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to permit observation for centering ray of light. With
lunar halos it is rarely possible to center by means of the
ray of light. In this case the pointer is set at zero and
centered .on moon by adjustment at 7. Set screw at F
is clamped, and pointer moved to limb of halo as in the
other case. Brass strap over tube holds it in place and
may be tightened by set screw @ to hold scale board in
place. Axle at M is a pin used for & maximum ther-
mometer with old-style thermometer support, flattened
at end and driven into scale board, furnishing a handle
for turning or holding the board. Pointer D is about
one-third inch thick material and three-fourths inch
wide—width to provide place for level. Nephoscope
level has been used and works well. I have not yet
a.rra.n%ed a satisfactory mounting for level to insure that
scale board is in vertical plane when that is desired.
For halos.—By shifting of base H and angle of inclina-
tion at F, center ray of light from sun A passing through
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small aperture at B on point C at center of back of tube
visible through cut out. If halo is complete no shiftin,
of board X is necessary; if but a portion is visible, boar
may be turned on axis BM, so that the pointer D will
bear on the segment visible. Sight along pointer D
turning on pivot O until it bears on the limb of the halo.
Angle of radius of halo will be shown by pointer on scale.
Angular elevation of any heavenly body.—Set pointer D
at zero; set small level on pointer D; turn at F as neces-
sary to level pointer. Clamp F.—This establishes
horizon. Turn pointer on object whose elevation is
desired and position of pointer on scale will show angle.
Angles in horizontal pf)ane may be measured by leveling
board .X' and clamping at F and @ to hold stationary.
If desired, (* on the scale may be set true north or south
b%r means of compass. Sighting along pointer D at
objects whose angular relation 1s desired and noting
reading on scale in each case gives data desired.

RECENT CONTRIBUTIONS TO DYNAMICAL METEOROLOGY.

By Epgar W. WOOLARD.

[Weather Bureau, Washington, D. C., April 13, 1922.]

In the fifth century B. C., Anaximander of Ionia gave
a scientific definition of wind, which is still valid, viz.,
‘““The wind is a flowing of air,” although there should per-
haps be added the words “relative to the surface of the
earth.” Sometimes a wind is defined as air in motion near
the earth’s surface and nearly parallel to the latter, all
other motions of masses of air bein% spoken of as air cur-
rents; ! but this distinction is not always recognized, and
it is unimportant for purposes of dynamical meteorology.

Dynamical meteorology considers the mass motions
taking place in the earth’s atmosphere; such motions
must of necessity obey the ordinary laws of dynamics.
Now, it may be demonstrated ? directly from the kinetic
theory that although a gas is composed of discrete par-
ticles, its mass motions will obey the ordinary hydro-
dynamical equations derived® explicitly on the very
different assumption of _cont.inuitt‘:y.

Therefore the starting point of dynamical meteorology
will be the hydrodynamical equations of motion of a fluid
covering a rotating globe.* y ;ﬁmntitative theory of
the various winds involves first of all a general account of
the fundamental dynamical principles common to all
winds, and a cla.ssiﬂycl;,tion of winds based on dynamical
principles, with a subseqltllent elaboration of the theory of
each type. A comprehensive treatise on dynamical
meteorology, written for the student with extensive
mathematical training, has not yet appeared, although
such a work is much to be desired; of great importance in
this connection, however, are the recent papers of Jeff-
reys, in the latest of which ® he has given a classification
of winds, based on a discussion of the relative importance
of the various relevant physical factors which determine
the characteristics of each type as expressed in the
differential equations of motion.

The only forces acting on any mass of air are gravity,
hydrostatic pressure, and friction; the acceleration of the
mass is composed of two parts—acceleration relative to
the surface of the earth, which we observe, and the
acceleration common to this surface itself; by the laws of

Ml . W. 1. llgdhmthMMOw, New York, 1912, p. 136; W. M. Davis, Elementary
2], H, Jeans, The mical Theory of Gases, 3 od., Cambridee, 1621, pp. 165-175-
3 See P. Appell, Truité de Micani Rationnelle, Tome 3, 3 ed., Paris, 1021; H. Lamb,
Hydrodymm ) -fed., Cambridge Press, 1916.
Lamb, op. cit., p. 318. .
L 9;2 Harold effreys, On the Dynamics of Wind. Quar. Jour. Roy. Met’l Soc., 48 : 2947,

motion, the sum of the two parts of this actual accelera-
tion is equal to the sum of the accelerations produced by
the three forces. Each term or set of terms in the general
equations represents one of the five rates of change of

. momentum corresponding to the five accelerations.

_In the case of atmospheric motions, the general equa-
tions reduce to—

du _ _lop .0
73— 2wveosd = P b_.z:+kbz'-'
dv __19p, ,0%
(Ti+2wucosﬂ— p -a—y+ 5%
__lop_
0= p Oz

We then have three possible cases: (1) Eulerian winds,
in which the rotational and frictional terms are so small
in comPa.rison with the accelerational term that they may
be neglected—the observable acceleration corresponds to
to the horizontal pressure gradient, as in ordinary elemen-
tary hydrodynamies; (2) geostrophic winds, in which the
accelerational and frictional terms are negligible in com-
parison with the rotational term—the velocity is at right
angles to the pressure gradient; (3) antitriptic winds, in
which the rotational and accelerational terms are neg-
ligible in comparison with the frictional term—these
winds are driven by, and blow in the direction of the
pressure gradient, but the velocity does not increase
throughout the whole journey.

A consideration of the factors shows that winds on a
scale comparable with the size of the British Isles, or
larger, are geostrophic; tropical cyclones, and all cyclos-
trophic winds, as tornadoes, are Eulerian; land and sea
breezes, and mountain and valley winds, are mainly
antitriptic. However, in order to explain seasonal pres-
sure changes at the earth’s surface, the accelerational term
must be retained in the equations fer the geostrophic
wind; temperature differences are capable of accounting
for the annual pressure variation in Asia and probably for
the permanent winds of Antarctica. Jeffreys has worked
out a mathematical theory of some of the antitriptic winds
which agrees well with the facts. A fundamental part is

layed by the deviation of the actual average temperature
apse rate from the adiabatic value.
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Classical hydrodynamics, however, does not afford a
satisfactory means of dealing with the general equations
of motion derived above, for they involve the density,
and wherever, as a consequence, 1t is necessary to take
into account the physical properties of the fluid, the classi-
cal theory practically always assumes an equation of
state of the form f (p, p) =0, the density being & function
of the pressure only.® In the actual cases of nature, par-
ticularly in meteorology and hydrography, many other
independent variables enter, such as temperature, hu-
midity, salinity, etc. The hydrodﬁnamical theory of
baroclinic fluids—i. e., fluids in which other independent
variables than the pressure also affect the density—has
been worked out by Bjerknes and has recently been made

¢ See Lamb, op. cit., art. 8; ¢f. Appell, op. cit., ari. 627.
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easily accessible in elementary form by Appell.” In such
fluids surfaces of equal density are not always surfaces of
equal pressure, and the formation and annihilation of
vortices are possible,

The application of this theory to the dynamics of the
earth’s atmosphere has also been largely the work of
Bjerknes, having been worked out in parallel with the
well-known empirical investigations of the Bergen
meteorologists. There has recently a%pea.red a compre-
hensive and up-to-date summary of the whole subject,®
which constitutes a most valuable memoir on theoretical
meteorology.

7 epgell, op. cit., chap. xxxli, pp. 562-605. ‘

8 V. Bjerknes, Onthe Dynamics ofthe Circular Vortex, withapplications tothe Atmos-
ere and Atmospheric Vortex and Wave Motions. Geofysiske Publikationer, Vol. TI,
0. 4, Kristiania, 1921, 4to, 88 pp.

SHORT METHOD OF OBTAINING A PEARSON COEEE})%E?&SOF CORRELATION, AND OTHER SHORT STATISTICAL

By Frank M. Parures, Ph. D.
[U. 8. Public Health Service, Washington, D. C., March 1, 1922.]

The usual method of obtaining a Pearson coefficient of
correlation is somewhat long and tedious, especially if
there be a large number of paired measures and if the
measures or the averages of these happen to be such as to
involve either large numbers or numbers running out to
two or three decimal places. It is the purpose of this
paper to derive and illustrate a shorter method, which at
the same time will tend to eliminate errors likely to creep
into a solution by the ordinary method. The formulas
given in this article have all been derived by purely
mathematical processes and do not involve any approxi-
mations; neither the average nor the deviations are used
in computations by them; &ey shorten the work materi-
ally when solving for average deviation, standard devia-
tion, coefficient of variability, and coefficient of correla-
tion. :

Let— :

n =number of independent, or of paired, measures.
n_=number of measures below the average.
n, =number of measures above the average.
Zm =sum of independent measures.
Zm._=sum of measures below the average.
Zm,=sum of measures above the average.
8 =measures of “subject.”
B =measures of “relative.”
a =average of the “subject.”
¢ =average of the “relative.”

Then the usual process of getting the coefficient of cor-

relation may be represented as follows:

S| R z v n el 1y .

Su--| Bi..| Si—a.| Ri—c..| 8i—281a+a2....| R—2Rc+cs....| SiR1—8c~Rja+ac.

8x...| BRs..| Sp—a | Ra—c..| S2—28se+a3....| R2—2Rsc+¢5....) SsRs—Sc—Rua+ac.

8s...| By..| Sy—a | Ra~e..] S¥—29m+tas....| Rd—2Rye+cl....| SsRs—S—Rya-+ac.

Su.-| Ra VS| Ra—e.| Si—-28aatai . .| Bai SRnc+ei.. | SnRn—Sne—Raotac.

Z8..| ZR [ceanaie]eanannns I§2—258a+nat..] ZR3—2ZRe+ne2.| ZSR—ZSc—ZRa-+-nac.
oy _ 2

"“nows” VZo- 2y

Now, since ZS=na, and ZR=nc, then ZSc=nac,

ZRa=nac, and =SR—=Sc¢—ZRa +nac=Z8R— nac; fur-
thermore, since ZSa=na?, and ZRe¢=nc?, then =8?—
228a +na*=28*—na?, and ZR?*—-2ZRec+nc®=ZR*—nc.

Therefore, we have—

__Zzy ISR —=8c—ZRa +nac
"= V-2 V(28— 2280 +na?) (TR~ 2ZRe +nd)
ZSE —nace
V(8- na?) CR*—nc¥)’

a formula much better adapted to numerical computa-
tion.

To illustrate the adva_mtage of this method, let us take
the following seven pairs of related measures and solve
for a coefficient of correlation by the usual method:

8 E z T2 v v by
4 5 -3 9 -7 49 21
5 8 -2 4 —4 16 8
[} 1 -1 1 -1 1 1
7 11 0 0 -1 1 [V}
8 13 1 1 1 1 1
9 18 2 4 6 36 12

10 18 3 9 6 36 18
49 84 f........ 28 fe..o..e. 140 61
a=7 | c=12
61
r=—m——-=0.974.
28 X 140

Now, let us apply the short method to the same series
of paired measures:

s R ) B SR
4 5 16 25 20
5 8 25 64 40
[} 11 36 121 66
7 11 49 121 Vil
8 18 64 169 104
9 18 81 3¢ 162
10 18 100 324 180
49 84 371 1,148 649
.................. 43 1,008 588
a=7 c=12 28 140 61
nac=588.
na® =343.
n¢' =1,008,
61
r=—"T=—-=0.974.
+/28%140 .



