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(figure 2) the snowfall in the south was interrupted during
a temporary rise of temperature, but that in the Ohio val-
ley increased in intensity as the pressure fell. By the
morning of the 12th, the southern cyclone had appeared
and in connection with it, snow was falling over a large
area (figure 3). The snowfall as it began over the Middle
Atlantic States is described as having come from a hazy
sky. No. 405 of Mr. Bentley’s (4) photographs of snow
crystals shows the small tabular snow-crystals which fell
in Jericho, Vt., on February 13, 1899 (5). As the cy-
clone increased in strength and moved up the coast the
snowfall area became more localized and the snowfall
heavier (see U. S. Daily Weather Map, February 13, 8§
a. m., and figure 4). By February 14 at 8§ a. m. the cy-
clone had advanced to Nova Scotia and snow had stopped
falling over most of the eastern United States, as is evident
from figure 5.

Figure 6 shows the distribution of the snowfall of the
whole storm. Two maxima of 44 inches each occurred in
-south-central New Jersey and in southeastern Pennsyl-
vania. Depths of more than 30 inches were reported from
southeastern Massachusetts, eastern Pennsylvania, Dela-
ware, eastern Maryland and northern Virginia. Thus,
the snowfall was at a maximum where the strongest pres-
sure gradient occurred and where local topography had
the greatest cooling effect on the snow-bearing winds.
The distribution of snowfall in this storm is characteristic
of the northeast snowstorms of the Atlantic coast,—the
heavy snowfall being generally confined to a belt about
200 miles wide along the coast.

Snowstorm of February 20-23, 1912,

The snowstorm of February 20-23, 1912, attended a
well-developed elliptical eyclone which moved in a nearly
straight path from the western Gulf States to the Gulf of
St. Lawrence. In front of the cyclone was the character-
istic sirocco with heavy rain and thunderstorms; in the
rear followed the cold-wave with snowflurries, and on the
north, was the heavy northeast snowstorm. The iso-
therm of 32° F. passed in a general northeast-southwest
direction through the center of the cyclone, dividing the
rain- from the snow-area. Far in front, with the usual
southward bend of the 32° isotherm, the snowfall area
(figure 7) extended south of the track of the center of the
cyclone. Nearer the center, rain fell. (See U. S. Daily

eather Map for February 21, 1912, 8 a. m.)

The snowfall chart for February 21 presented in figure
8 shows the large southward extent ofp the light snowfall
of west-wind snow-flurries. Figure 9 for the next day
shows this area farther east. The central Appalachians
are marked by heavier snowfall on the windward side
and none on the leeward. Likewise the western Adiron-
dacks had more snowfall than the eastern: this was the
reverse of the conditions of the day before, when an east
wind was bringing the snow. On February 23 (fig. 10)
the west winds of the eastern Great Lakes made heavy
snowfall on the leeward shores and mountains. Around
Lakes Huron and Michigan, snowfall with southerly
winds was beginning with the advance of another cyclone.

Taking the storm as a whole (fig. 11), the snowfall,
although patchy, occurred in belts as was the case in Feb-
ruary, 1899. The belt of maximum snowfall was, on the
average, 150 to 200 miles north of the track of the center
of the cyclone. In this belt the heaviest snowfall, 30
inches, occurred on the west shore of Lake Huron, most
of it falling on the 21st with the easterly gale. The next
heaviest snow, 24 inches, fell on the southeast shore of
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Lake Michigan with a north and northwest wind (6).
Thus, both areas of maximum snowfall were located
where cyclonic and local effects made the strongest
combination. '

SUMMARY.

As illustrated by the great snowstorms of February
10-14, 1899 and February 20-23, 1912, the distribution
of snowfall in cyclones of the eastern United States is
controlled by eyclonic action, temperature, topography
and proximity to large sources of moisture. Pl‘his. dis-
tribution is roughly as follows:

1. The snowfall is spread over a wide territory on each
side of the track of the cyclonic center.

2. The heaviest snowfall comes with northeast winds
and 1‘(I)ccurs in a belt about 100 to 200 miles north of the
track.

3. The northwest winds in the southwest quadrant
sprinkle light snowfall over the country to a distance of
a.Il))out 300 miles south of the track of the center of the
cyclone.

4. The effects of local topography and geography
make the distribution of snowFal?patchy.

The writer wishes to acknowledge the courtesy of Mr.
R. H. Weightman of the Forecast Division, U. S. Weather
Bureau, in sending tracings of some of the 8 p. m. weather
maps.
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ON THE INFLUENCE OF THE DEVIATING FORCE OF THE
EARTH'S ROTATION ON THE MOVEMENT OF THE
ATR.(1)

[Communicated to the International Meltgggtillogical Congress at Chicago, Iil.,, August,

By Dr. Nis ExHOLM.

(Dated Statens Meteorologiska Centralanstalt, Stockholm, 1393. Revised by the
author, June, 1914.)

1. ON RELATIVE MOTION IN GENERAL.

Let there be a system of material particles or points at
which observers are stationed; the earth's surf};ce con-
stitutes such a system. An observer at one point of this
system can detect a motion of the other points only by
means of the changes in their mutual distances and direc-
tions and will thus conclude that the whole system is at
rest. This perception of motion among the particles of a
system is called relative motion.

Now suppose the whole system of material particles to
include not only the earth but also the whole solar system;
then all motions are considered as relative to this system,
which as a whole is supposed to be at rest.

If the system include the whole universe, then the latter
must necessarily be considered as at rest.  Since we have
no more general system of points, therefore, motion rela-
tive to the universe as a whole is the most general of which

i Sar MoONTALY WEATHER REVIEW, February, 1914, 42: 93.
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we are able to conceive and may be called absolute motion.
More strictly speaking, absolute motion may be defined as
motion relative to a system at rest, but such a motion is
on%y an imagination.

n meteorological researches motion is generally con-
sidered relative to the terrestrial system, and our present
purpose will be to determine the general laws of such
motion.

The movement of a material system consists either of a
translation or a rotation, or of both simultaneously.
Translation takes place if the straight line joining any two
points of the system always remains of the same length
and parallel to itself; or, in other words, when all points
of tﬁ)e system have simultaneously equal and parallel
velocities and accelerations, although they may vary with
the time.

Now, with respect to translatory motion, we know from
experience that the relative motion of the points in a sys-
tem is quite independent of any motion of the system as
a whole. Thus, an observer at any point in the system,
unless he has a motionless point of reference outside the
system, will be unable to detect the motion of the system
as & whole; but, on the other hand, he will not need to
know this latter motion in order to determine the laws of
relative motion within the system.

This is not true of rotatory motion, which is of such a
character that a straight line joining any two points of the
system is in general continually changing its direction.

ow, suppose all these connecting lines to be of constant
length, then the system will be in relative rest, but the
laws of motion of a point moving relative to the system
will be essentially different from those for a nonrotating
system. In fact, we will scon prove that in a rotating
gystem the relative motions within the system will he
governed not only by the true or absolute accelerations, or
Jorces, but also by two apparent forces produced by the
rotation of the system.

Generally, the motion of a system is simultaneously both
rotatorv and translatory; butin all theoretical researches,
in accordance with a well-known mechanical prineiple, we
may suppose these two species of motion to take place
successively and independently. For instance, we may
supgose, first, that in any system the point A moves to
its final position M’ by means of translation only; and,
second, that all other points of the system are brought to
their final positions by rotating the whole system about
M. Also, since any translatory motion of the system
does not influence the relative motions within it, we may,
for the sake of simplifying the study of relative motions,
imagine the system brought to rest by giving it a trans-
Iatory motion equal and opposite to the actual translatory
motion.

With respect to rotatory motion, however, it may be
that there always exists in a rotating system a series of
points located on one and the same straight line that
remains in the same position for at least an instant, thus
forming an instantaneous axis of rotation. Generally, this
axis is changing its position and direction with time, rela-
tive to both absolute space and the rotating system. As
to the terrestrial system, however, the change in the
direction of the instantaneous axis of rotation is so
extremely slow that its influence on relative motion
within the terrestrial system may be neglected; also, the
rotatory or angular velocity of this svstem is constant;
and thus our investigations are very much simplified.

In investigating the laws of motion of a particle we
have to deal chiefly with its welocity and acceleration of
motion, both of which are determined at any moment by
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their respective magnitudes and directions, the latter of
which may be either positive or negative.

The laws of velocity are easily determined, for the
absolute velocity is always the geometrical resultant of
the velocity of the particle in its relative path combined
with the velocity OP the point of the system with which
the moving particle at that moment coincides. The proof
of this is given immediately by constructing the paral-
lelogram 0%1 velocities. Similarly, we find that the rela-
tive velocity is the resultant of the absolute velocity and
the reversed velocity of the point of the system with
which the moving particle is coincident.

As to the earth’s motion, different parts of it, that is,
different points in the terrestrial system, generally have
different absolute velocities on account og the rotation;
and accordingly we conclude that a particle moving rela-
tive to the earth, since on account of its inertia it tends
to maintain its absolute velocity, must generally tend to
change its relative velocity with reference both to its
magnitude and direction. This reasoning, if correctly
followed, will lead to the exact determination of the
influence of the earth’s rotation on the relative motions
of the air. On the contrary, by means of an incomplete
but very common deduction that considers only the
changes of magnitude of the relative velocity, neglecting
the changes of direction, we are lead to the old but inexact
explanation first given by Hadley in 1735 (2), and after-
wards repreduced by Dove and several other modern
writers, especially in popular treatises.

The eomplete and exact solution of this problem was
first given by G. Coriolis in 1835 as a purely analytical
deduction (3); but the first extended application of
Coriolis’ theorem to air motions was made by Ferrel (4),
and later by Guldberg and Mohn and others.

Ferrel's deduetion, like that of Coriolis, is purely ana-
Iyticai, and, as it seems, is an independent one. Guld-
berg and Mohn (5) as well as several other later meteor-
ologists, merely cite the required theorems as known from
treatises on theoretical dynamics. The purely analytical
deduction, although it is exact and general, is not so per-
spicuous as a geometrical demonstration, and I therefore
tKink it may be well to give here a perfectly rigid and
general, and very simple proof of the theorem of Coriolis,
probably due to Delaunay (6), and so much the more as
several elementary proofs, e. g. those of Sprung (7), and
others, are neither rigid and general, nor simple.

II. CORIOLIS’ THEOREM.

Lemma. The acceleration of a mobile mass may be
geometrically determined as follows:

Let AB, figure 1, represent a part of the path that a
mobile mass describes in the infinitely short space of
time df, and v its ve-
locity at the point A. .
If there were no ac-
celeration the mobile
mass would, in the A
time dt, describe the <

ath AC=wvdt, AQ

eing tangent t» AB /'-/:9' /.
at 4. In order that . )
it may come to the point B, there is also required a
component of motion, CB, and to produce this a con-

2 . .

stant acceleration,"T(;?, must act during the time dt.

Now, dt being infinitely small, the acceleration during
this time is necessarily constant.
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Coriolig’ theorem.—Now let AB, fig. 2, represent the
absolute position in space at the time ¢, of the path of a
mobile ]l}: which we will suppose to be a particle of air

4.2

in the terrestrial system (8); A’'D’ its
at the time ¢t+dt; MM the position of the path of M
relative to a fixed point in the terrestrial system; hence
MM’ is an infinitely small Fart of a parallel of latitude on

moving osition

the earth. The point M of the terrestrial sy<tem will, by
the earth’s rotation at.the time t-+dt, be carried to M,
and, similarly, the whole path AB will have been trans-
ferred to A’B’. Now, let » represent the ab-clute, and
v, the relative velocity of the mobile A at the time ¢, and
v, the velocity of that point in the terrestrial sy-tem with
which M coincides at this time. By taking the points
M, and M,’ in AB and A’B’, so that
MM = M M/ =vdt,
then M,’ will be the actual position of the mobile at the
time ¢+ dt, and M A’ the absolute path during the time dt.
But, according to the principle stated in Section 1, we
may suppose the absolute motion from A/ to M, per-
formed as follows: First, let the earth receive a tran-la-
tory motion, so as to carry AB to A4, B, then 4/ to A,
and M, to m. It follows that M'm is equal and parallel
to MM,=vdi. Then let the earth rotate about the axis
NM'S, parallel to the earth’s axis (in the figure N is
directed northward); therefore A4,B, will be carried to
A’B’, and m to M,’, and thus they will come to their
roper positions at the time ¢+df. The path n A,’ will
Ee an infinitely small arc of a circle whose plane is per-
pendicular to NS (also to the earth’s axis, and parallel to
the llsane of the earth’s equator), and whose center, r, is
on NS.
Let w re‘spresent the angular velocity of the earth, and
y (=mM’S or M,’ M’S) be the angular inclination of the
path of the mobile to the earth’s axis at the time ¢; then
the angle of rotation, m x M,’ will be wdt, and the radius
mz will e?ua.l v dt sin y. Hence, the arc m M," = wr, sin

rd#, or if for the sake of abbreviation we put
@, =2w, sin 7, ¢))
we will have
_2mM/
Po="gF -
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Let us draw at M tangents to the curves AB and MM,
and on the-e take the lengths M ('=vdt, and MD=vdl,
and complete the parallelogram A/CKD: then the
direction of the diagonal M A coincide: with that of the ab-
solute velocity v, and the length MK =udtis equal. Now,
according to the lemma, the abzolute acceleration which

. . 2R M/
we will represent by ¢ is equal to Tﬁ;'
Also, since KF is equal and parallel to CM,, the rela-

2
tive acceleration may be represented by ¢,=%,r, and

finally, Fm being equal and parallel to D M’, since M F
and M,m arc equal and parallel to MD and M M’, respec-
tively, the acceleration of the point in the terrestrial
system may be represented by

2DM 2Fm
Pe=—gp = dE (2)

Now, according to the well-known theorem of the
composition of forces or velocities, we see by inspection
of the vkew=vkew quadrilateral AFm M’ [that is, a
quadrilateral whose sides are not in one plane], that
KM is the geometrical resultant of KF, Fm, and m M,’.
Since the same reavoning applies to any quadrilateral
similar to KFm M,’ and <imilarly situated, and calling to
mind the mechanical significance deduced above for the

. 2 .. .
sides @, @,, @, and @,, which are 77 times the sides of
the above quadrilateral, we have

@ =geometrical resultant of @,, @,, and @.;  (3)

that is, the absolute acceleration ¢ is the geometrica
resultant of the relative acceleration ¢,, the acceleration
@,, of the point on the terrestrial system, and the accelera-~
tion, @,, defined by equation (1). This is Coriolis’
theorem, the meaning of which will now be more closely
examined.

The component of acceleration, @,, is called by Des-
périoux complementary acceleration (accélération comple-
mentaire); Coriolis himself less conveniently calls it the
composed centripetal acceleration (accélération centripdte
composée) and calls the acceleration in the opposite direc-
tion, of which we will soon speak, the composed centrifugal
acceleration (accélération centrifuge composée). Accord-
ing to equation (1) the magnitude of the complementary
acceleration, @,, isequal to twice the product of the angu-
lar velocitf' of the earth, w, into the projection of the
relative velocity upon the equator plane (=v, sin r); and
by inspection of figure 2 we find tfl’at since the direction
of @,, including its sign, plus or minus, coincides with
m M, it is perpendicular to the relative path as well as
to the axis of rotation, and acts in the same direction and
with the same sign as the rotation. If there is no rota-
tion (w=0), @, will vanish, as in fact we know it must,
since the motion is then a translatory one.

On account of the simple rotatory motion of the earth
we may easily deduce a general and simple expression for
the acceleration, @,, of the point on the terrestrial system.
Its direction and sign coincide with DM, figure 2, and its
magnitude is given by equation (2). We see from figure 2
that DM is parallel to the equator plane and, as df is
infinitely small, it is also perpendicular to the path MAM’
and thus is directed inward toward the earth’s axis.

Let us redraw this part of the figure in figure 3. Let
AM'L be tangent to M A’ at M’. Since the arc MM’

= o,dt, is a part of a parallel circle of radius r, we
shall have

MM =vdi=rwdl;
from which we obtain, v,=rw.
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Also the angle DL M’ formed by the two tangents at
M and M’ is equal to wdt; and since in the infinitely nar-

v/
z

M
.M,
Fig3

row triangle DL M’ the two angles at D and M’ may he
considered right angles and therefore equal

LD=LM =L M=jv,dt=ordi;

also, the side D M’ may be considered equal to the arc
D 11, the center of which is at L; consequently

D M = DLodt = jw*rdf =1 0dp
and thus by equation (2) !

2
Py=w'r = 1;.? . 4)
Let 2 be the geocentric latitude and r the corresponding
radius (9) of the earth; then
7, =7 c08 A,
and thus finally

s
rcos A’ (5)

@, is called the centripetal acceleration of the earth; it
forces the parts of the earth to move in parallel circles
around its axis instead of in straight lines in accordance
with the law of inertia. The force required is taken from
gravity, and therefore the remaining component of
gravity, called apparent gravity, the only component that
we are able to observe directly on the earth, is a little less
than the absolute gravity, as that calculated by astrono-
mers is called, and acts in a slightly different direction.

In order to conveniently a.ppliy the theorem of Coriolis
to meteorological phenomena, we must reverse it, as a
c%loser inspection of the above-named accelerations will
show..

Among all these, the acceleration of the point in the
terrestrial system, @,. is the one that may be most easily
and ezactly determined, since it depends only upon the
dimensions and motion of the eurdl and upon the geo-
graphical position of the mobile, as is seen from equations
(4) and (5). Next come the absolute accelerations @,
such as the ahsolute gravity, the gradients of atmospheric
pressure, and friction. Generally these may either be cal-
culated, or determined by experiment or observation.
More difficult is the determination of the complementary
acceleration @,; it may be calculated, but only when the
relative velocity v, is known, as will be seen from equa-
tion (1); but v, may be determined by observation.
Finally, for the relative acceleration, @,, there is at pres-
ent no method of experiment or abservation to determine
it, and no other method of calculating it than by means
of Coriolis’ theorem. Thus in all meteorological re-
searches @, is to be regarded as unknown in equation (3),
which must be solved with respect to it.

For this purpose let us draw m figure 4 the skew quadri-
lateral ABCD, whose sides, AB, AD, DC, and CB, are
equal to and have the same direction as @. @,, @,, and
@, respectively;? this quadrilateral is therefore similar
and similarly situated to KFm M|’ in figure 2.

Py=w?r cos 1=

2In figure 4 the side B C has been lettered ¢ » instead of N—Em'ron.
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By inspection AD is equal to the resultant of AB, BC,
and CD, asregards magnitude, direction, and sign. Now,
AD<=e@, AB= @, and BC and
CD are @, and @, reversed. A
Let the former be denoted by
¢, and the latter by ¢, in re-

spect to magnitude, direction, Pr
and sign; then P
: /)
@, =resultantof @, ¢, and ¢, (6) @
S

This theorem, which is only
another form of Coriolis’ the-

orem, when referred to relative 7 Dew c
air motion, hy putting force

instead of acceleration propor- [}j 4
tional to the relative motion, '

. See footnote.
and hereafter representing the o footne

relative velocity simply by », may be expressed in words
in the following manner: '

The external vmpressed forces, @,, which accelerate an air
particle have the foglo-wi'n.g componenis:

1. The absolute impressed forces. @ (absolute gravity,
pressure gradients, and. friction).

2. The centrifugal force of the earth, ¢,, at the geographical
point of the particle, $,. being equal to w’r cos A, meeting the
earth’'s aris perpendicularly, and acting outward. '

3. The deviating force, ¢, which is equal to 2wv sin r, is
parallel to the equator plane and perpendicular to the path
of the puticle, and acts in a direction opposite to that of
the earth's rotation.

We call to mind that w is the angular velocity of the
earth and r the radius drawn from its center to the par-
ticle, A the geocentric latitude of the particle, and y the
angular inclination of the path of tﬁe particle to the
earth’s axis.

The two forces ¢, and ¢ are called apparent ezternal
impressed forces; these having been introduced into the
equations of dynamical meteorology, we may treat at-
motheric motions according to the usual mechanical
methods, quite as if the earth were at rest. The great
advantage of this method of treatment is evident from
the fact that the earth seems to our immediate perception
to be at rest and consequently the air motions to be abso-
Iute motions. Therefore, since Coriolis’ theorem affords
a quite exact method of treating the meteorological phe-
nomena according to our natural perception oF them, it
is of the highest importance to meteorological science.
In fact, this method has already been generally accepted;
but certainly in an incomplete manner, as several com-
ponents of forces have been neglected at random without
determining the errors thereby introduced.

III. APPLICATION OF CORIOLIS’ THEOREM TO DYNAMIO
METEOROLOGY.

First, the centrifugal force ¢, may be very briefly
treated, for as has already been said this force and the
absolute gmvit-?r form the two components of the a,piaz-
rent gravity. Under the action of this force the earth’s
once fluid sphere has taken the form of an oblate spheroid
whose surface, being at all points normal to the direction
of apparent gravity, constitutes a level surface (surface
de niveau). At the present time this applies directly
only to the surface of the sea, although it also applies to
the ideal sea surface drawn through the continents, which
has been determined by a system of levels, and is the sur-
face to which barometric observations are reduced.
Thus the horizontal component of the centrifugal force is
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accounted for. The vertical component is considered by
taking into account the variations in apparent gravity
with latitude and altitude, this variation being caused
partly by the centrifugal force and partly by the sphe-
roidal form of the earth and the consequent variation in
the distance from the center with latitude. Thus we
obtain the well known formulas for reducing air pressure
to normal gravity (gravity at lat. 45° and at sea level).
With regard to the distance between two level surfaces,
we must remember that two such surfaces are nearer
each other at the poles than at the equator, their mutual
distances always being inversely proportional to the cor-
responding intensities of apparent gravity (10). We
need not here enter into the details of this question.
Second, as to the deflecting force
$=2wvsinr; (7)
its intensity and direction depend upon the position of the
relative path and on the relative velocity, and it must
always be treated as an external impressed force.
Let us first refer the motion to the earth’s axis and the
equator plane. Let figure 5 present a north polar pro-

Fig &

jection of our globe, AB the projection of the relative
path, and MC=vsin }71« that of the velocity, », of the
article M. Then with respect to magnitude, ¢ =2w MC.
}.[)f now we imagine an observer placed at M, parallel to
the earth’s axis and with his heag towards the north pole
(that is, perpendicularly upward in the figure), and Jook-
ing toward g, he will see the earth rotate before him from
his right to his left hand; and therefore ¢, which is
directed in the opposite direction, will urge the particle
toward his right hand and perpendicularly to 3/C in the
equator plane, as drawn in the figure. In the Southern
emisphere ¢ acts similarly toward the left. If the path
is parallel to the equator (y=90°), ¢ will have its maxi-
mum value 2w, which is a constant for the whole earth.
If the path is perpendicular to the equator (y=0°), ¢
vanishes at all points on the earth.
Second, let us refer the motion to the zenith and the
horizon.
As has just been shown, in the neighborhood of the pole
in a horizontal current, ﬁ is always equal to 2wv, is inde-
endent of the azimuth of the motion and is directed
rizontally to the right at the north pole, and to the left
at the south pole; there is no vertical deviation, and
consequently a vertical current is not deviated at all.
In the neighborhood of the equator in a north-south
horizontal current, the path being perpendicular to the
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equator {)la.ne, the deviation is zero; but in an easi-west
current the path is parallel to this plane. Therefore
¢=2wv, is directed vertically upward in a wind from
the west and vertically downward in a wind from the
east, as will be immediately seen from figure 5. If a
horizontal current blows from some other azimuth, the
projection MC represents the east—west component of
v; and thus the deviation is always vertical and propor-
tional to the east—west component, being directed up-
ward in a west wind and downward in an east wind.
Also, we find immediately that in a vertical upward cur-
rent ¢ is directed horizontally westward, and in a vertical
downward current it is directed horizontally eastward,
and that ¢ =2wv.
Now let us consider the deviation at any latitude A.

1. Aar current horizonial.

(a) If the current is directed poleward, as in figure 6a,
¢ will be directed horizontally eastward, and the projec-
tion of » on the equator plane being vsini, we obtain

¢=2wv sin A
The same value is obtained if v is directed toward the
equator, but ¢ will be directed westward.

(b) if v is directed eastward (west wind, fig. 6b), ¢ is
in the meridian plane parallel to the equator and directed

S
/29’.5.

upward, thus forming, with the vertical, the angle 1;
and » being parallel to the equator, we get

¢=2wv.
Thus the horizontal component of ¢, which we will

call ¢, will be directed toward the equator, and we shall
have for its magnitude

¢ =2wo sin 1;
the vertical component, which we will represent by

&z
will be directed upward toward the zenith, and we shall
have for its magnitude

d:=2wv cos A

If v is directed westward (east wind), we get the same
values for ¢, ¢», and ¢,, but the directions are reversed;
¢ toward the earth’s axis, ¢, toward the pole, and ¢,
downward (toward the nadir).
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(c) If v is directed in any azimuth, it may be resolved
into two components, as presented in figure 7, the one,
v,= MX, with a northsouth direction; the other,

X C

1. 7

v,= MY, with an east-west direction. The effect of the
component v, will be, as shown in (a), to produce a com-
ponent of deviation directed along A1, which may be
expressed by the following equation:

M,=¢,=2wv, sin 1;

and the effect of the component v, will be [as shown in
(b)] to produce a horizontal component of deviation,
which may be expressed by

M,=¢.=2wv, sin A

If the resultant of ¢, and ¢, is represented by ¢, this
latter will be the horizontal component of the force of
deviation. Now, by the above formulas,

Gy ¢ Pe=z 1 Vy;
and since the right-angled triangles Myc and M.X C are
similar, therefore also ¢, : ¢, = : v;, and consequently

¢';, =2¢p sin A. (8)

Also, the angle C Mcis 1-i§11t,-angled, and it is immediately
seen that ¢, is directed to the right in the Northern
Hemisphere (for which the figure is drawn), and to the
left in the Southern Hemisphere. This is the theorem,
already generally known, on the horizontal force of
deviation in a horizontal air current.

Finally, we get also [from (b)] a vertical force

¢.=2uww, cos A, )

directed upward in a westerly wind (v, directed east-
ward), and downward in an easterly wind (v, directed
westward).

2. Air current vertical.

The projection of v on the equator being v cos 2, the
deviating force will be

¢=2 wv cos A, (10)

and it is immediately seen that it is horizontal and is
directed westward in an upward, and eastward in a down-
ward current.

8. Air current directed obliquely upward or downward.

This case may be easily reduced to the two former ones
by resolving vinto three components—the first, v, north-~
south; the second, v,, east-west; and the third, v,, verti-
cal; taken positively to the north, east, and zenithward,
respectively.
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From v, we get [by (1. a.)] only & horizontal east-west
component of deviatihg force, which may be represented
by the equation

¢y’ =2 wv, sin 1;

from v, [bﬁ case (1. b.)] we get a horizontal north-south
force which may be expressed by

¢z=—2 wy, sin A,
and a vertical force that may be expressed by
¢:=2 wy, cos 4;

from v, [bly case 2] we get only a horizontal east-west
force which may be expressed by

¢,/ =~—2 wv,; cos A
Thus we get the following components:

$p=—2 wyy sin 4;
&+ ={¢y= 2 w(v, sin A—, cos 1);
¢.= 2 wv, cos i

(11)

Formula (11) represents, as may be easily seen, the
components of the deviating force for either hemisphere
as to magnitude, direction, and sign, if we make 2 positive
at a northern latitude and negative at a southern latitude.

Now let « be the azimuth from which the wind blows,
counted from south through west; a will also represent
the azimuth {owards which the wind blows; that is, the
azimuth of v counted from north through east. Let 8 be
the inclination of the path of the wind to the horizon, a
positive value of g corresponding to an UJEWMd wind,

and a negative value to a downward wind. Then by pro-
jecting v on the axes we obtain
vy=vcosacosff; wv,=vsinacosfB; v,=vsinf;

and by putting these values of v,, v,, and v,, in (11), we get

¢z=—2 wv sin @ cos Bsin 4;
¢y= 2 wv(cos @ cos 3sin 1—sin 3 cos 4);
¢:= 2wvsin «cosfcosi;

The complete discussion of formulas (11) and (12) bein
somewhat long, I will for this refer to my paper (1) an
give here only the chief results.

In the Northern Hemisphere in an obliquely upward
current the horizontal component of the deviating force of a
south wind is less, and t}&t of a north wind 1s generally
more, than in a horicontal curreni. In an obli uefy down-
ward current the reverse holds good. As to the Southern
Hemisphere, we need only to interchange the north and
south in the above proposition. This symmetry of devia-
tion is greatest near the equator. For instance, in the
Northern Hemisphere, if the upward inclination 8 of a
south wind is equal to the latitude 4, ¢=0; (11) if >4,
¢ will be directed to the left. The north and south winds
are never vertically deviated.

If in an east-west current the air is obliquely rising or
falling ﬁ,, will not be directed exactly perpendicular to v,
but if the air is rising it throws the east winds a little for-
ward and the west winds a little backward, and the reverse
of this if the air is falling. The west winds are always
deviated upward and the east winds downward.

(12)

IV. RELATIVE PATH OF INERTIA OF AN AIR PARTICLE.

If no external forces accelerate a mobile, it will, on
account of its inertia, describe a straight line with a
constant velocity; this is therefore the absolute path of
inertia.

The path that the mobile under the same conditions
will describe on a moving system, such as the earth, is
however generally a curved line, on account of the two
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apparent forces ¢, and ¢ then brought into play, and it
is described with varying velocity. But the simultaneous
absolute path being a straight line and the absolute
velocity constant, this relative path is also evidently a
real path of inertia. Such a path would be described hy
a particle of air moving relative to the earth’s surface, 1if
the influence upon it of the absolute gravity, pressure-

adients, and friction, always balanced each other.

ince the absolute path is a straight line, such a particle
could never be at relative rest.

In meteorology there has, however, been introduced
another definition of the path of inertia, which, while it
does not well correspond to this name, may yet be of use
in some investigations. Let us suppose that the influence
of the apparent gravity, pressure-gradients, and friction,
on the air particle, always balance each other. Under
these conditions, if the air particle was at relative rest at
the beginning it would remain at rest; and if at the begin-
ning it had a certain relative velocity, due to some ex-
ternal impressed force, it would on account of its inertia
maintain this velocity unaltered, and only change the
direction of its relative path; for the only force acting
upon it would be ¢, which has been shown to be always
acting perpendicularly to the relative path. Such a path
of inertia may consequently be called the apparent path
of inertia.

1. First, let the original direction of the path be
parallel to the earth’s axis. Then ¢=0, and the relative
path is a straight line parallel to the axis of the earth.

2. Second, ﬁat the original direction of the path be
parallel to the equator palane, and the original velocity
equal to v. Then the deviating force will be ¢=2w», and

so acting (Fa.ra,llel to the equator plane. Since ¢ is
constant and perpendicular to v, the path will evidently
be a circle whose radius, p, will be determined by putting

>
the resistance of inertia of the particle, %, equal to ¢, thus:

v =2ww,
0
by which
2
p=g_

The periphery being 27p, and v being the part of

the periphery described in a second of mean solar

‘)

time, the time of the whole revolution will be _%n___g
seconds of mean solar time; that is, one half of a siderial
day (12). The radius is proportional to v, and if
v=1 m./sec., p=0 857 meters; if v==10 m./sec., p=
68 570 meters, etc. The direction of motion is opposite
to that of the earth’s rotation; at the pole the plane of
the path is horizontal and at the equator it is vertical,
the direction being eastward in the Jower half of the path
and westward in the upper half. At any latitude the
plane of the path, Whi("-ﬁ is always paralle] to the plane
of the equator, will be inclined to the horizon, the direc-
tion of motion being the same as at the equator.

3. Third, let the original direction of motion be inclined
by an angle r to the earth’s axis. Then let » be resolved
into two components, v cos y and » sin y, parallel respec-
tively to the earth’s axis and t5 the equator plane. The
effect of the first component alone will be to cause the
particle to describe (by 1 above) a straight line parallel
to the earth’s axis, with the constant velocity » cos r;
the effect of the second component taken alone will be
(by 2 above) to cause the particle to describe a circle
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parallel to the equator plane and having the radius
"{%Z_ The actual path will therefore be a helix, having

its axis parallel to the earth’s axis.

We may also attempt to determine the path of inertia
of a particle moving in a horizontal plane at the latitude A.
Here, also, if 4 is constant the path will be a circle having

the radius equal to ‘Ta;;,i—nl ; the time of revolution will be

LFTirn—/I ; that is, § cosec A times a siderial day (13). Such
a path of inertia can exist only when certain vertical
forces, such as pressure and temperature gradients, con-
strain the particle to always remain in the same hori-
zontal plane; for instance, when the vertical equilibrium
of the atmosphere is very stable.

V. COMPARISON BETWEEN THE THEORY AND EXPERIENCE.

Thus far our deductions have been purely theoretical,
and the results given above possess mathematical cer-
tainty; but whether the apparent forces generated by the
earth’s rotation are essentially important to dynamic
meteorology depends upon the order of magnitude of
these forces. ney will be of importance only when they
are of the same order of magnitude as the absolute forces,
pressure gradients, and friction, which we know from
observation produce and stop air motion. This question
will now be examined.

In comparing these forces we shall express all in the
centimeter-gram-second system.

The wunit of force, the dyne or gs.e?zn’ is the force which
acting during one second (sec.), mean time, on a mass of
one gram (g.) produces an acceleration of one centimeter
(em.). Thus pressure is measured in dynes per square

. ((lyne g )
centimeter { ~——= 3
cm®  cm.sec

A normal atmosphere (measured by a column of mer-
cury 76 cm. in height reduced to normal density and
gravity) is equal to 1.01325X10° (% and thus very
nearly a million dynes or one megadyne per cm?.

In a horizontal air current the only moving force is the
horizontal gradient —dp/dz, that is, the diminution of
pressure per unit of length along a level surface, or a
surface at all points normal to apparent gravity. Let @
be this gradient in centimeters o} mercury for 1° along
the meridian, dp the diminution of pressure in dynes/ecm?
and dx the corresponding variation of length expressed in
centimeters; we will then obtain

_dp_101326X10°90 o . dynes.
dz 76 1007 M sy
that is, .
dp_ B ' g
—‘E_O'OOLOOG‘ M e sec® (13)

This equation represents the variations in the pressure
acting on 1 cubic centimeter of air moving in a horizontal
path. In order to obtain the acceleration in cm./sec.?,
1t must be divided by the mass of a cubic centimeter of

Elngg; we thus
obtain for the acceleration produced by the gradient &,

air ; that is, by the density of the air, 4, in

1dp 0.001200 , . cm.
~sdz” 8 O Mga (14)
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For example, let the air have a temperature of 17.0°C.,
a pressure of 75.3 cm., and a relative humidity of 70 per
cent, a condition that nearly corresponds to the summer
mean of northern Europe; then §=0.001200, and the
acceleration sought will be simply equal to G.

We thus see that at the mean air

6=0.001200(,—$£,, the acceleration produced by G will be
expressed by the same measure of length as the gradient
itself, if this is given for a meridian degree.

Now we know by observation the relation between
gradient and wind velocity in a steady motion. In a
cyclone, for example, a gradient of 5 mm. (=0.5 em.)
will generally produce stormy winds with a velocity of
about 30 meters per second (v=3 000 cm./sec.?). Then,
since w=0.00 007 292, we get by equation (7) for a
current parallel to the equator ¢=0.44 em./sec.?, which
is nearly the same value as that for the acceleration pro-
duced by the gradient, this latter being 0.5 cm./sec.?,
. Further, since, as we know, the horizontal deviation of
the wind from the direction of the gradient amounts to
at least 60°-70°, only @ cos 60° to & cos 70° or about
r%to % of the gradient force will accelerate the air move-~

density,

ment, while the remaining component, G sin 60° to
16
17
the path, will unite with the horizontal component of ¢
[or ¢»=2w vsin A by equation (8)] in a resultant perpen-
dicular to the path and tending to incurve it, thereby
modifying the (fistribution of the mass and the pressure
of the air.

The vertical component of ¢ [or ¢,=2wr, cosd by
equation (9) or (11)] will also tend to incurve the path,
the direction being upward in a west wind {2, positive),
and downward in an east wind (v, negative), amll therebhy
likewise modify the distribution of the mass and the
pressure of the air. This component has hitherto heen
very generally neglected, but as will be seen below, this
will not do.

Further, as the researches of Guldberg and Mohn (14)
have shown, the resistance of friction caused by the
earth’s surface on the lowest strata of the atmosphere,
like ¢, is a quantity proportional to »; friction ="Fk».

The coeflicient of friction, k, ranges between 0.00002
and 0.00004 for the open sea. and does not exceed 0.00012
for a very rough continental surface. Friction even at
its maximum will therefore be less than ¢, or 2w, in a
current parallel to the equator (2w=0.00 014 584).

As to the upper strata of the atmosphere H. von Helm-
holtz (15) has shown the friction in a horizontal paralle]
current is so extremely small that it vanishes altogether
when compared with the gradient. Hence it follows that
in the upper strata even a very slight gradient—for exam-
ple, 0.1 mm. (0.01 cm.)—if it act sufficiently long in the
direction of motion, is able to produce a very great veloc-
ity, particularly as the acceleration is inversely propor-
tional to the density of the air. For instance, at an alti-
tude where the density is only 4 of that at sea level (about
8 km., which corresponds to the average height of the
cirrus), the acceleration produced by the above-named
slight gradient will be 0.03 cm./sec.2. This acceleration
acting In the direction of motion during 100 000 seconds,
or about 28 hours, will produce a velocity of 3 000 cm. /sec. =
30m./sec.; and with this velocity ¢ is, as previously shown,
equal to 0.44 cm./sec.?, which 15 about 15 times greater
than the component of acceleration acting in the direction
of motion.

@ sin 70°, or about % to == of @, being perpendicular to
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In order more fully to examine the action of the deviat-
ing force ¢, we must decompose it by means of the
formulas given in Part ITI. If the air current is nearly
horizontal, formulas (8) and (9) will suffice. Since the
horizontal component is ¢, =2wo sin 1 and the vertical
component is J.=2wn, cos 1, the former will attain its
greatest importance in the higher latitudes, and the latter
in the lower latitudes.

The importance of ¢ has already been shown by sev-
eral eminent investigators, especially Ferrel, Guldberg
and Mohn, Képpen, Sprung, De Marchi, and von Bezold;
and having thus been generally acknowledged, we need
scarcely discuss this part of the problem. The following
remarks may suffice. Even in the vicinity of the equa-
tor, where this component nearly vanishes, it is essential
to the formation of the trade winds and monsoons.
This fact at once indicates that the vertical component
¢., even in the higher latitudes where it is comparable
with the ¢, of the lower latitudes, must have an essential
influence on air movements. To be sure, there exists a
great difference between the horizontal and vertical
movements of the air, inasmuch as the former may
amount to hundreds of miles, while the latter can only
amount to a few miles; it therefore follows that, the ac-
celerations and the other conditions of motion being
ecual, the horizontal velocities must be much greater
than the vertical, since the time during which the accel-
erating forces act will be much greater in the former case.
Nevertheless, no one will deny that a vertical displace-
ment of the air masses for a few miles may not have as
much influence on the weather as a horizontal displace-
ment of many hundreds of miles. And even where such
vertical forces do not directly produce motion, they will,
since the conditions of continuity of moving air have
always to be satistied, call forth opposite forces, such as
vertical pressure gradients or frictional resistances, which
will essentially modify the conditions of equilibrium or
motion of the atmosphere.

Some concrete instances of the magnitude and direction
of the deviating force ¢ in the upper currents of the at-
mosphere are here presented from the results of the cloud
measurements executed by Dr. K. L. Hagstrom and
myself in Upsala (16) (lat. 59° 51.5°).

et z, be the mean height of the cloud, v, its horizontal
velocity, and «, the azimuth of ¢, the other symbols
being those used in the formulas given in Part III.

1885, May 26, 8 p. m. Barometric depression to the
north of Upsala. Y“ive successive measurements of a
cirrus cloud.

2, =8 068 m.; =101.1; v,=15.4 m./sec.; v,=2.2 m./sec.;
f=8.1°; ¢5,=0.20 em./sec.?; a,=191.9°;
¢.,=0.11 cm./sec.? upward.

1885, May 30, § a. m., depression to the north of Upsala.
Six successive measurements of a cirrus cloud.
Zn=T7 405 m.; @=55.7° 1%=42.0 m.; v,=2.6 m.;
B3=3.6° ¢5=0.52 cm./sec.?, oy =147.4°;
J,==0.25 cm./sec.? upward.
1885, June 6, 1 p. m., depression to the north of Upsala.
Three successive measurements of a high cirrus cloud.
2p,=9143 m.; ®=065.7°; 1v,=43.8 m.; v,=6.3 m.;
8=8.1°; J,,=0.5% cmr./sec.?; a;=160.2°;
¢,=0.29 cm./sec.? upward.

With regard to the density of the air at this height, we
find that for the last two measurements ¢, is equivalent
to a horizontal gradient of about 2 mm., ¢, to an upward
vertical gradient of about 1 mm., using the ordinary units.
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In order to judge exactly of the influence of the vertical
deviating component, ¢,, we ought to compare it with the
vertical pressure gradients. The calculation and meas-
urements of these Iatter are, however, much more difficult
than the calculation and measurement of the horizontal
pressure gradients. o )

If the air is at rest we know by the principle of Archi-
medes that the lift by air pressure is equal to the apparent
weight of a unit volume of air; thus according to the
adopted designation, ¢ being the acceleration of apparent

gravity,
d o d:
~ 35 =90, or ~3E~g2=o0.

If, however, these two forces are unequal, the difference
will represent the vertical moving force of pressure, or the
vertical pressure gradient, ——Z—;’—g&‘,

of which is — %%z— ¢, and ought to be compared with ¢,.
If the vertical height z is taken positively upwards, p

will decrease when 2 increases, and thus —-%’ will be a

the acceleration

gositive quantity, representing an upward pressure.
utting P

g

% (15)

the gradient &3 is directed upward when positive and
downward when negative. Thus ¢ represents the accel-
eration imparted by the gradient to the unit of volume of
air at the height 2.

The only means of determining this gradient by obser-
vation is given by the barometric measurement of
heights. In fact, if in equation (15) we put ¢=0 and
integrate the equation, we obtain the barometric for-
mula for measuring heights. The uncertainty of such a
measurement, however, 1s not due alone or principally to

lacing ¢=0, for, as the discussion of the barometric
ormula shows, we are unable to determine with suffi-
cient accuracy the air pressure, and especially the mean
air density, which is a function of the temperature and
moisture, and even of the dust and water particles float-
ing in the air, for every element of the column lying
between the two barometers to be read at its top and
bottom (17).

In the general case, ¢ will vary from one element to
another, and in order to determine the dynamical state
of the atmosphere, we must write down and solve the
general hydrodynamic equations, with due regard to all
pressure gradients, friction, deviating force ¢, condition
of continuity, and fimits. This seeming at present impos-
sible, we must confine ourselves to the study of some
simpie and typical phenomena, comparing them with the
observed facts.

In doing this, let us first consider the vertical compo-
nent of the inflowing air current of a steady cyclone.
First, as shown by Hann and others, the rising mass of
air in the inflowing current of such a cyclone is very nearly
in the adiabatic or indifferent equilibrium.

Let us first suppose such a mass of air to be at rest.
Then we have

d
—£=g6.

If now a particle of air be thrown upward, by means of
an impact for instance, both the lifting power _%2 and

the weight gd of the unit of volume of air will decrease.
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But since the surrounding mass of air is in adiabatic
equilibrium, —‘—flg and gé will always decrease at the same

rate. For since the moving air mass has not time to give
out or receive a sensible quantity of heat, its change of
state will be adiabatic; consequently, during its motion
it will always take the same density as the surroundin
air in the same level. Thus, the vertical gradient wi
remain zero, and the only forces acting upon the moving
air particle will be the deviating force ¢ and the friction.
But the latter may be neglected on account of its small-
ness; hence the air partioTe, under the influence of ¢, will

erform the apparent path of inertia described in Part IV.

t must be remembered, however, that if the air is satu-
rated with moisture but not charged with fog, the adia-
batic equilibrium, and consequently the path of inertia,
will exist in an upward motion only, while the stable
equilibrium, which will be spoken of below, will manifest
itself in a downward movement.

In reality the air column of a cyclone is not in equilib-
rium, but is rising under the influence of a vertical
upward force, which is the resultant chiefly of the vertical
pressure gradient and the vertical component ¢,; also,
its different strata are rotating around a vertical axis.
That the acceleration of these vertical pressure gradients
will probably in most cases be smaller than ¢, and even
than ¢., especially in the upper strata, is shown by the
following reasoning. The vertical pressure gradients
must generally be smaller than the horizontal ones,
because the frictional resistance is less, and the flow less
checked than in a horizontal current. Now since the
horizontal pressure gradients are generally not greater
than ¢, or even ¢y, the vertical gradients will be less than
¢, and not greater than ¢,.

The above results of cloud measurements confirm this
conclusion. In fact, it may be shown that in those cases
the mean value of ¢ is probably negative, and therefore
directed downward, a,mF tending to move the air in that
direction. To prove this, we must compute the upward
velocity, v;, that would be produced by the action of ¢,
alone, and compare it wit,L the observed value of v,.
Now, ¢. is proportional to the westerly component of
velocity, v,. ang this, as shown both by our own cloud
measurements and those of H. H. Clayton, is very nearly
proportional to the altitude z. Thus for ¢, put ¢z,
where ¢ is a constant, we get

dz_ ,
a—t—, =2,
if we suppose that simultaneously z2=0 and Z—tg=v,=0,

the first integral of this will be (18)

V2 =c2. (18)
By means of the observations cited above, we get
1885. May 26. May 30. June 6.
oo 011 0.25 _ 029 .
§06 S00 740 500 914 300’

thus, by equation (16), at the measured heights,

v, (calculated) =298, 430, 515cm./sec.;
while v, (observed) =220, 260, 630cm./sec.

In the first two cases the calculated value is greater
than the observed, and only in the third is it a little less;
but in this case the observed value may be too great on
account of errors of observation, the value being calcu-
lated from only three successive observations. Generally
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we have not found vertical upward velocities so great as
those given above, although horizontal eastward veloci-
ties amounting to more than 50 m./sec. are not uncom-
mon, and the values of ¢, are proportional to this.

Hence it seems that generally, at least in the southern
part of the cyclone, where westerly winds blow in all the
strata, the vertical upward velocity that would be pro-
duced by ¢, and thus indirectly by these strong westerly
winds, is greater than the one really observed. Now the
observed velocity is produced jointly by ¢,, the vertical
pressure gradient e, and the friction (which latter may be
ne, lected%-l; and thus it follows that ¢ must be negative.

is remarkable result may be expressed in the follow-

ing manner: A part of the s viva of the westerly winds

Erevailing in the cyclone is used in pumping the air up,

y means of ¢, against the mean vertical temperature
gradient &, which tends to make it descend.

Now Prof. Hann has shown (19) that the mean tem-
perature of the air column in the inflowing winds of a
cyclone is generally so much lower than that of an anti-
cyclone, that the vertical temperature gradient of the
former must probably be directed downward. This re-
sult, although deduced from incontestable facts, has called
forth much ecriticism, as the incontestable fact of an
upward motion in cyclones seemed then inexplicable.

ann himself has pointed out that the mechanical energy
(i3 viva) of the upper current may be able to pump u
the air of the cyclone against the pressure gradient. g
believe that I have now shown how this transformation
takes place. Of course, there may be modes of trans-
formation other than the above, but this evidently will
accomplish much. As to the wis viva of the upper cur-
cents of the cyclone, it may originate partly from the
general atmospheric circulation, and partly from the
mechanical energy produced by the cyclone itself from
the latent heat of aqueous vapor. The proportion be-
tween these two sources of energy is probably quite
variable.

There is another observed fact, which is exlila.ined by
the action of ¢,. Clement Ley and Hildebrandsson have
observed that the cirrus clouds are much more numerous
in westerly upper currents than in easterly. Now, since
i&, is directed upward in the former and downward in the

atter, the air will generally rise in a westerly current and
therebg be cooled, so that the aqueous vapor contained in

it will be condensed and form the ice needles of which the
cirri consist. The reverse will take place in an easterly
current.

The vertically deviating component ¢, will also have a
marked influence on the propagation of the cyclone center.
Considering the well-known %iagrams of Clement Ley
and Hildebrandsson, we find that all strata, upper and
lower, have a westward component of horizontal velocity
in the northwest quadrant of the cyclone, but in no other.
Thus the currents of all strata in this quadrant will have
a downward acceleration (¢, negative) which after a time
will give & downward velocity. This will reach its maxi-
mum somewhere to the west of the center, in the rear of
the cyclone; then the currents entering the southwest
quadrant will acquire an eastward component of horizon-
tal velocity, which will give rise to an upward acceleration
(¢; positive), by which Et{he downward velocity acquired in
the northwest quadrant will be gradually diminished and
will vanish somewhere in the southern part of the cyclone.
It therefore follows that the air will tend to sink down in
the western half of the c¢yclone and that the reverse will
happen in the eastern h. Obviously this will contrib-
ute to fill up the western part and empty the eastern part
of the cyclone, so as to displace the center eastward.

55828—14—T7
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Certainly the propagation of a cyclone is a very compli-
cated phenomenon which may have many coGperating
causes, but I think the cause above named is in most cases
a very efficacious one that may not be neglected.
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and Ztschr. d. Gesellsch. f. Meteorol., Wien, 1877, 12:53.

(15) Meteorologische Zeitschrift, Wien, 1888, 5. Jhrg., Xl 329.

316) These measurements number more than 2,000. "Although cal-
culated some years previous to 1893 they have not yet been published
in extenso, partly for want of time and partly for other reasons.

(17) This is according to Jordan, ‘‘Handbuch der Vermessungs-
kunde,”’ Stutteart, 1877. 1. Bd., p. 532. Bauernfeind’s inquiries
furnish for a difference of height of 1 km. a mean error of +5.7 meters
in the difference when determined barometrically. This, if due to &
vertical gradient, would require a gradieat of about 50 mm., which is
obviously impossible.

For the rest, it would evidently require very exact barometric obser-
vations to determine even a horizontal gradient in so short a distance
as 1 km, .

z

(18) The second integral, t—t,,=; nat. log =, gives the time neces-
sm"iy for the vertical movement from z, to z. If z=0, it becomes
infin

ite, which is rational, as we have supposed both acceleration and
velocity eqﬁa.] to 0 at the ground (z=0).

5( 19) Ses Moteorologische Zeitschrift, Wien, 1890, 7. Jhrg. p. 226, 328,
457. h

METEOROLOGY AT TE:E LICK OBSERVATORY.!
By WiLLiaM GARDNER REED.
[Dated, University of California, Department of Geography, June 10, 1614.]

INTRODUCTION.

The Lick Observatory was founded under two deeds
of trust by James Lick of San Francisco, the first dated
July 16, 1874, and the second, September 21, 1875.
These provided for ‘‘a powerful teiescope, * % * and
also a suitable observatory connected therewith.” After
a careful consideration of various possible sites (restricted
to the State of California by the terms of the trust), the
choice was Mount Hamilton, lat. 37° 20’ north, fong.
121° 38’ west from Greenwich, altitude,? 4,209 feet above
sea level, located among the Coast Ranges in the eastern

1 The writer wishes to thank the members of the staff of the observatory, without
whose cooBerat.lon and assistance thig study could not have been made, and in particular
to thank Director W. W. Campbell for the meteorological data, the photographs, and
numerous other courtesies at the observatory.



