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ABSTRACT

The equation for steadyv two-dimensional mountain waves is expressed in the isentropic coordinates.

An elliptic

cquation for the finite amplitude vertical motion field is solved by a numerical marching scheme in atmospheres with

varying shear and stability.

1. INTRODUCTION

Consider a vertical half plane (z, z) bounded below by a
mountain on a flat ground. A flow which is uniform and
horizontal at z==— o upon reaching the mountain under-
goes vertical perturbations, and gravity waves are pro-
duced. A study of these perturbations has been known
as the mountain wave problem.

The problem of steady two-dimensional mountain waves
was first systematically treated by Liyra [8]. One could
perhaps refer to the earlier contributions in the 1880’s,
when Rayleigh [14] and Kelvin [7] solved the problem. of
waves on the free surface of a lake with a corrugated
bottom. This class of waves is external to the fluid and
has been of great help to meteorologists in various formu-
lations of problems dealing with free surface waves. The
other class (Lyra [8]) deals with gravity waves in the in-
terior of the fluid and these are the ones of great interest
because they are induced by mountains of a certain scale.
Queney’s [12] contribution forms an important part of our
knowledge of these types of air flow over mountains, be-
cause his work deals with more realistic mountain profiles
than those of Liyra. Both Lyra and Queney consider the
propagation of mountain waves in an isothermal atmos-
phere with no vertical wind shear. This medium has
been investigated for a long time (Bjerknes et al. [2]).
In this medium the well-known Brunt-Viisild frequency

separates the acoustic waves from the gravity wave
spectruim.

A natural extension to the constant-temperature,
constant-wind model was made by Wurtele [19]. He
introduced a single-layer model with constant stability
and constant wind shear. This analytical model is shown
to have an interesting spectrum. of free waves.

Scorer [15] was among the first to investigate a two-layer
model systematically. Zierep [20] extended this work to
obtain solutions for a two-layer model with a troposphere
and stratosphere.

The problem of vertical propagation of energy by
various types of meteorological waves has been the subject
of considerable research in recent years, e.g., Charney and
Drazin [3], Eliassen and Palm [5].

Without specifying any particular lower tropospheric
energy source, Charney and Drazin investigated the gen-
eral properties of the atmosphere during different seasons.
By defining an index of refraction for the atmosphere as a
function of the mean zonal wind and the temperature
stratification they derived an equation for wave propaga-
tion in the vertical direction. This equation is analogous
to the equation that describes the transmission of elec-
tromagnetic radiation ‘in heterogeneous media. The
choice of a quasi-geostrophic model precludes pure gravity
waves and their analysis thus refers to the propagation of
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Fraure 1.—Schematic streamline of a mountain wave problem in
the z, z and z, s frames.

energy by long finite-amplitude, planetary-scale disturb-
ances. They found that except for short periods during
autumn and spring the atmospheric structure is such that
it does not permit vertical energy propagation by these
long planetary waves. This is an important result be-
cause large amounts of atmospheric energy are found in
this scale of motion.

Eliassen and Palm [5] were interested in the problem of
vertical energy propagation by gravity waves of small
amplitude. Basing the computations on Scorer’s [15]
solution for the linearized two-dimensional inviscid flow
of air over mountains, they derived expressions for reflec-
tion coefficients in two- and three-layer models. Calcula-
tions based on some wintertime data showed that energy
can be transmitted from the troposphere into the high
stratosphere and ionosphere by these small-amplitude
gravity waves. These results supported suggestions made
by Hines {6] that the turbulence at very high levels
(80-100 km.) is maintained by energy of gravity waves
from the lower troposphere. -

Palm and Foldvik [11] looked into the propagation of
mountain wave energy to very great heights. They
examined individual atmospheric soundings and postulated
simplified models to explain the presence of waves in the
high stratosphere.

The steady two-dimensional mountain wave in an in-
viscid atmosphere is described by an elliptic second-order
linear differential equation for the perturbation vertical
velocity. All the aforementioned references deal with
solutions of this differential equation as a boundary value
problem. Some  of the obvious shortcomings of this
approach have been listed by Queney et al. [13]. It might
be worth mentioning here that the most important of
these are perhaps the choice of finite sized mountains
(height 1 km. or over) and the applying of linear theory
to understand the structure of waves. Other difficulties
lie in the choice of boundary conditions and in specifying
the uniqueness of the problem.

In order to overcome the first of these difficulties we
propose a reformulation of the mountain wave problem
with entropy as a vertical coordinate. We shall show that
this yields an elliptic differential equation for the vertical
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velocity where the mountain surface is treated as a co-
ordinate surface. .

Schematically, figure 1 illustrates the two coordinates
z,z and z,s, where s stands for entropy. In the z,5 system
the height of the isentropic surface z is a dependent
variable. One can justify a finite amplitude mountain
wave problem in the z,s frame by applying boundary
conditions along s=0. On the contrary for a finite
amplitude mountain wave it seems incorrect to apply the
boundary conditions at 2z=0 in the xz,z frame. We
propose to examine a nonlinear mountain wave theory in
the z,s frame.

Further we shall be guided by a numerical approach,
in which we explicitly introduce a marching scheme for
resolving the uniqueness of the problem. The numerical
approach has the advantage that one can introduce any
arbitrarily shaped mountain. In this connection it might
be worth noting that Wallington [18] suggested how one
could partition any mountain into a number of idealized
step profiles of ridges of different height, width, and phase.
Our aim is to bring in a more continuous topography.

2. THE FORMULATION OF THE LINEAR PROBLEM
IN THE z,2 FRAME

The equation of motion along the z and z directions, the
equations of continuity, the adiabatic relation, and the
physical equation for a perfect gas may be written in the
form

ou ou_ 1lop
CE I iy (1)

ow, ow_ 10p
Y TV 52 &)

o Fe) Fo) o
¢ ¥ a_:'*_w —a—.::—p (a_z_*_a—?: (3)
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where the symbols have the following meaning:
u=component of velocity of air along the z-axis
w=component of velocity of air along the z-axis
p=pressure
¢y,¢,=specific heat of air at constant pressure and
volume
p=density
T=temperature
R=universal gas constant
g=acceleration of gravity
By linearizing equations (1) through (5) one can
formulate the boundary value problem for the vertical
velocity and introduce mountain effects as the boundary
condition. This is essentially the approach that was
followed by Lyra [8] and Queney [12]. Solutions for the
other four variables (u,p,T,p) are obtained by quadratures
as shown, for instance, by Zierep [20].
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We shall introduce mean and perturbation quantities
in the conventional manner. Let

Mean  Perturbation
v = U@+ (,2) (6)
w = W’ (2,2) (7)
T = TE+T(z,:2) ®)
po= 52 +0 @,2) 9)
p = PR +p&e) (10)

The mean state is uniquely identified by an arbitrary wind
distribution U(z) and a hydrostatic atmosphere

__lop
9= "% 0z (1)

Through a very lengthy process of elimination of the
nonlinear terms one obtains a second-order linear differ-
ential equation for the perturbation vertical velocity
field w (Queney et al. [13]).

g(lﬁ (_iig__
By L &),
az + U.>w_o (12)

_ az d%w
e

where

and

In equation (12) M represents a departure of the square
of the Mach number from unity and in the atmosphere
is known to be positive. Hence, equation (12) is an el-
liptic differential equation for the vertical velocity w;
S and B are respectively related to the density and tem-
perature stratifications in the vertical. 8 is the potential
temperature.

A canonical form of equation (12) may be obtained by
introducing a new variable,

—f(§/2)dz (13>

wP =we

This results in the equation
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Equation (14) is & homogeneous wave equation.

The two-dimensional mountain wave problem consists
in obtaining formal solutions of equation (14) for suitably
defined boundary conditions. This theory has been the
basis of most of the earlier formulations of the two-dimen-
sional mountain wave problem. Refer to Queney et al. [13].

3. THE FINITE AMPLITUDE MOUNTAIN WAVE PROB-
LEM IN THE z,s FRAME

The following two relations are well known coordinate
transforms that relate derivates in the z,s and x,z frames.

20 _20Y 200z

o/, ox/,' dz0x/, (15)
0Q_0Q0z
ds 0z 0s (16)

By use of these relations and through a lengthy algebraic
manipulation we may rewrite equations (1) through (5)
into the following set of three nonlinear differential equa-

tions for the variables u, 2, and 7.

bubz 0T 0z 0z
Uz os Tz 05 on "a T> 0 an
bz 0 oT h
%3s bx( >+c” 3s THo5= (18)
¢, 01/ 9z\, 0 [/ Qz\ _
BT ow a)ﬁi“a)*“ (19)

Equations (17) and (18) are the equations of motion
along the z and s (the vertical) coordinates. KEquation
(19) is the transformed adiabatic relation. For this sys-
tem x and s are the independent coordinates; z represents
a dependent variable, the height of the isentropic surface
s at any point z.

It can now be shown quite easily that the linearized
system obtained from equations (17), (18), and (19) yields
an elliptic equation for the vertical velocity that is very
similar to equation (12).

For this purpose mean and perturbation variables are
introduced as follows:

Mean Perturbation
v = Uls) + «(z,) (20
z = H(s) + 2'(z9) 21
T = T + T (xs) (22)
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Where U(s), H(s), and T(s) respectively are the mean
values of the horizontal wind, height, and temperature on
an isentropic surface s.
It is further assumed that the mean field is in hydro-
static equilibrium, or,
dT
—e, %>

We may separate the linear and the nonlinear parts of
equations (17) through (19) and rewrite them in the form

dH_1

== (23)

PG e
aH 0%z >_|_ )-{—cp(aT T) N, (25)
3{ Zaajj oT _l_bII au> LT axa —N, (26)

where NV, V,, and V; are the nonlinear terms.

In order to obtain a differential equation for the vertical
velocity in the z,s frame we may treat equations (24)
and (26) as two simultaneous equations for the variables
oT/ox and Oou/ox. On solving these simultaneous equa-
tions we may express (25) as functions of the height (2)
field and the nonlinear terms. We may then differentiate
equation (25) with respect to « and substitute for ou/ox
and d7/dz and obtain a differential equation for the slope
of the isentropic surfaces. This yields

Plbx bz) +F208 ) +I 3 > +F4<DP> +N,=0
(27)

where Fy, F,, F;, and F; are functions of z and s and are
determined by the temperature and wind stratifications
of the mean flow. N, is the nonlinear term.

oH

2
F=u2l (28)
_ g __2 Ur
Fy=g-+c, U, , 0s(U’¢,0H  oH
0 RT s " os
U2
T e o Y
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BT 7| RT*

Equation (27) is the differential equation for the vertical
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velocity in the z,s frame. It is easy to see that U
(02/0x); would be the vertical velocity for the linear
problem.

The finite amplitude mountain wave problem consists
in solving equation (27) as a boundary value problem, by
some iterative scheme. The solution of the linear prob-
lem in the z, s frame would be obtained for N,=0.

In this paper we shall utilize the well-known
Perturbation-Iteration scheme for the finite amplitude
expansion. We start with N;=0 and build successively
the nonlinear solutions by constructing the field of N,.

4. A COMPARISON OF THE TWO COORDINATE
SYSTEMS

The linear differential equations for the vertical velocity
in the two coordinates appear to have complicated
coefficients; these depend on the stability and shear
parameters. In order to compare these equations it
would be best to examine first a simple model and then
perhaps we can make some general comments.

Consider an isothermal atmosphere having no vertical
wind shear for the mean state. We may rewrite equa-
tions (12) and (27), the respective equations for the vertical
velocity in the z,z and z,s frames, as: .

—y—w aw I Yp—0 (32)
cpT U?
(et >} ()
0s ? bZP b"’P
¢y <R> cpU? P=0
(33)

where P= (dz/0x); is the slope of the isentropic surfaces.
The canonical forms of (32) and (33) may be written
in the usual manner.

@y T 1
ng(l)—*—s%—‘z(;pﬁ?_r]%?)u)(l)zo (34)
2p<1>+< . 4R2>Pm (35)
where
UZc,

OHN\""RT )| 2 2"

W — P WRMs o= o, 9

P=Pe ‘ { ( ox? ' Os?

Equations (34) and (35) appear to be very similar
except we note that if we were to make a formal coordinate
transformation at this stage from the z,s to the z,2z frame,
then

Viw # Vow

In this context perhaps it might be worth examining
figure 2 which outlines the correspondence of the two
systems.
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This figzure shows that starting with the complete
nonlinear equation in the two frames zs™ and xz2%,
on linearizing in their respective frames one obtains zs‘®
and zz™ that are not identical. If we make coordinate
transformations from the s to z system, or from the z to s
system, we obtain second nonlinear systems zz™? and
28 which on linearization yield zz® and zs".

The results of figure 2 have been shown by the author
to be true for the simple atmospheric model considered
in this section. But there is reason to believe that this
is generally true.

5. ON THE UNIQUENESS OF THE PROBLEM

The two-dimensional mountain wave problem has been
recognized, since the works of Lords Rayleigh [14] and
Kelvin [7], as one that has several eigensolutions. These
eigensolutions can always be added to the solutions of the
wave equation for specific boundary conditions. In order
to render the problem unique, Rayleigh introduced friction
terms that were proportional to the velocity. These have
since become known as the “Rayleigh friction” terms.
Then by letting friction tend to zero in the solutions he
was able to obtain the so-called downstream mode in a
lee wave problem; the upstream mode was removed.
Kelvin rendered the problem unique by asking for the
mode which has no mountain wave effect very far upstream
from the mountain. We shall show in the following
analysis of the numerical finite amplitude problem that
the finite difference form of the equation can be formulated
to produce unique solutions.

In particular we shall illustrate a numerical analogue .

for the Kelvin monotony condition that will consist in
solving the boundary value elliptic equation by a marching
scheme.

It is pertinent, perhaps, to recall here that the Sommer-
feld [16], [17] radiation conditions also render the problem
unique, where the upstream mode is discarded from con-
siderations of energetics, there being no physical wave
energy source at the top of the atmosphere. Some initial
value problems of the two-dimensional mountain wave
also are known to have unique solutions. References to
these works may be found in Queney et al. [13].

6. THE LYRA PROBLEM IN THE TWO COORDINATES

We may, for instance, examine the problem that Lyra
[8] considered in 1940. He was interested in solution of
the linear wave equation (34) in the x,z frame. A narrow
rectangular hill (fig. 3) constitutes the mountain. The
‘boundary conditions for the problem are:

w"’:o , r=-4+ o
wP=UQhfoz) , 2=0
wM=0 2=

)

where 4 is the height of the mountain-above z=0. This
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COMPLETE NON LINEAR EQUATIONS
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Ficure 2.—Depicts the coordinate transformation and the equiva-
lence of the equations in the linear and nonlinear frames.

problem has several eigensolutions (or, the free waves)
and Lyra was able to obtain uniqueness by invoking the
conditions stated in the previous section. For the specific
rectangular obstacle located at the origin z=2=0 of
height 4 and limiting area I he obtained the following
solution: :

_ 2r 5T 2r T"z)
7 Ny <)\z Vait-z >J. xJz<)\z N
A, o Vaitz? : 2?22

ol T 1
K o9/ T 1
¢,U? 4R?

J, is the Bessel function of the first kind and of order 2;
N; is the Bessel function of the second kind.

We may seek solutions of the wave equation (35) in
the z,¢ frame in a similar manner. As boundary condi-
tions we may consider: .

(36)

where
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Ficure 3.—A comparison of the Lyra solution (left) for a rectangular hill with the numerical solution (right) for a hill 1 km. high at one
grid point.

PO =0

5 §=—=
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== ’ =
P bx>s=0 §=0
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We can show that the corresponding solution is:

M% ___i s/2R_a_
P_ax s As 8¢ o2
N, <2~7—r Jx2+s2> 25 <21 \/m2+32>
As + As (37)
Nr=w 2T
where

1 1
“—fzj/ T 1
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A casual examination of the analytical forms of the
solution (36) and (37) in the two frames may lead one to
believe that they are identical. There is however the
interesting difference as already mentioned in figure 2.

In the z,s system the vertical velocity is geometrically
placed at the correct position by virtue of the boundary
condition. This makes a systematic difference at all
higher levels. The difference in magnitudes of the
vertical velocity at the two corresponding points is of
the order introduced by the coordinate transformation,
figure 2. This can be very large in a typical case.

Meteorologists have now recognised the usefulness of a
so-called o-coordinate. It has the property that oc=1
is the earth’s surface with its topography. It seems to
the author that the 2,5 system is the better coordinate
for investigation of mountain waves in an adiabatic
" atmosphere. The s=0 surface is identical to the o=1
surface. :

7. THE NUMERICAL PROCEDURE

The basic equations of the problem are the elliptic
second-order differential equation (27) for the slope P
of the isentropic lines and the two equations that relate
the temperature 7' and the horizontal wind speed u -to
the slope P. These equations may be written respec-
tively as:

2P oP J°P
P st b5+ F 5 g+ PP+ N=0 (38)
oT : oP
”a—x:Alp“}‘AQ '5;+N5 (39)
o] oP
D—Z=B1P+Bz gg—i-Ns (40)

The coefficients Fy, F;, Fs, Fy, A, 4, By, and B, are known
functions of the mean field.

The suggested iterative scheme is initiated by setting
the nonlinear terms N,=N,;=N;=0.

In a numerical formulation of the problem we are
confronted with several problems: (¢) order of solving the
equations, (ii) proper boundary condition for resolving
uniqueness, (iii) stable computational scheme to establish
convergence of the nonlinear phase.

The order appears to be simple; one could solve for
P, T, and u respectively in the order of the three equations.

We propose the following boundary conditions for this
problem:

x=Ar P=0 (42)
0z 0z
s=0 P==— ’ — == ACTUAL MOUNTAIN SLOPE
02 /s=0 -  0Z/s—0
(43)
§=8, P=0 At great heights s=s., no mountain wave
exists. (44)
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In previous linear studies the vertical velocity at the
lower boundaries is simply given by,

W=U

z2=0 a
similar to what was stated in the Liyra problem. The
procedure outlined in this paper yields,

= oh
W=U+u).=0 5~
at the lower boundary and hence horizontal variation of
the surface wind is possible in this nonlinear lower bound-
ary condition. In this aspect this approach may be
considered an improvement over the previous studies.
The first two boundary conditions along =0 and z=Az
satisfy the Kelvin monotony condition that there be no
wave far upstream from the mountain. The finite dif-
ference analog of the linear differential equation (38),
,=0, shows that if =0 at two adjacent lines z=0 and
Az then for 02/0x),.,=0 the solution is P=0 everywhere.
This assures that in the region upstream from the moun-
tain (z>0) there will be no wave. This particular choice
of boundary conditions renders it into a marching problem
similar to what is normally done for the well known hyper-
bolic wave equation in physics. The marching problem
must satisfy computational stability criteria. A simple
comparison with the wave equation suggests that the
choice of Az must satisfy the relation:

Ax<i\8\/|“‘Fl/Fal

It is not frequent that one finds an elliptic differential
equation solved by a marching scheme. This problem has
imaginary characteristics —F,/F3;<{0, and there is no
formal computational stability criterion.

According to Morse and Fishbach [10], an elliptic
differential equation may be treated as a hyperbolic
wave equation only if certain stringent conditions are
met. These are that P and 0P/dz at the initial co-
ordinate line, 2=0.

An examination of figure 4 will illustrate the uniqueness
of the numerical solution. The difference equation,

pPU+Y,)+PU—-1,J)—2P(,J)

()

Ax?
P 1)—P —
4R PLTAD=PU I
+F3(J)P(I,J+1)—}—P(I,J—l)—2P(I,J)

As?
+E(NPUL,J) N, Jy=0 (45)

may be written for the marching phase as:
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Fioure 4.—Diagram illustrates the numerical marching scheme for
a mountain of any shape (below). Two lines on left P=0,
initiate the ecalculation. P at point 4 is determined by values at
0,1, 2, and 3. Rest described in text.

P(I+1,J)=2P(I, J)—P(I—I,J)—[FQ(J‘){P(I, J+1)

—P(I,J—1)} 288+ F3(J)

{P(I, J+1)4+ P, J—l)——2P(I,J)}
As?

Ax?

+F4(J)P(I,J)+N4(I,J)]E(7) (46)

If we were to find a computationally stable marching
step Az and integrate from left to right as illustrated in
figcure 4, then the set of numbers P*(Z, z) far downstream
at =1 possesses the following property:

P*(L, s) is a unique set of numbers consistent with
P=0 upstream from dashed line. This uniqueness can
be further illustrated by stating that: If we were to solve
next a boundary value problem by prescribing

P=0 at =0

P=0 §=8§,,
0z

P——a o S—O

then P* is the only downstream boundary set that
would yield P=0 left of the dashed line. The argument
presented here follows from the properties of the linear
difference equation.

The marching scheme may be looked upon as a device
for search of the proper downstream boundary conditions
for the mountain wave problem. When the downstream
boundary condition has been determined by the marching
scheme, it may be used to solve the elliptic mountain
wave equation by a relaxation procedure. The resulting
numbers in the region 0<{z< L, 0<(s< s, will be identical
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for the marching and the relaxation procedures. We
find that at the same time the marching scheme exactly
satisfies the Kelvin monotony condition.

A comment on the choice of the upper boundary
condition at s=s. is perhaps necessary here.

In Lyra and Queney problems the corresponding
boundary condition is that at s=s.,

This boundary condition precludes unbounded energy at
great heights; however the vertical velocity w does take
on very large values. In a numerical approach large
values of p at s=s. makes it very difficult to find a
computational scheme that will make the nonlinear phase
converge, We have assumed that there be no wave at
§=8, (where s, =100 km. height).

This condition may be looked upon as that of putting
a rigid top on the atimosphere. This is not serious because
the wave activity may be expected to die out at these
heights in most situations. One might wonder about
reflection of energy from the top and thus find it difficult
to compare the numerical solutions with Lyra type prob-
lems. This is however not the case because the marching
scheme produces non-zero numbers essentially from the
mountain and up, and the problem of reflection may be
only important far downstream, an area we shall not be
interested in here.

Support for the proposed use of the upper boundary
condition is also given by Corby and Sawyer [4]. They
found that the rigid upper boundary exerts little influence
on the relatively small gravity waves.

When the boundary condition was raised in their
problem to z= the solution approached that given by
Queney.

The foregoing arguments for the uniqueness and the
computational stability criterion apply for the linear
difference equation. We propose to introduce the non-
linear phase by successively generating N, N; and N
through calculations. The nonlinear problem is solved
through the following steps:

(1) Solve for P from the linear difference equation
(N4:0)

(i1) Solve for % and 7' from the linear equation by
quadratures (N,=N;=0)

(iii) Generate magnitudes of Ny, N;, and Ng from the
linear solutions for P, w, and T

(iv) Solve for P from the nonlinear difference equa-
tion (V, from (iii))

(v) Solve for w and T from the nonlinear equation
by quadratures (N, and N; from (iii))

(vi) Repeat steps (i), (iv), and (v) until the magni-
tudes of P, u, T, Ny, N,, and N; converge to
acceptable limits of tolerance.

We have tacitly assumed that the steps would produce
a converging solution. This is found to be true only in
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some cases that we shall present here. It might perhaps
be pertinent to state here a class of calculations that
mvariably diverges when we pursue the type of procedure
stated above. This occurs when one solves for P by a
relaxation or a matrix inversion procedure assuming a
known value of P*=0, for instance, at the downstream
end. The perturbation energy in this class of problems
is confined to a finite area 0<z<L and the iteration
procedure yields rather large values for N,, N;, and N;
and the scheme fails. The marching scheme determines
P* and at z=L there is an open boundary; a large
amount of wave energy thus flows out of the region
0<«¢< L, and the iteration scheme yields small magnitudes
for N, N;, and N, There have been some cases when
the marching scheme produced unbounded solutions; there
is perhaps some parameter like the Richardson number
of the mean flow that controls the stability of the nonlinear
iteration scheme. This question will remain unanswered
in this paper.

8. SOME RESULTS OF THE NUMERICAL
CALCULATIONS

We have used the following constants and units
As=200 m.? sec.”? deg.”!
€,=1000 m.? sec.”? deg.™
80 =4000 m.? sec.”? deg.™!

, corresponds to a top around

100 km.
Az=As /[ F,/I%| varies from case to case (20 m. in some
calculations)
L=200 km.
e=¢,/R=2.46

¢=9.81 m. sec.™?

ISOTHERMAL ATMOSPHERE WITH NO VERTICAL WIND SHEAR

We propose a problem similar to that of Lyra, where
mean temperature T=250°A; mean wind U=20 m. sec.™;
a mountain of height A=1 km. is placed at a single grid
point, in this case at z=x,=100 km. from origin. Through
finite differences this produces the following boundary
condition on P

(xg+Az)<a2<L P=0
0<ae<(ny—A) P=0

h
r=x,TAx P=4U Az
x:xo P=O

Through these boundary conditions we can simulate a
numerical problem somewhat analogous to the continuous
problem of Lyra.



April 1964 T. N. Krishnamurti 155
]

aove \
NONLINEAR SOLUTION 5\ W
B ) : : . :

3600 o ©° o o o o o o o o p—— < E\i,//?\_;_/

3200 o o. o, o o. o o o o o ITERATION 2 M\/
uncan souwtin : : : :

122\»4 0 ° 0 . o o o [ ° o

20001' 0. o o o. o 0. o o o 1

wol o o o 0 0 o o o o o E 2o

wof o o o o o o o o & o X0

o. o Q. o o o o X (km] N

w| o o e« o o o o o Fraure 7.—Comparison of the streamline (s=1800) for various

B e ———————— iterations. Narrow hill of 1 km. at one grid point.

e

E10

o

=0

N o

© ™ 0 30 a0 3 € 70 8 9% @0 1o @ o
X (km)—>

Ficure 5.—Linear solution for a step mountain 1 km. high. Slopes
of streamlines (shown by zeros on left, stippled and clear to the

right). The two dashed lines enclose region of maximum wave
energy. Heavy dark lines are a few streamlines.
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Ficure 6.—Nonlinear solution for a step mountain 1 km. high.
Rest same as for figure 5.

Figures 5 and 6 show the solution for P for the linear
and the nonlinear case. The ordinate is the s axis, the
abscissa 18 the z axis. The zero refers to a value of
P(=0). In the stippled area P is negative and alter-
nately there are regions P>>0. The streamline geometry
can be inferred from this configuration of P, the slope.
In the region where P=0 the streamlines are exactly
horizontal; the streamlines rise and fall in the clear and
stippled region as shown, indicating waves. The two
primary dashed lines confine the region of maximum
wave energy. There are two secondary regions also

724-232—64——2

confined between dashed lines that contain small amounts
of wave energy to the right of the primary mode.

The magnitude of P (not indicated in the figures)
decreases very rapidly with height; starting from P=10"%
at s=0, it reaches values of the order P=10"% in the
upper region s=1800. The amount of wave energy in
the upper part of the perturbed region is very small.

The nonlinear solution differs from the linear solution
in only one major respect. In the region z< (z—Az)
there is no mountain wave, as one should expect from the
linear difference equation. The wave action recedes
upstream in the nonlinear phase.

To illustrate this feature of the nonlinear calculation an
individual streamline for various iterations is illustrated
in figure 7. The positions of the major troughs and ridges
of the particular streamline (s=1800) are unaltered; the
first dashed line to the left shows the farthest point up-
stream where P is non-zero. In most of the grid points
the calculations converged after six iterations, to a
reasonable tolerance.

Figure 7 shows little or no change in the geometry of
the troughs and ridges when the nonlinear terms are
included in the linear solution. This appears to be in
contrast to the nonlinear solution of Palm and Foldvik
[11] who found that the troughs tended to flatten and
ridges or crests tended to sharpen with the inclusion of the
nonlinear influences. Palm and Foldvik attribute these
to a possible connection with the shear of the mean wind.
Figure 7 represents the condition for an atmosphere with
no mean vertical wind shear and could thus explain the
differences in the results.

Figure 8 shows the convergence at individual grid
points of P and N, (the nonlinear inhomogenous term).
The ordinate shows the function P and N; plotted against
the iteration number.

It appears from this set of calculations that the non-
linear terms in the z,s frame are very small. This need
not be so in the z,z frame.

In the right of figure 3 we have presented this numerical
solution for comparison with the Liyra solution in the z,z
frame. Lyra’s calculations extend from the ground up
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Firgure 8.—The slope of the streamline P, and the nonlinear term
of the wave equation N,, plotted as a function of the iteration
number at two selected grid points. Illustrates convergence of
nonlinear iteration.

to a height of approximately 10 km. Our vertical grid
distance As=200 gives a very coarse resolution. This
corresponds to Az=5 km. and hence the comparison can-
not be very good. The sloping trough and ridge lines are
very well described with waves of approximately 10-km.
wavelength. It is however promising to see that the
numerical program yields solutions very close to what we
intuitively expected to find.

In figure 9 we present the results of air flow over the
Sierra profile for an isothermal atmosphere with no
vertical wind shear. The results are projected on the z,z
coordinates. The sloping dashed lines separate regions
of P>0 from regions P< 0 (shaded). The grid distances
and the constants are the same as in the previous example.

The results bear strong similarity to those obtained by
Queney [12] for a bell-shaped mountain in an isothermal,
no shear atmosphere. The sloping lines P=0 have an
upwind tilt. The amplitudes of the schematic streamlines
in the upper part are exaggerated. The strong foehn
wind effect over the Owens valley (x~120 km.) is very
clearly shown by the shaded region of sinking air.

Calculations of this kind seem to be most interesting
from the standpoint of the numerical approach. This
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Ficure 9.—Streamlines and their slopes (hatched) for air flow over
Sierras. (Isothermal atmosphere, no shear, T=250°A., U=
20 m.p.s.)

calculation is an extension of the type of numerical work
suggested by Wallington [18]. Here we have a con-
tinuous mountain profile described by a very large number
of grid points. As in the previous example the nonlinear
effects were found to be small. It is interesting to notice
the following other features:

(1) Wavelength=40 km.

(ii) On the upwind side there are several interesting
alternating modes: a rising mode below 5 km., a sinking
mode between 5 and 10 km., and again a rising mode.

Examination of individual soundings to determine the
flow over the Sierras during varying wind and thermal
stability conditions would be of natural interest. This
kind of calculation can be performed through this numer-
ical program.

EXAMPLES WITH VARYING STABILITY AND SHEAR

It would be of considerable interest to compare the
numerical calculations with the analytic results for various
two- and three-level models based on Scorer’s [15] work.
In view of the differences in the upper boundary condition
at s=s, an exact comparison is not possible.
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We shall present two examples of flow over the Sierras
with typical mean soundings during summer and spring.

In their analysis of a many-layered atmosphere Eliassen
and Palm [5] discussed the role of the reflection coeflicient
in several layers. The coefficient determines whether the
solution of the linear wave equation would be trigono-
metric or exponential in any layer.

The corresponding analysis is presented in the z, s frame

%P or P .,
F, W+FZ §+F35§7+I’4P=0

Let
PO — g2/ PojFsis P
and
F, d?
2 1
Vs F3 az

We obtain the canonical form

1 0 F,
2D(1) (6
Ve +[ 4F3 t52s Fg)]P 47
In equation (47) we may write
1 o] Fz)
414’ 125 F,

If we separate variables by assuming P® to be made
the product of two functions of  and s, then the condition
for vertical propagation of a horizontal wave number «
may be obtained by conventional techniques.

If (G—«*) <0 Vertical solution is exponential.
(G—«*) >0 Vertical solution is trigonometric.

It may be pointed out here (in the context of equation
(47)) that no upward propagation of energy is possible if
the wave solutions are of exponential type (Eliassen and
Palm [5]).

Thus a vertical plot of & as a function of s would deter-
mine whether a horizontal wave number « is propagated
upward as a wave or not.

Figure 10 shows a plot of G during different seasons and
for the isothermal atmosphere. For the latter, G is a con-
stant and has a value of =6X107* Along the abscissa
we have indicated a wavelength scale that determines in
length units (A=27/«) the propagation of a wave number
k. It is easy to see that the isothermal atmosphere would
permit vertical propagation of wavelength greater than a
few kilometers all the way to the top. The individual
soundings of @ show the possibility of trapping of energy.
Values of @ during spring and for the sounding taken from
a paper by Palm and Foldvik [11] show rather large values
in the lower stratosphere. This analysis is analogous to
that of Charney and Drazin [3] for long atmospheric waves.

The numerical solution for (P=09z/0x), would thus
exhibit waves of certain wave number « if G>«*. The
mean soundings during summer and spring are illustrated
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Palm and Foldvik [11] sounding (to 20 km.).
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scale is also represented as a function of the wavelength.
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Ficure 11.—Vertical distribution of temperature 7 and zonal wind
U, during summer.

in figures 11 and 12. These were obtained from a report
by Batten[1]. This represents the mean wind and temper-
ature between 30° and 40° N. from a large number of
United States rocket observations. We assume that a
mean atmosphere described by these soundings constitutes
the unperturbed flow over the complete Sierra profile.
From figure 10 we find that @ values for summer are
much smaller than those of spring. We would thus expect
vertical propagation of shorter gravity waves in spring
than in summer. The Sierra profile may be expected to
excite an infinite spectrum of these wave numbers.
Figures 13 and 14 show respectively the solution for
summer and spring. The two solutions exhibit large
differences in scale as expected. A rather large vertical
damping shows up around 40 km. in spring; this solution
is characterised by short gravity waves, with a horizontal
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Ficure 12.—Vertical distribution of temperature 7, and zonal

wind U, during spring.

wavelength of approximately 20 km. The summer
solution, except for the lower troposphere, does not seem
to exhibit these typical mountain wave characteristics.
Energy in low wave numbers seems to propagate to great
heights in summer. It may be noted that during summer
a part of the marching calculations are carried out against
the current (the stratospheric easterlies). This does not
violate any conditions on the uniqueness. In this case
we still obtain a unique downstream set of numbers P*
that calls for no wave to the left of the Sierras. In
reality, perhaps the tropospheric westerlies in summer
would contain a spectrum of mountain waves; these waves
if carried up would carry energy westward in the strato-
spheric easterlies. Qur choice of boundary conditions
would not show this mode in the stratosphere, hence the
solution shown in figure 13 may be of interest only in the
troposphere.
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Ficure 13.—Nonlinear solution for air flow over Sierras during
summer. Rest same as in figure 5.

The spring values of G are large and close to those
obtained by Palm and Foldvik [11], for a case of large
mountain wave activity near Leuchars. The nonlinear
numerical solution for P, figure 14, is very similar to the
linear analytic solution of Palm and Foldvik. The
horizontal and vertical scales of the waves appear to be
very realistic. The large damping of P in this case
suggested that the locale of the upper boundary condition
was less restricted. We had chosen s.,=4000; however
the solution would be identical had s. been any value
greater than 2800.

9. CONCLUDING REMARKS

We have formulated the two-dimensional mountain
wave problem in isentropic coordinates. The analytical
representation of the problem in this coordinate is shown
to have certain advantages over the conventional height
coordinates.

The numerical marching scheme can be utilized to
obtain solutions for mountains of any arbitrary shape.
Even though the theory of the computational stability
criterion is not completely understood, we can, however,
say that the numerical solution is unique in that it satisfies
the Kelvin monotony condition. This has enabled us to
extend this work to obtain solutions for mountain waves
in a medium with varying conditions of shear and stability.
The solutions appear very realistic when we compare with
those obtained by Lyra and Queney. The vertical resolu-
tion in the numerical marching scheme is very coarse
(As=200 c.g.s. units); this corresponds to a Az approxi-
mately 5 km. A finer vertical resolution would be required
in the treatment of problems of airflow in an atmosphere
where sharp changes in the reflection coefficient are
present. The computation time on IBM 7090 type of
computer for some of these calculations presented here is
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F1cure 14.—Nonlinear solution for air flow over Sierras during

sprihg. (The zeros on the top refer to slope of streamlines less
than 10730) Rest same as in figure 5.

of the order of 20 min. A finer vertical resolution would
make the computer time longer because a much smaller
space-step, Az, would be needed for a computationally
stable marching scheme.

Some calculations for individual wintertime soundings
over the Sierras did not yield convergence of the numerical
solution. These were cases where very large changes in
the reflection coefficient @ were observed. The compu-
tational stability criterion depends on the magnitude of
@; these failures of the computations are thus attributable
to this property of the medium. A vertical smoothing of
the @ function enabled us to obtain convergence in some
cases.

The problem of vertical propagation of energy by
mountain waves was discussed briefly in the Introduction.
The numerical solutions show that a large amount of
mountain wave energy is propagated into the stratosphere,
in some instances to very great heights. Further work in
this area needs to be done to explain the ionospheric
turbulence phenomena and the presence of noctilucent
clouds. One of the difficulties in pursuing this kind of
work stems from the lack of a clear description of the
structure of the medium to great heights. Also, it is not
always possible to isolate an individual hill or mountain
as the energy source.

It may be worth mentioning here that, Makjanic [9]
utilized the isentropic coordinate to obtain a linear fourth-
order differential equation to discuss mountain waves in a
medium with Navier-Stokes type of friction. He could
not formally solve this system for any particular mountain
profile like that used by Queney, because of complexities
in the mathematics. He utilised an analytic procedure
and obtained a frequency equation for waves. Since no
solutions were obtained it is not possible to evaluate his
work, except perhaps to state that numerical work of the
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kind we have pursued here may be of help in examining
problems with friction.

At the time of writing their report, Queney et al. [13]
stated that no initial value lee-wave problems have been
solved by a numerical procedure. Adiabatic models of
this kind can be examined by numerical methods and
would be extensions of the work presented here.
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