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ABSTRACT 

The cquatioii for steady two-dimcnsional mountain w a ~ c s  is csprcsscd in  the isentropic coordinates. An elliptic 
equation for thc fiiiitc ainplitudc vertical motion ficld is solved by a numerical marching schemc in atmospheres with 
varying shcar and stability. 

1. INTRODUCTION 
Consider a vertical half plane (2, z )  bounded below by a 

mountain on a flat ground. A flow which is uniform and 
horizontal a t  z=- m upon reaching the mountain under- 
goes vertical perturbations, and gravity waves are pro- 
duced. A study of these perturbtitions 111~s been ltnown 
:LS the mountain \viLVe problem. 

The problem of stendy two-dimensional mountain n-aves 
was first systematicnlly treated by Ly1.a [SI. One could 
pcrht~ps refer to tlic ciLrlicr contributions in the 188O’s, 
when Rayleigh [I41 and Kelvin [7] solved the problem of 
\vt~ves on the free surfibce of a lake with a corrugatcd 
bottom. This c1:rss of waves is exterriul to the fluid and 
has bcen of great help to meteorologists in various formu- 
lntioiis of problems dei&ig with free surface waves. The 
other class (Lyra [SI) deals with gravity wives in the in- 
terior of the fluid and these are the ones of great interest 
because they arc induced by mountains of a certain scale. 
Queney’s [I21 contribution forms :in important part of our 
lano~vledge of these types of air flow over mountains, be- 
cause his work deals with more realistic mountain profiles 
thin those of Lyra. Both Lyra r~nd Queney consider the 
propagation of moun taiii waves in an isothermal atmos- 
phere with no vertical wind shear. This medium has 
been investigated for a long time (Bjerknes et al. [2]). 
In this medium the well-Irnown Brunt-Vaisalii frequency 

separates the acoustic waves from the gravity wave 
spectrum. 

A natural extension to the constant-temperature, 
constant-wind model \vas macle by Wurtele [ IB] .  He 
introduced a single-layer model with constian t sttibility 
and constant wiiid shear. This analytical model is shown 
to have an interesting spectrum of free waves. 

Scorer [15] was among the first to investigate a two-layer 
model systematically. Ziercp [20] extended this work to 
obtain solutions for a two-liiyer model with a troposphere 
and stratosphere. 

The problem of vertical propagation of ciicrgy by 
various types of meteorologicd lviiVeS has been tlic subject 
of corisidcrable research in 1-ecen t years, eg. ,  Chnriicy nnd 
Drazin [3], Eliassen and Palm. [5]. 

Without specif)-ing any p:irticul:~r lower tropospheric 
energy source, Charney and Draziii investigated the gen- 
eral properties of the atmosphere during different seasoris. 
By defining an index of refrnctioii for the atmospherc as a 
function of tlie mean zonnl wind and the tempcrnture 
stratification they derived an equntion for wave prop2iga- 
tion in the vertical direction. This equation is aniilogous 
to the equation that describes the transmission of elec- 
tromagnetic radiation in heterogeneous media. The 
choice of a quasi-geostrophic model precludes pure gravity 
waves and their nnalysia thus refers to the propagntioii of 
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FIGURE 1.-Schcmntic streamlinc of a rnouiitaiii wavc problcm in 
the x, z and x, s frames. 

energy by long finite-amplitude, pliin etary-scale disturb- 
ances. They found that except for short periods during 
autumn and spring the atmospheric structure is such that 
it does not permit vertical energy propagation by  these 
long planetary waves. This is an important result be- 
cause large amounts of atmospheric energy are found in 
this scale of motion. 

Eliassen and Palm [5] mere interested in the problem of 
vertical energy propagation by gravity waves of small 
amplitude. Basing the computations on Scorer's [15] 
solution for the linearized two-dimensional inviscid flow 
of air over moun tains, they derived expressions for reflec- 
tion coefficients in two- and three-layer models. Culcula- 
tions based on some wintertime data showed that energy 
can be transmitted from the troposphere into the high 
stratosphere and ionosphere by these small-amplitude 
gravity waves. These results supported suggestions made 
by  Hines [B] that the turbulence a t  very high levels 
(80-100 km.) is maintained by  energy of gravity waves 
from the lower troposphere. 

Palm and Foldvik [ll] looked into the propagation of 
mountain wave energy to very great heights. They 
examined individual atmospheric soundings and postulated 
simplified models to explain the presence of waves in the 
high stratosphere. 

The steady two-dimensional mountain wave in an in- 
viscid atmosphere is described by an elliptic second-order 
linear differential equation for the perturbation vertical 
velocity. All the aforementioned references deal with 
solutions of this differential equation as a boundary value 
problem. Some of the obvious shortcomings of this 
approach have been listed by  Queney ct al. [13]. I t  might 
be worth mentioning here that the most important of 
these are perhaps the choice of finite sized mountains 
(height 1 km. or over) and tlie applying of linear theory 
to understand the structure of wuvcs. Other difficulties 
lie in the choice of boundary conditions and in specifying 
tlie uniqueness of the problem. 

I n  order to overcome the first of these difficulties we 
propose a reformulation of the mountain wave problem 
with entropy as a vertical coordinate. We shall show that 
this yields an elliptic differential equation for tlie vertical 

velocity where the mountain surface is treated as a co- 
ordinate surface. 

Scheinaticnlly, figure 1 illustrates the two coordinates 
x,z titid x,s, where s stands for entropy. I n  the x,s srstem 
the height of the isentropic surface z is a dependent 
viuiable. One can justify a finite amplitude mountain 
wave problem in the x,s frame by applying boundary 
conditions along s=O. On the contrary for a finite 
amplitude mountain wave i t  s e e m  incorrect to apply the 
boundary conditions a t  z=0 in the x,z frtime. We 
propose to extmiine a noiilinenr mountain wave theory in 
the 5,s frame. 

Further we shall be guided by a numerical approach , 
in which we explicitly introduce a marching scheme for 
resolving the uniqueness of the problem. The numerical 
approach hns the advan tage that one can in troduce any 
arb; trarily shaped nioun tain. I n  this connection i t  might 
be worth noting that TVallington [18] suggested how one 
could partition any mountnin into a number of idealized 
step profiles of ridges of different height, width, and phase. 
Our aim is to bring in a more continuous topography. 

2. THE FORMULATION OF THE LINEAR PROBLEM 
IN THE x,z FRAME 

The equation of motion along the x and z directions, the 
equations of continuity, the adiabatic relation, and the 
physical equation for n perfect gas may be written in the 
form 

(3 )  

p=RTp ( 5 )  

where the symbols have the following meaning: 
u=component of velocity of air along the x-axis 
w=coiiiponent of velocity of air along the z-axis 
p = pressure 

cp,c,=specific heat of air a t  constant pressure and 
volume 

p = density 
T= temperature 
R =universal gas constant 
g= acceleration of gravity 

By linearizing equations (I) through ( 5 )  one can 
formulate the boundary oalue problem for the vertical 
velocity and introduce mountain effects as the boundary 
condition. This is essentially the approach that was 
followed by Lyra [SI and Queney [12]. Solutions for the 
other four variables ( z c , ~ ,  T,p) are obtained by quadratures 
as shown, for instance, by Zierep [20]. 
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We shall introduce mean and perturbation quantities 
in the conventional manner. Let 

Mean Perturb ation 
- 

u = U(z)+u’(x,z) (6) 

w =  w’ (2 ,  2 )  (7) 

T = ?(~)+T’ (X ,Z )  (a 
P = P(z> +P ’ (Z ,Z )  (9) 

P = 8 2 )  +P’(W) (10) 

The mean state is uniquely identified by an arbitrary mind 
distribution c(z) and a hydrostatic atmosphere 

1 bp 
g=-;dz 

Through a very lengthy process of elimination of the 
nonlinear terms one obtains a second-order linear differ- 
ential equation for the perturbation vertical velocity 
field w (Queney et al. [13]). 

- d - 1 (la 
dz 34 S=- In p+= - 

- d - 1 dlG p=- In e+= - 
dz &f (12 

and 
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(14) 

and 

5dU 

Equation (14) is a homogeneous wave equation. 
The two-dimensional moun tain wave problem consists 

in obtaining formal solutions of equation (14) for suitably 
defined boundary conditions. This theory has been the 
basis of most of the earlier formulations of the two-dimen- 
sional mountain wave problem.. Refer to Queney et al. [13]. 

3. THE FINITE AMPLITUDE MOUNTAIN WAVE PROB- 
LEM IN THE z,s FRAME 

The following two relations are well lmo.wn coordinate 
transforms that relate clerivutes in the 2,s and x,z frames. 

By use of these relations and through a lengthy algebraic 
manipulation we may rewrite equations (1) through (5) 
into the following set of three nonlinear differential equa- 
tions for the variables u, z, and T. 

Equations (17) and (18) tire the equations of motion 
along the x and s (the vertical) coordinates. Equation 
(19) is the transformed adiabatic relation. For this sps- 
tern x and s are the independelit coordinates; z represents 
a dependent variable, the height of the isentropic surface 
s a t  any point x. 

Tt cui1 now be shown quite easily that the linearized 
system obtained from equations (17), (18), and (19) yields 
an elliptic equation for the vertical velocity that is very 

For this purpose mean and perturbation variables are 

I n  equation (12) ?i? represents a departure of the square 
of the Mach number froin unity and in the atmosphere 
is known to be positive. Hence, equation (12) is an el- 
liptic differential equation for the vertical velocity w; - similar to equation (12). S and 3 are respectively related to the density - and tem- 
perature stratifications in the vertical. e is the potentinl 
temperature. introduced as follows : 

A-canonical form of equation (12) iiiay be obt.ained by 
introducing a new variable, 

- 
(13) w ( ~ ) = w e -  f (S l2)dz 

This results in t8he equation 

Mean Perturbation 
u = U(s)  + u’(x,s) (20) 

2 = R ( S )  + z’(x,s) (21) 

T = T(s) + T ’ ( x , ~ )  (22) 
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Where U(s) ,  H(s), and T(s) respectively are the mean 
values of the horizontal wind, height, and temperature on 
an isen tropic surface s. 

It is further assu.med that the mean field is in hydro- 
static cquilibrium, or, 

dH 1 
(23) 

We may separate the linear and the nonlinear parts of 
equations (17) through (19) and rewrite them in the form 

where Nl, N2, and N3 are tlie nonlinear terms. 
In order to obtain a differential equation for the vertical 

velocity in the 2,s frame we may treat equations (24) 
and (26) as two simultaneous equations for the variables 
b T / b x  and bu/bx.  On solving these simultaneous equa- 
tions we may express (25) as functions of the height ( z )  
field and the nonlinear terms. We may then differentitite 
equation (25) with respect to x and substitute for buJax 
and b T / b x  and obtain a differential cquation for the slope 
of tlie isentropic surfaces. This yields 

where Fl, F2, F3, and F4 are functions of x and s and are 
determined by  the temperature arid wind stratifications 
of the mean flow. N4 is tlie nonlinear term. 

Equation (27) is the differential equation for the vertical 

velocity in the 5,s frame. I t  is easy to see that U 
(bz/bx), would be tlie vertical velocity for the linear 
problem. 

Tlie finite aniplitude mountain wave problem consists 
in solving equation (27) as a boundary value problem, by 
some iterative schetne. The solution of the linetir prob- 
lem in the x,  s frame would be obtained for N4=0. 

In this paper we shall utilize the well-known 
Perturbation-Iteration scheme for the finite amplitude 
expansion. We start with N4=0 and build successively 
the nonlinear s o h  tions by constructing the field of N4. 

4. A COMPARISON OF THE TWO COORDINATE 
SYSTEMS 

Tlie linear differentid equations for the vertical velocity 
in the two coordinates appear to have complicated 
coefficients; these depend on tlie stability and shear 
parameters. I n  order to compare these equations i t  
mould be best to  examine first a simple model and then 
perhaps we can iiiake some general comments. 

Consider an isothermal atmosphere having no vertical 
wind shear for the mean state. We may rewrite equa- 
tions (12) and (27), the respective equations for the vertical 
velocity in the x,z and 2,s frames, as: 

(33) 

where P= (bz/az),  is the slope of the isentropic surfaces. 

in the usual manner. 
Tlie canonical forms of (32) and (33) may be written 

where 

(34) 

i I 

Equations (34) and (35) appear to be very sim.ilar 
except we note that if we were to make a formal coordinate 
transformation at this stage from the 5,s to the x,z frame, 
then 

v;w # vfw 

I n  t.his context perhaps i t  might be worth examining 
figure 2 which outlines the correspondence of the two 
systems. 
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This figure shows that starting with the complete 
nonlinear equation in the t;wo frames X S ( ~ )  and x d N ) ,  
on linearizing in their respective frames one obtains x d L )  
and xdL) that are not identical, If we make coordinate 
transform.ations from the s to z syste.m, or from the z to s 
system, we obtain second nonlinear systems x d N 2 )  and 
X S ( ~ ~ )  which on linearization yield x d L )  and X S ( ~ ) .  

The results of figure 2 have been shown by the author 
to be true for the simple atmospheric model considered 
in this section. Rut  there is reason to believe that this 
is generally true. 

5. ON THE UNIQUENESS OF THE PROBLEM 
The two-dimensional mountair1 wave problem has been 

recognized, since the works of Lords Rayleigh [14] and 
Kelvin [ 7 ] ,  as one that has several eigensolutions. These 
eigensolutions can always be added to the solutions of the 
wave equation for specific boundary conditions. I n  order 
to render the problem unique, Rayleigh introduced friction 
terms that were proportional to the velocity. These have 
since become known as the “Rayleigh friction” terms. 
Then by letting friction tend to  zero in the solutions he 
was able to obtain the so-called downstream mode in a 
lee wave problem; the upstream mode was removed. 
Kelvin rendered the problem unique by asking for the 
mode which has n o  mountain wave effect very far upstream 
from the mountain. We shall show in the following 
analysis of the numerical finite amplitude problem that 
the finite difference form of the equation can be formulated 
to produce unique solutions. 

I n  particular we shall illustrate a numerical analogue 
for the Kelvin monotony condition that will consist in 
solving the boundary d u e  elliptic equation by a marching 
scheme. 

It is pertinent, perhaps, to recall here that the Sommer- 
feld [16], [17] radiation conditions also render the problem 
unique, where the upstream mode is discarded from con- 
siderations of energetics, there being no physical wave 
energy source a t  the top of the atmospliere. Some initial 
value problems of the two-dimensional mountain wave 
also are known to have unique solutions. References to 
these works may be found in Queney et al. [13]. 

6. THE LYRA PROBLEM IN THE TWO COORDINATES 
We may, for instance, examine the problem that Lyra 

[8] considered in 1940. He  was interested in solution of 
the linear wave equation (34) in the x,z frame. A narrow 
rectangular hill (fig. 3) constitutes the mountain. The 
boundary conditions for the problem are: 

W(l’=O , x = & m  

w‘”=t7(bh/dz) , z=o 

W(”=O z= a3 , 
where h is the height of the mountain above z=O. This 

COMPLETE NON LINEAR EQUATIONS 

FIGURE 2.-Depicts the coordinate transformation. and the equiva- 
lence of the equations in the linear and nonlincar frames. 

problem has several eigensolutions (or, the free waves) 
and Lyra was able to obtain uniqueness by invoking the 
conditions stated in the previous section. For the specific 
rectangular obstacle located a t  the origin x=z=O of 
height h and limiting area F he obtained the following 
solution : 

P 

where 
1 T I  1 

Jz is the Bessel function of the first kind and of order 2; 
Nl is the Bessel function of the second kind. 

We may seek solutions of the wave equation (35)  in 
the x,s frame in a similar manner. As boundary condi- 
tions we may consider: 
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FIGURE 3.-A comparison of the  Lyra solution (left) for a rectangular hill with the  numerical solution (right) for a hill 1 km. high at one 
grid point. 

We can show that the corresponding solution is: 

where 

A casual examination of the analytical forms of the 
solution (36) and (37) in the two frames niay lead one to 
believe that they are identical. There is however the 
interesting difference as already mentioned in figure 2 .  

In  the X,S system the vertical velocity is geometrically 
placed a t  the correct position by virtue of the boundary 
condition. This makes a systematic difference a t  all 
higher levels. The difference in magnitudes of the 
vertical velocity a t  the two corresponding points is of 
the order introduced by the coordinate transformation, 
figure 2 .  This can be very large in a typical case. 

Meteorologists have now recognised the usefulness of a 
so-called u-coordinate. It has the property that u = l  
is the earth's surface with its topography. It seems to 
the author that the X,S system is the better coordinate 
for investigation of mountain waves in an adiabatic 

The s=O surface is identical to the u = l  
surf ace. 

' atniosphere. 

7. THE NUMERICAL PROCEDURE 
The basic equations of the problem are the elliptic 

second-order differential equation (27) for the slope P 
of the isentropic lines and the two equations that  relate 
the temperature T and the horizontal wind speed u to 
the slope P. These equations may be written respec- 
tivelv as: 

-=A,P+A, bT -+NS bP 
bX b S  

(39) 

The coefficients PI, F,, F3, F4, Al, A,, B1, and B, are known 
functions of the mean field. 

The suggested iterative scheme is initiated by setting 
the nonlinear terms N4=N5=N6=0. 

In  a numerical foimulation of the problem we are 
confronted with several problems: (i) order of solving the 
equations, (ii) proper boundary condition for resolving 
uniqueness, (iii) stable computational scheme to establish 
convergence of the nonlinear phase. 

The order appears to  be simple; one could solve for 
P, T, and u respectively in tile order of the three equ a t' ions. 

We propose the following boundary conditions for this 
problem: 

(41) x=o P=O 

x=AX P=O (42) 

s=o P-") ax  ,=o  , E) s = o  == ACTUAL MOUNTAIN SLOPE 

(43) 

exists. (44) 
s=s, P=O At great heights s=s, no mountain wave 
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I n  previous linear studies the 1-ertical velocity a t  the 
lower boundaries is simply given by, 

bh - w=u,=o - bX 

similar to what wns stated in the Lyra problem. 
procedure outlined in this paper yields, 

The 

ah 
l,i7=(u+u)z=0 - bX 

- 

a t  the lower boundary and hence horizontal variation of 
the surface wind is possible in this nonlinear lower bound- 
ary condition. In  this aspect this nppronch may be 
considered tm iniprorenient oi-er the previous studies. 

The first two boundary conditions along x=O and x=Ax 
sntisfy the Kelvin monotony condition that there be no 
wave far upstream from the mountain. The finite dif- 
ference :Lnnlog of the linear differentid equation (38), 
N4=0, shows that if P = O  a t  two adjacent lines z=O and 
Ax then for bz/bz),,,=O the solutioii is P=O e\-erywliere. 
This assures that in the region upstream from the iiiouii- 
tain (x>O) there will be no ware. This particular choice 
of boundary conditions renders it into a marcliing problem 
similar to what is norm:dly done for the well laiown hyper- 
bolic wLve equation in physics. The marching problem 
must satisfy coniput:honal stability criteria. A simple 
comparison with the wave equation suggests that  the 
choice of Ax must siLtisfy the re16 'L t '  1011: 

It is not frequent t h t  one finds an elliptic differentid 
equation solved by m marching scheme. This problem has 
ininginiiry characteristics -F1/P3<0,  and there is no 
formal computation a1 stability criterion. 

According to Morse and Fislibizch [IO], an elliptic 
differential equation niay be treated as a hyperbolic 
wave equation only if certain stringent conditions are 
met. These are that P and bP/bx a t  the initial co- 
ordinate line, x=O. 

An esntninntion of figure 4 will illustrate the uniqueness 
of the numerical solution. The difference equation, 

P( I+ 1, J )  +P ( I -  1, J )  - 2P ( I ,  J )  
Ax2 p1 i J )  

P j I ,  J+l ) -P(I ,  J-1) 
2 As +I;",(J) 

may be written for the marching phase as: 

P = O  

X +  

FIGURE $.--Diagritin illustrates the riumericnl niarching schemc for 
D moniitain of any shape (bclo\v). T\vo lincs on left P=O, 
initiate the calculstion. P at point 4 is determined by d r i e s  at 
0, 1, 2, :tnd 3. Rest described in tcst. 

If we were to find n computationally stable nir~rcliing 
step Ax and integrate from left to right as illustrated in 
figure 4, then the set of numbers P*(L, x) far downstream 
a t  x = L  possesses tlie following property: 

P*(L, s) is a unique set of numbers consistent with 
P= 0 upstream from daslicd line. This uniqueness can 
be further illustrated by  stating thnt: If we were to solve 
nest a boundary \ d u e  problem by prescribing 

P=O a t  x=o 
P=P* x=L 
P=O s=s, 

s=o 

then P* is the o d y  downstream boundary set that  
would yield P=O left of the daslied line. Tlie argument 
presented here follows from the properties of the linear 
difference equ a t' ion. 

The niarching schenie may be looked upon as a device 
for seitrch of the proper downstream boundtiry conditions 
for tlie mountain wave problem. When the dow1istre:tm 
boundary condition has been determined by the miirching 
scheme, i t  may be used to solve the elliptic ntoutitain 
wave equation by a relaxation procedure. The resulting 
numbers in the region O<x<L, O<s<s, will be identical 
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for the marching and the relaxation procedures. We 
find that a t  tlie same time tlie marching scheme exactly 
satisfies the Kelvin monotony condition. 

A comment on the choice of the upper boundary 
condition a t  s=sm is perhaps necessary here. 

In  Lyra and Queney problems the corresponding 
boundary condition is that  a t  s=s,, 

- 
3pw2=o 

This boundary condition precludes unbounded energy a t  
great heights; however the vertical relocity w does take 
on very large \-slues. I n  a numerical approach large 
d u e s  of p a t  s=s, nialies i t  very difficult to find a 
computational scheme that will make the nonlinear phase 
converge. We have assumed that there be no wave a t  
s=s,, (where s ,  = 100 km. height). 

This condition may be looked upon as that of putting 
a rigid top on the ntinosphere. This is not serious because 
the ware activity may be expected to die out a t  these 
heights in most situations. One niiglit wonder about 
reflection of energy from the top and thus find it difficult 
to comp;we the numerical solutions with Lyra type prob- 
lenis. This is howerer not the case because the marching 
scheme produces non-zero numbers essentially from the 
mountain and up, and tlie problem of reflection mny be 
only important far downstream, an area we shall not be 
in teres ted in here. 

Support for the proposed use of the upper boundary 
condition is also given by Corby and Sawyer [4]. They 
found that the rigid upper bouiidary exerts little influence 
on the relati\-ely small grarity wares. 

When the boundary condition was raised in their 
problem to %=a the solution approaclicd that given by 
Qu en ey . 

The foregoing arguments for tbe uniqueness :md the 
coniputational stnbility criterion apply for the h e a r  
difference equation. We propose to introduce the non- 
linear phase by successively generating N,, AT5, and N6 
through calculations. The nonlinear problem is solved 
through the following steps: 

(i) Solve for P from the linear difference equation 
(N4=0) 

(ii) Solre for u and T froin the lincar equation by 
quadratures (N5=N6=O) 

(iii) Generate magnitudes of N4, T\T5, and from the 
linear solutions for P, u, and T 

(iv) Solve for P from tlie nonlinear difference equa- 
tion (AT, from (iii)) 

(v) Solve for u and T from the nonlinear equatioc 
by quadrntures (N5 and N6 from (iii)) 

(vi) Repeat steps (iii), (iv), and (v) until the mugni- 
tudes of P, u, T, N4, N5, and N6 conrerge to 
acceptable limits of tolerance. 

We ha\-e tacitly assumed that the steps would produce 
This is found to be true only in :L converging solution. 

some cases that we shall present here. It niiglit perhaps 
be pertinent to state Iierc a class of calculations that 
in variably diverges when we pursue the type of procedure 
sttbted abo1.e. This occurs when one solves for P by n 
relaxation or IL matrix inversion procedure assuming a 
linown ralue of P * = O ,  for instance, tit the downstream 
end. The perturbation energy in this class of problems 
is confined to a finite area O l x i L  and the iteration 
procedure yields rather large values for N4, N1,, and N6 
arid the scheme fails. The niarcliing scheme determines 
P*, and a t  x=L there is an open boundary; a large 
amount of wave energy thus flows out of tlie region 
0 5  z l L ,  and tlie iteration scheme yields small magnitudes 
for N4, Ns, and N6. There have been some cases when 
the inarching scheme produced unbounded solutions; there 
is perhaps some parameter like the Richardson number 
of tlie mean flow that controls the stability of tlie nonlinear 
iter:Ltion scheme. This question will remain unanswered 
in this paper. 

8. SOME RESULTS OF THE NUMERICAL 
CALCULATIONS 

We have uscd the following constants and units 

As=200 m.2 see.+ deg.-' 

c,=1000 m2 SCC.-~ deg.-' 

s,=4000 SCC.-~ dcg.-', corresponds to a top around 
100 kin. 

Az=As dl-$'JF31 varics froin case to case (20 ni. in som.e 
calculations) 

L=200 km.. 

E = c,/R 2.46 

g=9.81 ID.. SCC.-' 

ISOTHERMAL ATMOSPHERE WITH NO VERTICAL WIND SHEAR 

WC proposc a problcm. siinilar to that of Lyra, where 
mcan tci.peraturc T=25O0A; m.ean wind U=20 m.. set.-'; 
a mmuntain of licight h=1 Jim. is plnccd a t  a single grid 
point, in this cnsc a t  z=ro= 100 lim. I'rom. origin. l'lirough 
finitc differenccs this produces thc following boi1ndarl.r 
condition on P 

( x ~ S A X )  <x<L P-0 

O<X<(X,-AX) P=O 

h 
2Ax r=Itu- 

x=xo P=O 

Through tlicse boundary conditions we can siniulate n 
nunicrical problem somcwhat analogous to the continuous 
problcm of Lyra. 
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FIGURE 5.-Limear solution for a step mountain 1 k m .  high. Slopes 
of strcainliries (shown by zeros on left, stippled and clear to  the 
right). The two dashed lilies enclose region of maximum wave 
encrgy. Heavy dark lines :we a few streamlines. 

FIGURE 6.--Nonlinear solution for a step mountain 1 kin. high. 
Rest sntnc as for figure 5. 

E'igurcs 5 and 6 show tlie solution for P for the linear 
and tlic nonlinear case. The ordinate is the s axis, the 
abscissa is the J: axis. Tlie zero refers to a value of 
P(=0).  I n  the stippled area P is negative and alter- 
niitely thcre are regions P>0. The streainliiic geoinctry 
c m  be inferred froin this configuration of P, the slope. 
I n  the region where P=O the streamlines are exactly 
horizontal; the streamlines rise and fall in the clear and 
stippled region as shown, indicating wives. Tlie two 
primary dashed lincs confine thc region ol' maximum 
wavc cnergy. Therc are two secondtiry regions also 

724- 232-64--2 

FIGURE 7.-Comparison of the streamline (s= I SOO) for various 
iterations. Narrow hill of 1 km. at one grid point. 

confined betwcen dnsticd lines that contibin smnll nm.ounts 
ol' wave energy to ttic riglit of the primnry ~rlodc. 

l h e  magnitude ol' P (not indiciited in the figures) 
dccrcnses very rapidly with height; starting I ' l ~ m  P= 1 0-2 
at s=0, it reachcs values of the order P=10-20 in the 
upper region s=  1800. The amount of wave energy in 
the upper part of the pcrturbed rcgion is very small. 

The nonlinear solution differs from ttic linear solution 
in only one major rcspect. In the region z< (zG-Aaz) 
thcrc is no mountain \v:ivc, as one should cspcct J'rom ttic 
linear differeiicc equation. The wave action recedes 
iipstrcum. in the nonlinear phase. 

T o  illustrate this feature of the nodincar culculatioii an 
individud streamline l'or various iterations is illustratcd 
in figure 7 .  Tlrc positions of the m.ttjor troughs txnd ridgcs 
ol the particular streamline (s= 1800) tire iinaltercd; tht: 
fimt dtisticd line to  tlic left shows the f:Lrtlicst point up- 
stream where P is noti-zero. In most ol' tlie grid points 
t81ic cdculations converged alter six itcr;btions, to a 
rea30 liable toleran cc. 

Figure 7 shows little or 110 chunge in  ttie geometry of 
tlie troughs and ridges when the non1ine:ir terms are 
included in the linear solution. This appears to be in 
contrast to the nonlinear solution of P;Llm and Poldvilc 
[I1 J who found thiit the troughs tended to flatten and 
ridges or crests tended to sharpen with tlie inclusion of the 
nonlinear influences. Pdtn and Foldvik nttribute these 
to a possible connection with the s1ie;br of the niem mind. 
Figure 7 represents ttie condition for an atmospliere with 
no metin rertical wind shear and could tlius explain tlie 
diferenccs in the results. 

Figure 8 shows the convergence at  individual grid 
points of P and N4 (tlie nonlinear inhoinogenous term). 
The ordinate shows the function P and N4 plotted against 
the iteration number. 

It appears from this set of calculations that the non- 
linear ternis in the x,s frame are \-ery snitill. Tliis need 
not be so in the z,z frnme. 

In the right of figure 3 we have presented this numericill 
solution for comparison with the Lyrii solution in the z,z 
frame. Lyra's calculations extend from tlie ground up 

1 1  
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Grid point J=2,1=11 J=Il, 1.15 
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I tcra tion Number 
-Iq4 I 1 2 3 4 5 6 7 8  

p -140 -Iq2 h 
-134 J 

(d) 

FIGURE S.-The slope of the streamline P, and the nonlinear term 
of the wave equation N,,  plotted as a function of the iteration 
number a t  two selected grid points. Illustrates convergence of 
nonlinear iteration. 

to a height of approximately 10 km. Our vertical grid 
distance As=200 gives a rery coarse resolution. This 
corresponds to Az c- 5 kin. and hence the comparison can- 
not be rery good. The sloping trough and ridge lines are 
very well described with waves of approximately 1 0-kin. 
wavelength. It is however promising to see that tlie 
numerical program yields solutions very close to what we 
intuitively expected to find. 

I n  figure 9 we present the results of air flow orer the 
Sierra profile for an isothermal atmosphere with 110 

1-ertical wind shear. The results are projected on the x,z 
coordinates. The sloping dashed lines separate regions 
of P>O from regions P < O  (shaded). The grid distances 
and the constants :ire the same as in the previous exaniple. 

The results bear strong similarity to those obtained by  
Queney 1121 for a bell-shaped mountain in an isothermal, 
no shear atmosphere. The sloping lincs P=O hare  an 
upwind tilt. The amplitudes of the schcmatic streamlincs 
in the upper part are exaggerated. The strong foehn 
wind effect o \ w  the Owens valley (z=120 krn.) is very 
clearly shown by the  shaded region of sinking air. 

Ciilculatinns of this kind seem to be most interesting 
from the standpoint of the numerical approach. This 

5 

n - s.0 
- ,  I I 

0 50 IO0 I50 200 
X (km) - 

FIGURE 9.-Strcamlines and their slopes (hatched) for air flow over 
Sierras. (Isothermal atmosphere, no shear, T=250°A., 8= 
20 m.p.s.) 

- 

calculation is iLn extension of the type of nunierical work 
suggested by Wallington [18]. Here we have a con- 
tinuous niouii tain profile described by a very large number 
of grid points. As in the previous example the nonlineiir 
effects were found to be small. It is interesting to notice 
the following other features: 

(i) Wavelengtli = 40 kin. 
(ii) On the upwind side there tire several interesting 

alternating modes: a rising inode below 5 kin., a sinking 
mode between 5 iind 10 Bin., and again a rising mode. 

Esaiiiination of individual soundings to determine tlie 
flow over the Sierras during varying wind and thermil 
s td~ i l i t y  conditions would be of niitural interest. This 
kind of cnlculiition can be performed through this numer- 
ical program. 

EXAMPLES WITH VARYING STABILITY AND SHEAR 

It would be of coiisiderable interest to compare the 
numerical calculntions with the analytic results for vnrious 
two- and three-level models based on Scorer's [15] work. 
I n  view of the differences in the upper boundary condition 
a t  s=s, an exact comparison is not possible. 
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We shall present two examples of flow over the Sierras 
with typical mean soundings during summer and spring. 

and Palm [5]  discussed the role of the reflection coefficient 
in several layers. The coefficient determines whether the 
solution of the linear wave equation would be trigono- 
metric or exponential in any layer. 

The corresponding analysis is presented in the x, s fraiiie 

I n  their analysis of a many-layered atinosphere Eliassen 90 

80 

Let 

and 

We obtain the canonical form 60 

I n  equation ( 4 7 )  we may write L 
(km) 50 

40  If we separate variables by assuming P(l) to be made 
the product of two functions of x and s, then the condition 
for vertical propagation of a horizontal wave number K 

may be obtained by conventional techniques. 

If (G- K')  <O Vertical solution is exponential. 30 

(a- K ~ )  > O  Vertical solution is trigonometric. 

It may be pointed out liere (in the context of equation 

the wave solutions are of exponential type (Eliassen and 
P a h i  [ 5 ] ) .  

Thus a vertical plot of G as a function of s would deter- 

( 4 7 ) )  that  no upward propagation of energy is possible if 20  

mine whether a horizontal wave number K is propagated 10 
upward as a wave or not. 

for the isothermal atmosphere. 
stant and has a value of ~ 6 X 1 0 - ~ .  

Figure 10 shows a plot of G during different seasons and 
For the latter, G is n con- 

Along the abscissa 
we hiive indicated a wavelength scale that deterniines in 0 

50 5 meterr 
1 1  I I I 

1 1 

length units (h=2T/K)  the propagation of a ware number IO+ 1 0 - ~  10-2 10-1 100 10' I@ 

G (for the sounding) - K .  It is easy to see that the isothermal atmosphere would 
permit vertical propagatioii of wavelength greater than a 
few kilonwters all the way to the top. The indiridual 
soundings of G show the possibility of trapping of energy. 
V:illues of G during spring and for the sounding taken from 
a paper by Pulm and Foldvik [Ill show rnther large values 
in the lower stratosphere. This analysis is analogous to 
tlint of Charney and Drazin [3] for long ntmospheric waves. 

The nunierical solution for (P=dz/dx), would thus 
eshibit waves of certain wave number K if G > K ~ .  The 
mean soundings during suniiiier and spring are illustrated 

FIGURE 10.-The refractive iiides of the mcdium, G ,  is plotted as a 
function of hcight z duriiig different seasons (to 100 kin.) and for 
Palm and Foldvik [I11 soullding (to 20 km.). The horizontal 
scaIe is also representccl ns a function of thc waveIength. 
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FIGURE 11.-Vertical distribution of tcnipcrature T and zo11:tl wind 
U ,  during sumnicr. 

in figures 11 and 12. These were obtained from a report 
by Batten[l]. This represents the mean wind and temper- 
ature between 30" and 40" N. from a large number of 
United States rocket observations. We assume that a 
mean atmosphere described by these soundings constitutes 
the unperturbed flow over the complete Sierra profile. 
From figure 10 we find that G values for summer are 
much smaller than those of spring. We would thus expect 
vertical propagation of shorter gravity waves in spring 
than in suinmer. The Sierra profile may be expected to 
excite an infinite spectrum of these walre numbers. 
Figures 13 and 14 show respectively the solution for 
summer and spring. The two solutions exhibit large 
differences in  scale as expected. A rather large vertical 
damping shows up around 40 kin. in spring; this solution 
is characterised by short gravity waves, with a horizontal 

I 
I 

190 210 2 30 2 50 270 290 
T e m p e r o t u r e  ("A) 

FIGURE 12.-Vertical distribution of temperature T, and zonal 
wind U, during spring. 

wavelength of approximately 20 kin. The suninier 
solution, except for the lower troposphere, does not seen1 
to exhibit these typical iiiountniii wave cbaracteristics. 
Energy in lorn wave numbers seems to proptigate to gretit 
heights in summer. It may be noted that during suniiner 
a part of the marching calculations are carried out against 
the current (the stratospheric easterlies). This does not 
violate any conditions on the uniqueness. l n  this case 
we still obtain a unique downstream set of numbers P* 
tlint calls for no ware to  the left of the Sierras. In 
reality, perhaps the tropospheric westerlies in suiiinier 
would contain a spectrum of mountain wares ; these waves 
if carried up  would carry energy westward in the strato- 
spheric easterlies. Our choice of boundary conditions 
would not show this mode in the stratosphere, hence the 
solution shown in figure 13 may be of interest only in the 
troposphere. 
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0 0 0 0 0 0  

FIGURE 14.--Nonlincar solution for air flow over Sierras during 
(The zeros 011 the top refer to slope of strenmliiies less FIGURE 13.--Wonlinear sohition for air flow over Sierras during spring. 

summer. Rest s:tmc as in figure 5 .  than 10-30.) Rest same as in figure 5 .  

Tlie spring values of G tire large and close to those 
obtnined by Palm and Foldvik [111, for a case of ltirge 
mountain wave activity near Leuchars. The nonlinear 
nuiiiericd solution for P, figure 14, is very sinlllar to the 
linear analytic solution of Piilni and Foldvik. Tlie 
horizontal and vertical scales of the wares appear to be 
very realistic. The large dnmping of P in this case 
suggested that the locale of the upper boundary condition 
was less restricted. We had chosen s, =4000; however 
the solution would be identical had s ,  been any value 
greater tlmn 2800. 

9. CONCLUDING REMARKS 
We have formulated the two-dimensional mountain 

wave problem in isentropic coordinates. The analytical 
representation of the problem in this coordinate is shown 
t o  have certain advantages over the conventional height 
coordinates. 

The numerical rnarcliiiig scheme can be utilized to 
obtain solutions for mountains of any arbitrary shape. 
Even though the theory of the computational stability 
criterion is not conipletely understood, we can, however, 
say that the nuriierical solution is unique in that i t  satisfies 
tlie Kelvin iiioiiotony condition. This bas enabled us to 
extend this work to obtain solutions for niountain waves 
in a tiiedium with varying conditions of shear and stability. 
The solutions appear very realistic when we compare with 
those obtained by Lyra and Queney. The vertical resolu- 
tion in the numerical nmrching scheme is rery coarse 
(Aa=200 c.g.s. units); this corresponds to a Az appi-osi- 
inntely 5 kin. A finer vertical resolution would be required 
in the tre:itment of problems of airflow in an atmosphere 
whcre sharp changes in the reflection coefficient are 
present. The computation time on IBM 7090 type of 
computer. for some of these calculations presented here is 

of the order of 20 min. A finer verticd resolution would 
make the computer time longer because a much snialler 
space-step, Ax, would be needed for a computationally 
stable marching scheme. 

Some calculations for individual wintertime soundings 
over the Sierras did not yield convergence of the numerical 
solution. These were cases where very ltirgc changes in 
the reflection coefficient G were observed. The conipu- 
tational stability criterion depends on the iiitigiiitude of 
G; these failures of the computations tire thus attributable 
to this property of the iiiedium. A verticd smoothing of 
the G function enabled us to obtain convergence in some 
cases. 

The problem of vertical propagation of energy by 
mountain waves was discussed briefly in the 1 ntroduction. 
The numerical solutions show that t i  large niiiount of 
mountain wave energy is propagated into the stratosphere, 
in some instances to very great heights. Further work in 
this area needs to be done to explain the ionospheric 
turbulence plienotnerm and the presence of noctilucent 
clouds. One of tlie difficulties in pursuing this kind of 
work stems from the lack of a dear  description of the 
structure of the medium to great heiglits. Also, it is not 
t l l ~ n y s  possible to isolate an individutil hill or mountain 
as the energy source. 

It niay be worth mentioning here that, hhlrjanic 191 
utilized the isentropic coordinate to obt:Lin a linear fourth- 
order differentitil equation to discuss 1nount:bin waves in rt 
medium with Navier-Stokes type of frictioii. H e  could 
not formally solve this system for tiny p;irticulmr mountain 
profile like that used by Queney, because of complexities 
in the nirttbematics. H e  utilised an :~ntilytic procedure 
and obtained a frequency equation for wuves. Since no 
solutions were obtained it  is not possible to  evaluate his 
work, except perliaps to state that  numericnl work of the 
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kind we have pursued here may be of help in esainiiiing 
problems with friction. 

At the time of writing their report, Queney et  al. [13] 
stated that  no initial value lee-wave problems have been 
solved by a numerical procedure. Adiabatic models of 
this kind can be esamined by numerical methods and 
woulcl be extensions of the work presented here. 
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