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PROBLEMS IN METEOROLOGY.

By C. F. voN HERRMANN, Section Director. Dated Baltimore, Md., June 9, 1906.

The use of mathematicsin meteorology has often been discust,
either with reference to the application of methods of higher
analysis to the solution of the intricate problems presented
by the dynamics of the atmosphere, or to the introduction of
problems in meteorology as illustrative examples in courses
of higher mathematics. Even in elementary work, how-
ever, for purposes of serious instruction in meteorology, in
which many officials of the Weather Bureau are now en-
gaged, precision and dignity would be given to a course by
the introduction, as laboratory work, in addition to the usual
exercises in map making, ete., of examples requiring only
elementary mathematics for their solution. What student
could forget that the coefficient of expansion of air is 0.00367
or 1/273, if he were required to calculate the weight of a cubic
meter of air at different temperatures? Or who could forget
that the adiabatic rate of decrease of temperature with eleva-
tion for dry air is 1° C. for 100 meters, if he has been taught,
by simple mathematical analysis, how the result is obtained ?
Those who are carrying on courses of instruction in meteor-
ology (in distinction from popular lecture work) will find that
the use of numerous examples will greatly stimulate the
interest of the student, and help to elevate the subject to the
rank of an exact science.

Unfortunately there are no text-books of elementary me-
teorology which give examples for solution. In Ferrel's “ Re-
cent advances in meteorology ", Annual Report of the Chief
Signal Officer for 1885, numerous examples are given, but
they are gemnerally too advanced for elementary work, tho
many of them may readily be simplified. For the purpose sug-
gested a number of examples have been collected, requiring
only the elements of algebra and trigonometry for their solu-
tion; these are stated below. It is advantageous in all proh-
lems to use the centigrade degree, the metric system of
measurements, and as the unit of heat the small calorie, which
is more definite than the British thermal unit. The solu-
tions are stated in the most elementary language, but more
advanced problems will follow if these are favorably received.

Problem 1.—Calculate the mass of the atmosphere.

Solution.—If the atmosphere had the same density thruout
which it has under the standard conditions ordinarily adopted
(pressure 760 mm., temperature 0° C., and latitude 45°), its
height would be 7991 meters (%), which is the height of a
homogeneous atmosphere of air. One cubic meter of air of
that density weighs 1.29305 kilograms.

From geometry, the volume of a sphere is 4/3 = &*, in which
7 is 3.1416, and R the mean radius of the earth in meters or
6370191 meters (Bigelow).

The volume of the earth including the atmosphere, less the
volume of the earth alone, will give the volume of the atmos-
phere in cubic meters, or 4/3 = (B+1)* — 4/3 = E® equals volume
of atmosphere in cubic meters.

Factoring: 4/3 = (B8R B*4 371* R + 1%, or 4/3 x 3.1416 (3 x
7991 x 6370191° + 3x 7991%x 63701914 7991%), which is equal
to 4080 x 10" cubic meters.

Since 1 cubic meter of air weighs 1.293 kilograms, then the
weight of the atmosphere is 4080 x 10 x 1.293, or 5,275.46 x
10 kilograms.

.. 1

This 18 1195000

Wearrer Review, February, 1899, page 58-59.)!

of the mass of the solid earth. (MoxtrLY

!The figures in Monthly Weather Review, Vol. XXVII, p. 59, require
the following corrections: For 198,940,000 read 196,940,000 square miles;
for 10,392 read 11,602; for 1/1,125,000 read 1/1,132,400. The mass of the
atmosphere would, therefore, be 11,602 X 10% pounds, or 5,263 ¢ 10\
kilograms. The difference between this older computation and that in
the above text is traceable to the differences in the assumed data, some
of which are slightly uncertain.— EDITOR.

MONTHLY WEATHER REVIEW.

DecemsEr, 1906

The weight of the atmosphere, found in the manner above
described, is somewhat greater than the result found in the
MoxteLy Wearaer Review, February, 1899, because the mean
barometric pressure is here assumed to be 760 millimeters or
29.92 inches, instead of 29.90 inches.

According to Hann, Lehrbuch, second edition, page 9, if
the heights of the continents are taken into consideration,
the normal pressure would reduce to 740 millimeters (homo-
geneous atmosphere 7790 meters), but this should be increased
about 0.48 per cent for the decrease of gravity with elevation
(giving homogeneous atmosphere of 7827 meters); with this
figure the mass of the atmosphere is 5200 x 10" kilograms.

Problem 2.—The density of hydrogen is 0.0696; calculate the
height of a homogeneous atmosphere of hydrogen.

Solution.—Let the standard atmospheric pressure, or height
of the mercurial column in centimeters, be 76.

Let the density of mercury, or the weight of a cubic centi-
meter in grams, be 13.596 (Regnault).

Let the relative density of hydrogen, that of air being 1, at
temperature 0°C and under standard pressure, be 0.0696.

Let the density of air under standard conditions, or the
weight of a cubic centimeter in grams, be 0.001293.

Then 0.001293 x 0.0696 is the weight of a cubic centimeter
of hydrogen, i. e., 0.00008993 grams.

Since the height of a column of gas of uniform density and the
height of the mercurial column are inversely as the densities,
we have the height of a homogeneous column of hydrogen,

76 X 13.596

For air, the weight of a cubic centimeter is 0.001293; so
that the height of a homogeneous atmosphere of air is

76 x 13.596 _ - W .

~ 0001998 — 7991.04 meters.
Density. Meters.
Nitrogen ... .... 0.96737 homogeneous atmosphere 8,261.
Oxygen ....... 1.10535 homogeneous atmosphere 7,229.
Argon ... ...... 1.37752 homogeneous atmosphere 5,801
Carbon dioxid.. 1.5291 homogeneous atmosphere 5,226.
Helium ........ 0.1406  homogeneous atmosphere 56,834
Aqueous vapor.. 0.6232 homogeneous atmosphere 12,847.

Problem 3.—The twilight arch disappears when the sun is
18° below the western horizon; calculate the height of the
atmosphere.

Solution.—See fig. 1. At the moment when twilight ceases,
the last visible particle of air will be just halfway between the
observer and the point nearest the sun where it is just setting.

Eﬂb ’s;%

z
Fra. 1.

Therefore, the are b is equal to the arc ed. The whole are
hd is 18°; therefore, half the arc is 9°.

Calling the height of the atmosphere 4, and the radius of
the earth R, we have from the right-angled triangle abe, by
simple definition in trigonometry, aejab is the secant of bae.

ae = ab X secant bae.
Since ae = R 4+ h, and ab = R we have
R+ h = R X secant 9°
h = R secant 9° — R = R (secant 9° — 1),
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Secant 9° is 1.0125; therefore, the last expression reduces to
h = 0.0125 R.

In which R = 6,370,191 meters or 20,899,600 feet.®
6370191 x 0.0125 = 79627.4 meters or 80 kilometers—about
50 miles.

This must be reduced by about 1/5 on account of refraction,
making the height of the atmosphere about 40 miles. See
Young’s General Astronomy, 1889, pages 68-69.

Problem 4.—From the known rate of increase of temperature
with increasing depth in the earth’s crust, calculate the heat
annually received at the surface and the thickness of ice which
it will melt.

Solution.—The calculation of the heat received from the
interior is made by multiplying the temperature gradient by the
average thermal conductivity of the soil. This latter is about
0.006 gram-calories per square centimeter per second. The
gradieut is 1° C. for 35 meters, or 0.000286° C. for each centi-
meter. This multiplied by 0.006 gives the amount of heat
received per second on each square centimeter of the earth’s
surface from the internal heat. It is equal to 0.000001716
gram-calories.

As the year has 31,556,926 seconds,” the amount of heat
received per year on each square centimeter is 0.000001716 x
31,556,926, or 54.2 gram-calories.

The thickness of ice melted or water evaporated by 54.2
calories is based on the number of heat units required to melt
a cubic centimeter of ice or evaporate a cubic centimeter (gram)
of water.

The latent heat of fusion of ice is 80.02 calories, which is
the amount of heat required to melt 1 gram. A cubic centi-
meter of ice, however, only weighs 0.917 gram, and to melt it
requires only 80 x 0.917, or 73.4 calories.

Then the heat received per annum per square centimeter
from the interior, or 54.2 calories, will melt only 54.2/73.4
or 0.74 cubic centimeters of ice, i. e., a piece one centimeter
square and only 7 millimeters thick.

The latent heat of vaporization of water is in round num-
bers about 600 calories, so 54.2 calories would evaporate only

* A sphere whose surface has the same area as Clarke's spheroid of 1866
(whose a == 20,926,062 and b= 20,855,121 feet) would have R = 20,902,490
feet. Its surface would be 196,940,000 square miles. (See Woodward,
Smithsonian Geographical Tables, 1894). Not only the dimensions of
the globe but the relation between the meterand the foot have been sub-
jeet to numerous investigations, and the results as given by different
geodesists are gradually becoming more reliable. Besides the above-
given values by Clarke, the following values may be mentioned :

Bessel, 1842, ¢ =6,377,397 and b= 6,356,079 meters.
Fischer, 1668, a = 6,378,238 and b = 6,356,230 meters.
Faye, 1889, a = 6,378,393 and b = 6,356,549 meters.

The mean radius of the earth may be described as the radius of a
perfect sphere whose surface is equal to that of the spheroidal earth,
or again, that of a sphere whose volume is equal to that of the ewrth,
or again, that of a sphere whose radius is the average of all terres-
trial radii. These three values differ slightly among themselves. The
first value is that above given in connection with Clarke’s spheroid.
The International Meteorological Tables of 1900 adopt the a and b of
Bessel's spheroid, and the mean radius R equals 6,371,104 meters, equals
20,902,950 English feet. The values of a and b adopted in Bigelow's
Cloud Report are those of Bessel's spheroid, and the average R equals
6,370,191 meters, equals 20,899,600 feet.

The relation between the meter and the English foot adopted by the
International Meteorological Tables, namely, 1 meter equals 3.28089917
feet, or 1 foot equals 0.30479449 meter, was Kater’s value of 1818; it has
lately been more accurately determined (see Monthly Weather Review
for Decoember, 1896); namely, 1 meter equals 3.2808429 feet, and 1 foot
equals 0.30479973 meter. All these refinements in decimals imply equal
refinements in definitions and other matters that are still under discus-
sion, and need not trouble the elementary student, who should for con-
sistency’s sake use either the system adopted by the International Mete-
orological Tables or that adopted by Professor Bigelow, or that adopted by
the International Bureau of Weights and Measures.—EDITOR.

3 According to S. Newcomb, Compendium of Spherical Astronomy,
19086, p. 393, the Julian year has 31,557,600, but the correct mean solar
year has 31,556,926.0 seconds. —EDITOR.
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54.2/600 or about 0.09 grams of water per annum. See
Hann, Lehrbuch der Meteorologie, first edition, page 23.

Problem 5.—Qiven, in certain cases, the temperature gradient
in the soil and its conductivity, calculate the amount of heat
transmitted to the air, and how much the air may be warmed
thereby.

Solution.—A¢t Tiflis in January the mean temperature of the
goil at a depth of 0.1 meter is 1.1° C.; at 0.2 meters it is 1.6°
C., and at 0.4 meters it is 2.9° C. Therefore the temperature
increases with depth at the rate of 2.5° C. per 40 centimeters,
or 0.06 °C. per centimeter.

The calorimetric conductivity of the soil, i. e., the quantity
of heat in calories which will pass in one second thru a centi-
meter cube when the difference in temperature of the two faces
is 1° C., i8 0.006; this gives 0.36 calories per minute.

The amount of heat conducted to the surface by the soil is
equal to the temperature gradient, multiplied by the conduc-
tivity of the soil, multlphed by the time.

For the case given: 0.36 x 0.06 x 1440, which is equal to 311
calories per day.

The specific heat of air is 0.238 calories, i. e., one gram of
air requires 0.238 calories to increase its temperature 1° C.
One cubic centimeter of air weighs only 0.001293 grams, and
requires, therefore, only 0.001293 x 0.238, or 0.000307 calories
to raise its temperature 1° C.

Therefore the heat given to the air per square centimeter in
this case would raise the temperature of 31.1/0.000307, or ap-
proximately 100,000 cubic centimeters of air, by 1° C. in one
day—provided it were all absorbed by the air and not lost by
radiation. This is equivalent to a horizontal layer one kilo-
meter deep. See Hann, Lehrbuch, page 85.

Problem 6.—Calculate the heat received annually by the entire
earth, assuming the solar constant to be 3 calories per square
centimeter per minute.

Solution.—The solar constant 3 means that each square centi-
meter would receive per minute 3 small calories of heat, if
there were no atmosphere, assuming the receiving surface to
be perpendicular to the sunbeam.

The amount received per square centimeter per annum
would evidently be 3x 60 (minutes)x 24 (hours)x 365% (days)

=1,577,880 calories.

Since the sun shines at one time on only one-half of the
earth, its rays are perpendicular over an area represented by
the area of a great cilcle or = R Hence the above figure
must be multiplied by 6,370, 191 x 6,370,191 x 3.1416, which
gives 20,116 x 10 gram calorles See Hann, Lehrbuch first
edition page 26. The amount there given is 20,116 x 10%,
possibly a typographical mistake for 2.0116 x 10~

The amount of ice which this will melt may be ascertained
easily, as follows: Three calories per square centimeter per
minute are 180 calories per hour. This would melt 180/73.4
or 2.45 cubic centimeters of ice in an hour. In a year, there-
fore, 2.45 x 24 x 3651 or 21,476.7 cubic centimeters of ice
would be melted for each square centimeter of surface. If the
heat were uniformly distributed over the earth’s surface it
would cover 4 great circles, hence the above figure must be
divided by 4, which gives a depth of about 5370 cubic centi-
meters of ice, or 54 meters or 177 feet per year.

Problem 7.—Prove that the intensity of insolation varies as
the sine of the angle of incidence of the sun’s rays.

Solution.—See fig. 2. The surface 4’ B receives less insola-
tion in proportion as this surface is larger than the surface
¢’ B atright-angles to the pencil of rays S. The intensity (I’)
of the insolation on 4" B is to the intensity (I) on ¢ B in-
versely as the lengths of those lines, or
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I':1:: C"B: A B.

1'=I(C"B| A’ B)
' B| A’ B is the cosine of 90° — h, or the sine of &, which is
the angle of incidence of the sun’s rays to the horizontal
surface, or the angular elevation of the sun above the horizon.

S

Fia. 2.

By this method the intensity is decomposed after the manner
of a force in mechanies, as first proposed by Halley in 1693; the
same law may be obtained in an entirely different way fromn the

principle of the inverse square of the distance. See Meech,
L. W,, On the Relative Intensity of the Heat and Light of the
Sun, upon Different Latitudes of the Earth, 1856, pp. 13, 1+

Problem 8—Given the coeflicients of expansion of brass and
mercury, deduce the corrections to be applied for the tempera-
ture of the scale and of the mercury in a mercurial barometer.

Solution: (Metric system).—1. As the brass scale divisions and
their numbers rise with increase of temperature, at any tem-
perature above freezing (where the scale has its standard
length), opposite a fixed point, the scale reading would be
too low or the length of the scale would be too great.

Let n be the coeflicient of linear expansion of brass; then
unit length of the scale at 0° is 1; at 1° C. it becomes 1 + n;
at 2° it becomes 1 + 2u, or in general at ¢° it bec omes 1 4 tn

2. If B is the mercurial column (barometric height) as
measured with the scale at a temperature ¢°, then the height
as measured with the scale at the temperature 0° would he
greater, since the length of each division would then be less,
in the ratio of 1 to 1 + ¢n, so that the number of divisions
corresponding to a given length will be increased in the ratio
(1 +tn) to 1. Hence, if B, is the barometer reading cor-
rected for the expansion of the scale, then

B,=B(1l+t)................... (1)
See Watson’s Physics, page 159.

3. Here B, iz the height of the mercurial column at the
temperature ¢°, and we have to find what would be the height
if the temperature of the mercury were 0°.

If D, is the density of mercury at ¢°, and D, its density at
0°, and m the coeflicient of expansion of mercury, then 1 cubic
meter of mercury at 0° becomes (1 + m) cubic meters at 1°,
(1 + 2m) cubic meters at 2°, or in gemeral (1 4 im) cubic
meters at t°. Or if V, is the volume at 0° and V), the volume
at £°, Vi= ¥V, (1 + tm).

Since the mass of the mercury remains the same, the volume
at 0°, V¥, multiplied by the density of mercury at 0°, D, i. e.,
the mass, M, must equal the volume at ¢°, T', multiplied by
the density at t°, D,.

Substituting for T, its value (1 4 tm) ¥ gives

M=V, D=V, D;=(1+1tm) ¥V, D,
¥V, D ={(1+tm) ¥, D,
= (1 + tm) l)

2
D,~ <+.')
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The height of a column of mercury supported by a given
pressure being inversely proportional to the density of the
liquid, therefore

B, (height of mercurial column at ¢°): B, (height at 0°)

: D, (density of mercury at 0°) : D, (density of mercury at ¢°),
from which

B0 D, 1 B, .
=7 D (1 + [,'l) B Eaat (1_'_—!"1) ........... (2)

Subshtutmg in equation (2) the value for %, found by equa-

tion (1), gives

1+ nt)
By = <f+7n7)
Dividing by (1 4 mt) gives
o (m—n) b\ , (m—mn)t
B,= 1 (1 ~ A+ mby mt,))’ or B— P= — TEmt

See equation (17), Bigelow’s Report on Barometry, page 62.
The coefficient of expansion of brass for 1° C. is 0.0000184,
or approximately 0.00002. For mercury, in = 0.0001818.
By assuming that 1/(1 + mt) is equal to (1 — m¢), which can
be done, as the higher powers of m are very small, the above
equation will approximate

By=2r (1 — (m —n) t).a

or substituting the constants, B, = £ (1 — 0.000163 ). The
correction is very closely —0.000163 tEB. See Hann, Lehrbuch,
page 164

Example—Observed reading of the barometer 745.6 milli-
meters at a temperature of 256° C. Corrected reading will be
found by subtracting 0.000163 x 25 x 745.6, or 3.05 milli-
meters, which corresponds closely with the correction found
from the usual tables.

Problem 9.—Obtain the formula in the English system for
the correction of the mercurial barometer for temperature.

In obtaining the formula for the English system it must be
remembered that the brass scale is normal at 62° F. and the
mercury has its normal density at 32° F. The equations in
solution of problem 8 may readily be modified accordingly.
See Abbe, Treatise on Meteorological Apparatus and Methods,
18874

Problem 10.—From well known physical relations deduce the
law that ascending dry air cools 1° C for each 100 meters of
ascent.

Solution.—It is necessary to know the following data:

1. The unit of heat, the small calorie, is the amount required
to raise the temperature of 1 gram of pure water 1°C. Engi-
neers use a large calorie, which is the amount of heat required
to raise 1 kilogram of water 1° C.; this is 1000 times the small
calorie.®

" «Where the formulas are:

B =B [143(t—62)]

H,= =
=1 + ) (t— .32)

14 3 (1— 62)
HU——’I—H — B =B (m)—

B A (t—62)—y (i—32)

= ( THye—38y )

From Report of the Chief Signal Officer, 1887, part 2, pp. 124-126.

The notation can be easily understood hy comparing these formulas
with those of Problem 8.

If the temperatures of the mercury and the brass scale are not identi-
cal then the corrections for each must be calculated separately, or may
be taken from the tables given on pages 1133-1137 of Appendix 59, Report
of the Chief Signal Officer, for 1881. —EDITOR.

5 As the specific heat of water varies with its temperature it is neces-
sary to define a calorie more exactly. The practise among European
physicists is to define the small calorie as the quantity of heat neces-
sary to raise the temperature of a gram of water from 0°C. to 1°C.—
EDITOR.
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2. Work is the product of the force acting multiplied by
the space thru which it acts.

3. By actual experiment it is found that the energy Whlch
would raise the temperature of 1 kilogram of water 1°C
would be able to raise against gravity 1 kilogram to the height
426.8 meters. (See Bigelow, Cloud Report, p. 488.) This is
the mechanical equivalent of a unit of heat, or the work done
by it. Standard gravity at sea level and 45° latitude is the
value here used.

4. To raise the temperature of 1 kilogram of air 1° C. under
constant pressure requires 0.2374 of a large calorie. This is
the specific heat of air under constant pressure, and is found
also by experiment.

5. Since 1 cubic meter of air weighs 1.293 kilograms, there-
fore the amount of heat required to raise the temperature of
1 cubic meter of air 1° C. is & little more than 0.2374 of a unit;
it is evidently 0.2374 x 1.293 or 0.307 of a large calorie.

Apply heat to a cubic meter of air and allow it to expand
in one direction while the pressure is kept constant. The
amount of heat required to raise the temperature of the cubic
meter of air 1°C. is 0.307 unit of heat. The air will at the
same time be expanded 1/273 of its volume.

The resistance to be overcome by the expanding air is the
pressure of a standard atmosphere on a square meter, which
is 0.76 x 13,596, or 10,333 kilograms per square meter. The
space thru which the resistance is overcome is 1/273 of a meter;
thus the work done by the expanding air against the pressure
of the atmosphere is 10,333 x 1/273 or 37.85 kilogram-meters.

If the amount of work performed by the 0.307 unit of
heat which is used to expand the air be 37.85 kilogram-meters,
then 1 entire unit of heat so employed to the expansion of air
would do an amount of work,x, as given by the proportion

0.307 : 37.85 :: 1.000 : =
x = 123.28 kilogram-meters.

But by paragraph 3 the whole work equivalent of 1 unit
of heat is 426.8 kilogram-meters. Therefore the fraction of a
heat unit doing the expansive work required when 1 cubic
meter of air is heated 1°C. is to the whole unit as 123.28 to
426.8, or as 0.289 to 1. In general when a given amount of
heat acts on dry air the fractional part 0. 711 goes toward
heating the air, and the remaining 0.289 is used in doing the
work of expansion against the outside pressure of 760 milli-
meters.

On the other hand, if air is caused to expand by coming
under diminished pressure without the addition of any heat
from without, i. e., adiabatically, then in expanding 1/273 of its
volume, it will require 0.289 part of a heat unit for the work.
The expansion will be done at the expense of its own heat,
and the air will be cooled 0.289° C. by an expansion of 1/273
part.

If the air cools 0.289° in expanding 1/273 part, then to cool
1 whole degree the air must expand x parts, as given by the
proportion

0.289 :1/273 :: 1: &
xr= 1/79

A homogeneous atmosphere would have a height of 7991
meters. If in such a homogeneous atmosphere the air ascends
1 meter the pressure would be diminished 1/7991 part, and
the volume would expand 1/7991 part. Then in order to in-
crease the volume 1/79 part (and cool the air 1°C.) the air
must ascend = meters, as given by the proportion

1:1/7991 :: 22 1/79
r= 4‘)01/"’9 or 101.2 meters.

Thus we see that air must ascend 101.2 meters to cool 1°C.
This is 0.99° for 100 meters, or as frequently stated in round
numbers 1° C for 100 meters.

This is hardly a problem, as the matter is simply reasoned
out. By the use of the elements of calculus the problem is
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much more elegantly solved. See Ferrel’s Treatise on Winds,
pages 23 to 28.

Problem 11.—Deduce the simplest formula for expressing
the change of pressure with elevation in the atmosphere.

Solution.—The solution of this problem requires the use of
the very simplest elements of calculus, which any student can
readily grasp, even if not previously familiar with the subject.

1. Let v represent the volume of a given mass of air or gas
at the pressure p and temperature f; and v' its volume, p' its
pressure, and ¢' its temperature under standard conditions;
then, since the coetlicient of expansion of air is a, 1 cubic meter
at zero becomes (1 4 «) cubic meters at 1° C., (1 4 2 4) cubic
meters at 2°, and in general (1 4 «f) cubic meters at . By
the law of Boyle-Gay Lussac, the volume of a gas multiplied
by its pressure is constant, so that

po=ptel(l4aty. ... o (1)
- Substituting for « its value 1/273, we have
prot (77%+t) _pte )7
pro=" gy = hryg (278 41).

Now, (273 + ¢) is called the absolute temperature, or 7, and
' 1273 is called the gas constant, R.

Therefore, pr=RT................. ... (2)

2. Next find the numerical value of £ T for dry air.

The volume of gas is the reciprocal of its density; or if one
cubic meter of air weighs 1.293 kilograms, then 1 kilogram
will occupy 1/1.293 cubic meters of space. Calling D' the
density of air, weight of unit volume, at 760 mm., at 0° C, then

v'=1/Dor D'=1[v" ... ... ...,

Therefore, p'v' = 1/D' X p', and p' equals the normal pres-
sure, that is the density of mercury multiplied by the normal
height of the barometer, or

L 13,596 x 0.760

This is evidently equal to the height in meters of a homo-
geneous atmosphere of air, or 7991.

Therefore, p' v'/273, the gas constant for dry air, or R, is
equal to

= 7991.

13.596 x 0.760
0.001293 x 273 —

3. In ascending a very small distance (infinitesimal distance)
in the atmosphere,in which the density is D, the absolute pres-
sure changes in the inverse proportion by an infinitesimally
small amount; this is exprest in the notation of calculus as
follows:

29.2713.

. —dp=D,dh.
From (2) and (3), p v==R T, and D;=1/v;

v=R Tjp; D,=p|R T.
Substituting, — dp = p/R T (d h), or

_dp _dh
p - RT
From which follows by integration
log, p=log, p'—h/RT................... (4)

in natural logarithms.

4. Instead of the absolute pressure p and p', we may intro-
duce the barometric heights, b and F, (normal pressure), which
gives:

log,b=1log, B, — R/T991 . .............. (b)

on on

5. To reduce to ordinary logauthms, divide the denomina-
tor, 7991, by the modulus, 0.43429, giving 18,400, the so-called
barometric constant for air, giving final answer to the problem:
logh=1log B, — h/18,400. ... ........ ... .(6)
Numerical erample.—What is the pressure at an elevation of
10 kilometers when sea-level pressure is 760 millimeters and

temperature is 0° C.?
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log b =log 760 — 10,000/18,400
log b = 2.88081 — 0.5435
log b = 2.33731, which corresponds to 217 millimeters.

The student should be required to work out a table of baro-
metric pressures for a series of elevations.

6. From the above the additional problem is suggested of
finding the simplest formula for caleulating the altitude of a
place, if the mean temperature of the air column and the
pressures at the two stations are known.

By transposing (6) and introducing a temperature factor

we have h=18,400(1 4 «t) log (B, /h)
the simplest hypsometrical formula. See Hann, Lehrbuch,
page 168.

Problem 12.—Give a formula expressing the weight of a cubic
meter of dry air under varying temperature and pressure.

Solution.—Call the standard density D,. A cubic meter of
air under standard conditions (tempemture 0° (., pressure
760 millimeters, and latitude 45°) weighs 1.29305 kilograiffs,
or 1293.05 grams. The density of air diminishes as the tem-
perature rises in the proportion of 1 to 14 «f; it also diminishes
as the pressure decreases, for the air expands in proportion,
or as b to 760. Therefore the density of air under other
conditions is equal to ite density under standard conditions,
D,, multiplied by

1 b
14t = 760°
or the weight in grams of a cubic meter of air at /° (. and
pressure b is equal to
D, b 1293.05 b
e = X 70
(1+4a)760~ T+t ™ T60
Example.—What ig the weight of a cubic meter of air under
760 millimeters pressure at the temperature of 30° (!?
a = 0.00367. Then,
1293.05 760 1293.05
1+ 0.00367 % 30 * 760 = T.1101

If we call the weight of a cubic meter of air at 0° unity,
then at 30° C. the weight of a cubic meter will be 0.9008 of
unity.

If 1 cubic meter of air at 30° weighs 0.9008 of what it does
at zero, then it will require 1/0.9008 cubic meters at 30° to
weigh as much as 1 cubic meter at zero, or 1.1101.

The student should be required to calculate for every 5° of
temperature between —30° and 30° C. the weight of a cubic
meter in grams, the density when 1 cubic meter at 0° weighs
unity, and the volume whose weight equals that of 1 cubic
meter at 0°—arranging the data in the form of a table, thus:

= 1164.9 grams.

Volume which weighs

Temperature. the same as 1 -ubic

30 1164.9

|
!
Weight of a cubic | Density when 1 cubic
o 1o}
meter. { meterat 0 weighs 1, meter at 0°.
[P - . .
i
oL Grams. ! Cubic nieters,

‘ 0. 9008 1.1101

See Hann, Lehrbuch, first edition, pages 219, 290.

Problem 18.—Give a formula expressing the weight of a satu-
rated cubic meter of aqueous vapor at different temperatures.
Solution.—1. The specific gravity of aqueous vapor is 0.622°
(air = 1). Aqueous vapor obeys the same laws as to expan-
gion with rise of temperature and decrease of pressure as does

% The specific gravity of aqueous vapor relative to that of dry air at
the same pressure and temperature is computed by the formula of
physical chemistry more accurately than it has as yet been determined
by any direct measurement. The calculation is very simple. Two
volumes of hydrogen, whose weight relative to that of air is 2 X 0.06960
(Rayleigh, 1893), combine with one volume of oxygen, whose relative
weight is 1.10535 (Rayleigh, 1897), to form two volumes of saturated
aqueous vapor, whose relative weight is therefore 1,.24455. Hence, the
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air, therefore by analogy with equation (1), problem 12, remem-
bering, however, that the vapor is under its own saturation
tension, ¢, the weight of a cubic meter of aqueous vapor is

0.622 (1293.05) o

Erample—What is the weight of a cubic meter of saturated
vapor at 30° C?
The vapor pressure, or e, at 30° C. is 31.51 millimeters.
Therefore the answer is:
0.622 x 1293.056 x 31.51
(140.00367 x 30) x 760 °
The student should be required to construct a table, giving
for every 5° (., using the accepted values of vapor pressure as
determined experimentally by physicists, (1) the weight of
vapor in a cubic meter of saturated space; (2) the relative
weights of the vapor at ¢ and 0° C; (3) the volume in cubic
meters of an amount of vapor weighing 1 gram, viz.:

or 30.09 grams.

Weight of vapor | Relative weight ‘

Tempera- Vapor in a saturated Change ! to that of 1 ‘\'olume of I gram
ture. pressure. | cubic meter per 54 cubic meter of vapor.
of space. i at 0
o nenr, Girams, ‘ m, Cubie meter.
30 31,51 30.09 1.59 6. 1408 0. 0332

Problem 14.—At “hat tempemture is the weight in grams
of vapor in a cubic meter of saturated space the same as
the vapor pressure exprest in millimeters of the mercurial
barometer ?

Solution.—¥quation (2), problem 13, reduces to

0.622 (1293.05) ¢ — 1.058__°
760 1+« (14 «t)

If we put (1 4 «t) equal to 1.058, then the weight in grams
of a cubic meter of saturated vapor becomes equal to e, the
Vapor pressure in millimeters of mercury.” Solving

14 at=1.058 or 1 4 0.00367¢= 1.058
0.00367 t = 0.058 t =15.8° (.

At 15.8° the vapor pressure is the same as the weight in
grams of a saturated cubic weter of vapor; below that tem-
perature the weight of a cubicmeteris greater than the vapor
pressure; above that it is less.

Example.—At what temperature is the volume of 1 gram of
saturated vapor equal to 1 cubic meter? Answer.—At some
point between — 15° and —20° C.

Problem 15.—Give a formula expressing the weight of a
cubic meter of saturated air.

Solution.—The weight of a cubic meter of saturated air is
less than the weight of a cubic meter of dry air at the same ¢
and b, or it i8 equal to the weight of the vapor at the pres-
sure e plus that of the dry air, at the pressure 6—e, for the
addition of vapor increases the total pressure and causes an
expaunsion of the volume when both are uncontined as in the
ordinary free atmogphere. ¥rom equations (1) and (2), prob-
lems 12 and 13, we find weight in grams of a cubic meter of
saturated air:

‘79% 05 (b—e) | 0.622 (

T 4 al) 760 (T + nt) T60 “which reduces to
1"‘HO5(b — 0. 31 f)
77777 ToT60

293.05) ¢

relative weight of one volume, or the specific gravity of aqueous vapor
relative to that of air, is one-half of this, or 0.62228. This computation
relates to saturated vapor, but on the assumption that vapor acts like
a gas, it becomes true for any temperature and pressure; hence, its use-
in the above text.—EDITOR.

"In all dynamic problems the vapor pressure, like the air pressure,
must he exprest in grams per square centimeter, or kilograms per
square meter, or pounds per square foot, depending on the system of
units that is employed. —EDITOR.
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Erample.—What is the weight of a cubic meter of saturated
air at 10° C.? Answer.—At 10° the vapor pressure is 9.14
millimeters. By the formula

1293.05 760 — 0.378 x 9.14
1 4- 0.00367 x 10 760

A cubic meter of dry air at 10° weighs 1247.3 grams; the
saturated air weighs 5.7 grams less than an equal volume of
dry air. o

The student should be required to construct a table giving
the weight of a cubic meter of dry air for every 5° C. between
— 30° and 35° (.., and the weight of a cubic meter of saturated
air, and the difference between them. The table may be
arranged as follows:

= 1241.6 grams.

' Weight of a cubic meter Weight of a cubic meter R e
Temperature. ¥ of dry air. of saturated air. . Difterence.
o¢, ‘ Grams., (7 rams, (irims,
10 ' 1247 3 1241.6 5.70

E.rample—What is the ditference between the weight of a cu-
bic meter of dry air and of saturated air at — 20° and 30° (.7
Will be answered by the above table, when completed.

Problem 16.—Give formulas expressing the weight of dry air
and the weight of aqueous vaporin a kilogram of saturated air.

Solution.—If a cubic meter of dry air weighs 1.29305 kilo-
grams, then 1 kilogram has a volume of 1/1.29305 cubic meters.
Or in general, as one cubic meter of saturated air weighs by
equation (1), problem 15,

1293.05 (b —0.378¢) 1.29305 (b — 0.378 €)
(1 + «f) 760 (1 + ) 760
then 1 kilogram will occupy in cubic meters, the reciprocal of

that, or 1 kilogram of saturated air occupies
(1 4 at) 760 bi
1.99305 (b — 0.375¢) cubic meters. . ..(1)

kilograms,

grams or

In order to know how much dry air is present in this num-
ber of cubic meters of saturated air, we must multiply the ex-
pression by the quantity of dry air in a cubic meter, given by
the first part of equation (1), problem 15, or

(14 at) 760 1293 (b—e) _ (b—e)
1.293(b—.378e) = (14 a£t) 760 — (h—.378¢)’

The number of kilograms of dry air in 1 kilogram of saturated

(b—e¢)
(7)’:—7'.3’7’3'5)"""""""""(2)

In a similar manner by multiplying the expression (1) by the
second part of equation (1), problem 15, giving the quantity of
aqueous vapor in a cubic meter, we get an expression giving
the number of kilograms of vapor in 1 kilogram of saturated
He 0r(1 +-al) 760 0.692 x 1.293 x ¢ 0.622¢

(b— 378e) 1293 ° (14 at) 760 — (h—.378e)"

The number of kilograms of vapor in a kilogram of saturated

0.622e (3)
(b— 378 ¢)

air is

air is

Problem 17.—How much dry air and how much aqueous
vapor are contained in a kilogram of saturated air at 10° C?

Solution.—By applying the formulas of problem 16, we get,
since e at 10° is 9.14 mm:—

760 — 9.14
760 — .378 x 9.14
0.622 x 9.14
760 — .378 x 9.14

from (2) dryair = (0.99247 kilogram.

from (3) vapor = 0.00753 kilogram.

Sum = 1.00000 kilogram.
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The student should be required to construct a table giving
(1) The volume which 1 kilogram of dry air occupies at dif-
ferent temperatures; (2) The volume which 1 kilogram of satu-
rated air occupies; (3) The quantity of dry air in a kilogram
of saturated air; (4) The quantity of vapor in a kilogram of
saturated air. Example:

Volume of 1 kilo- | Weight of dry air| Weight of vapor in

Temper- | Volume of 1 kilo- [ : | .
. . s gramofsaturated in 1 kilogram of | 1 kilogram of sat-
ature. i gram of dry air. air. ~aturated air. urated air.
|
,
er : Cuhic meter, Cubic meler. Kilogram, Kilogram.
0. 817 0. 8054 0,99247 0. 00753

10
\

An extended table of the weights of aqueous vapor in a kilo-
gram of saturated air under various pressures, in the metric
system, will be found in Bigelows Cloud Report, pages 560
and 561. See also Marvin's tables for the Psychrometer and
Smithsonian Meteorological Tables.

All these problems may also be solved for other pressures

than 760 mm.
[ To be continued.]

NOTES ON THE‘CLIMATE OF KANSAS.
By T. B. JENNTINGS, Section Dircetor.  Dated Topeka, Kans,
[Read before the Kansas Academy of Science November 30, 1906.]

In reviewing the history of a country it is customary to
divide it into prehistoric and historic periods. In writing
of the climatology of this State we shall divide it into two
periods, the first period extending from the earliest reliable
written accounts of its weather down to the time (1887) that
systematic observations and records were practically begun
over the entire State. Tho the State is young, it has a few
records that began in the dim past. The Fort Leavenworth
record began in 1836, the Fort Riley record in 1853, the State
Agricultural College record in 1858, the Kansas University
record in 1868, the Independence record in 1872, and the
Dodge record in 1875.

FLOODS.

The old river boatmen give an account of a flood in the
eastern part of the territory and in the Missouri River in
1785 which past down that river and into the Mississippi,
flooding the American bottoms across from St. Louis, and
which for many years was referred to as “The Great Flood.”
Twenty-six years later the Missouri River bottoms were again
flooded.

About the last of February or first of March, 1826, heavy
rains began in what is now the southeast quarter of the State,
raising the Neosho and its tributaries ¢ out of their banks ” and
flooding their bottoms; heavy rains continued in the territory
during the season. In June the lowlands near the mouth of
the Kaw were flooded, owing to high water in the Kaw and
Missouri rivers meeting; in the fall a destructive flood swept
down the Neosho, carrying away wigwams, houses, and
gathered and ungathered crops.

In 1844 oceurred probably the worst floods eastern Kansas
has ever experienced. Rev. Mr. Meeker, who was missionary
to the Ottawa Indians and was living on what is now the
site of the city of Ottawa, in his letters gave a graphic
account of the condition of the Marais des Cygnes and the
destruction wrought by it at that point. Frowm the 7th to
the 20th of May there were nine days of rain, and daily from
the 23d to the 29th, inclusive, rain fell; it hegan again on
June 7, and on the 12th the Marais des Cygnes overflowed its
banks, carrying away outhouses, fences, cattle, pigs, and
chickens; the river began falling on the 14th and began
rigsing again on the 20th.

At Fort Leavenworth the rainfall for June, 1844, was 8.53
inches; for July, 12 inches; for August, 8.08 inches, aggrega-
ting 28.61 inches for the three months. (The normal annual
precipitation for that place is 80.89 inches.) Mr. Richard W.



