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PROBLEMS IN METEOROLOGY. 
By C.  F. VON HERRMANN, Sectiou Director. Dated Bnitimorc, hfd., June9,1906. 

The use of mathematicsin meteorology has often been discust. 
either with reference to the application of methods of higher 
analysis to the solution of the intricate probleiiis presented 
by the dynamics of the atmosphere, or to the introcluction of 
problems in meteorology as illustrative exainples in courses 
of higher mathematics. Even in elementary work, hon- 
ever, for purposes of serious instruction in meteorology, in 
which many officials of the Weather Bureau are now en- 
gaged, precision and dignity woulcl be given to a course b y  
the introcluction, as laboratory work, in addition to the usual 
exercises in inap making, etc., of examples requiring only 
elementary mathematics for their solution. What student 
could forget that the coefficient of expansion of air is 0.00367 
or lj273, if he were required to calculate t,he weight of a cubic 
meter of air at  different temperatures? Or who could forget 
that the adiabatic rate of decrease of temperature with eleva- 
tion for dry air is lo 0. for 100 meters, i f  he has been tsnght, 
by simple inatheniatical analysis, how the result is obtainerl ? 
Those who are carrying on courses of instruction in meteor- 
ology (in clistinction from popular lecture work) will f i i i c l  that 
the use of numerous esaiiiples mill great81y stiinulate tlie 
interest of the student, and help to elevate the sulrject to tlie 
rank of an exact science. 

Unfortunately there are no text-books of elementary me- 
teorology which give examples for solution. Iu Ferrel's &. Re- 
cent advances in iiieteorology ". Annual Report of the Chief 
Signal Officer for 1885, nuinerous examples are given, lint 
they are generally too advanced for elementary work, tho 
many of them may readily be simplifiecl. For the purpose sug- 
gested a number of examples have been collected, requiring 
only the elements of algebra and trigonometry for their solu- 
tion; these are stated below. It is advantageous in all prob- 
lems to use the centigrade degree, the metric system of 
measurements, and as the unit of heat the small calorie, which 
is more clefinite than the British thermal unit. The solu- 
tions are stated in the most eleinentary language, but more 
advanced probleins will follow if these are favorably received. 

Problew I.-Calculate the mass of the atmosphere. 
SoZtrtio)c.-If the atmosphere had the same density thruout 

which i t  has under the stanclarcl conditions ordinarily adopted 
(pressure 760 ruin., temperature 0" C., and latitude 1So), its 
height woulcl be 7991 meters ( h ) ,  which is the height of a 
homogeneous atmosphere of air. One cubic meter of air of 
that density weighs 1.29305 kilograms. 

From geometry, the volunie of a sphere is 4/3 ;T R3. in which 
K is 3.1416, and R the mean radius of the earth in meters o r  
6370191 meters (Bigelow). 

The volume of the earth including the atmosphere, less the 
volume of the earth alone, mill give the volume of the 'i t mos- 
phere in cubic meters, or 4/3 T (E+h)' - 4/3 i; RS equals volume 
of atmosphere in cubic meters. 

Factoring: 4/3 K (3 h RP + 3 h 3  R + l?), or 4/3 x 3.1416 (3 x 
7991 x 6370191' + 3 x 7991* x 6370191+ 79917, which is equal 
to -1080 x 1015 cubic meters. 

Since 1 cubic meter of air weighs 1.293 kilograms, then tlie 
weight of the atmosphere is 1080 x x 1.293, or 5,275.46 x 

(MONTHLY 
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kilograms. 

This is-- ' of the mass of the solid earth. 
1125000 

WEATHER REVIEW, February, 1899, page 58-59.)' 
'The figures iu Monthly Weather Review. Vol. SSVIT. p. 59, reiluire 

the following corrections: For 198,!44lJ,OOU read lYG,940,00n silunre miles; 
for 10,393 read 11,602; for l/1,135,0~I0 read 1/1,132,400. The Inass v i  the 
atmosphere would, therefore, be 11.60'2 x 1W pounds, or 5,%3 >: it115 
kilograms. The difference between this older computation and that in 
the above text is  traceable to the differehceh in the assumed data, sorue 
of which are slightly uncertain.- EDITOR. 

____________ ______ 

The weight of the atmosphere, found in the manner above 
described, is somewhat greater than the result found in the 
MONTHLY WEATEER REVIEW, February, 1899, because the mean 
barometric pressure is here assumed to be 760 millimeters or 
29.92 inches, instead of 29.90 inches. 

According to Hann, Lehrbuch, second edition, page 9, i f  
the heights of the continents are taken into consideration, 
the normal premure would reduce to 740 millimeters (homo- 
geneous atmosphere 7790 meters). but  this shoulcl be increasecl 
about 0.48 per cent for the decrease of gravity with elevation 
(giving homogeneous atinosphere of 7827 meters); with this 
figure t,he iiiass of tho atmosphere is 5200 x kilograms. 

Erohlrw ?.-The density of hydrogen is 0.0696; calculate the 
height of a honiogeneous atiiiosphere of hydrogen. 

Solttlion.-Let the stanclarcl atmospheric pressure, or height 
of the mercurial coluinn in centimeters, be 76. 

Let the density of mercury, or the weight of a cubic centi- 
meter in grains, be 13.596 (Regnnult). 

Let the relative density of hydrogen, that of air being 1, a t  
temperature 0°C and under standard pressure, be O.Oti96. 

Let the density of air under stanclard conditions, or the 
weight of a cubic centiiiieter in grains, be 0.001293. 

Then 0.001203 x 0.0696 is the weight of a cubic centimeter 
of hydrogen, i. e., O.OOO~~S~~93 grams. 

Since the height of a column of gas of uniform density am1 the 
height of the Inercwrial column are inversely as the densities, 
we hare the height of a hoinogeneous column of hydrogen, "' 

0. vouos9cJ3 ""9" = 11,481,066 centimeters or 114,811 meters. 

For air, the weight of a cubic centimeter is 0.001293; so 
that the height of a homogeneous atmosphere of air is 

Density. Meters. 
Nitrogen . . . . . 0.96737 homogeneous atmosphere 8,261. 
Oxygen . . . . . 1.105:35 homogeneous atinosphere 7,229. 
L4rgon . . . . . . 1.37752 homogeneous atmosphere 5,801. 
Carbou cliorirl . 1.5291 homogeneous atmosphere 5,296. 
Helium . . . . . . 0.1106 hoiiiogeneous atmosphere 56,834. 
Aqueous vapor 0.622 homogeneous atinosphere 12,817. 

P P J ~ I ~  3.-The tn  ilight arch disappears when the sun is 
18" below tlie western horizon; calculate the height of the 
at,mosphere. 

A t  the iiioment when twilight ceases, 
the last vibible particle of air will be just halfway between the 
observer and the point nearest the stin where it is just setting. 

,%lt(tio)~.--See fig. 1. 

Frc:. 1 .  
Therefore, the arc hi. is equal to the arc cd.  The whole arc 

hd is 18"; therefore, half the arc is 9". 
Calling the height of the atmosphere 11,  and the raclius of 

the earth R, we have froin the right-angled triangle abe, by 
simple definition in trigonometry, aelnb is the secant of bae. 

cie = ab x secant h. 
ae = R + 11, and ab = R we hare 

h = R secant 9" - R = Et (secant 9' - 1). 

Siuce 
R + h = R x secant 9" 
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Secant 9' is 1.0126; therefore, the last expression reduces to 

I n  which R = 6,370,191 meters or  20,899,600 feet.2 
6370191 x 0.0125 = 79627.1 meters o r  80 kilometers-about 
50 miles. 

This must be reduced by about 115 on account of refraction, 
making the height of the atmosphere about 40 miles. See 
Young's General Astronomy, 1689, pages 66-69. 

h =  0.0125 R. 

Problem d.-From the known rate of increase of temperature 
with increasing depth in the earth's crust, calculate the heat 
annually received at  the surface and the thickness of ice which 
it will melt. 

Sohtion.-The calculation of the heat received from the 
interior is made by multiplying the temperature gradient by the 
average thermal conductivity of the soil. This latter is about 
0.006 gram-calories per square centimeter per second. The 
gradieat is 1' C. for 35 meters. or 0.00026G0 C. for each centi- 
meter. This multiplied by 0.006 gives the amount of heat 
received per second on each square centiineter of the earth's 
surfme from the internal heat. It  is equal to 0.000001716 
gram-calories. 

As the year has 31,556,926 aeconcls,' the amount of heat 
received per year on each square centimeter is 0.000001716 x 
31,556,936, or 51.2 gram-calories. 

The thickness of ice melted or water evaporated by 54.2 
calories is based on the number of heat units required to  melt 
a cubic centimeter of ice or evaporate a cubic centimeter (gram) 
of water. 

The latent heat of fusion of ice is 80.02 calories, which is 
the amount of heat required to melt 1 gram. A cubic centi- 
meter of ice, however, only weighs 0.917 gram, and to  melt i t  
requires only 80 x 0.917, or  73.4 calories. 

Then the heat received per annuin per square centimeter 
from the interior, or 54.2 calories, will melt only 54.2/73.4 
or 0.74 cubic centimeten of ice, i. e., a piece one centimeter 
square and only 7 millimeters thick. 

The latent heat of vaporization of water is in round num- 
bers about 600 calories, so 54.2 calories would evaporate only 

* A sphere whose surface has  the same area ab Clarke-5 spheroid of lS61; 
(whose a= 20,936,062 and b =2O,X55,121 feet) would hare  R =  20.9lI2,i:W 
feet. Its surface would be 196,940,000 square miles. (See Woodward. 
Bmithsonian Geographical Taldes, 1394). Not only the dimensions of 
the globe but  tlie relation between tht. meterand the  foot have been sub- 
ject to numerous investigations, and t h e  results as given by different 
geodesists are gradually becoming more reliable. Besides the above- 
given values by Clarke, the  following values may be  mentioned : 

~~~~ _______ ~ ~~ ~ 

Bessel, 1842, a =6,377,397 and b = 6,356,1179 meters. 
Fischei, 1668, a = 6,378,238 and b = 6,356,431) meters. 
Faye, 1889, a = 6,378,393 and b = 6,356,549 meters. 

The mean radius of t h e  earth m a r  be described as t h e  radius of a 
perfect sphere whose surface is equal to  t h a t  of t h e  spheroidal earth, 
or again, tha t  of a sphere whose voluiiie is  equal to tha t  of the  e x t h .  
or again, that  of a sphere whose radius is  the  average of all terres- 
trial radii. These three values differ slightly among themselves. The 
first \ d u e  is that  above given in connection with Clarke's hphwoid. 
The International Meteorological Tables of 1900 adopt the n and b of 
Bessel's spheroid, and the  mean radius R equals 6,371,104 meters, equal5 
20,90'2,950 English feet. The values of (I and b adopted in Bigelow'+ 
Cloud Report are  those of Bessel's spheroid, and the average R equal5 
6,370,191 meters, equals 20,899.GOO feet. 

The relation between the  meter and t h e  English foot adopted by the 
International Meteurological Tables, namely, 1 meter equalb 3.28089917 
feet, or 1 foot equals 0.30479449 meter, wa5 &tor's value of 1818; i t  has  
lately been more accurately determined (see 3lonthIy Weather Review 
for December, 1896); namely, 1 meter equals 3.35118429 feet, ani1 1 foot 
equals 0.30479973 meter. All these refinenients in drcimals imply equal 
refinements in definitions and other  iiiatters t h a t  are still under discus- 
sion, and need not trouble the elementary student, who should for con- 
sistency's sake use either the  systeni adopted by the  International Mete- 
orological Tableb or tha t  adopted by Professor Bigelow, or that  adopted 1's 
the  International Bureau of Weights and MeaSllreS.-KDITUR. 

3 According to S. Newcomb, Compendium of Spherical Astronomy, 
1906, p. 393, the  Jiilian year has  31,557,600, but  the  correct mean solar 
year has  31,556,926.0 SeCondS.-EDITOR. 

54.21600 or  about 0.09 grams of water per annum. See 
H a m ,  Lehrbuch der Meteorologie, first edition, page 23. 

Problem :j.-Given, in certain cases, the temperature gradient 
in the soil and its conductivity, calculate the amount of heat 
transmitted to the air, and how much the air may be warmed 
thereby. 

SoIutim.-At Tiflis in January the mean temperature of the 
soil at  a depth of 0.1 meter is 1.1" (2.; a t  0.2 meters i t  is 1.6' 
C., and a t  0.4 meters it is 2.9. 0. Therefore the temperature 
increases with depth a t  the rate of 2.5' C. per 40 centimeters, 
or 0.06 'C. per centimeter. 

The calorimetric conductirity of the soil, i. e., the quantity 
of lieat in calories which will pass in one second thru a centi- 
meter cube when the difference in teinperature of the two faces 
is 1" C., is O.(JOG; this gives 0.36 calories per minute. 

The aiiiount of heat conducted to the surface by the soil is 
equal to the temperature paclient, multiplied by the conduc- 
tivity of the soil, multiplied by the time. 

For the case given: 0.36 x (1.06 x 1440, which is equal to 31.1 
calories per clay. 

The specific heat of air is 0.23s calories, i. e., one gram of 
air requires 0.236 calories to increase its temperature 1' C .  
One cubic centimeter of air weighs only 0.001293 grams, and 
requires, therefore, only 0.001293 x 0.2;?8, or 0.000307 calories 
to  raise its temperature 1" C. 

Therefore the heat given to the air per square centimeter in 
this case woulcl mihe the temperature of 31.1/0.000307, or ap- 
proxiiuately lM,(jUO cubic centimeters of air, by 1" C. in one 
day-provided i t  were all absor1)ecl by the air and not lost by 
radiation. This is equivalent to a horizontal layer one kilo- 
meter deep. See Hann, Lehrbuch, page S5. 

Prabltwi I;.-Calculate the lieat received annually by the entire 
earth, assuming the solar constant to be 3 calories per square 
centimeter per minute. 

r%/ufiO//.-The ~ o l a r  constant :j means that each square centi- 
meter woulcl receive per minute 3 small calories of heat, if 
there were no atmosphere, assuming the receiving surface to 
be perpendicular to the sunbeam. 

The amount received per sqii:ire centiioeter per annum 
woulcl evidently 1x2 3 x 60 (minutes) x 24 (hours) x 3li5i (days) 
= 1,577,SSO calories. 

Since the sun shines a t  one time on only one-half of the 
earth, its rays are perpendicular over an area represented by 
the area of a great circle or -8'. Hence the above figure 
inlist be multiplied by 6,370,191 x 6,:370,191 x 3.1416, which 
gives 20,llG x 10l6 gram calories. See Hanu, Lehrbuch, first 
edition, page 26. The amount there given is 20,116 x lozo, 
possibly a typographical mistake for 2.Oll(j x lo-*. 

The amount of ice which this will melt iuay be ascertained 
easily, a R  follows: Three calories per square centimeter per 
iiiinute are 180 calories per hour. This would melt 180 / 73.4 
or 2.45 cubic centimeters of ice in au hour. In a year, there- 
fore, 2.4.5 x 2 1  x 3654 or 21,476.7 cubic centimeters of ice 
would be melted for each scl1i:u.e centimeter of surface. If the 
heat were uniformly distributed over the earth's tmrface i t  
would cover 4 great circles, lieuce the above figure must be 
divided by 4, which gives a depth of about 5870 cubic centi- 
meters of ice, or 5-1 meters or 177 feet ller year. 

P r o f h i  ;.-Prove t,hat the inteusity of insolation varies as 
the sine of the augle of incidence of the s~ in ' s  rays. 

Solrdio)i.-See fig. '3. The surface d' H receives less insola- 
tion in proportion as this surface is larger than the surface 
C" B at right-angles to the pencil of rays S. The intemity (1') 
of the insolation on -4' B is to the intensity (I) on c' B in- 
versely as the lengths of those lines, or 
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I' : I :: C'B:  A'H.  
l'= I ( @ B / A ' B )  

(7' Rl A' B is the cosine of 90' - h,  or the sine of 11, which is 
the angle of incidence of the sun's rays to  the horizontal 
surface, or the angular elevation of the sun above the horizon. 

S 

FIQ. 2. 

By this method the intensity is decomposed after the manner 
of a force in mechanics, as first proposed by Halley in 1693; the 
same law may be obtained in an entirely different way from the 
principle of the inverse square of the distance. See Meech, 
L. W., On the Relative Intensity of the Heat and Light of the 
Sun, upon Different Latitudes of the Earth, 185G, 111). 13, 14. 

Problem 8.-Given the coeficients of expansion of brass and 
mercury, deduce the corrections to be appliecl for the tempera- 
ture of the scale and of the mercury in a mercurial barometer. 

Solittion: (Metric system).-1. As the brass scale divisions and 
their numbers rise with increase of temperature, a t  any tem- 
perature above freezing (where the scale has its standard 
leugth), opposite a filed point, the scale reading would be 
too low or the length of the scale would be too great. 

Let n be the coeficient of linear expansion of brass; then 
unit length of the scale at  0" is 1;  a t  lo C. i t  becomes 1 + 1 1 ;  

at 2" i t  becomes 1 + 2 ~ ,  or in general at  t o  i t  bec omes 1 + trz 
2. If B is the mercurial column (barometric height) as 

measured with the scale a t  a temperature to,  then the height 
as measured with the scale a t  the temperature 0" would 1)e 
greater, since the length of each division would then be less, 
in the ratio of 1 to 1 + t ~ ,  so that the number of divisions 
corresponding to a given length will be increased in the ratio 
(1 + t r z )  to 1. Hence, if R,, is the barometer reading cor- 
rected for the expansion of the scale, then 

See Watson's Physics, page 159. 
3. Here B,, ie the height of the mercurial column a t  the 

temperature to, and we have to find what would be the height 
i f  the temperature of the mercury were 0". 

If Dt is the density of mercury a t  to ,  ancl Do its density a t  
O", ancl ni the coeacient of expansion of mercury, then 1 cubic 
meter of mercury a t  0" becomes (1 + m) cubic meters a t  l o ,  
(1 + 2n2) cubic meters a t  2", or in general (1 + tni) cubic 
meters a t  to.  Or if Vo is the volume a t  0' and T; the volume 
a t  to ,  TTt = ?: (1 + t m ) .  

Since the mass of the mercury remains the same, the volume 
a t  O", Ti, multiplied by the density of inercury a t  Oo, Po, i. e., 
the mass, M, must equal the volume a t  to,  T;, multiplied by 
the density a t  to ,  P,. 

R,, = B (1 + f n ) .  . . . , . . . . . . . . . . . . .(1) 

Substituting for T; its value (1 + t m )  T i  gives 
JI = r., Po = v, D, = (1 + t U l )  1; LJ,. 

Po= (1 + h i )  T i  D,. 
Po = (1 + fm) ut. 
D L - -  1 
n, - (1 + I r r c ) '  

The height of a column of mercury supported by a given 
pressure being inversely proportional to the density of the 
liquid, therefore 

B,, (height of mercurial column at t o )  : Bo (height a t  0") 
:: Do (density of mercury at  0') : P, (density of mercury a t  to) ,  
from which 

. ( a )  1 HI, 
Ro= . . . . . . . . . . _---___ - R, Dt 

B,, - Do (1 + h z )  
Substituting in equation (2) the ralue for H,, found by equa- 

tion (I), b' Uives 
R (1 + nt)  

(l+nlt) * 
R, = 

Diriding by (1 + j i l t )  gives 
(nf - ? I )  t 
(1 + ) ) I t )  B. 

( m  - / l )  t 

See equation (17), Bigelow's Report on Barometry, page 62. 
The coeflicient of expansion of brass for 1' C. is 0.0000184, 

or approximately 0.00002. 
By assuming that l/(l + m t )  is equal to (1 - t i i f ) ,  which can 

be done, as the higher powers of ~ I I  are rery small, the above 
equation will approxiinate 

For  mercury, rn = 0.0001818. 

I $ =  E 1 - ( 1 ) i  - n) t 1 ( 1 
or substituting the constants, B, = H (1 - 0.00~J163 t ) .  The 
correction is very closely -0.0001ti3 tB. See Hann, Lehrbuch, 
page 164. 

RcctriiiJZe.-Observed reading of the barometer 745.6 milli- 
meters a t  a temperature of 25' C. Corrected reading will be 
found by subtracting 0.000163 x 25 x 745.6, or 3.05 milli- 
meters, which corresponds closely with the correction found 
from the usual tables. 

Problem 9.-Obtain the formula in the English system for 
the correction of the mercurial barometer for teiuperature. 

I n  obtaining the formula for the English system i t  must be 
remembered that the brass scale is normal a t  65" F. and the 
mercury has its normal density at  32" F. The equations in 
solution of problem 8 may readily be modified accordingly. 
See Abbe, Treatise on Meteorological Apparatufl and Methods, 
1 ~ 7 . 4  

Problem IU.-From well known physical relatious deduce the 
law that ascending dry air cools 1' C! for each 100 meters of 
ascent. 

&/t&h.-It is necessary to know the following data: 
1. The uuit of heat, the siiiall calorie, is the amount required 

to raise the temperature of 1 gram of pure water 1' C. Engi- 
neers use a large calorie, which is the amount of heat required 
to raise 1 kilogram of water 1" C.: this is 1000 times the small 
calorie. ' 

_ _ _ ~  ~ ~~~ 

4 Where the formulas are:  
B ' = B  [ 1+,3(t-62) ] 

B' H - -  ~. ~ 

0 -  1 -& 1 rt--32\ 

, .  
t i  (t--G8)-) I t -3-1 

= B" (--j + ~ $ r - - -  
9' 

From Report of the Chief Signal Officer, 1687, part 2, pp. 184-186. 
The notation can be easily understood by comparing these formulas 

with those of Problem 6.  
If the temperatures of the  mercury am1 the  brass scale are  not identi- 

cal then the corrections for each inust be calculated separately, or may 
be taken from the  taljles giveu on  pages 1133-1137 of Appendix 59, Report 
of the Chief Signal Officer, for APPEND EDITOR. 

A s  the specific heat of water varies with i ts  temperature i t  is neces- 
sary to define a calorie more exactly. The practise among European 
physicists is  t o  deflne the small calorie a s  t he  quantity of heat neces- 
sary to raise t.he temperature of a gram of water from 0°C. t o  1°C.- 
EDITOR. 
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2. Work is the product of the force acting multiplied by 
the space thru which it acts. 

3. By actual experiment it is found that the energy which 
would raise the temperature of 1 kilogram of water 1°C. 
would be able to raise against gravity 1 kilogram to the height 
426.8 meters. (See Bigelow, Cloud Report, p. 488.) This is 
the mechanical equivalent of a unit of heat, or the work done 
by it. Standard gravity a t  sea level and 45" latitude is the 
value here used. 
4. To raise the temperature of 1 kilogram of air 1" C. under 

constant pressure requires 0.2374 of a large calorie. This is 
the specific heat of air under constant pressure, ancl is found 
also by experiment. 

5. Since 1 cubic meter of air weighs 1.293 kilograms, there- 
fore the amount of heat required to raise the temperature of 
1 cubic meter of air 1' C. is a little more than 0.2374 of a unit; 
it is evidently 0.2374 x 1.293 or 0.307 of a large calorie. 

Apply heat to a cubic nieter of air ancl allow it to expand 
in one direction while the pressure is kept constant. The 
amount of heat required to raise the temperature of the cubic 
meter of air 1°C. is 0.307 unit of heat. The air mill a t  the 
same time be expanded 1/273 of its volume. 

The resistance to be orercome by the expancling air is the 
pressure of a standard atmosphere on a square meter, u1iic.h 
is 0.76 x 13,596, or 10,333 kilograms per square meter. The 
space thru which the resistance is overcome is lj273 of a nieter; 
thus the work done by the expanding air against the pressure 
of the atmosphere is 10,333 x lj273 or 37.85 kilogram-meters. 

If the amount of work performed by the 0.307 unit of 
heat which is used to erpand the air be 37.% kilogram-meters, 
then 1 entire unit of heat so employed to the expansion of air 
would do an amount of work,x, as given by the proportion 

0.307 : 37.85 :: 1.000 : 5 
5 = 123.88 kilogram-meters. 

But by paragraph 3 the whole work equivalent of 1 unit 
of heat is 426.8 kilogram-meters. Therefore the fraction of a 
heat unit doing the expansive work required when 1 cubic 
meter of air is heated 1' 0. is to the whole unit as 183.2s to 
426.8, or as 0.289 to 1. I n  general when a given amount of 
heat acts on dry air the fractional part 0.711 goes toward 
heating the air, ancl the remaining 0.2%) is used in doing the 
work of expansion against the outside pressure of 760 milli- 
meters. 

On the other hand, if air is caused to expand by coining 
under diminished pressure nithout the addition of any heat 
from without, i. e., adiabatically, then in expancling l/2TH of its 
volume, it will require 0.2S9 part of a heat unit for the work. 
The expansion will be done a t  the expense of its own heat, 
and the air will be cooled 0.2S9" C. by an expansion of 1/873 
part. 

If the air cools 0.269" in expanding 1/273 part, then to cool 
1 whole degree the air must expand =T parts, as given by the 
proportion 

o.as9 : l /273 :: 1 : .c 
.c = 1/79 

A homogeneous atmosphere woulcl have a height of 7991 
meters. If in such a hoinogeneous atmosphere the air ascends 
1 meter the pressure woulcl be diminished lj799l part, and 
the volume would expand 1/7991 part. Then in order to in- 
crease the volume 1/79 part (ancl cool the air 1°C.) the air 
must ascend T meters, as given by the proportion 

1 : lj7991 :: .I' : 1/79 
.T = 7991/79 or 101.2 meters. 

Thus we see that air must ascend 101.2 meters to cool lo C'. 
This is 0.99' for 100 meters, or as frequently stated in round 
numbers 1' C for 100 meters. 

This is hardly a problem, as the matter is simply reasoned 
out. By the use of the elements of calculus the problem is 

much more elegantly solved. 
pages 33 to 28. 

See Ferrel's Treatise on Winds, 

Problem 11.-Deduce the simplest formula for expressing 
the change of pressure with elevation in the atmosphere. 

~S'olotinn.-Tlie solution of this problem requires the use of 
the very simplest elements of calculus, which any student can 
reatlily grasp, even if not previously familiar with the subject. 

1. Let I *  represent the voliime of a given mass of air or gas 
a t  the pressure p and temperature f ;  and u' its volume, p' its 
pressure, and t' its temperature under standard conditions; 
then, since the coeficient of expansion of air is a ,  1 cubic meter 
a t  zero becomes (1 + a) cubic: meters a t  lo C., (1 + 2 a )  cubic 
meters a t  2", ancl in general (1 + u t )  cubic meters a t  t .  By 
the law of Boyle-Gay Lussac, the volunie of a gas multiplied 
by its pressure is constant, so that 

11 l '=]J1 1" (1 + I L f ) .  . . . . . . . . . . . . . . . . . (1)  - Substituting for its value 1/273, we have 

Now, ( 373 + f )  is called the absolute temperature, or T, and 

. . ( 2 )  
2. Nest find the numerical value of air. 
The volume of gas is the reciprocal of its density; or if one 

cubic meter of air weighs 1.293 kilograms, then 1 kilogram 
will occupy lj1.293 cubic meters of space. Calling D' the 
density of air, weight, of unit voluiae. at  760 mm., at  0' C, then 

Therefore, IJ' 1 3 '  = l / U l  x ]J', and 1,' eqiials the normal pres- 
sure, that is the density of mercury multiplied by the normal 
height of the barometer. or 

11' 1.'/273 is called the gas constant, R. 
Therefore, 1~ 1 3  = F/ T .  . . . . 

L+ = qn', or n1 = 1/12' . . . . . , . . . . . . . . . (3 )  

13.596 x 0.760 = 7991. 1'1 1'1 = 
0.001d98 

This is evidently equal to the height in meters of a homo- 

Therefore, 12 17'/273, the gas constant for dry air, or R, is 
geneous atmosphere of air, or 7991. 

equal to 
13.5N; x 0.760 - 29.2713. 
0.001293 x 273 - 

8.  I n  ascending a very small distance (infinitesimal distance) 
in the atmosphere, in which the density is Do, the absolute pres- 
sure changes in the inverse proportion by an infinitesimally 
sniall amount; this is exprest in the notation of calculus as 
follows: 

- d 1 3  = Do dh . 
From (2) and ( 3 ) ,  11 I-== R T, and D o = l / ~ ~ :  I ? =  R T/p; Do=p/R T. 

Substituting, - d p  = 11jR T ( d h  1, or 
np (111 - 
1 1 - R T  

From which follows by integration 
10 g ,, 11 = 1 o 6 ,, 1,' - 11 / H T . . . . . . . . . . . . ( A )  

in natural logarithms. 
4. Instead of the absolute pressure p and lJ', we may intro- 

duce the barometric heights, b ancl R,, (normal pressure), which 
gives : 

log j1  b = I?,, - h/7!)91, . . . . . . . . . . . . . . . ( 5 )  
5 .  To reduce to ordinary logarithms, divide the clenomina- 

tor, 7991, by the modulus, 0.43689, giving lt;,4UO, the so-called 
barometric constant for air, giving final answer to the problem: 

Nunierirrtl t'i'ml]Jk.-~~hat is the pressure a t  an elevation of 
10 kilometers when sea-level pressure is 760 millimeters and 
temperature is 0" C.? 

log b = log B,, - h/18,400. . . . . .. . . . . . . . . ( 6 )  
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log b = log 760 - 10,000/18,400 
log b = 2.88081 - 0.6435 
log b = 2.33731, which corresponds to 217 millimeters. 

The student should be required to work out a table of baro- 
metric pressures for a series of elevations. 

6. From the above the additional problem is suggested of 
finding the simplest formula for calculating the altitude of a 
place, i f  the mean temperature of the air column and the 
pressures a t  the two stations are known. 

By transposing (6 )  and introducing a temperatui-e factor 
we have 
the simplest hypometrical formula. See Hann, Lehrbuch, 
page 168. 

11 = 18,400 (1  + ut) log (H, , /h )  

Pwblem IZ-Clive a formula expressing the weight of a cubic 
meter of dry air under varying temperature ancl pressure. 

Soli&ort.-Call tlie standard density Do. A cubic meter o f  
air under standard conditions (temperature 0" C . ,  pressure 
760 millimeters, and latitutle 45") weighs 1.29305 kilograifs, 
or 1493.05 grams. The density of air diminishes as the teiii- 
perature rises in the proportion of 1 to 1+ u t ;  i t  also cliniinishes 
as the pressure decreases, for the air expands in proportion, 
or as b to 760. Therefore the density of air under other 
conditions is equal to its density under standard conditions, 
Do, multiplied by 

1 11 

or the weight in grams of a cubic meter of air at  t o  C'. and 
pressure h is equal to 

1 +-.t 760 ; 

Do 11 133133. Or, 1) 
(l+;itj7tj0 = x r. I 6 0  . . . . . . . . . (1) 

EJmpk.--TT'hat is the weight of a cubic meter of air under 
760 millimeters pressure a t  the temperature of 30" c'? 

(1 = 0.0086i. Then, 
7(jO 12!)8.05 
760 - 1.1101 

- 1 2 93.05 - 1164.9 grams. 1 + 0.00:36c;-x~ 
If we call the weight of a cubic ilieter of air a t  0" unity, 

then a t  30" C. the weight of A cubic meter will be 0.9oos of 
unity. 

If 1 cubic meter of air a t  3 0 "  weighs 0.90u8 of what i t  does 
at  zero, then it will require 1/0.90(,S cubic meters a t  :3OQ to 
weigh as much as 1 cubic meter a t  zero, or 1.1101. 

The student should be required to calculate for every 5" of 
temperature between -30" and 30° C. the weight of a cubic 
meter in grams, the density when 1 cubic meter a t  0" \leiglib: 
unity, ancl the volume whose weight equals that  of 1 cullic 
meter a t  0"-arranging the data in the form of a talde, thus: __ 

Tel,ll)eratllre. Weight of a cubic Density al ien 1 cubic 
vo'umc which weigll' 

,lletrrat oo the s m e  3s 1 v i i t i i v  
meter at  Oo. iiietw. 

See Hann, Lehrbuch, first edition, pages 219, 230. 

Problem IJ.-Cfive a formula expressing the weight of a satu- 
rated cubic meter of aqueous vapor a t  different temperatures. 

Sdidio)z.-l. The specific gravity of aqueous vapor is 0.622 
(air = 1). Aqueous vapor obeys the same laws as to expan- 
sion with rise of temperature and decrease of pressure as does 

The specific gravity o f  aqueous vapor relative to that of dry air at 
the same pressure and temperature i s  computed by the formula of 
physical chemistry more accurately than it has as  yet been determined 
by any direct measurement. The calculation is  very simple. Two 
rolunies of hydrogen, whose weight relative to that of air is 2 x 0.06960 
(Rayleigh, 1893), combine with one volume of oxygen, whose relative 
weight is  1.111535 (Rayleigh, 1897), to form two volumes of saturated 
aqueous vapor, whose relative weight is therefore 1.24155. Hence, the 

______- . 

air, therefore by analogy with equation (l), problem 12, remem- 
bering, however, that  the vapor is under its own saturation 
tension, e, the weight of a cubic meter of aqueous vapor is 

0.622 (1293.05) e 
' (2) - x -  . . . . . .  . . . . . . . .  ~ ~~ 

1 + ut 7 60 
Exaqde.--mihat is the weight of a cubic meter of saturated 

The vapor pressure, or e, a t  30" C!. is 31.51 millinieters. 
vapor a t  30" CY 

Therefore the answer is: 

Tlie student shonlcl be required to construct a table, giving 
for every 5" C'., using the accepted values of vapor pressure as 
determined eiperiiuentally by physicists, (1) the weight of 
r:~por in a cubic meter of saturated space; (2) the relative 
weights of the vapor a t  t o  ancl 0" C; (3) the volume in cubic 
meters of an amount of lapor weighing 1 gram, viz.: 

~ ~ - ~ 

Wright of \apor 
\ q w i  ~ In a +xtiiratwi ~ l r a n g i .  

of 'pace. 

1 Itt.iaii\e weight 

l at 6'. 

leiii1ner.i- to thnt ot 1 ~\.oluiiieofl grmi 
tiirr p i t - w i e  , culm meter 1wr 5 culm iiietpr or vapor. 

~- ~ ~~ -~ ~ _ _ _ _ _ _ _ ~  
~ 

P n h k / / i  IJ.--At what temperature is the weight in grams 
of vapor in a cubic meter of saturated space the same as 
the vapor pressure esprest in millimeters of the mercurial 
barometer Y 

,\illictrori.-Ecluatioll (a ) ,  problem 13, reduces to 
f' t' - 1.058- 0.622 (1293.05) x ~- 

7cio (1 + 1 1  t )  (1 + ( A I )  

If we put (1  + t A t )  equal to 1.058, then the weight in grams 
of a cubic meter of saturated vapor becomes equal to e, the 
vapor pressure in millimeters of mercury.' Solving 

1 + 11 t = 1.055 01' 1 + 0.00367 t = 1.058 
O.O0:3(i7 t = 0 058 t 15.s0 C'. 

At 15.S" the vapor pressure is the same as the weight in 
grams of a saturated cubic meter of vapor; below that tem- 
perature the weight of a cubic iueter is greater than the vapor 
pressure; above that i t  is less. 

E.raqilP.-At what temperature is the volume of 1 gram of 
saturated vapor equal to 1 cubic meter ? di~.swr.-At some 
point between - 15" and -20" C. 

Problem 15.-Give a formula expressing the weight of a 
culjic meter of saturated air. 

SvZictio/I.-The weight of a cubic meter of saturated air is 
less than the weight of a cubic iueter of dry air a t  the same t 
and b, or it is equal to the weight of the vapor a t  the pres- 
sure (' plus that of the dry air, a t  the pressure h-P, for the 
adclition of vapor increases the total pressure and causes an 
expansion of tlie voluiue when both are unconfined as in the 
orclinary free atmosphere. From equations (1) ancl (a) ,  prob- 
lems 1'3 and 13, we find weight in grniiis of a cubic iueter of 
saturated air: 

" ( 1 )  
1293.05 ( b  - 0.378 P )  

1 + u t  7c;o 
- . . . . . . . . . . .  . . . . . . . . . . .  ~~~~ 

ielati\e weight < i f  cine volunir, or the specifir graxity of  aqueous vapor 
relative to that o f  air, iq one-half of this, or 11.68228. This computation 
relates to saturated vallor, hut on the assumption that vapor acts like 
a gas, it becomes true for any temperature and pressure; hence, its use 
in the above teSt.-EUITUR. 

I n  all ilynamic problems the vapor pressure, like the air pressure, 
must lie esprest in  grains per siluare centimeter, or kilograms per 
siluare meter, or pounds per siluare foot, depending on the system of 
units that is employetl.-EDITOH. 
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Trlul,er- 
;Itore, 

E.campb.--What is the weight of a cubic meter of saturated 
Anwer.-At 10" the vapor pressure is 9.14 air a t  10" C.? 

millimeters. By the formula 

r~ , I l l lur  ~,~ , Voluinr of 1 kilo- ' Weight 4~1' dry air 1 Weight of vapor in 
, grall, nl' dry air, grririofhatiiratd in 1 kilograin of ~ 1 kilograui of eat- 

air.. d u r a t e d  air. urated air. 

1293.05 760 - 0.378 x 9.14 - - 1241.6 grams. .~ 

1 + 0.00367 x 10 7tio 
A cubic nieter of dry air a t  10' weighs 1347.3 grams; the 

saturated air weighs 5.7 granis less than an eciual volume of 
dry air. 

The student should be required to construct a talde giving 
the weight of a cubic meter of dry air for every 5" C'. between 
- 30" and 35" C.,  and tlie weight of a cubic meter of saturated 
air, and the difference between them. The table may be 
arranged as follows: 

~ ~~ ~~ _ _ _ ~  ~ 

Temperatore, Weight of a rubiv iiivter T\'\'eiglit of a <iilJic iiittri I,lltrlruce 
of dry air .aturatPd a1r 

0 C. 
10 

~ ; ! ' , 7 7 l f . Y .  /;,',I ,,,. \.. 
1241.6 j i n  

E.:~ample.-\Vhat is the difference between the weight of a cii- 
bic meter of dry air and of saturated air a t  - 20" and 3O0 c'.? 
Will be answered by the above table, when completed. 

Prohkni 16.-C+ive formulas expressing the weight of dry air 
and the weight of aqueous vapor in a kilograin of saturated air. 

,Ydu[iopi.-If a cubic meter of dry  air weighs 1.29805 kilo- 
grams, then 1 kilogram has a volume of 1/1.29:305 cubic meters. 
Or in general, as one cubic meter of saturated air weighs by 
equation (l), problem 15, 

1.39305 ( h  - 0.378 e) 
grams or-  (1 + u t )  760- kilogramn, 

then 1 kilogram will occupy in cubic meters, the reciprocal of 
that, or 1 kilograni of saturated air occupies 

1293.05 (b-0.376f)  
(1 + ut)  760 

( 1  + ut) n n  
1.29305 0 - 0.37s p )  

Illeters. . . . ( I )  

In order to know how much clry air is present in this iiuui- 
ber of cubic meters of saturated air, we iiiust multiply the ex- 
pression by the quantity of clry air in a cubic meter, given by 
the first part of equation (l), problem 15, or 

( l + u t )  760 1.293 ( 0 - P )  ( h - t . )  x _ _ _  
1.293 ( b - . 3 7 S  e)  ( 1 + ut ) 760 - ( I )  - .37S p ' 

The number of kilograms of tlry air in 1 kilogram of saturated 

air is 

In a similar manner by multiplying the expression (1)  by  the 
second part of equation (1). problem 15, giving the quantity of 
aqueous vapor in a cubic meter. we get an expression xiring 
the number of kilograms of vapor in 1 kilogram of saturated 
air, or 

( 1  + a ! )  760 
( b -  .378e) 1.293 

0.622 x 1.293 x P 

~ [ 1 + u t )  7C3J 
The number of kilograms of vapor in a kilogratii of saturated 

0.622 P -~ 
- ( h  - .3w * 

( 3 )  air is 0.622 c 
( I,--la78p . . . . . . . . . . . , . . . , . 

Prublmi 17.-How much clry air and how much aqueous 

Solution.-By applying the formulas of problem 16, we get, 
vapor are contained in a kilogram of saturated air a t  10' C!? 

since e a t  10' is 9.14 mm:- 

0.622 x 9.14 
= 0.0075:! kil0grmJ. 760 - .378 x 9.14 from ( 3 )  vapor 

Sum = 1.00000 kilogram. 

The student should be required to construct a table giving 
(1) The volume which 1 kilogram of dry air occupies a t  dif- 
ferent temperatures; (2) The volume which 1 kilogram of satu- 
rated air occupies; (3) The quantity of dry air in a kilogram 
of saturated air; (4) The quautity of vapor in a kilogram of 
saturated air. Example : 

~ ~ 

I 
~ h-i/m,?ont.  f'ribrr uteler. Ii,/uq, U f l f .  

I). AUS1 0.9924i 0. 00753 
- ~ ~~ ~ ~ ~ ~ ~ _ _ _ _ _  ~ ~~~ 

I _ _  - 

@ f '  I ' , ,h, ,  ,n*/+r. 

I"  I 
~~ 

estentled talde of the weights of aqueous rapor in a kilo- 
gram of saturated air under various pressures, in the metric 
system, nil1 l>e found in Bigelow's Cloucl Report, pages 560 
ancl 561. See also Marvin's tables for the Psychrometer and 
Sniithsonian Meteorological Tables. 

dl1 these problems may also be solved for other pressures 
than 760 111111. 

[To be co?~ti~iuud.] 

NOTES ON THE CLIMATE OF KANSAS. 

[Read before the Iianaas Academy of Science Noreniber 30, 1906.1 

I n  reviewing the history of a country it is customary to 
divide it into prehistoric and historic periods. In  writing 
of the cliiiiatolvgy of this State we shall divide it into two 
periods, the tirst period estending from the earliest reliable 
written accounts of its weather clown to the time (1887) that 
systematic observations aucl records were practically begun 
over the entire State. Tho the State is young, it has a few 
records that began in the dim past. The Fort  Leavenworth 
record began iu 18:SG, the For t  Riley record in 1853, the State 
Agricultural Ctdlege record in 185S, the Iiansas University 
record in 1868, the Indepen~lence record in 1872, and the 
Dodge record in 1875. 

- 

B! 'I' B J ~ h i i ~ t . ~ ,  \ertinii Lhrtttam. Datenl Topeka, Kans. 

FLVODS. 
The old river boatmen give an account of a flood in the 

eastern part of the territory and in the Missouri River in 
1 7 ~ 5  which past clown that river and into the Mississippi, 
flooding the American hottonis :ccrom from St. Louis, and 
which for iuany years mas referred to as "The Great Flood." 
Twenty-six years later the Missouri River bottoms were again 
flootlecl. 

About the last of February or first of &Iarch, 1836, heavy 
rains began in what is now the southeast quarter of the State, 
raising the Neosho aucl its tributaries "out of their banlrs " and 
flooding their bottoms; heavy rains continued in the territory 
duriug the season. In  Jiiue the lowlands near the mouth of 
the I<aw were flooded, owing to high water in tlie I iaw and 
Missouri rivers meeting; in the fall a destructive flood swept 
clown the Neosho, carrying away wigwams, houses, and 
gathered and ungatherecl crops. 

I n  lS44 occurred probaldy the worst tloods eastern Kansas 
has ever experienced. Rev. RIr. Meeker, who was missionary 
to the Ottawa Intlians and was living on what is nom the 
site of the city of Ottawa, in his letters gave a graphic 
account of the condition of the Rfarais des Cygnes and the 
destruction wrought by it a t  that  point. Froin the 7th to 
the 20th of May there were niue days of rain, and daily from 
the 93d to the 29th, inclusive, rain fell; it began again on 
June 7, and on the 13th the Marais des C'ygnes overflowed its 
banks, carrying away outhnuses. fences, cattle, pigs, and 
chickens; the river began falling on the 14th and began 
rising again on tlie 20th. 

At Fort  Lenrenworth the rainfall for June, lS44, was 8.53 
inches; for J~ily.  13 inches; for August, 8.08 inches, aggrega- 
ting 28.61 inches for the three months. (The normal annual 
precipitation for that  place is 30.89 inches.) Mr. Richard W. 


