I minute of arc.

s =_H4
T 3437.8
=5.58 for H, =19200

Thus the D scalings could be reduced to E intensities in the same way
as the H scalings are reduced to H intensities. Doubtless the use of
the D variometer in this way would be of value in some physical
investigations.

By means of control magnets the I intensity variometer could be
made as sensitive as desired.

34. Maladjustment of the H variometer.—We shall now apply
the equations for the N and £ scale values to the case of an H vario-
meter in which the magnet makes an angle (10° or less) with the
magnetic prime vertical. From equation 1180)

E= N tan ¢ (180)
Substituting this in the scale value, equations (174) (176),

Sx = 1 _cot 8
bN—N[(cot0+6_0>+(l 526 tan go:l

y tan 6 1
b‘m— Nl:(l +—6—:—5)+(tan 0—5:—0) tan <p]

Now ¢, the deviation of the declination from the mean, is a periodic
angle, and is either very small or zero. These scale values are then,
approximately,

SN=H(cot 0+6—_1_—0-) (181)

SE=H(1 +;—"‘§‘—:) (182)

The angular displacement of the suspended magnet caused by the

Al

E intensity is —é— and true H is altered to an extent

E
Sy .. 8w 7
_AH ST; E=gg E1 (183)
The change from true II per 1’ change in declination is, from (183)

and (180), .
AH=§,~N~H tan 1’ (184)
E
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As an exam;o)le; let the torsion head of our sample ynifilar variometer
be turned 6°, so that §=84°, and the magnet makes an angle of 6°
with the magnetic prime vertical: Then ‘ .

sx=1.95+ (0.0035 X 240) =2.79,

since 360’=240 mm. Expressing equation (182) in gammas, and
using the value §=5.867, we compute s;=26.5. From (184) we
obtain AH =0.59y per 1’ change in declination.

. ™ . .
When 9 is near 3 the scale valucs are

e H
Sx= Fpay (185)
tan @
SE=H m ' . (186)
H in equation (182) being negligible in comparison with II -?{l—g-
From these two equations g
_Sx_sn
tan === (187)

That is, the ratio of the E scale value to the H scale value is the
tangent of the position angle of the magnet. For a practical method,
then, of determining the position of the magnet with respect to the
magnetic prime vertical, determine the scale value when the deflec-
tion magnet is placed in the magnetic prime vertical on east and
west sides of the variometer. Theratio of the scale value thus ob-
tained to the regular H scale value will, in accordance.with equation
(187), determine the position angle of the magnet.

It is evident that both H and E act concurrently in making the
actual curve on the magnetogram. A general idea of the effect of
E on H may be obtained by assuming that H can be expressed

H=A cos (wt+a),
and that the effect of E can be expressed
AH=B cos (wt+p)
where w =2—,; and « and g are phase angles. The recorded curve will

be of the form
C=A cos (wi+a) +B cos (wt+8)

This can be written
Where

C=P cos (wt+N)
P=[(4 cos a+ B cos B)*+ (4 sin a«+ B sin §)]*

sin .)\_A sin a;B sin 8

cos )‘_A cos a;B cos 8

¢ )‘g_A sin o+ B sin 8
an A cosa+ Bcos
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From these equations we should expect that the true H curve and
the recorded curve C should differ in amplitude and in phase angle,
and consequently in the value and time of a maximum or minimum.
For example, take a curve represented by the following

_95 Tl 4ysinlopgo
0—207 €os 75 7p=-4 v 8il 73 T—H AH,
in which 7'=24 hours, the unit of time being the hour. When written

thus:

the equation shows that true H is decreased during the first half of
the day and increased during the second half. The phase angles are:

B 25

a=0, ﬂ=%, tan )\=Z=:4-, A= —81°=54 hours. The umplitude is
_ P=(A*+ B*)*% =25.3y
This curve now is
by
0= 25.37 Ccos 1—2——T (t— 5.4)

This is & maximum when ¢ equals 5.4 hours. In this case there is
little change in the value of the maximum, but a large change in the
time of the maximum (or minimum). If the curve were this:

=t wt
C=25 v cos —1—2——T+4 Y €08 |57
a=.ﬁ-=)\=0, P=29y. So the curveis
i
C=29 v cos =T

In this case the value of the maximum is considerably greater, but
the time of the maximum (or minimum) remains unchanged.
In both cases'the true H curve is evidently

."‘t .

H=25 Y COs lﬂ
873°—22——4



Part IL.—THEORY OF SUSPENSIONS OF HORIZONTAL INTEN-
SITY VARIOMETERS.

V. BIFILAR SUSPENSION.

35. The simplified bifilar suspension.—In the figure the fibers and
their points of attachment are projected on a horizontal plane through
the center of gravity of the magnet 0. Fiber I, is attached to the
magnet S and to the support abaz. Its projection is AS=z, and it is
inclined to the vertical at an angle y,. zSee Fi% 1.) Tiber I, is
attached to the magnet at N, and to the support at B. Its projection
is BN=y, and it is inclined to the vertical at an angle y,.

The horizontal distance between the points of attachment on the
support is @, and b is the horizontal distance between the points of
attachment to the magnet.

In general, when periodic forces
are applied at 4 and N, the magnet
X, will oscillate through an angle ¢ and
N its center of gravity will also oscillate
y round a mean position. When the-
B bifilar suspension is used in a vari-
ometer, the center; of gravity should
A 0 remain stationary, since the angular
motion only of the magnet is
S required.
X et us ascertain what relations
. 2 must subsist in order that O shall
Fig. 1. remain at rest:

>

Let T, and T,=tension in fibers,
Z, and X, = vertical and horizontal forces at S
Z, and X, = vertical and horizontal forces at I\;,
v, and v,=vertical distance between § and 4, and N
and B, respectively. Since the moments around any horizontal line
through 0 are equal

2,-08=Z,-ON (188)
Zl"”:Zz'y' (189)
Therefore,
08 ON
e (190)

Hence, from dynamical considerations, the triangle A0S and NOB
are similar, and as AS and BN are parallel

Z,=T, cosy,
X,=T siny, (191)
Z,=T, cosy
X, =T siny, (192)
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From (191)
X tan = Ea L (193)
Z, ty, [ cosy,
From (192)
X,_ Yo
Z,~ tan y,= v, I cos ¥, (194)
If the center of gravity is to remain at rest
X,=X, (195)
Then from (193) and (194)
Zz Zy
[ cos ¢, I, cos ¥ (196)
From (196) and (189)
I, cos ¢, =1, cos ¢, (197)

The simplest construction is to make I, equal to /, and then y, equals
¥,. Furthermore, from the second and fourth members of (193) and
(194) =y, and, therefore, from (189), Z,=Z,. TFrom (191) and

(192) 7,= T, From (188) 0S=ON. Also Z,=Z,=%: mgbeingthe

weight of the magnet. Thus, the simplified bifilar suspension is one
whose fibers are equal inlength, are equally inclined to the vertical, are
under equal tensions, and are equally distant from the center of
gravity of the magnet.

36. Potential energy of the bifilar suspension.—The potential cnergy
of the bifilar suspension is

V=myz,, (198)

in which z, = the difference of the vertical distance netween the points
A and S (or N and B) before and after the magnet is turned. Eefore
the magnet is turned through an angle A, the vertical distance be-
tween the center of gravity of the magnet and the support is 7.

After the magnet 1s turned, the vertical distance is

(P~ a2}
The difference is
N\ 4§ 2
zy=l—(P—a¥)i=1 [l - ( l —%) ]== —:;7 very approximately. (199)
But s B g
p=OyB_gboosh, (200)
From (199), (200), and (198)
V= constant—mg %Il)" cos A. -(201)
37. The suspension couple, bifllar suspension.—The couple due to
the suspension is 2
- 3¥ = —my %b sin A (202)

which tends to decrease the angle A,
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It will be of interest to derive the couple another way. Let C
denote the couple then
C=Xp, (203)

where p is the perpendicular distance between x and y.
X 1=%%§ very approximately (204)
as will be seen from equation (193). Also

%_xua_‘}_b sin A,
or
_ab sin A
22

Substituting (204) and (205) in (203)

(205)

IO'-mg %Zb gin A, (202)

We still have to make an allowance for the torsion in the individual
fibers. If the fibers are free from torsion when a and b are parallel,
the total suspension couple acting on the magnet is evidently

Owmg %0 sin N+ (206)

We may, however, safely neglect the term AN in the case of the
bifilar suspension.
Referring the magnet and suspension to a vertical plane and an
r axis in the magnetic meridian, and denoting the position angle of
the magnet by 6 and the position angle of the torsion head (a) by &
we shall have
A=§—0 (207)

Neglecting the term % ), substituting (207) in (208), and equating the
resulting equation to the couple due to the magnetic intensity H,
we obtain for the equation of equilibrium

MH sin 6=mg % sin (620) (208)
Comparing this equation with equation (3)
MH sin 8= A4 sin ($—6) 3)
we observe that ;
a

When 0=% the scale value equation (4) becomes

Acosr

So=——M——=ng%cos T, (210)
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From this equation it will be seen how the scale value can be changed
by changing the distances between the fibers; that is, by altering

@ and b.

38. Scale value of the bifilar variometer by method of weights.—
The fact that the weight, mg, is a factor in A suggests another method

of determining the scale value of the bifilar variometer.
Differentiate equation (3) with respect to ¢ and 4,
D dA sin (5—6)
" MH cos 8+ A cos (5~-96)

But equation (4) is

- MH cos 8+ .4 cos (5—0)

§ Msin 6

Multiplying equations (211) and (4) member by member

=dA sin (5—0)

Sdo sin @

From the equation of equilibrium
sin (6-0) _ MH

sin # A
And this substituted in (212)

HdA
Sdb="7"

(211)

€Y

(212)

(213)

If we denote the weight of the magnet and its appurtenances by W,

equation (209) will be

ab
A= Wﬂ
dA=d WD ong M2
Also
d8 =ne
Hence W
S=H .
or in gammas
, aw
=

(214)

In practice it will be convenient to make the added weight a suitable

fraction of the weight W.

39. Standard positions of bifllar suspension.—When the torsion
factor h is not neglected the total couple acting on the magnet is

Q= — MH sin 0+ A sin (5—6) +h (5—6)
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Equating this to the kinetic reaction of the magnet, and transposing
all terms to the left side, we get for the equation of motion

K6+ MH sin 6— A sin (5—0)—% (5—6) (215)

_Asin paru%rnph 9, if the magnet is displaced from a position of equi-
librium 6, by a small angle ¢, so that

6=6,+¢
Equation (215) assumes the form |
Ky +[MH cos 6,+ A cos (5—06,) +h] ¢ =0 _ (218)
and 8, is determined by the condition
— MH sin 6,+ A sin (6—6,) +% (6—6,) =0
The period of ¢ in (216), and consequently the period of 0 is

Prm— TH (217)
MH cos 6+ A cos (6—6) +

where 6 now indicates a position of equilibrium. There are three
standard positions of the bifilar suspension, namely, magnet in
equilibrium, (1), when in the magnetic meridian, (Y?), when the
torsion head is turned so as to bring the magnet into the prime
vertical, (3) when the magnet and head are reversed with respect to
the magnetic meridian. o

In the first position, §=0=0. The period is

e K

MH+A+R
Here the magnet oscillates under the influence of the magnetic field,
and the torsion factor A and A.

T (218)

In the second position, 0=%. The period is
St | S
A cost+h

The magnet oscillates from the effect of the torsion factors only.
In the third position, §=0=m=

2

(219)

ron K (220)
TAvE=MH

Here it .will be noticed that the magﬁletic field tends to displace the
magnet from its position, while at the same time, the torsion tends
to restore it. As long as the denominator in equation (220) is plus,
the position is a stable one, and this is always a possibility. Evidently
the magnet may be made as sensitive as desired by adjusting the value
of the denominator in (220).
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As the third standard position of the bifilar suspension is of some
importance in terrestrial magnetism, we shall bestow a little more
attention on it. Moreover, the discussion of this particular case leads
to a consideration of a type motion of the magnet more general than
any we have hitherto treated, namely, the motion of a magnet under

iven applied forces. At the same time, in this connection, it will
_%e of interest to point out a property common to all damped vario-
meters.

If, for simplicity, we consider that the angle ¢ is the angle the south
end of the maﬁnet makes with the magnetic meridian, and that the
magnetic meridian is the equilibrium position, the equation of the
free motion of the magnet is:

K6+ (A+h— MH) 6=0

As variometer magnets are inclosed in damping boxes, it will be neces-
sary to add a term to express the damping effect. Denote it by r.
The equation of damped motion will be

Ké+r8+(A+h— MH) 6=0 (221)
In the case we are considering the applied force is evidently the £
intensity, which we will assume may be expressed

E=E, cos wt

Where w=?7-3f and Ty is the complete period (double oscillation).
E
The equation of motion which we have to discuss is

K6+70+(A+h— MH) 6= — E, cos wt = — Eelt, (221)

The complete solution of this equation contains terms of two classes.
One class expresses the damped motion of the magnet, which, as
we have found in discussing the method of determining scale values
by the method of oscillations, soon dies out. The other class of terms
expresses the steady motion of the magnet.

et us try as a solution,

§ = Pelot (222)

where j=+/ —1 and e is the base of the natural system of logarithms.
The real part of Pel«t is P cos wt, and the imaginary Ipart; is 7P sin wt.
When P has been determined, the solution will be 6 =P coswt.
Substituting equation (222) in (221), and solving for P

- K

P= )
A+h— MH—-*K+or
4m* K  2xr
A+h- M -——-Tm—z +T;
— E,

- 0 (223)
1 1 2mr i
s E( g )+
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the last form being derived by considering equation (220) which
is here
4m* K

TA+h—MH

Should the period of the applied force, Tk, become equal to the free
period of the magnet, T}, a condition of resonance would exist in
which the amplitude of the applied force is enormously magnified.
But 7 is a matter of a few seconds, while T%, even 1 the rapid
changes during a magnetic storm, is a matter of minutes, so that
terms in Ty in equation 223 may be dropped. The solution of
equation (221) is now

Y}Z

- FE
0= m CcOS wt (224)

We thus conclude that, at
least under ordinary con-
ditions, the magnets of
variometers follow the
changes in the magnetic
field to a high degree of
ﬁdelit{. This is the prop-
erty alluded to above.

eturning to the third
standard position of the
bifilar suspension, it is
still possible to magnify
the E intensity by making
the denominator in equa-
tion (224) small.

The third standard posi-
tion of the bifilar suspen-
sion is, therefore, a D

Fig. 2 variometer by which the

18 c. changes in declination may

be magnified to any ex-

tent desirable. To determine the scale value of this sensitive type

of D variometer, it will be sufficient to compare the recorded

changes of the variometer with the changes in declination observed
by means of a magnetometer.

VI. UNIFILAR SUSPENSION

Axis of The fiber

40. Quartz fibers.—The following physical properties of quartz are
taken from the Smithsonian PhysicnIl) ’IYables:
Coeflicient of cubical thermal expansion: 0. 3840x10
Coefficient of linear thermal expansion: 0. 1280x10+
Rigidity modulus (selected value): 2. 833x10"
Change of rigidity modulus with temperature

pe=py[l—a (t—15°)] a=0.00012
Ky Mmeans p at 15°,

Tensile strength, pounds per square inch, 116000 to 167000
pounds.
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41. Coulomb’s law,—The important relation in connection with

the torsion of fibers of circular section is the following:

4
in which C is the reactive couple, r=radius, x=modulus of rigidity,
l=length, and y is the whole torsion in the fiber.

This relation was first given by Coulomb,; the French physicist, in
1785, and is sometimes reforred to as Coulomb’s law. It may be
derived as follows:

Wo may regard the fiber as made up of elementary fibers of cross
section rdrdy and length dx, deformed from their normal shape.
(See Fig. 2.) The uﬂ)er and lower faces of the elementary fiber are
assumeg to be parallel planes perpendicular to the axis of the fiber.
The upper face is displaced with reference to the lower face through
the distance rdy. The reactive force F at the upper face, called into
play by the distortion of thoe elementary-fiber, 1s, from the theory
of elasticity: :

F=area X modulus of rigidity X change in angle. The moment
of this force is Fr, so that Fr integrated throughout the volume of

ay

the fiber will give the reactive couple. The change in angle is r Iz
Hence

0=uffffﬂdrd¢%=u§7r‘wlé - (225)

The torsional couple varies directly as the rigidity modulus, the
amount of torsion in the fiber, and inversely as the length. It should
be noticed that the couple varies directly as the fourth power of the
radius. .

This explains why it is so difficult to select a fiber to give a particu-
lar scale value.

The fa.ctor% is sometimes called the twist; that is, the torsion per

unit length. The factor p% r* is called the torsional rigidity. Its

value may be found by observing the period of an inertia weight
suspended by the fiber. : -. :

42. Torsion factor.of the unifilar variometer.—~The torsional couple
of the unifilar suspension is Ar, go that the r, which has been used in
the discussion of the unifilar variometer corresponds to ¢ in the ex-
pression of Coulomb’s law, equation (225). Therefore, we have

B ﬂvrm"r
ST

mﬂ'"
PLLA (226)

43. Size of fiber for a given base-line scale value.—~From equation

and the torsion factor is

(56) when g=2, we have
MH=hr
Combining this with equation (226)
4
-S-%T 20"
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Also from equation (60)

,So = .IZ
T

(60)

Eliminating the ratio gfrom equation (226')

i 284 (227)
T .

From equations (60) and (61)

8o
So= X108 (228)
Hence the radius of the fiber is given by

i 2 Msll
wue X 10°

(229)

where s, is the scale value expressed in gammas and all the other
quantities are expressed in C. G. S. units.

44. Fraction of temperature coefficient of unifilar variometer due to
temperature changes in fiber.—Let a = the change of rigidity modulus
per degree of temperature, and let 8=the coefficient of thermal
expansion of quartz. The rigidity modulus may be expressed

p=po (1+at)
The radius of the fiber may be expressed
. r=r%(1+4 Bt)
The length of the fiber may be expressed

I=1, (1+81)

Hence the torsion factor of the unifilar variometer at any tempera-
ture, referred to a standard temperature, which for simplicity is here
assumed to be 0°, is
J= wurt
YT
_ THorty(1 +at) (1+481)

2 1,(1+581)
o™y

=_270_(1 +at) (1+361)

4
=THT L+ (a4 30)1]
=ho[1+ (a+38)t] (226)
The rate of change of the torsion factor with temperature is

2 o (a36) (230)
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For the magnetic moment at any temperature

M= M, (1-gt)
and iy
o= M

The equation of equilibrium of the unifilar variometer is
MH sin 0=h(5—19)
Differentiate this equation regarding M, h, and 6 as variables

(MH cos 0+h) %:-H sin 0‘%+ (5_0)‘2_’:

or by means of equation (57)

. dH . . dM ah
— Msing e — H sin 6 ~W+ 6-—9) 7

and for the base line position 6=

dH . dM . dh
- MG =-HG +r

Substituting equations (230) and 231) in (232)

- 0 = g+ Dt (a4 36)

* From equation (56), when 0=;—r-, .

MH =hyr
and equation (233) becomes -

- MO~ B+ MET (a4 39)

or very approximately . .
dH _
“Ha~qtet 38

or

a+3B)

o
9 q( 7

That is, the temperature coefficient of the variometer ¢’, is 14

59

(231)

(56)

(232)

(233)

(234)

(235)
a+38
q

X the temperature coefficient of the magnet. In the case of our

sample unifilar variometer
a+38
q

= — (.12, approximately,

and
g’ =0.88¢.
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That is, the temperature coefficient of our sample unifilar variometer
is some 90 per cent of the temperature coefficient of the magnet.

45. Useful formulas for reference.—Angular value of 1 mm. on
magnetogram:

P
e=tan e =30k (236)

where ¢ is in radidxis, ¢’ is in minutes of are, and 2 is the distance
from the manetogram to the face of the movable mirror.
Field intensity of magnet on its axis produced:

p-2H (237)

Field intensity of a magnet at a point perpendicular to its axis from
its center. u

F= .y (238)

The magnetic moment of a magnet may be experimentelly deter-
mined by placing it in the magnetic prime vertical east or west of a
D variometer.

M=%s tan u (239)

where u is the observed deflection. For a double deflection -in direct
and reversed position

M=¥ tan 2u (240)

The magnetic moment may also be determined by placing it in the
magnetic meridian north or south of an H variometer whose scale
_ value is known. ,
ru’s
M=zx10° (24)

in which %’ is the observed deflection in millimeters. For a double
deflection

(2u)s

M= 108 (242)
General bifilar scale value:
9=H, ¢[cot 8+ cot (5—6)] (gammas) 5b)
Base line bifilar scale value:
8,=H, ¢ cot r (gaminas) (6b)

a 1actor, bifilar scale value:

a=H, e’(l "'u:Tf) (243)

8
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General unifilar scale value: .

1
S.=I{7€ (Cot 0+5_——9 ‘ (59)
Base line unifilar scale value:
H .
§o= : ‘ (61)
a factor, unifilar scale value:
a=H,¢(1-}) @7
Base-line scale value, unifilar with control magnot:
H ‘
8'y= :e— F,e (88)
a factor, unfilar scale value, with control magnet:
F, H F,é&
a'=e=(ﬂ,+77—-5";=a+—3i (@7)

METHODS OF DETERMINING S8CALE VALUES.—(a) Deflections.—For
the same magnet deflecting both the D and H variometers, at the
same distance, we derive from (240) and (242)

s=H, 220 (244)
(b) Oscillations:
Ta? A2
s=ely 7 (1'*";) (51)
(¢) Torsion angle:
s=Hyecot r (6b)
Here the angle r is measured. :
(d) Weight:
= @19

.Cha,nge in scale value due to control magnet parallel to suspended
magnet: :

As= + Fe= % %{LGXIO5 (89)

Change in scale value due to turninug torsion head:

As= H,e sin (n,—n,)e (115)

a factor derived from observations: From equat.ons (71) we
obtain

28 (u—u)

ui+u? (248)

where u, is the observed plus deflection, and w, is the observed minus
deflection, and ¢ is the computed scale value.
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If n is the away ordinsate, the base line scale value is
§,=8—an (246)
a factor for unifilar with control magnet:

 HyE— 808y

a g (102)
Y
Critical angle of instability, unifilar with control magnet:
H—-F(r—
tan o= ﬁﬁ(g)_g'lz‘ (130)

7 i obtained from (61).,
Critical angle, unifilar with no control magnet:

tan = (131)
Value of H at critical angle:
T = E"_(I:.i) G
= 7 cos @ + I"tan ¢
= M-:g.). ' :
=~ cos p + Ftan ¢ (134)
Base-line drift follows the relation:
Ll X (158)
Temperature coefficient:
' - A
1= Hai
Position angle of the suspended magnet:
: — ‘_Sl? ]
tan O—S-" (187)

Error in recorded H when the suspended magnet does not lie in
the prime vertical:

AH=5" H tan 1/ (184)
Suspension couple of bifilar:
0="4 ab sin \ (202)
Bifilar torsion factor:
4= ab (209)
Coulomb’s law:
o=10Y (225)
Unifilar torsion factor:
h= %‘;‘ (226)
Size of quartz fiber for given scale value:
ri= % (229)

)



