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ABSTRACT 

Disturbances with scales of a few thousand kilometers are commonly observed in the troposphere over the 
subtropical oceans. Synoptic experience seems to indicate that many of these large-scale disturbances are driven by 
latent heat released in organized convection. To  explore this possibility, a series of numerical experiments were 
conducted with a simple, two-layer, quasi-geostrophic model. The convective heating function was treated in the same 
manner as that employed by various investigators in recent studies of hurricane dynamics. I n  this formulation, 
convection is controlled by frictional convergence in the Ekman layer. These numerical experiments show that this 
heating mechanism, within the framework of the simple dynamical model employed, can produce significant intensi- 
fication of large-scale disturbances. 

1. INTRODUCTION 

Synoptic experience in subtropical latitudes indicates 
that the release of latent heat in organized convection may 
be responsible not only for the development of relatively 
small-scale systems such as hurricanes but also for larger- 
scale disturbances such as those discussed by Riehl [7] and 
Frank [3]. A characteristic feature of these synoptic 
situations seems to be the simultaneous growth of a low 
tropospheric trough or cyclone and an upper tropospheric 
anticyclone centered somewhat to  the east of the low-level 
cyclonic sys tem . 

The present paper is an attempt to provide a theoretical 
framework within which the growth of such disturbances 
can be discussed. The convective heating function is 
modeled according to the ideas set forth by Charney and 
Eliassen [2], Ooyama [6], Kuo [4], Ogura [5 ] ,  and others who 
take the presence or absence of deep cumulus convection 
over the subtropical oceans to  be dependent upon the 
presence or absence of convergence in the Ekman layer. 
The stability of circularly symmetric vortices on an 
f-plane subject to convection governed by Ekman layer 
convergence has been treated by the authors cited above. 
The disturbances to  be considered here, however, are too 
large in scale to  allow the p-effect to  be neglected. 

Considered within the framework of the classical 
eigenvalue stability analysis, the study of growth due to  
convective heating, subject to @-plane dynamics, is, for a 
number of reasons, extremely difficult. To  avoid these 
difficulties, a less sophisticated and far less satisfying 
technique, the numerical, initial-value approach, is em- 
ployed here. The dynamics are simplified through the 

utilization of a quasi-geostrophic model. This is justifiable 
since we are concerned with subtropical (not equatorial) 
motions. At 20' lat., for example, the Rossby number 
appropriate to  a characterist,ic scale of 1000 km. and n 
characteristic wind of 10 m. set.-' is 0.2. 

9. THE MODEL 

For simplicity, we adopt a two-level, quasi-geostrophic 
model (see fig. I ) ,  neglect meridional variations of the 
velocity components, and linearize on a stagnant base 
state. The pertinent equations are the vorticity equations 
at  levels 1 and 3, 
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FIGURE 1.-Vertical structure of the two-level, quasi-geostrophic 
model. 
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By use of (4), equation (7b) may be written 

Q2= -cpp4a2qw4 2 R  when 04<0. 

If we eliminate w2 between (1)) (2)) and (3) and make use 
of (5 )  and (7b), we obtain 

' 

and the thermodynamic equation at  level 2 ,  

(3) 

where 
a2= -( LY - ->, a9 

0 %  
(4) 

where 
dJa=dl + 4331 is the base-state st&tic stability at  500 mb. Q 2  is the heat 

added per unit mass and time at level 2 .  The remaining 
notation is standard. After Charney and Eliassen [l], the 
frictional vertical motion a t  level 4 is evaluated from 
Ekman theory and for our purposes may be written 

a243 A- 
d X 2  

w4=- (5) v = 2.f NP4 

and it is understood that q = O  when Q2=0. 

3. INITIAL CONDITIONS p4 is the 1000-mb. density, DE=(2A*/j0)% is a measure 
of the depth of the Ekman layer, A* is the kinematic 
coefficient of eddy viscosity, 9 is the angle between the 
wind and geopotential contours at  1000 mb., and I* is the 
ratio between wind speeds at  1000 mb. and 750 mb. 

From the previous section, 

Q2=0 when 0~20. ( 78) 

After Ogura [5 ] ,  the heating function is defined by 

At the initial instant, we take 

&==-A COS kx, A>O, 

+L=-MA COS (kx+S), M>O, S>O. 

M is the ratio of initial amplitudes at  levels 1 and 3 and 
6 is the initial phase lag between these levels. From ( 5 ) ,  
(14), and (7b), the convective region at  the initial in- 
stant is 

(16) 
7r 7r 

->X>-- 2k 2k 

(7 is identical to Ooyama's [6] entrainment parameter 
(value probably between 2 and 4).) T o  avoid unlimited 
growth of the perturbations (see Kuo [4]), we add the 
condition 

provided that (T,- T)z>O. Lacking synoptic information 
concerning reasonable choices for M and 6, we proceed 
as follows. 

The kinetic energy, averaged over a wavelength, a t  
level 1 is 

Q 2 = 0  when (T8-T)210 (7c) 

where T, is the temperature along the pseudo-adiabat 
through the lifting condensation level of the surface air. 
Physically, condition (7c) implies that the convective 
scale provides a heat source for the large-scale flow only 
as long as the cumuli are warmer than their environment. 

In view of the simple vertical structure of the model 
(fig. l) ,  the temperatures used in (7c) should be con- 
sidered averages over the 250-750-mb. layer. The various 
assumptions and physical concepts involved in the deriva- 
tion of (7a, 7b, 7c) are discussed in detail in [2,  4 ,  5 ,  61 and 
will not be repeated here. 

at  level 3, 

The kinetic energy averaged both vertically and over a 
wavelength is 

K= K,+ K3. (19) 
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Note that 
21 L=k 
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The time rates of change of these quantities are given by 

and, from (191, 

We define, 

aK dK1 bK3 -=- 
at at +dt' 

The initial values of Kl, K3, and K may be determined 
by use of (14) and (15) .  Closed form expressions for the 
initial values of dtpJbt and dtp,/dt (and, hence, for &/at 
and b+,/bt) may be found by use of ( 8 , 9 , 1 0 ,  11, 14 and 15) .  
With these, the initial vduss of bK,/bt, bK3/bt, and bK/bt 
may be found from equations (21, 22, 23) .  This procedure 
yields, 

[By2 sin 6-vk(qk2+Y2) cos 61, 
kM(kZ+r2) PI = 

(28)  
{ vk[F( q-  2 )  --y2]-r2/3M sin 6 } , 

k(k2+r2) P3 = 

(29) 
~ [ P ( q - 2 ) - r ~ - M ( q P + y 2 )  COS 61 

(M2+ l)(k2+r2) P= 

To obtain these results, dtpl/dt, d+3/dt, bn+l+l/dtdxn, and 
d"+1+3/dtdx" (n=l ,  2 , 3  . . .) were required to be cyclically 
continuous at x= f L / 2 .  At the intersections of the con- 
vective and non-convective regions (%= f L / 4 ) ,  btp,/dt and 
&p3/bt were required to be continuous. 

Since our interest is in systems which grow simul- 
taneously a t  levels 1 and 3,  we restrict ourselves to  com- 
binations of M and 6 such that 
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This, however, is not sufficient to insure that the per- 
centage rate of change of kinetic energy will be the same 
a t  both levels over finite intervals of time since differences 
in phase speed between the two levels can quickly alter 
the initial phase lag. Therefore, we place an additional 
restriction on M and 6 such that Cl=C3 where C, and C3 
are, respectively, the initial phase speeds a t  levels 1 and 3 .  
Under these circumstances, equations (27),  (28) ,  (29)  
should not only give the initial percentage rates of change 
of kinetic energy but should also provide reliable informa- 
tion concerning changes over finite intervals of time. 

For C, and C3, we take the initial translation of the geo- 
potential lines which separate the .convective and non- 
convective regions. Therefore, 

These can be evaluated to yield 

p[r2+(2P+r2)M cos 61, 
c,= - 2k2(k2+r2)Mcos  6 

/3[2P+rZ( 1 +M cos S)] 
2F(k2+r2) c3= - 

(33)  

(34)  

For these phase speeds to be equal, 

Mcos S = & l .  (35)  

By use of (29) ,  the positive sign yields 

2v 
M2+ 1 

p =  -- 

or cases which are in a state of decay a t  the initial instant. 
The negative sign leads to 

(37)  

which shows initial growth when q>1. 

For Pl=P31 

by2 (1+M2) sin 6=vkM[k2(q-2)  
-y2]+  vk(qk2+Y2) COS 6.  (38)  

If we use M cos 6=-1 to eliminate 6 from (38) ,  

M*3+ {1-v2k2[k2(q-2)-y2]2/p2y4)M*2 

+ { 2v2k2[kZ(q-2) - ~ 2 ] [ q k 2 + ~ z ] / B 2 ~ 4 -  1 } M* 

-{I+v2k2(qk2+-y2)2/B2r4}=0 (39)  
262-026 0 - 61 - 4 
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FIGURE 2.-Ratio of final to initial kinetic energy under the assump- 
tion that the initial kinetic energy tendency is preserved over a 
48-hr. period. Ratios are equal to l-l-pAt, where A t = 4 8  hr. and 
p is calculated such that the initial percentage rates of change of 
kinetic energy and the initial phase speeds a t  levels 1 and 3 are 
equal. 
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FIQURE 3 -Phase lags, 6, between geopotential patterns at levels 
1 and 3 required to  make initial percentage rates of change of 
kinetic energy and initial phase speeds equal a t  levels 1 and 3. 

where 
M*=M2, M>O. (40) 

Equation (39) will always have one or more real roots. 
In view of equations (35)  and (40), the only physically 
significant roots are those which are real, positive, and 
greater than 1 in magnitude. For the values of the param- 
eters employed here (/3=2.14X10-1* set.-' m.--I, u2=3 
m.t.s., OE=730 m.,' 1*=0.7, sin2+=X, f0=5X10-6 
set.-', 200 km. IL510,OOO km., 1 I q l 4 ) ,  it was always 
possible to find one or more physically significant roots. 
In the cases where more than one such root was found, 
the smallest value was adopted since, by (37) ,  this gives 
the largest value of p .  

FIGURE 4.-Ratio of geopotential amplitudes, M, required to makc 
initial percentage rates of change of kinetic energy and initial 
phase speeds equal at levels 1 and 3. 

Once M has been determined from (39)  and (40), cos S 
is calculated from M cos 6= - 1 and sin 6 is obtained from 
(38). The angle 6 is then completely determined. 

4. RESULTS 

Figure 2 shows values of 1+pAt (A1=48 hr.) which 
would be the ratio of final to initial kinetic energy if 
bK/bt were preserved over a 48-hr. period. The values of 
p are based on combinations of M and 6 obtained as 
described in the previous section. The variations of p 
with wavelength are extremely encouraging since the 
maxima are on the synoptic scale. 

Figures 3 and 4 show, respectively, the corresponding 
values of 6 and M.  At a wavelength pf 4000 km., which is 
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given. We point out that 15 grid points were used in the 
zonal direction and that boundary conditions a t  x= 
k L / 2  were cyclic continuity in d9,,/dt and d9s/dt. The 
integrations spanned 48 hr. The initial value of (TJ- T)z 
was taken as 5” C. (TJZ was held constant with time. 

Ratios of final to initial kinetic energy (per wave- 
length) are shown by figure 5. (The ratios for the ~ = 1  
cases fall in the range 0.998-1.001.) The following repre- 
sents a summary of the more significant aspects of figure 5. 

1 .  The time variations of kinetic energy are similar a t  
both levels indicating that the analysis performed in the 

desired properties. 
2 .  The criterion for growth appears to be q>1 which 

is also in agreement with the analysis of the previous 
section. 

3. The shapes of the curves are similar to those shown 
in figure 2. Maximum growth is found in the 3,000 to 
5,000-km. band of wavelengths. 

5. SUMMARY 

I 

I 

previous section produced initial conditions with the I 

Convective heating, if taken as dependent on con- 
vergence in the Ekman layer and employed within the 
framework of a two-level, quasi-geostrophic, linear model, 
can lead to  simultaneous growth in the upper and lower 
troposphere given initial conditions of the type con- 
sidered here. With these initial conditions, maximum 
growth occurs for wavelengths between 3000 and 5000 
km. This result is in rough qualitative agreement with 

WAVE LENGTH IN THOUSANDS K,LOMETERS synoptic observations which seem to indicate that con- 
vective heating can lead not only to the formation of 
hurricanes but also to  the initiation and intensification of 
low troPosPheric cyclones and upper tropospheric anti- 
cyclones having dimensions on the order of thousands of 
kilometers. 

Computer programs now being written a t  the National 
Hurricane Research Laboratory will allow us to carry 
out new calculations with the nonlinear equations and 
also to  take into account the meridional variations of the 
perturbations. 

FIGURE 5.-Ratios of final kinetic energy to initial kinetic energy 
a t  levels 1 and 3 as obtained from numerical integration of the 
system of equations (74 ,  (7b), (74, @), @), (IO), (11). Initial 
values of M and S are taken from figures 4 and 5. 

, close to  that of maximum 1.1 for 2 5 ~ 5 4 ,  the upper-level 
ridge is fL to jL of a wavelength to the west of the 
low-level trough. As pointed out earlier, observations REFERENCES 

seem to indicate that the upper-level anticyclogenesis 
occurs somewhat to the east of the low-level cyclogenesis. 
The theory, therefore, appears to be deficient in this 
respect. 

The system of equations (8 ) ,  (9), (lo), (ll),  subject to 
the conditions (7a), (7b), (7C) were integrated numerically 
for ~ = 1 ,  2, 3, 4; L=2OO, 600, 1000, 2000, 3000, 4000. 
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CORRECTION 

No. 4, April 1967, p. 218: The last sentence on the page should read 
“. . . condensation levels were lower over the Bahama Islands . . .” 
instead of “higher”. 


