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STUDIES ON THE THERMODYNAMICS OF THE ATMOS-
PHERE.

By Prof. FRaANK H. BIGELOW,

V.—THE HORIZONTAL CONVECTION IN CYCLONES AND ANTI-
CYCLONES.!

SOME OF THE DIFFICULTIES IN THIS PROBLEM.

If one wishes to follow the exact process occurring in the
natural circulation of the atmosphere, then the next step in
the orderly development of the analysis of the problem of the
structure of cyclones and anticyclones is exceedingly difficult,
and some time must elapse before meteorologists will be able
to complete the solution in a rigorous manner. This may be
explained by resuming our study of the interchange of energy
in the nonadiabatic circulation between high and low areas.’
Equations (44) and (52), so far as they relate to the circula-
tion in a horizontal plane v, in the integrated form give the
following:

Cyn (T—T) + €, T, log T, (n—n)) = (Q—Q)—3% (¢"—4,)).

Since there 1s to be an interchange of energy between the
cold area, whose center will be marked C, and the warm area
whose center is W, the following notation will be employed:

n,, the gradient ratio®)
T,, the temperature | . 1. .
900: the veotor velocity | in the cold area, C.
¢, the heat energy |
n, the gradient ratio®
T, the temperature |
9, the vector velocity

@, the heat energy J

The (* and W areas lie between the centers of high and low
pressure, marked H and L, respectively, in the order from
west to east, as follows:

H (high); ¢ (cold); L (low); W (warm);
as illustrated in the diagrams of papers No. I, II, III, and IV
of thisseries. (MontaLy Wearaer Review, 1906, January, Feb-
ruary, March, and June, respectively.)

(d4) One problem is to show the relations between the ther-
modynamic centers (' and W, and the hydrodynamic centers
H and L in the moving atmosphere. It will not be proper to
make model circulations by erecting chambers around given
masses, and then removing certain internal partitions. This
process really evades the entire problem to be solved, and
substitutes some ideal or experimental system in place of that
occurring in the atmosphere.

(B) Another problem is concerned with the gradient factors
(n, and n) and the temperatures (7, and T'), and may be stated
in the following form. Since the gradients of temperature
are changing from point to point in the vertical and in the
horizontal directions in a very complex fashion, it seems im-
practicable to assign temperature functions in advance of the
actual observations, and therefore analytic formulas of suffi-
cient flexibility to express the entire existing conditions are
impossible. If a simple function of the temperature isadopted,
it is certain that this functon will not be applicable to the cy-
clonic structure taken as a whole, and hence it is very hard to
derive the pressures from the temperatures by the simple
quasi-adiabatic formulas.

(C) Furthermore, the most troublesome problem of all, in
the present state of meteorology, is to show what is the rela-
tion between the velocity terms (¢, and ) and the heat terms
(Q, and Y. The cyclonic circulation constitutes an effort to
bring back to equilibrium the energy-difference represented
in the cold and warm areas, and this is done by setting up an

in the warm avea, 11"

1This paper logically follows No. IV, in the Review for June, 1906, but
its publication has heen delayed.— EDITOR.

2See Monthly Weather Review, March, 1906, page 114.

3See Monthly Weather Review, March, 1906, page 113.
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extensive series of internal vortices, graduated in size from the
large storm areas, down thru tornadoes or secondaries to
the minute whirls that are not accessible to any instrumental
records. In this interchange of heat between the warm and
cold masses, a portion of the energy is absorbed in maintain-
ing the velocity of the masses of air, a second portion goes
into radiation, and a third part into equalizing the tempera-
tures. The velocity of the wind in a ¢yclone does not measure
the true velocities (g, and ¢), since the latter include the total
internal circulation as well as the flow of the main stream;
but there seems to be no way to separate these parts from one
another. In a word the total energy is given by the terms

Con, (IT—=TH + C, T log T, (n—n),
but I can as yet discover no method of distributing the re-
spective portions of this total among the equivalent terms,
(Q—Q) — 3 (¢"—q,%) + radiation.

Until all these difficulties have been overcome it will be
possible to make only tentative and incomplete discussions of
the great problem involved in analytic meteorology.

(D) Finally, the general question as to the reason why the
observed gradients of temperature ditfer from the adiabatic
gradient is closely bound up with the distribution of the
available energy between the ¢ and ) terms. If a mass of air
is .moved from omne level to another, as from 5000 meters to
4000 meters, in an adiabatic atmosphere, the pressure and the
temperature change according to the adiabatic law; in a non-
adiabatic atmosphere, the change of temperature does not
correspond with the pressure, but a divergence exists depend-
ing on the proportion represented by the difference of the
ratios n —#n,. If in a nopadiabatic atmosphere there is ver-
tical displacement of an air mass, the interchange of energy is
partly as heat and partly as velocity, and at the moment a mass
moving sadiabatically in the midst of a nonadiabatic mass
arrives at such a displacement, : — 7, as to be appreciable in
respect to n — n,, there is set up a small local interchange of
energy between these masses in the form of a minor gyration
of some sort. There is thus a continual tendency to balance
these two expenditures of energy, the one against the other,
in the most economical way, and the resultant temperature and
circulation represents the outcome of this physical process.
(See fig. 19.)

If instead of one rising current of warm air, .4 C, which be-
comes overcooled, and one current of cold air, £ W, which be-
comes overheated by adiabatic expansion and contraction with
the change of level, there are several such rising and falling
masses in a series stretching from west to east, the interchange
of heat becomes more complicated. Thus the cold mass ¢ will
be found between two masses of warm air W, and the warm mass
between two cold masses on the same horizontal level. In
this case each warm mass 1V will divide and seek ' (' on either
side of it; the cold mass will also divide and seek W W on
either side. Since these small horizontal currents can not
flow together from opposite directions to the center because
a congestion of mass would occur, the motion is transformed
into an inflowing helix with vertical component upward for a
low pressure center L, and a counterflowing helix with down-
ward vertical component with a high pressure X at the center
of the vortex. This process is the cause of the minor whirls in
the atmosphere, and contributes something to the formation
of cyclones and anticyclones. In the latter case the warm
and cold masses are not produced by vertical adiabatic changes,
but by transportation of horizontal currents from great dis-
tances. The same tendency to divide the warm mass in the
northern quadrants between the low and high pressure centers
and to curl the cold mass into two branches in the southern
quadrants of the high and low pressure areas, has been
already found in the observations of the stream lines and the
distribution of the temperatures. The tendency to divide and
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curl about the respective branches is common to all mixing
masses of different temperatures.
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F1G. 19.— Scheme of the transformation of adiabatic gradients into ob-
served temperature gradients thru the heat terms (@ — @,) and velocity

terms [(_q’—q:)].

A E = Observed nonadiabatic gradient.
A C= Adiabatic gradient for warm rising air.
E W= Adiabatic gradient for cold descending air.
C D =Quantity of heat 4+ @, to be added to restore the equilibrium at
the height z— z,.
WD = Quantity of heat — @, to be lost in restoring the equilibrium.
At the level ¢ D Wother amounts of heat, 4 A @, — A @,, are expended
in setting up a velocity ¢, which is cnnvertod into a vortex with a vertical
component.

If we find an adiabatic rate of temperature fall in the Tropies
such as 10.0° C. per 1000 meters, but one of 5.0° C. in the
temperate zones, and of only 2.0° C. in the polar zones, then
this distribution between the Tropics and the polar zones is
maintained by circulation and heat interchange. The streams
of warm air in the lower strata, 0 to 3000 meters, and in the
upper strata, 10,000 to 14,000 meters, on moving from the
Tropics to cooler latitudes, gradually lose heat by expending
the energy thru a series of minor and major gyrations which
are set up. These streams near the surface tend by their
rising to higher levels, as they approach the polar zones, to
stratify the warmer air higher up in proportion to their de-
parture from the Tropics, and thus to lessen the temperature
fall from the surface; likewise, above the 10,000-meter level
the same phenomenon occurs. Similarly, the cold polar cur-
rents flowing toward the equator tend to sink to lower levels,
and this diminishes the temperature gradient in the middle
latitudes. These two systems of currents can not traverse the
space between the Tropics and the polar zomnes without en-
countering one another, and interacting upon each other, in
the c¢yclones and anticyclones, and the general effect of the
entire process is to maintain a gradient of temperature which
differs from the adiabatic rate. The divergence between the
actual and the adiabatic rate is very different from place
to place, as shown by the observations. There is an incessant
turmoil of adjustment at all levels, and in all latitudes, whose
outcome is the wind, clouds, rain, and temperature actually
prevailing. As above stated, it seems to be impossible to treat
this physical complex as an analytic unit in the present state
of meteorology, and hence I shall confine my discussion to a
series of more or less detached studies, which yet tend to
elucidate the general problem.
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THE HORIZONTAL OIRCULATION.

In Tables 29 and 30,* under the columns z—z,, are given the
vertical distances thru which the cold masses must fall and the
warm masses rise, in order to attain an equilibrium on their
respective levels. Thus, for the maximum cold masses in the
east quadrant of the high area and the west quadrant of the
low area, and for the maximum warm masses in the west quad-
rant of the high area and the east quadrant of the low area, we
find the displacements in the winter, respectively, as follows:

TABLE 41.— Vertical displacement, z— z,, from equilibrivan.

Meightin| High Low e | D Low gy
10000 ..... ‘ +325 454 4390 ‘ — 325 —487 —406
$000. ... . I4366 +440 +403 | — 352 —440 398

{000...... ‘ +425 467 4446 ‘ — 425 —382 404

T000...... 4498 1498 498 — 569 —356 —463

6000 ..... +592 4563 578 — 740 —326 -—-533

5000...... 4748 650 4699 I = 926 —325 —626

4000 ..... 4798 4646 1720 : —1033 —333 —633

3000. +854 +726 +790 —1024 —299 —662

2000 ... I +984¢ 777 4681 —1036 —311 —f74

1000...... ! 836 +593 +715 — 890 —351 -—621

0...... ) +511  +414 463 — 487 —268 -—-378

The sign (4) means that the mass is too high by the given
number of weters for thermodynamic equilibrium, and the sign
—) that the mass is too low. The cold masses can fall thru
—z, meters and the warm masses can rise thru :—: meters
on their respective levels, under the given conditions.

Hezrm
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Fic¢. 20.—The conversion of vertical falls into horizontal circulation.

Thus at the 4000-meter level the cold mass can fall about
720 meters and the warm mass can rise 683 meters to bring
about thermal equilibrium, when there is no horizontal circulation.
If the cold air could sink to the level of the warm mass ther-
mally, it would have a potential fall of 1403 meters, supposing
this warm mass to remain unchanged in position and energy.
The tendency is then for the cold mass in seeking the lowest
thermal lecel not to fall vertically, but in the main to move almost
horizontally down a gradient defined by C . Assuming that
the distance between the maxima C and 11" averages as in the
ordinary cyclone about 1000 kilometers, or 1,000,000 meters
we have a possible gradient,

G = tan ! (1’,%,300) = tan ~' (0.001403) = 0° 5" 3".

As this large gradient would give very rapid horizontal mo-
tions there is too much power to be expended in this simple
manner. The warm mass is really rising and the cold mass
falling simultaneously, not vertically but toward each other
in the manner indicated by the diagrams, figs. 9,10.> In these,
and from other descriptions of the prevailing circulation found
in the reports of the Weather Bureau, we infer that in all of
the levels the cold current flows southeastward toward the
warm area, while the warm current lows northwestward toward
the cold area.

This flow is not dirvectly toward the respective centers of the
warm and cold waves, making the eurrents meet along an axis,

tSee Monzhly Weather Revi;w for June, 1906, pp. 267-271.
5 See Monthly Weather Review, February, 1906, pp. 77-78 and litho-
graph plate at the end.
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because this would produce a congestion of the density and
make the flow impossible. The system of internal reactions
in the circulating fluid, in combination with the deflecting
force due to the earth’s rotation, will cause the stream lines
to flow about the center up to a certain limited amount of con-
gestion on the outer circles. It is evident that a compromise
or resultant between these opposite tendencies must be brought
about, and then the stream lines will approximate to spirals con-
verging toward the center in the cyclone, but diverging in the
anticyclone. Inorder to avoid the congestion, a vortex motion
is thus established with an ascending component over all areas
contained within the closed isobars of the cyclone, but descend-
ingintheanticyclone. The conflict of this localized circulation
with the general circulation, the continuous absorption of the
former by the latter, produces the entire observed cyclone sys-
tem. Quite similar reasoning accounts for the downward com-
ponent in the anticyclone, whichis generated and fed from the
other portions of the cold and warm areas, since it has been
shown that both of these masses divide into two branches and
are absorbed in consecutive high and low pressure areas.
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Fic¢. 21.—Scheme of the horizontal circulation in cyclones and anti-
cyclones.

In the low area, in the strata from the surface to about 4000
meters, to the southward of the center, the cold mass tends to
underrun the warm mass, while to the northward of the cen-
ter in the strata above 4000 meters, the warm mass tends to
overflow the cold mass. On the other hand, in the high pres-
sure area, similar conditions exist tho the sectors or quadrants
are inverted in their order. The cold air near the surface
separates or divides into two branches, which tend to under-
run the warm areas on either side, and in the high levels the
warm air divides into two branches which tend to overflow the
adjacent cold masses on either side.
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Fia. 22.—Illustrating the relation of the thermodynamic gradients to
the hydrodynamic pressures in cyclones and anticyclones.
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In the warm areas the isobars are farther apart than in the
cold areas, and by the ordinary rules the circulations are in
the directions indicated. The warm mass divides into two
branches which overflow the cold masses to the north, while
the cold mass divides into two branches which underrun the
warm masses to the south. The outcome is to produce more
stable equilibrium by superposing air of less potential density
upon air of greater potential density. At the same time there
is an interchange of heat and a manifestation of dynamic
energy in the form of large and small vortices on the hori-
zontal planes with dynamic components in the vertical direc-
tions. In this process there are involved: (1) an interchange
of heat; (2) a more stable equilibrium, since gravity has pulled
the air of great potential density downward, while that of
lower potential density is pushed up; (3) an amount of kinetic
energy corresponding to the movements of the air masses from
one level surface to another; (4) important horizontal motions
with minor vortex motions whose kinetic energy represents a
large fraction of that mentioned in the preceding item.

THE HORIZONTAL PRESSURE GRADIENTS,

In order that the reason for this overflow of warm masses
upon cold masses in the upper strata, with undertlow of cold
masses beneath warm masses in the lower strata may be evi-
dent, we need only compute the pressures B in the several
strata of the warm and cold masses, respectively, from the
surface up to 10,000 meters. Combine the temperatures given
in Table 21° thus: Take the mean of the temperatures of the east
sector of the high area and the west sector of the low area for
the mean temperature in the cold mass, and the mean of the
temperatures of the west sector of the high area and the east
sector of the low area for the mean temperature of the warm
mass, on each of the 1000-meter levels. The result will be
found in Table 43, Section II, and is transferred to the first
column of the cold and warm masses in Table 42, and marked ¢.

The mean ¢ of the successive strata gives the mean tempera-

ture of the air column, 8= b+t

% , in the second column. This
is the argument for m in Table 91, International Cloud Report,
and we may assume that the observed ¢ is the virtual tempera-
ture, and that it includes the dry air and the vapor contents as
they occur. With A the height and @ as arguments, the value of
mis extracted. Itis now necessary to assume some value of the
pressure B at the surface in warm and cold areas, independent
of any variation due to the circulation in the high and low
areas, and I have taken two pressures, 10 millimeters different,
as fairly representing known surface pressures under the pre-
scribed conditions. Thus, for 770 millimeters in the cold
mass, we shall have 760 millimeters in the warm mass, as the
barometric pressure at the surface. Adopt Lhese values, take
log B, 2.88649 in the cold area, 2.88081 in the warm area, add
successively the m on the several levels, and then take the
correspouding B,, B,. Comparing B, with B, it is seen that
the cold area pressure is greater than the warm area pressure
up to 4000 meters, and that the warm area pressure is greater
than the cold area pressure above that level. Hence, cold air
flows to warm areas below, while warm air flows to cold areas
above 4000 meters, conforming to well-recognized prineciples.

We can compute the vertical distance thru which 1 milli-
meter of air extends in the several levels. Take the difference
between the pressures in the successive 1000-meter levels,
B — B, the second difference, 4 (B — B,), showing the varia-
tion with the height, then divide 1000 by B — B, for 4z, the
required height in meters thru which 1 millimeter of air, that
is the weight of air measured by 1 millimeter of mercury,
extends. It changes from 11 meters near the surface to 31
meters near the 10,000-meter level, and shows the spaces that
exist in a vertical direction between successive isobaric surfaces.

$ Page 268, Monthly Weather Review, June, 1906,
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Since the tendency of gravity is to make these spaces equal in
the same stratum, a circulation is set up to bring this about;
this is the flowing of the air which, thereupon, builds up the
observed cyclones and anticyclones in combination with the
other forces, inertia, expansion and contraction, deflection,
centrifugal, friction, and internal vortical motion. This com-
plex network of forces can be reduced to a rigid analytic dis-
cussion only with the greatest difficulty, even without the
term involving the interchange of heat energy into velocity,
and it seems nearly useless to attempt it until further experi-
mental knowledge of this process in the free air has been
obtained by a careful discussion of the temperature conditions
observed in balloon and kite ascensions.

TABLE 42.— Computation of the pressure B in the cold and warm mazxima on
each 1000-meter level.

Height In cold masses. In warm masses,
in
meters. ¢ ] m B¢ B¢ ! 2] m Bw B
ot oC. log. mm. o o Ing. mm.
10000.. —56.6 2,28423 192,41 —51.7 2.29445 196.99
—53.6 6796 —48.4 6595
9000. —50. 5 2.35219 225.01 —15.0 2.36040 229.30
—47,2 6561 —41.4 6397
8000.. —43.8 2.41780 261.70 —37.8 2. 42437 265.69
—40.5 6371 —34.1 6200
7000.. —37.1 2.48151 303,05 —30.4 2. 48637 306. 46
| —33.9 6195 —26.8 6016
6000 ... —30.6 2.54346 349.51 —23.1 2.54653 351.99
—27.5 6033 —19,7 5849
5000. —24.3 2.60379 401.60 —16.2 2.60502 402.74
—21.3 5885 —13.4 5705
4000 —18.2 2.66261 459. 86 —10.6 2.66207 459.27
—15.5 5752 — 8.3 5595
3000 —12.7 2. 72016 525.00 — 5.9 2.71802 522,42
—10.2 5636 — 3.7 5499
2000. — 7.6 2. 77652 597.75 — L6 2.77301 592.94
— 5.5 5536 0.0 5425
1000.. — 3.3 2.83188 679.02 + 1.7 2, 82726 671,83
! — 0.8 5461 + 8.5 5355
0 + L7 2.88649 770.00 + 5.2 2. 88081 760. 00

Vertical distance for 1 mm. of pressure between strata of different temperature.

Height. | B—By A(B—Bq) (B—By) A, A, B—By A(B—By) (B—By) A; A,
mm. mm. lng. {og. mm. mm, mm, {og. log. mm.,
10000. . .

32. 60 1.51322 1.48678 30.68 32.31 1.50934 1.49066 30.95
9000.. . 4. 09 4.08

36. 69 1.56455 1.43515 27.25 36.39 1.56098 1,43902 27.48
8000 .. 4.66 4.38

41.35 1.61648 1,38352 24,18 40.77 1.61034 1.38966 24.53
7000... 5.11 4.76

46. 46 1.66708 1.33291 21.52 45. 53 1.65830 1.34170 21.96
6000... 5.63 5.22

52.09 1.71675 1.28325 19.20 50. 75 1,70544 1.29456 19.70
5000. .. 6.17 5.78

58. 26 1.76537 1.23163 17.16 56. 53 1.75228 1.24772 17.69
4000... 7.08 : 6. 62

65.14 1.81385 1.18615 15.35 63.15 1.80037 1.19963 15.84
3000... 7 61 7.87

72.75 1,86183 1.13817 13.75 70. 52 1. 84831 1.15169 14.18
2000... 8. 52 8.37

81.27 1.90993 1,09007 12,30 78.89 1.89702 1.10298 12.68
1000.. . 9.71 9.28

90. 98 1.95895 1.04105 10.99 88,17 1.94532 1.05468 11.3%

0..

THE HORIZONTAL INTERCHANGE OF HEAT ENERGY.

We can secure some idea of the process involved in the

interchange of the heat energy on the horizontal surfaces by
a computation of the formula:

Term I Term IT
C'n 1, (Tl_ T) + CD To log To (nl - "‘) = (Ql - Q) _% ((L’_qz)'
The necessary data are collected in Table 43, and they are
gathered in the same way as described for the temperatures,
by combining the sectors of cold and of warm masses, respect-
ively. The mean value of the gradient ratio n is found by
extracting n from Tables 25 and 26, and taking the means,
n for cold areas and n, for warm areas. Then the difference,
n, — n, and the mean, n, =} (n + n)), are taken out for use in
the formula. We adopt the notation (n, ¢, g, @) for the cold
mass, (n, t, ¢, Q,) for the warm mass, and (n,, ¢, g, Q,) the
mean values of the cold and warm masses when required.
75 2
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TABLE 43.
I.—Mean values of the gradient ratio n in the cold and warm maxima.
T
! Ratio. n Ratio. n
Height . X n—n Mean
in e | High Low Mean | High Low Mean Wec .
east. west. cold, west. east. warm. ' o
10000 1.778 1.659 1.718 1.535 1.547 1.541 —. 177 1.630
9000...... : {.537 1.500 1.518 1.319 1,458 1,389 —.129 1. 454
8000...... 1.495 1.443 1.469 1.246 1,447 1.847 — 122 1. 408
7000. . 1.523 1.447 1.485 1.234 1.471 1,353 —. 132 1. 419
6000...... 1.567 1.498 1.533 1.272 1.518 1.395 —.138 1. 464
5000 ..... 1.623 1.562 1.593 1.430 1.629 1.530 —. 063 1. 562
4000...... 1,725 1,690 1.708 1.974 1.766 1.870 +.162 1. 789
3000...... 1.894 1,876 1.885 2.443 1.97¢4 2.209 +.324 2,047
2000...... 2,285 2,150 2.218 3.056 2,518 2.787 +. 569 2. 503
1000. ..... 2.179 2,213 2.196 3.439 2.611 3.025 +. 829 2.611
000...... 1.769 2.065 1,917 3.290 2.367 2.829 +.912 2,373

1I.—Mean values of the temperature T in the cold and warm mazima.

Temperature. ¢ Temperature. ¢ Mean
inlcight | High Low Mean | High Low Mesn :’—C{ Ty | Log. Ty
east. west. cold. west. east. warm. o £, +273°
oc, oc, oC. oc o oC, or, Abs.
10000...... —56.2 —57.0 —56.6 | —52.2 —51.2 —51.7 +4.9 218.8 2.34005
-50.5 | —45.3 —44.7 —45.0 +6.5 225.2 2. 35257
—43.8 | —37.6 —387.9 —371.8 +6.0 232.2 2. 36586
—37.1, —29,6 —31.1 —80.4 +6.7 239.2 2.37876
.7 .5 —30.6 | —21.7 —24.5 -—23.1 +7.5 246.1 2.39111
5000...... —24.6 —24.0 —24.3 | —14.3 —18.0 —16.2 +8.1 152.7 2. 40261
4000...... —18.6 —-17.8 —18.2 | — 8,7 —12.5 —10.6 +7.6 258. 6 2. 41263
3000...... —13.0 —12.4 —12.7 | — 4.2 — 7.6 — 5.9 +6.8 263.7 2. 42111
2000...... — 80 —7.2 —76|~02 —30 —1.6 +6.0 268, 4 2. 42878
1000...... — 3.7 - 28 —383|+27 +07 4+ L7 +5.0 272.2 2. 43489
000...... | + 1.5 +19 4+ L7|+56 +47 +52 +3.5 276.5 2. 44170

1II.— Mean values of the velocity term in the cold and warm mazxima.

Velocity.  §(q12—¢%}| Velocity, %(qﬁ—q’)i
iﬂgiftzis' High Low Mean | High Low Mean i Average.
west. east, warm. east, west. ecold.
e . | o
10000 ... 454 4175 4115 | —127  — 95 —111 13
9000, 456 4216 413 | —122 —122  —122 129
8000. ... 472 4228 150 | —101 —132 —117 134
7000....... }72 4220 4146 | — 01 —121 —106 ‘ 128
6000. ..... 465 4160 113 | —8 —83 — 83 | 08
5000...... 188 4+ 8 48 |—74 —50 —62 | 75
4000....... 172 4+ 72 472 | —56 —82 — 44 ‘ 58
8000......] +60 +8 +73 |—5 —14¢ —36 | 55
2000 ..... [ 410 +52 +8 |—28 —28 — 28 ’ 30
1000...... +3 419 +111—12 —2 —19 ' 15
000...... v8 418 413 i— 8 — s — 8| 1

ture data in Section II of that table are taken from Tables 21
and 22; 7, and log 7, are computed; firally, 4 (9’ — ¢°) are
taken from Tables 83 and 34. Since the velocity energy is a
small term in comparison with (Q, — ), there is no need to
be particular about the exact velocities, and approximate
values are sufficient. In order to learn the relation between
the values of the ratio n, n, in cold and warm areas in the
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several strata, they are plotted in fig. 23. It is seen that the
curves cross each other between the 4000 and the 5000-meter
level, showing that there is a reversal of the physical process
at that elevation, as warming below and cooling above, go that
the cold mass is warming below and the warm mass is cooling
above in conformity with the preceding statements. Since
the adiabatic gradient is —9.87° C. per 1000 meters, and

a = Z", we find the gradients corresponding with n at the

several levels by using the lower horizontal argument in the
diagram.

7T, 2
/0000 R
g
D000 d /
8000
7000
6000 \
5000 \\
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\\\
3000 \\\
2000 \) \\
/000 } ;y\
¥
3

Qo0 . A
a, 987
V2 e 20 25 30
a ~987 -6.58 - 291 ~3.95 -329

F1G. 23.—Mean values of the gradient ratio, n, at the cold aud warm
maxima.

The computa,tlon of the terms [ =C, n (T, —T)and II="C!,
log T, (n, — n) gives the results that are found in Table -Li
for the several 1000-meter levels. Term I is positive for all
levels, and term II reverses the sign at about the 5000-meter
level. The sum I+ II is reduced to calories by the factor
A,, = 0.0002389 in Table 14." 1In the last column of Table 44, a
mean value of § (9, — ¢ ) is added as computed by Section III,
Table 43. A comparison of columns 4 and 6 shows how small
the velocity term-is in comparison with the heat term. An
unknown (&) is added in the formula to represent the waste of
energy in passing thru friction into motion. It stands Le-
tween the energy and velocity terms, but can not be evaluated,
and it is presupposed in the unexprest function that connects
heat with motion. In the same way there is the unknown
radiation term, J, wherein some heat energy is wasted so far

0

7See Monthly Weather Review, March 1906 page 115.
Margules.

External kinetic energy

External potential energy

Internal kinetic energy )
Internal potential energy |

Quantity of heat

[ to

Work of expansion
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as the motion of the atmosphere is concerned. The funetion
uniting (@, — @) — 3(2,°—¢q;) + (BY+ (J) being unde-
termined, it is very difficult to make satisfactory progress in
this direction, and the problem must wait for further develop-
ments. Reviewing columns I 4 IT in calories, which is the
heat energy available from the temperature distribution, it is
seen that it is positive and diminishes up to the 5000-meter
level, above which it is small and negative. Comparing this
column with T'ables 37 and 38 it is observed that the vertical
heat potentiality is about the same as the horizontal capacity for
motion. Ifa kilogram of air is moved as noted by the condi-
tions of the problem, this amount of heat must be interchanged.
In the actual atmosphere this transfer is not so simple, and
hence only a portion of the -energy is actually produced.
How much less is really generated depends upon the efficiency
of the thermodynamic engine in the practical physical opera-
tions of the air.
TABLE 44.— Values of the terms in the formula,
I II
o, (T\— T y+ ¢, T, log T, (n, — n)

0= — b (gi—) £ B+ T,
Enerqy terms in the horizontal convection.
Bt e S O I e

10000......0 7946 | —90042 | —82106 | — 19.6 113
9000 ..... 7946 | —67905 | —59959 | — 14.3 129
8000...... 8394 | —66587 | —58193 | — 13.9 134
7000...... 0443 | —74624 | —A5181 | — 15.6 126
6000. ..... 10909 | — 80684 | —A9775 | — 16.7 93
5000...... 12571 | —38004 | —25433 | — 6.1 75
1000, ..... 13509 | 100427 | 113936 | + 27.2 53
3000 13830 | 206520 | 219339 | + 52.4 a5
2000. . 14921 | 863533 | 383454 | + 9L.6 30
1000...... 12971 | 545913 | 558884 | +133.5 15
0...... 8252 | 611771 | 620023 | +148.1 11

SOME (:ASES OF RESTRICTED CONDITIONS,

In order to approach this intricate problem by a mathe-
matical analysis, it will be desirable to study some simpler
cases, or models, wherein the conditions are limited by ideal
restrictions. These consist in placing two masses of air in
adjoining ehambers, or in one ehamber with a movable parti-
tion, whereby two fixed masses under given conditions when
set into communication react upon each other. Dr. M. Mar-
gules has made several such studies in his paper, Uber die
Energie der Stirme, and for the sake of profiting by this .
excellent work, I have prepared a brief synopsis of the results
as modified by myself to meet nonadiabatic conditions. 1t is pro-
posed to give the assumed data and the resulting formula,
omitting the algebraic reductions, and to urge that the student
should not fail to read that paper. In order to preserve the
notation of my formula, the following table of equivalents will
be useful:

Bigelow.

-
1 ‘ patdr=%mqg

P to J= rp(—r/)+1u &y due.

H,, (molecules) 4 H, (atoms) |
1.1, (molecules)+J, (atoms) |

d )

=fdff d’;

pdor,

— (.’,‘ ‘ Tp d .

» d
pdp . _ e doe
ar=fafpe i

pdi
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Margules.
Potential energy -+ centrifugal force IV to

Friction (B)= — ‘ d tfR gecos (Rq)pdr.
Velocity o, Vto g

Volume P oto v

Density n to o

Ratio of specific heats 7 to k= g}’
Adiabatic constant % to i ;]L =%’1’ = };’f'au.
Height . ¢ to A

Surface 0O to 8

Entropy temperature 4 to T

Potential temperature - to T,

Drive temperature 4 to T,
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Bigelow.

T 11,2 ;2
Fi=—gr4iuw’ o

(1) Conservation |
of energy.

(2)  Variation of
heat. 1

(3) External po-
tential energy. |

(4) Internalenergy. (

(5) Transforma-

energy.

(6) Entropy vari--
ations.

(7) Potential tem-
perature.

(8) Inlinear verti-
cal changes.

)

: (
tion of q'l
l

|

|

L

GENERAL THERMODYNAMIC EQUATIONS.

(}(K)-.f’-f} V=0 ”7—’- (R) = 0.
Q =0 U3 0 W+ (R): r}(]() o1+ 504 (R)

Q =[3(K)+ 2 V] external + [7 H+ 4.J] internal = 5 W+ 45 [,
External work. Internal heat.

L 1o 1
Q= RTS 4 04T |
d[ 1 I . . .
dQ=—R T + 1 C,d T L in mechanical units.
~ ﬂd d . ‘
dQ= pdv + ' 1)4+PP ! ‘

* h
= j gipd:= jf/?l’dﬂ'i'l.(l‘:ﬂ[h‘

« o
0 o

Pr=9 ‘1[71 = .(}A”h'

Py 13

V= —-f dp+ 7Zp, =+ jp'l'—-p/,+/1m

h
. =J}; did (Z—s)py = R "Td m + const.
=, “Tfl m—+ const.
(U+ Fy=(C.+ R) I‘T(I m + const. = C, "T(I m + const.
— (U4 Ty =L+ 1), (initial)— (T + 17), (final) = C, ‘ (I'—T"Yd .
ME)+(Ry=1Mg = ‘ (T— TYydm=(,(T— T") M.

, ao T
§— ’T_C’IogT-J-Plog’-
() T )
S— 8= ‘T €, log 7 — R log j :
. 0 [)

a8 1 o@Q ,aT Rop
gz T o:— T a:~ pdz’

k=1

.‘ Tdm = 1411—1 (p, I, —p T).
9 1+._

nk
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pe \T, P, v
nk k k
F- -0 - 9
(9) Auxiliary £, \I, Po v
equations. Adiabatic. Observed
kG _ 9. nk _nC _ 4 e B 9
k—1 " R — Rq k~1 " B = Ra T on nC,
1 1 1dP 1dpP 1
= pET o dz Pd: = " RTY

CASE 1. CHANGE OF POSITION OF THE LAYERS IN A COLUMN OF AIR.

In consequence of the general and local circulations of the

M],, «Mk
V5 7’
=% __ler e iald
__&710z __|plr’
2+2
3 M,
l .Mz
7, —— 1 FT; RT;
'MD M‘g
F1a. 24 A. Initial. Final.

. . a . .
atmosphere, a certain gradient a = ﬁ prevails at a given lo-

cality in a column above the earth’s surface. This requires
an amount of heat @, and a temperature 7, at each level z,
to maintain the stratum in equilibrium. If"the heat energy
changes to @ for any reason or the temperature is altered to
T there must follow a change in elevation to z to restore the
equilibrium. The equation of equilibrium,

z(q—qo)—(Q — O (T-T,)

(10) TOO‘T(71—)L)—J(~—

4

)

is available for the computation of the motion due to stratifi-
cations in the column. In order to take a simple case we
assume that each air mass retains its own heat energyor ¢ =0,
and that the gradient is the same thruout the column or n = »n,.
Hence when starting from rest or ¢ = 0, the equation becomes
for the unit maas.

11) = —Con(T—T) —g (z— 2.

This must be applied to each mass moved, so that finally

(12) 1m¢= Z [— On(I'—T) —g(z— zo)] m.

Let the column be separated from the surrounding air by
walls and consist of four parts. M is a lower section not
affected by the transfer; the next layer m , under pressure P,
and temperature T, is not in equilibrium, so that the stratified
layer m, must rise if 7| is too warm and fall if 7] is too cold
for its elevation z. If it rises thru a height h=2 — 2, and
by expanding cools to a given temperature 7', the pressure
P, will become P, and be in equilibrium; the section M, of
thickness h falls a certain distance and changes its tempera-
ture; for the upper differential layer d 3, the initial values

P, T, become P, T, and the funetion must be integrated thru-
out the mass M,; the temperature of the mass M, is not affected
by the mutual transfer of m, M,, but rises or falls like a piston
in the chamber, while its lower surface maintains the pressure

P,. Hence, we have the conditions,
Layer. | Imitial. Final. i Pressure.
aM P, T, | P'T' P'=P, 4 gm
m P, T, PyT} P =P,+gl,
PN gm \'iF k—1
1 £y nk _ m nk _ — gm,
(13) T,_:/;(P) _T(1+P> =T,(1+ =7 P2>
R gm,
=T+ 1 *nC, P,

=
P nk

—
Substituting in the equation,

(15) Kineticenergy= Op[ f( T —1Ydm, +J‘( T,—ThHd 1112].

k—1

"Pi\ 7wk /
(18) émlqg=0'p[Tl —T (PT) ".] ""1_9;L m,
since
17 RT, (*d M, j'fi M, dz h
( ‘) “K 77 = 71,’12 =.l T = )l‘

The gravity terms in these equations disappear, because the
mechanical work in each case, g h M and g(Z,—Z',) M, (where Z,
is the height of the center of gmv1ty of M) is of the same amount
and oppositely directed. Every expansion or contraction of
air masses begins on an adiabatic gradient, and hence the for-
mulas must be founded on that basis. But minorinterchanges
of energy as heat () and velocity 4¢* almost immediately begin
in the mixing process, so that the theoretical conditions soon
suffer modifications which it is quite impracticable to follow
out.

CASE II. THE TEMPERATURE IS A CONTINUOUS FUNCTION OF THE HEIGHT,

T’= Tl-— ah.

It is important to eliminate the pressures from the formula
and express the function in terms of ¢, A, T, and the gradients.
Several forms of the function for the temperature distribution
may be employed to represent the atmosphere, but it is only
occasionally that these formulas can be used to replace the
actual pressure and temperature observations at different lev-
els. For the observed gradient we have

)y/Ra.

—ah

= (7)== ("7

(18) Observed } P
gradient. { P

1
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Hence,
(19) Adja.ba.tic} P! ah\9/,, k-1 ah\9/( a
gradient. § \ P, b= I—Tl eE = 1_7’; /6
Then,
2l h ’h2 1 hza
(20) C’,,ml(Tl—-TI‘)=C'p'ml<Tl—1l+ %’p —3 CZ’ T ZC‘%TI—> .
Finally,
' ghm—3 9% 4 g
(21) g mg*=ghm, %()’p T, - 0p+ 3 T a—ghm,

= g_hz'm <g°—-a>.
T, '\n 0

The mass m, is driven from its position with a velocity-
energy inversely proportional to the temperature, so that warm
air has less driving po¥er than cold air. The drive depends
upon the departure-ratio n» and vanishes when n=1, that is,
for an adiabatic expansion in an adiabatic gradient. When
a> a, the mass m, is in unstable equilibrium-—is too cold for
its posltmn and tends to fall. Exa.mple, for n=0.5, a=19.74>
a,= 9.87. When a< a, the mass m_ is in stable ethbnum
Example, forn=2,a=494<a = 9.87 Tt is not possible to
drive the small mass m thru a.ny great height A in the atmos-
phere, because the differential energy in the expanding mass
sets up minor whirls which tend to interchange the @-energy
by mechanical effects and internal friction.

The result is to change the gradient from ¢, to ¢ = a_’: . If

the displacement of the mass m, takes place in the medium of
gradient a then the drive may be exprest by terms of the form,

h a, a gk’ n—n
(22) ég—'ZTfm (J—ﬁ)_z T % ( nn >’

where n, is the eﬁectlve ratio of the moving mass m, and a
that of the prevailing general gradient.

AUXILIARY THEOREM.
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CASE III. FOR LOCAL CHANGES BEFWEEN TWO ADJACENT STRATA OF DIF-
FERENT TEMPERATURES, WHERE ON THE BOUNDARY THE PRESSURE
P = P!'=P], AND THE TEMPERATURE I3 DISCONTINUOUS.

Take the following conditions:

Layer. I Taitial. Final. Pressure. Temperature.
P, 4+ gm)\ =k
m, Pl Tz le Tnl le = Pg + g, Tzl = T’ < 72:;271!) k
! | » t
i | _ Nt
[ P T Lpll TII\P1’=P1—gm2 T'=T, <;Pim‘,) nk
1

The equation of equilibrium becomes, for P! =P =P,

(23) Kinetic = Cp[ml (Tl— Tll)""mz(Ta— le)]’

energy
R
=Cp[ml(T T+ T = J;) )
B gm
T,—7T,~1T,.
+ m, ( e B J
=m m,--2 (T —T),
g (1 1
=m,m ).
1 2 (’, lﬂz)
Since ET,_1ana RT,_1 , therefore
Pl g Pz P,
(24) t Mg =mlmgg £y 0
n o1y

The kinetic energy inducing an interchange is proportional
to the difference of the densities and inversely proportional to
the product of the densities. Hence, if strata of different
densities are flowing over one another in the general circula-
tion which is temporarlly stratified, these two strata tend to
mix by interpenetration according to this law.

EVALUATION OFde m IN LINEAR VERTICAL TEMPERATURE CHANGES.

% A T=T,—az  P=P(L)r : :
(25) sgsume I'=1 —az, = O(T- , ‘ Td-m=.’ Tpd:z.
C 70 PHEE W WS WA UM re p e g
Jretem i fram L () 0 cm if roale Tl
[} 0 0
Change the limits of integration from : to 7.
E T
> —_ - —_— - 1 u ) 1 1 3 '
(26) T=T,—a:, dT=—ad:, — dT=d:, [T*ds=—- 171
9 T(l
27 JT d 1 P T /PufT Regd T — 1 P T U/Ra [To 1 Ts//}.”-l-l]
7 P42 Ha = R p 149/ Ra
_ 1 "I Ra ™ i’ 1 P — P
=t ke Do T <T0 -7 ) =T R (P, T T)
For any gradient other than the adiabatic we have,
: 11
(28) f Tpdz=g—1 iz —5 (P, T,— PT)
) T

nk
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CASE IV. THE OVERTURN OF DEEP STRATA IN THE COLUMN. ’
) 5 T P The
Let the pressures, temperatures, and heights be arranged
in the initial and tinal states as indicated in the diagrams (fig.
24 B). The greatest entropy in 1 is less than the least in 2, ] ’ ,
so that the cold mass 1 will fall beneath the warm mass 2. Zz, 7 Cool 2 Warmn t,
The heights of the masses will change as well as the pressures
and temperatures. . - .
Assume P, T, ,, h,, T;, i, as known in the initial state. z £Z ZL/5 B:' ﬂf?
Pressures. Temperatures. —PL. 722 7 4 I: !
. P T2
T,~ -1 (/h /
(29) Pi=Po<f) . Ti2=To2_n(y- 7, 2 Warm 7 Coot ]v,-'
02
r
nk
_ J 23 o2 2 Tor
(30)  P,=P (L) Ty =T, — 9"
T, n(',
/nitial © Fial
F1a. 24 B.
Substitute in C, ( f Tdm— J'Tl d ""1) successively.
- _ 4 {° c, 1 y ) - : )
(31) Tnitial, (V 4+0U), =0, j Tdm=""_ = (P, T,—P, T+ P, T, — I, T,) + const.
. q =1 ! ! !
9140771
A
3 'l'f (' —_— C’ 1 PTI PlTl > 1 g1 ] 1
(32) Final, (F4U), = = {4 T+ P, — Py T),Y) + const.
14 =1
nk
. . - - - - o Pn_Ph o
(88) Kineticenergy = (V4+0),—(V+0U)=iMy@=1} g ¢
nC’ C (
(34) Heights,  ni="(LI—T), k=" (T —T,)).
o . . . f/ hyh, (T, — T, )
(35) Approximate solution of Case IV. 1= n hl T:-.» YT !
CASE V. TRANSFORMATION OF TWO MASSES OF DIFFERENT TEMPERATURES ON THE SAME LEVEL INTO A STATE OF EQUILIBRIUM.
B-— Th2
Z B 7w P
P 4 < 772 ‘2
X _Z(S//(_‘ool 2 (J;,)Wam ]—Zvj’ P T "
B T | Pe T 7 Vi ’
B/ B: ) B
Iriitial Final
Fia. 24, C.
Given as data at the height 4, T},, T}, P}, the areas B, B, the entropy 5 I §,. Hence by the formulas,
nk nk
s (T \F—1 gh k—1 4 gh
o r=r(g) = n(eg ) T nmn(ieid,)
nk ; ok ;
- Toz k—1 ( *&>k—l T =T an
(37) P02= Ph (Th;) = Plz 1 + n (J’p Thz . 02 ha 1 + n C T],z
38) Initial. (V4 U)=0 ' X o m_p o1, 4p 1P, T t
( ) Imitial ( + )a_ Jpg IR T | 2( o Lo Ln Ly + Py Ty, — 1), ;,:,)-i-CODS .
1+
nk
(39) P1i=Ph+‘1_’(P _Ph) Plo=P/l+‘1§(Po-_-_Ph)+%([)o|_Ph)'
(40) Final (V4 U),=C, ,1111:1. B(P\,T',— P, T', + P, T';,— P, T),) + coust.
14470
nk
(41) Kinetic energy. $ Mg = (V4 U),—(V+ U),
C’

(42) Mass and heights. M= f( —P). k= % (T, —T"). W= Cn(T, — T,
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. . I—T o .
(43) Approximate solution for Case V. Take r = =2 T L T*=T7TT, M= BP, T = B h (approximate).
(44) yvug=3u BB
2 - B.
CASE VI. CONTINUOUS HORIZONTAL TEMPERATURE DISTRIBUTION WITH ADIABATIC VERTICAL GRADIENT.
z £y 12
CO'OZ/ Werrry
e 1N
Pr 7’7}
o X l 0
Fox = ¢
Irdtial Finald
- Fra. 24 D.
(45) Assume T=f(r)y— (l
o { 1
1 1 * , ) ) 1 ® ] -
(46) P =P+ f (Pye— Piyda=P—| P—P;—, [ (Po— Py d .
{—r - I—x
, PNk p—1 r
T—T'= —_ o = ___ — [ — P —P
(47) T— T <P> 1 <T i 13, !( w h)>
h h
(48) Trﬁ;l)"= Tr‘/1(72= {‘T‘ud,']
g D v
_ ' _ E—11 ‘gh\ /1w ot T2
0
1
1 . - ah T
(50) VMot= () ’ (T— TYYdm = 1P, T by
(51) Q= \/q/l
CASE VIL. POSITION OF LAYERS OF EQUAL ENTROPY WHEN THE FRESSURE % T 3 r
AT A GIVEN LEVEL IS CONSTANT AND THE TEMPERATURE AT THIS LEVEL » i A 2 I
IS A FUNCTION OF THE HORIZONTAL DISTANCE AND A LINEAR FUNCTION _ | I
OF THE HEIGHT. & 7 ’ Alixed Land 2’
. . e e 7
Let the gradient ratio which distinguishes one stratification 2
of the air from another having a different temperature gra- # / 5> 7 \h!
dient be n. o 7
n
T\ x Tréitial Final
(62) P=r, <7Th) T=T,+ n (v (h—2). Fic. 24 E.
(53) The curves. F'(rz)=n log T,,—(n—l)loo T = const. ] \ S = €, [nlog Ty, — (n,—1)log T,]+ const.
(54) Angle of OFF n (h—: ONOT, (56)  Entropy -
curves. na=o—dg, = 71 T, + VAR l S,= ¢, (n,log T}, — (n,~— 1) log T,) + const.
CASE VIIL FINAL CONDITION OF TWO AIR MASSES UNDER CONSTANT PRES- (57)  log Tos _ 1 T, " Ty,
SURE WITH GIVEN INITIAL LINEAR VERTICAL TEMPERAT ' s, T 8 n—1"°8 1, "~
: ATURE FALL. 1 Ly ki
On removing the partition the layers 1 and 2 spread out. [ n )
change their heights, and there is a mixed stratum between J hy = 7 (I, —T)
them. (58) Heights 4 (,
' , | by =" (1, = T}).
T,=T, + n—yi,—r(h.—z). o=y (=T
17

l

I

(55) Temperatures Ji
' |

 If the vertical temp-emture fall of the masses 1 and 2 is
smaller than in adiabatic equilibrium, then the entropy in-
creages with the height, and it can happen that in the colder
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mass (1) the entropy at the height 2, will be as great asin the
warmer mass (2) at the ground. The higher layersin (1) form
a series with an entropy equal to the layers in (2) up to the
height A — h, In the final state the under part of (1) will
spread out on the ground, above it will be layers which are
mixtures of (1) and (2),and farther up will lie the masses of (2)
which initially were between (2 — %,) and 2. On the bounda-
ries of the three layers the temperature transition is continu-
ous.

It will be convenient to approach the dynamic equations of
motion in cyclonic vortices thru a study of the Cottage City
waterspout of August 19, 1896. It should be recognized that
in ordinary cyclones the vortices are not perfect and it is only
rarely and in highly developed storms that anything like pure
vortex motion is attained. The waterspout, therefore, offers
a good example of vortex motion in the atmosphere with which
to test the above equations. I may remark that the theory
first advanced in my International Cloud Report, 1898, for the
generation of cyclones and anticyclones in the general circu-
lation seems to be practically confirmed by these studies based
upon actual observations.

VILLARD'S THEORY OF THE AURORA.
By Wu, R. BLAIR, Assistant Physicist. Dated Mount Weather, Va., January 18, 1907.

In his “Essai de Théorie de 1’Aurore Boréale ”,) M. P. Vil-
lard desires especially to account for the movements of the
aurora and the various forms in which it appears. He assumes
that the auroral light is due to the motion of cathode rays
under the influence of the earth’s magnetic field, and he argues
that these rays are of terrestrial origin. The auroral arch,
auroral draperies, and dance of the rays, as usually defined,
are the peculiarities to be explained.

The earth’s magnetic field is conceived to be similar to that
existing between the poles of a Ruhmkorff electro-magnet (the
coils being in line with each other). Using such a magnet
and the theory, already developed, of how a cathode particle
moves in a magnetic field, experiments were devised and
carried out for the reproduction of the auroral phenomena
on a small scale, in an evacuated bulb. Electrodes were
gealed in the bulb; the negative electrode was especially
devised for projecting into the field of the magnet, in a suit-
able direction, a small bundle of cathode rays. Photographs
of these reproductions were obtained.

The first three of the following figures and their descrip-
tions serve as a review of the effects of a magnetic field on
the motion of projected cathode particles, the fourth, as a
basis for the explanation of the forms and movements of the
aurora.

Fig. 1 represents the earth’s magnetic field. A4 A’ is the
magnetic axis, N and S the poles. This field is such that the
distribution of magnetic force in a plane thru B B’ and per-
pendicular to 4 A’ is symmetric with respect to the point at
which the plane cuts the axis.

Fig. 2 shows the path followed by a cathode particle pro-
jected vertically into the earth’s field in this equatorial plane,
1. ., at right-angles to the line of force. The curve traced is
an epitrochoid.

Fig. 3 illustrates the motion of an electron in a uniform
magnetic field. Its path is a helix lying lengthwise in the
direction of the field. In this case the electron entered the
field in a direction- other than at right-angles to the lines of
force.

The more general case in which the magnetic field is not
uniform, but, like that of the earth, has converging lines of
force, can not be readily represented by means of a diagram.
It will be explained by the use of figs. 2 and 3. The electron
is projected into the magnetic field at an angle to the equato-

;IAnnales de Chimie et de Physique, September, 1906.
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Fi¢. 1.—The earth’s magnetic field.

F1G. 2.—The path followed by a cathode particle.

@y~

F1a. 3.—The motion of an electron in a uniform magnetic field.

rial plane, and consequently its path is a combination of the
helical and epitrochoidal paths with this additional feature.
In the increasing field the successive spires of the helix,
according to Villard, decrease in diameter and in forward



