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islands offshore, would afford excellent tests of Seemann’s
theory. Such observations could be very easily made
and the work is certainly most attractive.

Although in considering land and sea breezes, we are
dealing with one of the less important meteorological
phenomena, it is well, in closing this review, to call atten-
tion to the correlation of these breezes with other winds
of more importance but of similar origin. The warmin,
and cooling of the land which gives rise to the on- an
offshore breezes we have been studying, is a diurnal affair
depending on the warming by the sun’s heat by day and
the cooling by radiation and conduction by night. The
changes of temperature and of pressure to which these
breezes are due, are not, however, restricted to the coastal
region, as the breezes themselves are, but extend all over
the land surface. Now what we see as a diurnal phe-
nomenon in the case of the land and sea breezes, we see
as a seasonal phenomenon in the increase of pressure over
the continents in winter and the decrease of pressure in
summer, whereby they become alternatelf areas of high
and low pressure and their wind circulation changes
accordingly. A winter continent, therefore, has out-
flowing winds, and a summer continent has inflowing
winds, and these, which may be called continental winds,
combine with the larger class of terrestrial winds to form
the general winds of the earth. The class of seasonal,
or continental winds is simply a larger example of the
smaller class of land and sea breezes. In the former case
the continuance of the temperature and pressure condi-
tions is for some months at a time; in the latter it is for
& few hours only. In the former case, therefore, a gen-
eral continental circulation of the winds can be estab-
lished; in the latter there is only time for the establish-
ment of a local and incomplete circulation.

NOTE.—ADDED JULY 24, 1803.

Since preparing the above review, the writer has re-
ceived a copy of Dr. Otto Kriitmmel's ‘‘Geophysikalische
Beobachtungen der Plankton-Expedition’ (Kiel & Leip-
zig, 1893), in which are presented the results derived from
the meteorological observations made by Dr. Kriimmel
during the scientific exploring voyage of the Plankton
Expe?lition in the Atlantic Ocean during July-November,
1889. Dr. Kriimmel calls attention to a point in con-
nection with sea breezes which is worthy of note here,
and of careful observation in any future investigation of
this class of winds. He noticed that during the time the
vessel National was anchored off Para the sea breeze was
most marked during a flood tide. This fact the author
finds referred to in several previous accounts of land and
sea breezes. In Staff Commander James Penn’s ‘‘Sailing
Directions for the West Coasts of France, Spain and Por-
‘tugal” (London, 1867, p. 273) it is stated that at Cadiz—

The sea breezes vary from west to north-northwest and are generally
strongest at the full and change of the moon, when they not unire-
quently blow during the whole night. They set in most commonly
with the flood * * *,

Further, in the ‘‘Annalen der Hydrographie,” 1887,
p. 164, the captain of the German cruiser Habicht states
that at Kamerun the sea breeze is the strongest when the
flood tide comes in the afternoon. The explanation of
this fact is found in the mechanical raising, by the rising
tide, of the mass of air lying over the water near the shore,
thus causing stronger gradients aloft and consequently a
more active circulation.
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GRAPHICAL INTEGRATION OF FUNCTIONS OF A
COMPLEX VARIABLE WITH APPLICATIONS.

By 8. Doveras Kiuaum, Ph. D.

[Dated, University of .\lberta, November 5, 1913.]

Many problems in mistliematics can be solved more
simply by graphieal than by analytical methods; espe-
ciully is this true when the problem is presented graphic-
ally, and we wish a graphical representation of the solu-
tion. The object of this present paper is to give some of
the results o% i;mphical integration of functions of a
complex variable as obtained by the author and pub-
lished in part in his Dissertation (1).

Functions of & complex variable arise in a great many
problems of mechanirs and physics. In these the
graphical method of solution is of great advantage, and
gives results in which the errors of graphic methods are
30 small that they may be disregarded.

As an introduction to the integration of functions of
a complex variable I wish to give a short and accurate
method of graphically integrating functions of a real
variable (2), since graphical integration of functions of
a complex variable can be reduced to repeated succes-
sive graphical integrations of functions of a real variable.

In this paper I shall only consider the mathematical
side of the problem and give one or two examples worked
out in detail, so that the physicist or student of applied
mechanics can easily apply my method to other proll)’lltjams.

1. GRAPHICAL INTEGRATION OF FUNCTIONS OF A REAL
VARIABLE.

A function f(z) of the real variable x can be represented
graphically in the x,y plane. On the z axis (ftig. 1) we
take a number of points z,, 2,, x;, ---; through them
draw the ordinates cutting the curve f(z) in the points
a, A, B, C, ---. We now draw 3¢ parallcel to the
r axis so that the arca of ¢ 1jb equals the area of beA.
In the same way we draw de; fg; ki, - - - and produce them
to cut the y axis in the points M,, M, AL, M, -...
Take a point P on the z axis so that Pz, shall equal unity;
and join P to these points Af;, M, M; -... Now the
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“step-curve’’ aMpbedefg ---. We obtain the integral by a net of small squares as in figure 2.
of the broken line by starting from 2z, and draw In accordance with the laws of conformability, our
lines parallel to the lines PM,, PM,, -.. meeting the function f(2) will be represented in the w plane by a sys-

area under the curve 5(::) equals the area under the wherer, and ¢, are such values that the z plane is covered

A

..

> X

1 % X2 X % A % X %

FIa. 1. Graphical representation of f(z) in the z,y plane.

ax

ordinates drawn through the points z,, #;, z, --- at tem of orthogonal curves which cover the plane with a
the points A’,B’,(", .... This broken line A’B’C" --- nect of small squares (see fig. 3).

gives the values of fzf(x)dz for z=z,; z=2,; ---. AY Z Pane

0
In order to obtain the graph of the curve for all
values of £ we draw a smooth curve through the points
A’B’C’ --.. If our points =z,, %, %, --- are grawn
close enough together the broken line A’B’C'D’ ...

closely approximates the curve §f(z)dz. The Inte-

graph (a machine for mechanically integrating curves)
may be used for integrating the graph of the curve

f(@)dz; but I have found by careful work with Loth

methods that the graphical method of integration is
shorter and more accurate. With reasonable care and
the use of a large scale the results obtained will be exact
enough for the solution of all problems arising in applied
mathematics.

2. GRAPHICAL INTEGRATION OF FUNCTIONS OF A COMPLEX
VARIABLE.

A function w=j(2) of the complex variable z =z + iy = rei
i8 given graphically by the conformal representation of
the z plane on the w plane. We can choose the net of
curves in the z plane in any way we like; but in order to Fi16. 2. A system of orthogonal curves in the 2 plane.
have a control over our analytical work we choose a sys-

tem of orthogonal curves We now seek a graphical representation of the function

1'=1',,(n= 1,23, -- -) Z=fff(2)d2

¢=¢,(n=123, -..) in the Z plane; i. e., we seek the curves r=r, and ¢ =,

and
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in our Z plane. If we integrate f(z) from z=0 to z=r,¢"%s
along the curve or path ¢=¢, we have

Z=X+n*=f’}f<e)dz
- [M[utgw +ive o) |acen

_ glbn [ l " rybo)dr +i fo "'v(r,qs,,)dr] )
where .
(@) =ulr, ) +iv(r,dy).
A
v
f@) Piane
0
"R
>—u
F1a, 3.
AU

vl £,)
/

-~

\m

J;tf(l: 9,)dr

\.

F16. 4. Graphical integration of u (r,4,).

Now u(r,¢,) is & function of the real variable r and
can be represented graphically in a u,r plane. Similarly
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v(r,¢,) can be represented in a w»,r plane. We now
integrate graphically by the method of §1 to obtain the

values of
&= f rﬂfu,dv
()

Ta
1)=‘lo‘ vdr (n=0,1,2,3,...)

and

(see figs. 4 and 5).
In order to draw the graphs of the curves

u(r,ba) and v(r,¢y)
we obtain the values of 4 and v which correspond to

ra(n=1,2,3,...)
from figure 3.
In our

Z= f zf(z)dz plane

we draw the axes ffu,dr and f'vd-r so that the angle

between the X axis and the fud'r axis equals ¢, (see

fig. 6).

“From equation (1) we see that the factor €% means
that the _gf axis must rotate through an angle of ¢, in
order to coincide with the & axis. In the &5 plane we
mark the points », ry, 1y, -+ with the coordinates &
and 5. Wae get these values from the graphical integra-
tion of the functions u(r,¢,) and v(r,¢,) (see figs. 4
and 5). They can be transferred over to our new Z
plane by measurement; or, by having our &, plane
drawn on transparent paper, we can mark off the points
T, Tply, - - - Without measuring the values of & and 7.
This latter method eliminates a small error of meas-
urement.

Through the points 7, 7y, --- we draw a smooth
curve which is the required graphical representation of
the curve ¢p=¢, in the Z plane.

In the same way we obtain the curves ¢=¢,; d=¢,;

Through the points 7, on each curve ¢=¢, we

1 o)
| //,% Vi e,)
/
]
L~
0 55 g ) 4

F1a. 5. Graphical integration of o(r,é,).

draw a smooth curve and obtain a net of small squares
covering the Z plane which is the graphical representation
of the function

Z- _]: “fe)de.
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3. GRAPHICAL INTEGRATION OF f(2)=(1 -—249-5-
Let f(2) in the preceding section be (1 ——z‘)"} then we
have bh(; special problem of the graphical integration of
1—2)"%
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into the curves r=r, and ¢=¢, (n=1,2,3, - - -) in the f(2)
plane (see figure 8).

Z Prane
AY
é{}
‘1.
7as,,
h
L 45°
3
\O\O\O_o-— > - —> X 1845°
5e7 fo45°
/ g-0°
o e 503 555 Ll k75 745 822 906 !
Fro.7.
o6 Now in order to graphically represent the function
.6, :
We represent Z= j: f2)dz
2=z 41y =rée¥ in the z plane we integrate at first along the line ¢ =0. Now, of course
by the curves r=ra(n=0,1,2,- - .)and ¢= (Fig- z is a real variable. If we put z=sint, we have tor ¢=0
ure 7). These curves are transformed by the ﬁ:nction L s Ion 3
. . = e—————— 3 t 'I .
f(2)=(1—z4)—‘}- ) 1/1_.2‘ j:-\/l+sin’t j‘:f( Yt
V=l | 4,
fa) FLANe
%
5
%rss
Z <.822
. rages
% é.
%
o
pg-45° r10 0=0°

FIG. 8. Curves rwr; and ¢=gn in the f(z) plane.
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Sfwat
T )
/ \.\
/ fee)
503 555 612 675 145 322 906 /
F1a. 9. Graphic representation of f(t) in a f(f),l plane.
We represent the tunction f() graphically in a f(2),2 ¢=1%45° ¢p=345% ..

plane; integrate graphically ‘and get the values of

2 d get xplained in §2 th
f di— for all real values of z between z=0 and z=1 and get as explained in § e eurves

0 V12! $=145° $=F 45° -+
(see figure 9).

Next we integrate along the lines in our Z plane. The graphical integration is carried out
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u;1)

f u 1)dr
fulz2)dr

-¥@1)
ju(r AL

i (r,e?)d

ufn4)

9

~V(r2)

(1 4)

_—; né)
nlar
'fﬂr(rzgglh

=¥, 6)dr

>

503 555 612 675 745 .822

F1G. 10. Graphical integration along ¢==} 45°, ¢=$ 45°, etc,

906

o,
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as in figure 10 and the results shown graphically in fig- projection, until it coincides with that plane”] around
ure 11. the line ¢ =45°. In the same way we ogtain the repre-
We now have in the Z plane the graphical representa- sentation in the 3d, 4th, ... 8th octant. (See figure
tion of our function Z for all values of z n the first octant  12). The areas A, B, C, D, E, correspond to the areas
A,, B,, C,, D,, E,. The pomts +1 and 44 are branch

* points of the first order. If we let z=2"—! we have
f‘” dz =i dz’
Vi J1=2¢

that is, we only need to rebatt our figure around the line
r=1 to obtain the graphical representation of Z for the
whole z plane. ] , ]

The area inside the circle with radius unity is trans-
formed into the area inside the square abed. (ligure 13.)

The perimeter of the circle with radius unity is trans-
formed into the perimeter of the square abed.

The area outside the circle with radius unity is trans-

70" formed into the finite areas E,, G,, J,, K,, and L,.
In a similar way we can integrate any functions of the

03955 612 675 745

Fia.11. Result of graphical integration of f(t) in s f{¢),¢ plane. complex variable z, and obtain a graphical representation

on . . . <. . of Z for all values of z.
of the circle with radius unity. The function is continu- This method is especially valuable in integrating elliptic
ous everywhere even at the point z=1 which is & branch integrals of the first, second, and third kind. o same

Z FrLane (o
z
V7i-Z%
P : f' 4 b 3 e

FrLane

F 1)
c |8 ' /A,
A ¢ a
5 2_,
6 0 ! 9

3 7 d ) h
F16. 13.
methods can be used for solving all problems involving

tg}iaphica.l integration of functions of a complex variable
at arise in mechanics and applied mathematics.

F16. 12. Nlustrating ‘‘rebattement’’ for the function in the second octant.
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