Marcw, 1925

logical observations available. -Now that the long-sought
foundation for a reliable system of pressure reduction is
laid out, further developments in aerological work and
the establishment of truer free-air normals, hold out
hopes of future refinements in the system to the point of
unreserved acceptance of the results.:

2. As brought out in the text of this paper, there are a
number of difficulties in the way of representing free-air
trajectories by means of the free balloon, or of accepting
schh representation as valid. The chief of these are the
difficulties, in practice, of maintaining constant altitude
and determining the location of the balloon, and con-
siderations of vertical component of air movement. The
question as to whether further practice of free ballooning
might lead to closer approximation to the facts on this
particular point, vies with the question as to whether
the additional knowledge gained would justify the effort
and expense involved.

3. Referring to the general problem of free-ballooning
with relation to meteorology, there can be no question
as to the reciprocal benefits of one to the other; in fact,
the very dependence of ballooning on meteorology com-
pels the belief that meteorology can not help but add to
its fund of knowledge from a pursuit to which it is indis-
pensable. There are a number of problems in meteor-
ology peculiarly adaptable to free balloon investigation,
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some of sufficient importance to make this means of
attempt at solution well worth the effort. Suggestions
of such problems, that incidentally were accessorial rea-
sons for Meisinger's flights, are contained in she text of
this paper, as, for example, in the fifth and sixth flights.
Any program of free-ballooning for meteorological pur-
poses must necessarily contemplate flights in unsettled
weather, rains, and snows, as well as in fair weather.
To pronounce against flights in any but fair weather
would go a long way toward admitting the futility of
aeronautics. The great danger lies, of course, in thun-
derstorms. The tragic denouement of this project, fol-
lowing so soon after the toll of lives exacted by the con-
ditions during the National and International Balloon
races of 1923, emphasizes the menace of thunderstorms
to inflammably charged balloons. It is a matter of rec-
ord that in all instances in recent years of disasters to
manned balloons attributable td thunderstorms the voy-
agers were aware beforehand of the risks they were facing.
It is sufficient testimonial to the aid rendered by meteor-
ology in this field that it can warn of danger even though
it can not prophesy disaster. Safety in free-ballooning
will be realized when precaution is no longer made sub-
ordinate to loyalty to purpose and when 1t is conceded
that *safety first” is as applicable and justifiable in this
line of scientific work as in any other peacetime endeavor.

RANDOM SERIES!

By Epcar W. WooLARD

[U. 8. Weather Burcau, Washington, D. C., March 27, 1925]

The human mind is so constituted that, when con-
fronted by an extensive array of numerical data, it is
incapable of adequately grasping the significance of the
figures or of detecting and comprehending the relations
and laws exhibitedn%)y the data. To overcome this
defect, special methods, known as statistical, have been
devised for the scientific treatment of collections of
data pertaining to mass phenomena. Statistics accom-
plishes its object by displaying data in forms such that
their significance can be more readily grasped, and by
inventing special analytical processes designed to reveal
the laws and relations concealed in the figures.

One common statistical procedure for rendering data
amenable to our mental faculties is that of replacing
the original large body of raw numerical material by a
very small and compact set of summary coefficients
which concisely, yet adequately and comprehensively,
resume in themselves all the essential features of the
complete data. Of course such a replacement is neces-
sarily made at the expense of detail—no summary can,
by virtue of its very nature, contain all the facts—but
tge effort is made to retain in the summary all the facts
and features essential or relevant to the purposes in hand.

"An ‘extensive body of numerical data may thus he
succinctly described or characterized by, and, at least
for many purposes of statistical analysis, may be replaced
by, a brief set of statistical coefficients or indices, one

1 In view of the usefulness of the so-called Goutereau ratio in meteorological investiga
tions, Mr. Woolard was asked to examine the question as to whether thera could not be
devefoped a generalization of Goutereau’s theorem, which as we understand it applies
strietly to numbers in a Gaussian distribution. From a very superficial examination
on my own part, I am impressed with the fact that this ratio, while not constantly erqual
to the square root of 2, (1.41), nevertheless has a value differing but little from that value
for very widely differing frequency distributions. For example, the U-shaped distri-
bution of a table of sines seems to lead to a ratio of about 1.25.

The problem might be stated as follows:

Given & limited series of numbers, a, b, ¢, . . . k, of which f,, fs . . . fi represent
the relative frequencies of these numbers, Regardless of the order of succession, the
mean deviation of these numbers may be expressed as md. If the average value of the
mean variation of the numbers in a sequence of unrelated numbers is v, what is the
ratio of v+md?—C. F. Marrin,

coefficient for each of the important and relevant fea-
tures of the data. The comparative analysis of two
different sets of data, and of the respective phenomena
to which they pertain, in respect to each of their essen-
tial characteristics, then becomes largely a matter of the
comparison of corresponding statistical indices; two
different phenomena may be identical in that aspect
characterized by the arithmetic mean of the data, and

et differ widely in respect to the feature characterized

y, say, the standard deviation. Obviously, in any
%ive.n case it is a matter of very great importance to

e sure we have included in the set of coefficients an
index for each and every important aspect of the phenom-
ena under consideration.

Now, the statistical coefficients™pertaining to a single
variable to which nearly all the atfention of statisticians
has thus far been directed relate entirely to the various
characteristics of the frequency distribution.! In most
cases, perhaps, this is sufficient, but in some problems,
including many important meteorological applications,
at least one other feature of the data must be taken
into consideration, viz, the order of succession. If the
statistical data in hand relate to, say, biometric measure-
ments, it is immaterial in what order the data are pre-
sented; but if the data relate to the successive values
taken on by a time-variable, the order in which the
values occur may be quite relevant.

The order of succession is, in fact, one of the many
peculiar problems encountered > when one seeks to apply
the Theory of Probability and the ordinary Theory of
“Errors’’ to meteorological data; the mete-.or'ologicaliy va-
riables frequently do not conform to the conditions under
which the mathematical theories are valid. Statistical

1 8ee (3. U. Yule, niroduction to the Theory of Statistics, chap. vii. 7 ed., London, 1924,
? See, e. g., V. H. Ryd, On Computation of Meteorological Observations. Danske
Meteorologiske Institut, Meddelelser Nr. $. Copenhagen, 1917,
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meteorology thus furnishes examples wherein it is highly
desirable to have some index depending upon, and com-
pletely characterizing, the order of succession of the val-
ues in a statistical series.

Suppose, for example, that we have an observed se-
quence of values of a time-variable, say a series of daily
mean temperatures for a number of consecutive days,

ity bgeeeeennen. bprreeeres (1)

If the numbers ¢, were written on balls, and the balls
drawn one at a time at random from an urn, the result-
ing sequence of values might, in some important respects,
differ widely from the observed sequence (1)—e. g n
the case of daily temperatures, long series of successively
increasing or decreasing values would be less frequent in
the series obtained by the chance drawings than in the
sequence Froduced by nature—yet the frequency distri-
butions of the two, and the values of all the statistical
constants pertaining thereto, would be identical. In one
case we have a sequence brought about by the operation
of pure chance only, whereas in the other case consecu-
tive values may not be completely independent of one
another; yet none of the tests ordinarily applied® to
determine, when it is essential to know, whether or not
the values of a variable are due to fortuitous causes,
would distinguish between the two cases, because these
tests relate only to the frequency distributions.

Very little work has been done on this matter. Here,
as in the case of so many other statistical questions, the
problem was first encountered as a special case in the
theory of errors of precision measurements, viz, in con-
nection with testing observations for the presence of sys-
tematic errors.*

The first investigation of the general statistical prob-
lem seems to have bheen that of Grossmann;?® recently,
however, some errors in Grossmann's reasoning have
been pointed out by Besson, who has corrected and ex-
tended ® the work: but nothing in the nature of a sta-
tistical coefficient has been provided by any of these in-
vestigations.

A statistical index characterizing the order of succes-
sion was first devised by Goutereau, in 1906." He de-
fined a variabilily as the ahsolute value of the difference
between any number in a sequence and the next consecu-
tive number; and with the aid of Maillet. he showed that,
provided the frequency distribution were Gaussian, the
ratio of the mean of the variabilities to the mean_devia-
. tion must be etiual to+/2 if the deviations from the mean

were legitimately to be likened to fortuitous errors. The
ratio is actually but about half this value in general in
the case of daily temperatures.

The Goutereau Ratio, as it may be called, was applied
by its author only to normal frequency distributions.

oreover, it seems to the writer that the derivations of
the formulae, as given by Goutereau, are not as clear
and satisfactory as they might bhe made, and further-
more the equations as printed contain several serious

1 (Goutereau, Annugire de la Soc. Méit. de France, 54, 122-123, 1906; Wonlard, Mo.
WEATHER REV., 49, 132-133, 1921. )

41 E. Abbe, Ueber die Gesetzméssigkeit in der Verteilung der Fehler bei Beobach-
tungsreihen, Jena, 1863 (Habilitationsschrift); Ges. Abh., Bd. II, Jena, 1906, pp. 55-81.
‘“Abbe’s Criterion’ has been modifled slightly by Helmert; see F. R. Helmert, Dic
Ausgleichungsrechnung nach der Methode der Klecinsten Quadrale, 2te Aufl.,, Leipzig,
1907, pp. 341-345. Amnother method of dealing with the same question was used by F R.
Helmert and W. Seibt, Das Mittelwasser der Ostsee bei Swinémunde. 2 Mitt, Verdff.
d. Kén, Preuss. Geod. Inst., 1800; cf. Jahreshericht d. Direktors, 1889-90, p. 26-27.

8 L. Grossmann, Die Aenderung der Temperature von Tag zu Tag an der deutschen
Kuste.  Aus dem Archip der Deutschen Scew:arte, XXI1II Jahrgang, 1900, pp. 34-37.

8 L. Besson. On the Comparison of Metecrological Data with results of Chance.
Translated by Edgar W. Woolard. MO. WEATHER REV , 48, S0-04, 1920,

7 Ch. Goutereau. Sur la variabilité de la température. Annugire de la Soc. Mél. de
Franee, 54, 122-127, 1906; Edgar W. Woolard, The Mean Variability as a Statistical
Coefficlent, MO. ~EATHER REV., 49, 132-133, 1921,
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errors. Therefore it seems worth while to remedy these
defects in Goutereau’s presentation, and, if possible, to
extend the work to include distributions that are not
normal.

Let a time-variable t, a sequence (1) of n of whose
values we have observed, have the following frequency
distribution:

Values: Ly Ly Lgrovrorroenns Tgeooreanennes x, @)
F,‘eque'mes: al a’ a: ------------ a'- ------------ a'

Sa=n 3)

If the variable ¢ be a continuous one, (2) gives the ordi-
nary histogram, the ir; being the mid-points of the classes.
he Arithmetic Mean of ¢ is
2ty .
M= %‘ ' (4)

while the standard deviation and the mean deviation are,

respectively, S(t— MY
Y/ laela ®

Eltk—-Ml
kl L

6= (6)

n

The mean, the standard deviation, and the mean
deviation are indices which characterize certain features
of the frequency distribution (2), and they would have
the same values in whatever order the ¢, were observed
to occur. In the variabilities and their mean, however,
we have something depending upon the order in which
the t, present themselves in the sequence. The vari-
abilities in a sequence such as (1) are given by

Vip=|trsey— x|, )]

and the mean variability in a series of N values is

N-—1
V=N (®)

Now, if we assifhe that the observed sequence (1)
is a representative sample of the results that will follow
the operation of the causes producing the phenomenon
under observation, then the frequency ratios a;/n may be
taken to be the a posterior: empirical probabilities of the
individual values 7;, and these may in turn be identified
with the postulational @ priori mathematical probabilities
of the #;, The production of the observed series through
the operation of the complex of causes determinin tie-

henomenon may then be simulated by drawing balls
{')rom an urn in which either (A) there is an infinite
number of balls marked with the z; in such proportions
that for any n balls there are on the average ¢, marked
r,, @, marked z,, and so on, the proportions of the differ-
ent kinds remaining the same no matter how many may
be drawn out; or (B) in which there are n balls marked
with the various z; in the proper proportions, the balls
being returned. after each drawin, %efore the next draw-
ing 1s made. (This assumes, of course, that we are
dealing with a Bernoullian Series).

If we make a number, N, of successive drawings from
the urn, we obtain a so-called random or chance sequence
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of numbers; and it is possible under such circumstances,
as we shall show, to compute the mathematical expecta-_
tion® of the value of a variability. A comparison of |
this theoretical or ‘‘expected” value with the actual.
mean of the observed variabilities may show whether or
not the observed sequence constitutes a chance sequence,
i. e., whether the order of succession in Nature is a
random one, controlled by pure chance alone, or is
controlled by some systematic influence.

An individual variability in any sequence made up
from the frequency distribution (2) may happen to have
any one of the various possible values of

(9)

Obviously, the total number of values which the expres-
sion (9) may take on is given by the number of ‘‘com-
binations with repetitions” or ‘‘complete combinations”
of ¢ things two at a time, which 1s®

(e+1)!  s(s+1),
(s—nDl2t 2 ?

II"-—IJ'I! i! j.'=l: 2! 3:-—---—, 8.

(10)

but by no means all these values are numerically distinct.
The same value zero, e. g.,-which occurs whenever i=j,
is produced by s of these combinations, and in general

the remaining
#He(s+1) L
NERE

combinations will not all produce different numerical
values.

Now, the total number of possible ways in which
variabilities may be produced is given by the number
of ‘‘permutations with repetitions” or ‘'complete

arrangements’’ * of n things two at a time. which is

(11)

n?, (12)
each of which is an ‘‘equally probable event.” By
equation (3)

nP=a+al+ ... ... +a,
+2a,a,+20,0,4 2a,a,+ .. .. .. _+2a,a,
+2a.a;+2a,a,+ .. ... ... +2a,a,
+ .. +2a 4,
L] =1 s—m
=3a%+23 D agy . (13)
i=] m=1 i=1

It is easily seen that the 3 a® ways comprise those of
the »? permutations which give a zero value to (9),
while the term 2a.a, corresponds to the permutations
which make (9) equal to [z,—x,!.

Hence the probability of a zero variability in a sequence
drawn at random from the distribution (2) is

2oy
5 ()
e
while the probability of a variability |r,— x| is
2048, (15)
e

% A good exposition of the nature and significance of mathematical expectation will
be found in G. Castelnuovo, Caleolo delle Probadilite, Milan, 1919, capit. iii; sec also
Asrzx;e Fisher, Mathematical Theory of Probabilitiex, Vol. 1, 2 ed., pp. 102-103, New York,
1922,

9 For the combinatorial formulae needed in this paper, see E. Netto and H. Vogt.
Analyse Combinatoire et Théorie des Déterminants, Encyc. des Sci. Math., Tome I,
vol. 1, Fasc. 1, Paris, 1904; or E. Netto, Lehrbuch der Combinatorik, Leipzig, 1901,
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The probabilities (14) and (15) may also be found by
noting that the respective probabilities of the z; in a
single drawing are

po=%, , _ % as s,
==y

so that the probability of r, coming adjacent to z, in a
random series is
)
g 1y, Qr Qg <CgQ- (n
n n n n n?

whereas the probability of two identical values x, being

adjacent is merely
: 2
8. % _ ‘hl)
non \n

If the »; are the midpoints of the classes into which
the ¢, are grouped in forming the frequency distribution
(2), and h the (constant) class interval, then we may
always write

(18)

ri=ec+th, {=1,2,_._.___s, (19)
where ¢ is some constant, positive., negative, or zero.
The same is true if the z; are actual values of a discrete
variable, h being the unit of measurement. Then the
numerically distinct values of the expression (9), any one
of which an individual variability may happen to ﬁave,
are .
O, k, 2k, 3h, . _.__._., (s=1Ek. (20)
Of the s(s41)/2 complete combinations to each of
which corresponds a value of (9). (s—m) produce the
same numeriecal value, viz, mh.1°
If we have
[Xg—xe|=](g—r) |
s an
then we must have

qg-—-rl=im; (22)

and the (¢ m) combinations all ol which result in the
zame value mh for (9) are

[Yom= 2y 1=1,2,3,...., s=m),  (2B)
the respective probabilities of which are, by (15),
2 [m#=0 »
p2 @me 1oy 2 3 (s—m) (24)

(It is not necessary to take into account the cases in
which m =0, since they would not contribute anything
to our final result). ) '

Therefore, inhe mathematical expectation of the vari-
ability-—the expected, probable, or mean, variability in an
unlimited sequence nj]) random drawings—is given by the
equation.

. 8—| —-m 9 2h l 2] 8—m
Etvy) =2 mh 3 S540un="3 m| a;a,ﬂ,,]l (25)
m=1 =1 M d lm=l i—1

21
10 Since 2 0 (8—m) is an arithmetic progression (the sum of the first & natural numbers

m=
8 (2+1)
2

in fact), its sum is, as it should be, , the total number (10) of combinations.
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A check on the accuracy of formula (25) is afforded
by the following somewhat different derivation: The
value z;, with probability a;/n, having been drawn, the
variability mh will result if the next value drawn be

ritmh=c+ (@t m)h; (26)
the probability of such an event is of course
Ay, Tixm, (27)
n N

Now, in order that (26), the second value drawn, may
possibly differ from the first, r;, by as much as +mhk, it
18 necessary and sufficient that ¢« have any one of the
values

{1,2, 3y, (8—m), (28)

m+1l, m+2,________, s

Hence, by the addition theorem in the Calculus of
Probabilities, the probability of the variability mh,

m=1,2,8,.._.._..,(—1),is
1 s—m 8
,,73[2 Qg+ 23 atai—m]; (29)
i=1 f=mm41

and the mathematical expectation hecomes
]_ a—1 §—m s
E (v) = = mh| 33 a@umt+ a/ta't—m]
m=1 =l i=m+l1
2h |

3—1 —m ]
=-’? mz-ﬂ m [E a-‘(l-;.'.m]]'l
the same as (25). This formula lends itself very readily
to numerical computation, as the examples to be given
below will show.

If the z; are all equally probably, ¢;=const.=a, n=2sa,
and (25) reduces to

his—1) (s+_11_
3s

By equations (6) and (25), the expected value of the
Goutereau Ratio in & random sequence
R AN bk eveeannnn t (31)

of N values drawn from the frequency distribution (2) is

2—1 8—m
0 n i‘j-:; a;|z,— M l ]f

8—1
E (v) =?£ -m§1 m(s—m)= (30)

Ge

The actual value will be

1 N_l. .
N=i| & ltk+1_tl:|]

G,=N=1 J. (33)
23!
P L e v

. Now, if random drawings are made from an urn which
contains the distribution (2), then, just as each of the
individual variabilities in the sequence obtained may have
any one of the values (20), so if a number of sequences like
(31) are drawn, the actual mean variabilities of these
different sequences will range over a number of different
values, none of which may happen to coincide with each
other or with the expected value; so, too, the mean devia-
tions of the individual sequences will depart from each
other and from the value (6). In other words, the actual
mean variabilities, mean deviations, and Goutereau ratios
of different individual sequences drawn perfectly at ran-

11 The case m=0 has again heen excluded; including it, the sum of the probabilities
(29) is seen, by equation (13), to be unity, as of course it must.
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dom from the same unvarying universe will, like all statis-
tical coefficients, be subject to fluctuations of sampling,
of magnitudes dependent on the size of the sample; and
in any specific case, before any conclusions as to the pres-
ence or absence of systematic control can be drawn from
a comparison of the two values given by (32) and (33),
it is necessary to know whether or not the difference, if
any, can be ascribed to errors of sampling.

From the known formula for the standard error of the
mean of an unbiased sample, and the theorem that the
standard deviation of the difference of two uncorrelated
quantities is equal to the square root of the sum of the
squares of the standard deviations of the quantities,’? we
see that the standard error of the observed mean variability
in a random series is

03
€= —-\/TN?].’ (34)
where ¢ is the standard deviation of (2). (The standard

error of a mean, it will be recalled, is independent of the
form of the frequencfr distribution).

However, the usual difficulties are of course encountered
when we come to apply our formule to actual cases:
When drawing sample sequénces (31) from an urn of
known composttion (2), we know @ priori the true values
of the probabilities (16) and of g, 6, ete.; but any sequence
actualiy presented to us by Nature is a sample drawn
from a universe of unknown composition, and in general
the hest we can do is to adopt for these quantities the
values given by this sample itself. All these adopted
values are then subject to errors of sampling,’® and in the .
case of small samples are quite unreliable; nor are we
sure in general that the true values remain constant.
Therefore, in actual practice, the value which we compute
from (32) is itself in error because of our ignorance of the
true composition of the universe from which the observed
sequence was drawn; and, furthermore, if we do not
know whether or not the observed sequence is a random
one, we can not tell whether or not (34) would be
applicable even if the real value of ¢ were known.

Now, suppose that we have for the frequency distribu-
tion not a histogram (2) but an analytical expression,
i. e., the equation to the frequency curve, so that

a=ne (1)
p= ¢ ()

Then, following the second method by which we deduced
equation (25), we have for the probability of a variability
o? magnitude A '

}, L<r<L, (35)

La—h L2
J;sa (x) o (x+h) dz+fl¢ +("f) ¢ (x-h)dz, 0<h=<|L,-L,|; (36)

and for the expected variability

JLs—Ly! Li—h
E (v) =J; h [Lga(.l') olr+h)dx

La
+ le(x)o(x—h)de {dh.

Ia+h
Thus, if the distribution be normal, and z=0 is the
mean, then

" (37)

1 I
G=EGXP(—§}—2),—‘”51$+&; (38)

2 @, U. Yule, Infroduction to the Theory of Statistics, b ed.. %p. 344 fg., and 210-211;
};ﬁndon. 1919. British M. O., Computer’s Handbook, Sec. V, subsec. 2 chap. v; London,

3.
13 See Handbook of Mathematical Statistics, ed. by Rietz, chap. v, especially pp. 77, 78.
Boston, 1924,
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d
@1 (+° 2 —(z+h)?
E(”)=ﬁh[2;ﬁf:’£‘1’(‘2%>[exp—;.ﬁ—)

+exp L(;c;,")-] az|dn

1 [ tof [z 4 (z+h)?
=2Ta""ﬁhdh f_ B exp — g

—[x2 + (x—h)?
———go_—z——"——}dlf.

an

(39)

+exp

The integrations may be carried out by means of the
substitutions
2+ (xth)=2x+h=z,
r=3 (=Fh) ’

B+ (z+h)2=4(2+12) (40)
dr=dz/2;
whence :
o +oo o, ’
E@®) =2:.,= ﬁ’“”'- f_f!gp _%:r_w dz
(41)

23 L PP
=a'1/1—r ﬁh exp ( - 4—0'2)17" = 'J;l:.

The mean deviation in a normal distribution is given

by “
_ V2 (™ _a _ Ji
0—6—,; JFesP| ~g5 dz=o -

Hence, in a random sequence drawn from a normal
distribution, the value of the Goutereau Ratio becomes

_20 A _
Gr=Tr = VP

the result of Goutereau and Maillet.!®

(42)

(43)

Table 1
Urn com- Composition, sam-
position ple of 1,001
z —=p
Stand
¢ p v error
1 5 .082 .089 . 009 +.007 1
2 4 . 065 . 067 . 007 —. 08 .
3 8 .131 13 .010 —. 008
4 13 .213 . 226 .013 +.013
] 22 . 361 . 349 . 015 —-. 012
6 3 . 040 . 045 . 008 —. 004
7 2 .033 . 047 . 007 +.014
8 4 . 066 . 064 . 008 —. 002
61 1. 000 LO0O e oo !
M=4.311 M=4 332
o=1.714 o=1.739 ————-
=], 34 o

Equation (25) was subjected to experimental test in
the following way: Sixty-one beans were marked with
the numbers 1, 2, _.___, 8 in the proportions given in
Table I, and put into a dish: 1001 random drawings
were then made, the one drawn being returned each
time before the next drawing, and the sequence of num-
bers thus obtained recorded. Table I also shows the
observed frequency distribution for this sample sequence

The expected variability may be computed from equa
tion (25) according to the scheme shown in Table II

14 Of. Arne Fisher, Mathematical Theory of Probabilities, vol. I, 2 ed., pp. 122-24, New
York, 1922; G. U. Yule, Introduction to the Theory of Statistics, 5 ed., p. 304, London, 1919.

¥ Goutereau, !.c.

# Cf. C.F.Marvin, Mo. WEATHER REV., 52, $40-441, 1924,
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The frequency distribution is tabulated in the firsttwo
columns, following which are s-1 columns numbered
1,2, _.__, s-1; now, beginning with the last frequency,
viz, 4, as multiplier, and taking each of t.h_e other fre-
quencies in order—2, 3, _. .. 5—as a multiplicand, fill
out the last row of the table—S8, 12, 88 ____, 20; then,
using the next to the last frequency—2—as multiplier,
and each of the frequencies preceding it—3, 22, ._ .., 5—
as multiplicand, ﬁh out the next to the last row—6,
44, ___., 10: and so cn.  This can be done quite rapidly
with a multiplication table or a calculating machine.
Then add up each of the numbered columns, multiply
the sum by the number of the column, add these products,
and multiply this last sum by 2A/n?; the result is the re-
quired expectation.
Table 2

"
a
-
©

:u
.
e
Y
-~

RIS CI )

726 | 873 i 760 | 275 | 156 | 140 | 3,452

n=61; s=8; h=1,

2x 3452
E(vy) == 8if

The expected value of the variability for a random
seqlue.nc-e drawn from the frequency distribution of
Table I is found to be 1.855; if, as is the case in practise,
we had not known the true composition of the universe
from which the sequence was drawn, but had been forced
to use in (25) the observed composition of the sample
itself, we should have found 1.885 for the expected varia-
bility. The actually observed mean of the 1,000 varia-
bilities was 1.84, with a standard error, according to (34)
of .0766, and hence a probable error of .052,

The observed sequence of 1,000 variabilities was also
cut up into 100 samples of 10 each, and the mean of each
of these samples computed. According to (34) the
standard error of a mean variability computed from 10
values would be .76; the 100 values were not enough
to give a smooth frequency distribution, but after group-
ing them until a smooth distribution was ohtaine(ﬁ they
gave a mean of 1.862 and a standard deviation of .61.

Table 3 gives the results of 1,001 drawings from
another frequency distribution. The results of these
experiments fully confirm the theoretical formulae
developed in this paper.

=1.855

Table 3
:|: Urn composition Sample of 1,001
[ p » p’=p
1 23 . 354 L3842 —.012
2 13 . 200 .212 +.012
3 9 L 13% 141 4. 003
4 7 . 108 .101 —. 007
5 4 . 062 .084 =+.002
6 3 .46 040 —. 006
7 a 007 .079 +.002
8 0 . 000 L 000 =+. 000
9 1 015 .021 +.008
85 1.G00 L0  feeaoaa
M=258 n=65; §=9; h=1
o=2,04 E(m)=2.164
Vw=2.150: 8tandard
error, .081; prob-
able error, .061




