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REDUCING THE PROFILE OF SPARSE SYMMETRIC MATRICES*

Richard A. Snay
National Geodetic Survey
National Ocean Survey, NOAA, Rockville, MD

ABSTRACT. An algorithm for improving the profile
of a sparse symmetric matrix is introduced.

Tests on normal equation matrices encountered in
adjustments of geodetic networks by least squares
demonstrate that the algorithm produces signifi-
cantly lower profiles than the widely used reverse
Cuthill-McKee algorithm.

I. INTRODUCTION

Let Ax = b be a system of linear equations where A is a sparse,
symmetric, positive definite matrix. Such systems are
generated, for example, by the least-squares method in geodesy
and by the finite element displacement method in structural
analysis. To expedite an automated solution of the system, a
data structure is desired which will avoid the storage of a
significant number of the zero matrix elements in A and which
will allow trivial arithmetic operations to be circumvented by
program logic. For many systems, this is effectively accom-
plished by the variable band data structure described by
Jennings (1967).

The variable band data structure can be viewed as a modifica~-

tion of the band data structure. Given a symmetric matrix
A = (ai.) of order n, define the column height pj of column
j (l<3j<n) to equal 0, if aij = 0 for 1<1i=<3j; otherwise,

*A shortened version of this paper has been submitted for
publication in Bulletin Géodésique.




pj equals j—~i, where i is the smallest integer such that

a # 0. Figure 1 depicts the value of pj as the length of

alépike. With the band data structure, one stores and
manipulates only the elements aij of A, for which 0 =j~-1 =B;
here B = maxj pj is called the bandwidth of A. 1In contrast,
with the variable band data structure, one stores and manipu-
lates only the elements aij of A for which 0 £3j-1i Spj, i.e.,
the diagonal and spikes of figure 1. The storage allocation
of the wvariable band data structure is a function of the

column profile P of the matrix A, where P equals Zj pj.

Figure l.--Reguired storage
of matrix.

To take better advantage of the band data structure, several
algorithms (Akyuz and Utku 1968, Alway and Martin 1965,
Arany ¢t al. 1971, Cheng 1973, Collins 1973, Cuthill and McKee
1969, Gibbs ¢t 47. 1976, Grooms 1972, King 1970, Rosen 1968)
are designed to rearrange the columns and rows of A to trans-
late the original system of equations into an equivalent system
A'x' = b', where A' is a symmetric matrix with a smaller band-
width than that of A. Of these algorithms, the one by Cuthill
and McKee (1969) is probably the most widely used. Rearranging

the columns and rows of the matrix to reduce column profile



correspondingly allows one to take better advantage of the
variable band data structure. Besides requiring less storage,
the system with a lower profile requires fewer computations and

less computer time, and decreases round-off error.

In this paper, the problem of deciding which rows and columns
to permute for approximating minimum column profile, and the
corresponding problem for bandwidth, are modeled as versions
of a gqueuing problem. Heuristically, this model justifies the
use of the Cuthill-McKee algorithm for reducing bandwidth.
However, for reducing column profile, the model suggests a
different algorithm. The description of this algorithm and
the results of several experiments follow the construction of

the model.

IT. GRAPH ANALOGY

A symmetric matrix A = (aij) of order n defines an undirected

graph G whose vertexes are numbered 1, 2, ..., n. (See figure 2.)

A connection or edge exists between vertexes 1 and j (i # j) 1if,

and only if, aij # 0. 1In this case, it is said that i sees j
or j sees 1i. A renumbering f (a one-to-one function
£: {1, 2, ..., n} > {1, 2, ..., n}) of the vertexes of G defines

a rearrangement of the rows and columns of A, producing a
symmetric matrix A' = (a‘ij) satisfying the relation

ij fF(1)E(3)°

Given a numbering of the graph G, define the column height Pj
at vertex j or 1<3<n as follows: If vertex j does not see
any vertex with a lower number, then pj = 0; otherwise, pj=:j—i
where 1 is the lowest numbered vertex seen by j. The column
profile P of G defined by this numbering is given by the equation
p =10 pj. The bandwidth B of G is given by the equation

J=1
B = max. .
J p]



A renumbering f of the vertexes of G produces a column profile
Pf and a bandwidth Bf. The problem of minimizing column profile,
respectively bandwidth, of a system of linear equations is thus

equivalent to finding a renumbering f such that P respectively

fl
Bf, 1s minimal.
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Figure 2.--Associated graph of matrix.

IIT. BANKER'S DILEMMA

Light is shed on the profile minimization problem if it is
viewed as a queuing or waiting problem. Consider a multi-
millionaire who wishes to witness the effect of giving away free
land to each of the families in a small village. However, as
the millionaire believes in the Shakespearian tenet, "neither
a borrower nor a lender be," he adds the stipulation that
before the villager can receive the land, the villager must
settle his financial accounts with the other citizens of the
village. Having divided the land into plots, the millionaire
employs a banker to settle the accounts and distribute the
plots accordingly. The banker calls in one of the families of
the village together with all the families which are either
indebted to this family or to which this family is indebted.
The accounts are settled and this first family chooses the
plot which they prefer. It takes a whole day to settle the

papers. The next day, in addition to the family which the



banker has scheduled to process and the neighbors which have
some bond of obligation with this family, there are at the

bank the families who were at the bank on the first day and
who had not received a plot of land. The banker serves the

family he has scheduled.

Each day the banker can serve only one family, and each day at
the bank there are the family which the banker scheduled, the
families which have a bond of obligation with this scheduled
family, and the families which have previously been to the
bank without having received any land. This last group of
families continuously returns to the bank hoping to influence
the banker to serve them, so that they might be able to choose
the next choicest plot of land. For this reason, the banker
denotes this group as the hopeful families. Since the bank's
image will suffer each day a family waits at the bank, the
banker decides to schedule the families in an order which will

minimize the total waiting time of all the families.

Let the families correspond to the vertexes of a graph G. An
edge or connection exists between two vertexes i1f a bond of
obligation exists between the families. The order in which the
banker serves the families defines a numbering of the vertexes.
Family j does not wait if they had no obligation with the
families served before them. On the other hand, if family j
had an obligation to a family served before them, then family J
waits j-1 days, where i is the first family served to have an
obligation with family j. Hence, the column height p. of the
vertex j 1s the waitinag time in days of family jJ. Thé column
profile P of G associated with this numbering is the total

waiting time of the families.



IV. THE PROFILE ALGORITHM

Suppose the banker has served the first k families, and sup-

pose there are h hopeful families, i.e., families who had a
bond of obligation to at least one of the first k families and
who have not yet received a plot of land. At this time, the
banker decides to serve a family i for which r. is a minimum,
where r. is the number of hopeful families who would return to
the bank tomorrow if family i1 is served today. One sees that
r. = h + m, = ng, where m. is the number of nonhopeful families
obligated to family i who have not yet been to the bank. The
parameter n, = 1 if family i is a hopeful family: otherwise

n, = 0. When the corresponding matrix is rearranged according
to the order in which the families are served, then the mini-
mized quantity r. equals the number of off-diagonal elements
of the k + 1 row in the new matrix which must be stored, i.e.,
r. equals the change in column profile realized by assigning

family i the number k + 1.

A path of length n in a graph G is a sequehce of vertexes
[Vl’ Vo ey Vn+1] of G such that v, sees v, , for 1<iZsn.

G is said to be connected if each pair of vertexes of G is con-
tained in some path. A maximal connected subgraph of G is
called a component. The algorithm is presented below in terms
of numbering the vertexes of a graph, when the graph has one
component. The discussion for obtaining a starting vertex for

the algorithm is postponed momentarily.

Algorithm 1: To number vertexes of a graph for near minimal
column profile.

1. Pick a starting vertex v; number it 1.

2. Each unnumbered vertex seen by v is denoted as a hopeful

vertex until it is numbered.



3. All vertexes seen by v or seen by vertexes which are seen

by v are added to the list of candidates unless:
a. they are already numbered, or

b. theyv are presently on the list of candidates.

4. If the list of candidates is empty, then stop; all the

vertexes in this component are numbered.

5. If the first k vertexes are numbered, then choose vertex

k + 1 to be any vertex v from the list of candidates for which
the value m, - n, is a minimum. m, equals the number of
unnumbered vertexes seen by v which are not presently hopeful
vertexes. n, equals 1 if v is a hopeful vertex; n, equals O

otherwise.

6. Vertex v 1s subtracted from the list of candidates and 1is

no longer denoted as a hopeful vertex.

7. Return to step 2.

If the graph has several components, then having sequenced the
components arbitrarily, the vertexes of the first component are
numbered as above. TIf the vertexes of the first s components
are numbered, then the starting vertex v of component s + 1 is
assigned the lowest unused number, and the algorithm proceeds

as stevp 2.

Note that, in practice, if the first k vertexes of a component
are numbered, then not every unnumbered vertex is a candidate
for the number k + 1. For the efficiency of the algorithm, the
list of candidates consists onlv of the hopeful vertexes and
the unnumbered vertexes seen by hopeful vertexes. As the
numbering progresses, these vertexes are easily accumulated
concurrently with the process of updating the values for the

m 's.
Y



V. FINDING STARTING VERTEXES

Since algorithm 1 is based on local properties of the graph
the resulting column profile will be highlv dependent on the
choice of a starting vertex. Described here is an algorithm
which produces a set of vertexes. The column profile is cal-
culated using each vertex in this set as the starting vertex

in algorithm 1, and the best result is retained.

The algorithm is described in terms of the distance between
vertexes. If u and v are vertexes in a connected graph G, then
the distance between u and v is the length of the shortest

path from u to v.
Algorithm 2: To find candidates for starting vertexes.
1. Pick a vertex v.

2. Choose a set S of (five) vertexes whose distances from v

are at least as great as that of any vertex not in S.
3. Let x be a vertex in S whose distance from v is maximal.

4, Choose a set T of (five) vertexes whose distances from x

are at least as great as that of any vertex not in T.

5. The vertexes of S and T are the candidates for the starting
vertex.

The above algorithm, which is similar to that proposed by
Gibbs, Poole, and Stockmeyer (1976) is motivated by modeling
the graph as a village in which all families live on one street,
and by assuming that the bonds of obligation can only exist

between families who live relatively close together. If this



model is accurate, then it is best to start at one of the ends
of the street. Starting with a family not on the end would
cause families on one side to wait while families on the other

side are being served.

VI. BANDWIDTH ALGORITHM

The Cuthill-McKee algorithm (1969) is stated below for the case
when the graph has only one component. The details pertaining

to the selection of candidates for the starting vertex are

omitted.

Algorithm 3: Cuthill-McKee

1. Pick a starting vertex, number it 1.

2. If the first k vertexes are numbered and vertex w is the
lowest numbered of these k vertexes which sees unnumbered
vertexes, then choose vertex k + 1 to be any of the
unnumbered vertexes seen by w which has the lowest degree.

The degree of a vertex v is the number of vertexes seen by v.

That the Cuthill-McKee algorithm produces a small bandwidth,

while algorithm 1 produces a large one, can be seen by slightly
adjusting the queuing model. If instead of total waiting time,
the banker attempts to minimize the longest waiting time of any
one family, then he is trying to minimize bandwidth. The Cuthill-
McKee algorithm says that among the hopeful families who have
waited for the longest time, schedule next any of these families
which has the fewest bonds of obligation. 1In contrast, algo-
rithm 1 completely neglects the length of time the families

have already waited, and in doing so, it causes families with

many bonds of obligation to wait longer to be served.
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VII. EMPIRICAL RESULTS

When automated, algorithms of this paper are designed to be
time efficient. As such, only near minimal profile or band-
width is expected of them. That algorithm 1, hereafter
referred to as the "banker's" algorithm, does not always pro-
duce the minimal column profile is demonstrated by the graphs
of figures 3 and 4. The banker's algorithm was used to number
the graph of figure 3, resulting in a column profile of 14.

An alternative numbering of the graph, figure 4, vyields a

column profile of 13.

PROFILEZ13 11
12

5

6
) 7
PROFILE=14 g

FPigure 3.--Numbering by banker's Figure 4.--Alternative
algorithm. numbering.

To measure the effectiveness of the banker's algorithm for
reducing column profile, its results are compared with those
produced by the reverse Cuthill-McKee algorithm on a collection
of sixteen data sets. The reverse Cuthill-McKee algorithm,
which simply inverts the numbering of the standard Cuthill-

McKee algorithm, is recognized for reducing column profile by
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several authors (Cuthill 1971, George 1971, Gibbs et al. 1976,
Liu and Sherman 1976). Until mid-1975 it was the profile
reducing algorithm used by the National Geodetic Survey (NGS)

of the National Ocean Survey.

Part of the tested data consisted of five graphs which
Dr. Cuthill (1971) used to compare her algorithm with several
other algorithms. The remaining eleven data sets correspond
to svstems of linear equations which were generated in the
process of performing least-squares adjustments of geodetic net-
works existing in the files of the National Geodetic Survev.
Figure 5 is a sketch of the network identified as INDI--7-1I, and
figure 6 pictures the resulting matrices obtained for INDI--7-I
after apvlying each algorithm, where in both cases all vertexes

of degree five or less were considered for the starting vertex.

The empirical results, as displayed in table 1, favor the
banker's algorithm except in the case when the graph is espe-
cially homogeneous, as the second, third, and fourth data sets.
The results alsoc demonstrate that the profile of the banker's
algorithm can be slightly improved by considering all vertexes
of degree five or less for the starting vertex, rather than
considering the vertexes generated by algorithm 2. However,
the work which is involved in testing many starting vertexes
(see column M of table 1) would generally outweigh the benefits

of the profile reduction.

Figure 7 is a graph of the information contained in the columns

of table 1 identified as L, P and PB. The guantity L, the

'
number of nonzero terms abovecthe diagonal of the matrix, pro-
vides a lower limit for the column profile of the matrix. The
true minimum profile is usually impractical to obtain (it can
be obtained by considering the n factorial numberings of the
associated graph). Although L is presented here as estimate

of the true minimum profile, there can be a significant
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Figure 6.--Required storage for matrix of INDI--7-1,

zero element of matrix

13

B nonzero element of matrix

after apply-

ing banker's algorithm (top) and reverse Cuthill-McKee

algorithm (bottom).



Table 1.--Empirical results.

Data set N M L PC PB\ PS
Figure 4% 24 24 23 54 30 31
Figure 5A* 64 64 112 364 371 371
Figure 5B* 64 28 161 364 371 371
Figure 6A%* 45 45 85 204 204 204
Figure 6B* 42 42 81 211 195 195
BOONFIELD 56 33 148 217 187 187
WESTERNNC 86 55 203 319 278 278
HUNTWILWV 86 61 215 558 430 430
MSHS 11782 92 54 259 411 329 329
INDI--7-1 119 85 281 860 569 591
OHIO?2 141 102 393 2083 1012 1024
INDI-7-11 149 98 372 1321 952 971
MTCARMELI 157 96 499 1526 1222 1227
CETVERILL 301 192 916 4380 3042 3083
SALT~LAKE 278 179 844 6903 4173 4487
G15031 464 325 1204 11326 5908 6265
Totals 2168 1483 5796 31101 19273 20044

*
E. Cuthill (1971). 1In this table,

N = order of matrix = number of vertexes in graph.

M = number of vertexes of degree 5 or less.

L = number of nonzero terms above the diagonal of the matrix.
PC = column profile obtained with reverse Cuthill-McKee

algorithm considering each vertex of degree 5 or less

for the starting vertex.

P = column profile obtained with banker's algorithm consider-
ing each vertex of degree 5 or less for the starting

vertex.

P = column profile obtained with banker's algorithm con-
sidering each vertex produced by algorithm 2 for the

starting vertex.
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difference between these two numbers. For example, consider a
graph G constructed by distinguishing n points on a circle as

the vertexes. By induction on n, it can be shown that the
minimum column profile of G equals 2n-3, while the value of L

is n.

VIII. EPILOG

From the experimental results, it is concluded that the banker's
algorithm effectively reduces column profile. That this lower
profile not only saves computer storage, but also reduces
execution time, is demonstrated by the result of the following
experiment. An execution time of 71.47 seconds was required to
solve the equations generated by the geodetic network, SALT-

LAKE (278 stations, 556 unknowns), when the unknowns were
ordered randomly. When the unknowns were ordered by the
banker's algorithm, the equations solved in 6.02 seconds. The

application of the banker's algorithm required 19.66 seconds.
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APPENDIX I. Implementation of the banker's algorithm.

This supplement contains a listing of the Fortran IV subrou-
tine REORD which implements the banker's algorithm. The purpose
of the subroutine is to number the vertexes of a graph G to ap-

proximate minimum column profile. If G has n vertexes, the sub-
routine assumes the vertexes are identified in the calling
program by the integers 1, 2, ..., n. The subroutine parameters

are defined first.

NUMSTA is a variabie. On call, MNUMSTA contains the number of
vertexes of G.

NABOR is an array of dimension n by m, where m is the maximum
number of vertexes seen by any one vertex. On call, NABOR
contains the connectivity information of G. If vertex i
sees 7 vertexes, then the identifiers of these vertexes will
be stored in the locations NABOR(i,k) for 1 < k < 7.

KDEG is a vector of length n. On call, KDEG(i) contains the
number of vertexes seen by vertex 1i.

NORD is a vector of length n. On return, NORD(i) contains
the new number assigned to vertex 1i.

IDEG is a vector of length n. Prior to statement number 320,
IDEG(i) 1is used to contain the identifier of a vertex.
After statement number 320, IDEG(i) contains the current
number of nonhopeful vertexes seen by vertex i.

NAT is a vector of length n. NAT(i) 1is originally assigned
the number 6 for all i. When the component of G containing
vertex i is being numbered, then NAT (i) assumes the values
1 through 5.

1, if vertex i is numbered
NAT (i) = 2, if vertex i is a hopeful vertex
3, if vertex i is a nonhopeful vertex on the

list of candidates

NWAIT is a vector of length n. NWAIT is used to contain the
identifiers of vertexes on the list of candidates.

The program documentation is shown on figure 8, pages 20
through 23.



SUBROUTINE REORDENABIR.IDEGsKDEGsNORDyNAT4NUYSTASNKWAIT)

L. . . e
 GIMENSTON NABOR(500+50) 5IJE5C1) (KDEG{1) sNORD(LD o NAT (1),
4 NMAITA1),STARTL1B). S -~
c
L YHIS SURROUTIME EEQROFRS THE UNKNOMMS IO ACHIEWE MINIMUM
c COLUMN PROFILE
N .
INTEGER START
.1 FORMAT (* | OGITAL ERROR IN RXCORDER ¥)

DO 90 I=1,NUNSTA
Q0 _NAT(T}=h

KZ2=0
e ALXZ=B
Q5 p7=9

g
L EINDL A NFRYEX. LAZ. BELOMGING X3 AM
C JNNUMBERED COMPONENY

Lo ; e : -
iﬁﬁ LXZ LXZ ¢ 1
e YR Y NAV LX) :
IF (JTYRY.NELBIGO YO 105

C FING THE FIVE VERVEXES FURTHEST AMAY CROM THE
L. VERTEX LXZ o ,
T IZ COUNTS ¥HE MUMBER OF VERTEKIS TN THIS COMPONINT

-~

IDEG(1} =L XZ
N —NARE L XTeS — S

IXZ=LXZ
A28 36 = KDEGIL&L} .
IFCP6.NELBIGC §3 L3I0

R - R e . - R .

L THIS IS A C “‘! MEW’ HiTH O OJUST ONE dERTEX

G
KI = K7 #+ i
IF{KZ.EQ, NUM '{A}RET\RN

_ ... GO YO 8% . __

138 00 2B0 Ki=1,J46

—  NSTA = NARORE I K o KA b
IFACNATINSTA)«NEBIGS TO 2035

. 1Z1=1Z+%
IDEG(IZ)= NSTA

,,,,,, ___NATINSTA)=5 ,,

280 CONTINUE
e TFLUPZ L FRLTZ36L T0 210

JPZ=JPZ + :

e IXZ=IDEGLIPZE B s : e
GO TO 125

C TRANSFER THE L&3T FIVE VERTOXIS IN ¥IL ')R IDEG

L TO VECTOR SYARTE

c

Figure 8.~-Fortran program source isting {(page 1 of 4).



210 KSTART = MIND(S,12)

N ¢ ES 231 A R —
D0 228 L =1,KSTART
START(L)= IDEG(L1)

220 CONTINUFE

c
C .. FINO THE FIVE VERTEXES FURTHEST AWAY FROM THE
C VERTEX START (1)
Lo o
Jpz=1
172=1

IDEG(IZ)=STARTI(1)
IXZ=STARTI(1)
NATLIXZ)=k
.225% 46 = KDEGI(IXZ)

DO 300 Ki=1,.Jb
NSTA = NABORU(IXZ,K1i)
IF (NAT(NSTA) «NE.5)GO TO 300
I1Z2=12+2 .
IDEGU(IZ)=NSYTA

e - —NATANSYA) =4

300 CONTINUE

- 1FtuPZ.FQ.IZ)}?GO YO 3t 0000000000
JPZ=JPZ+4
IXZ=I0EGUJPZY
GO TO 225

.C . .
C TRANSFER THE LAST FIVE VERTEXZS OF IDEG TO THE
L VECTOR START. THE VECTOR START THUS CONTAINS THE
C TEN VERTEXES WHICH WILL BE TESTED AS THE STARTING
C VERTEXES IN NUMBERING THE COMPONENT
c
310 I1=1Z+1
D0 320 L=1,KSTART
Li=11~1
J=KSTART#L
START(S)=IDEGILL)
320 CONTINUE
KSTART=KSTART*2

C
L TRY DIFFFRFNT STARTING POINTS FOR IATS COMPONZNT
C
NSTOP=0
ISTART=1
NPROF=10000000
#88 DO 980 JQ = ISTART,KSTART
N0 LAR T=1,NUMSTA
IDEG(I)Y = KDEG(I)
NAT(I) = MAXD {4, .NATL{I))
498 CONTINUE
I ; N U,
C NCOUNT CONTAINS THE NUMBER 0 VERTEXES IN THIS
L COMPONFNT WHICH ARF CURRFNTLY NUMBFRFND. =~
C NPRO CONTAINS THE CURRENT COLUMN PROFILE FOR THE

Figure 8.--Continued (page 2 of 4).
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C NUMBERING OF THIS COMPONENT FOI THE CURRENT
C _STARTING VWERTEX . —

"

e NCOUNT=1 —_ e
NSTA = START(JQ)

— NPRO=0

MWAIT=0

e NAT(NSYA) =1 ; : S

NORD(NSTA) = KZ ¢ 1|
570 JE = KDEGUNSTA) , —

DO 768 J=1,JE
KSTA = NAJORINSTA,J)

JTRY=NAT(KSTA)
i GO TO A T60 4755259056850 4 3TRY..
585 MWAIT=MWAIT+1
e NMAJTEMMWAIT)=KSFA
590 NAT(KSTA)=2
KE = KOFGI(KSTAD

D0 750 Ki=1,KE
MSTA = NABOR(KSTA.K1) . __
JTRY=NAT(NSTA)
e GO _TO0 {750,745,765,7600,47T3Y -
768 NAT(MSTA)=3
 MWATT=MMWATIT#1

NWAIT(MWAIT) = MSTA
TS5 IDEGI(MSTA)=IDFGUMSTA) =1
750 CONTINUE
— 158 IDEG(KSTA)=IDFGL(KSTA)=-1 - -
760 CONTINUE
770 TIF (MWATT.GYL1)G0O Y0 AO0

NCOUNT = NCOUNT +#4
_C_A,i_., —
C THIS IS THE LAST VERTEX IN THI) COHF’DNENT

NSTA = NWAIT(1)
——  NORDINSTA) = K7 ¢+ NCOUNT

JE = KDEG(NSTA)

NCX = ) e e

DO 780 J=1,JE
. LSTA = NABORUNSTA.J) = R
NCX = HAXO(NCX'NORD(\ISTA)-‘OQD(L)TAH

— IA0 CONTINUF

NPRO = NPRO + NCX
e NAT(NSTA) = ¢ =
MWAIT=0
- L0 TO 97
800 NTEST=1
— NBRI1=NWATT(1)

D0 835 L=2,MWAIT
. _NBR2=NWAIT(L) =

IF (IDEG (NBR2) +NAT (NBQZ);[JEu(NBRL) ~-NAT (NSR1)) 825 o835’835

825 NIFST=L

NBRI=NWAIT (L)
— 835 CONTINUF

NCOUNT=NCOUNT +1

Figure 8.--Continued (page 3 of 4).



NSTA=NWAIT(NTEST)
_ NORDANSTA) = KZ & NCOUNT. _
NNAITINTEST) = NWAIT(MWAIT)
. MWAIT = MHAIT = f _
JTRY=NAT (NSTA)
NAT INSTA) =1

GO TO (846,850,6704846),JTRY

ME = KDEG(NSTA)
00 970 | =1,.ME

NSTAL = NABOR(NSTA,L)
. JTRY = NAT(NSTAL)
GO TO (950'9700930’905)'JTQ’
305 HRITE(B41)
RETURN
330 NAT(NSTAL}=?

JE = KDEG(NSTAL)
_ D0 9k0 K1z1,4E

MSTA=NABOR(NSTALyK1)

_  JTRY=NAT(MSTA) -
G0 TO (94059325932,931) 4TV

931 MWMATT=-MWAIT+HY
NWAIT(MWAIT)=HSTA

. NAT(MSYA)=3 .

332 IDEG(MSTA)=IDEG(MSTA) -1

940 CONTINUE
GO TO 970

360 NCX = MAXD(NCXoNORD(NSTA)=NIRO(NSTALY)

970 CONTINUE
NPRO = NPRO + NCX
GO TO 770

374 IF(NSTOP.EQ.1)1GO TO 386
IF (NPROF +LT (NPRO) GO TO 988
IKEEP=.1Q
NPR OF =NPR O

380 CONTINUE
NSTOP=1
ISTART=IKEEP .
GO TO 488

86 KZ=KZ7+12Z
IFUKZNE.NUNSTA)IGO TO 95
RETURN
END

Figure 8.--Continued (page 4 of 4).
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Remarks

The data structure employed in REORD to store the connectivity
information is inefficient in its use of central memory because
many of the vertexes in a graph might see only a small fraction
of the number of vertexes seen by the vertex which sees the max-
imum number. Although the wasted memory is contrary to the
purpose of the algorithm, the algorithm has been illustrated
with this data structure because of its simplicity. In practice
a more efficient data structure is suggested. The data struc-
ture used by the National Geodetic Survey stores the connecti-
vity information on a direct access disk. For each vertex v,
the identifiers of the vertexes seen by vertex v are stored as
one record. If m is the length of the longest record and n is
the number of vertexes, then the central memory required by
this technique consists of two record buffers of length m. On
the CDC 6600 computer used by NGS, the direct access method
available through the Fortran compiler also requires an index
n words .in length for the direct access file. With this techni-
que, the need for the array NABOR is eliminated. The use of
external memory proves to be practical, since in numbering the
vertexes of the graph, the record of any vertex has to be read

at most two times into central memory per starting vertex
tested.





