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ABSTRACT

The probability function of degree days below the base 65° F. is derived from the temperature probability

function.
days and mean temperature.

Standard statistical analysis is applied to this function to obtain the relationship between mean degree
This relationship is modified for use with available data and applied in the conversion

of a monthly normal temperature for Detroit to the corresponding degree day normal.

INTRODUCTION

Almost from the time that heating degree days first
came into use there has been a need for a rational relation-
ship between temperature and degree-day statistics. The
lack of such a relationship has always made it necessary
to estimate degree-day means or normals from degree-day
records which were often not available and tedious to com-
pile. Temperature means, on the other hand, are already
available for most stations and if not, are easy to compute
from published data. Such a relationship makes degree-
day statistics quickly available from any place with a
temperature record. It also removes the difficulties asso-
ciated with the lack of consistency between temperature
and degree-day means which has been troublesome in the
past. This has made it difficult to adjust degree-day
means for a heterogeneous record. In the recent normals
revision program of the Weather Bureau, for example, the
usual arithmetical procedures could not be applied to
obtain degree-day normals because of the numerous
heterogeneities in the records at most stations. With a
rational conversion formula available, properly adjusted
temperature normals may be converted directly to degree-
day normals with uniform consistency. More important
than this use, perhaps, is the fact that the rational relation-
ship is basic to the full development of the climatological
analysis of degree-day data.

i Paper pregented at 127th National Meeting of the American Meteorological Society,
New York, N. Y., January 26, 1954.
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The study reported here is another phase [1] in the
development of a general climatological analysis for de-
gree days below a given base. With proper modification
it may also be emploved in the analysis of degree days
above any base. The probability function of degree days
derived here from the temperature distribution will form
the basis for the later development of methods for obtain-
ing degree-day probabilities.

THE TEMPERATURE FREQUENCY CURVE

In a previous paper [1] it was observed that the average
temperatures of a particular day through a series of years
have been found to have a normal probability or frequency
function, or to be normally distributed. This probability
function describes bell-shaped curves like those shown in
figure 1 which are normal frequency curves on temperature
scale ¢.

A normal probability function is known to be completely
specified by its mean and standard deviation. The mean
serves to locate the curve along the ¢ axis while the stand-
ard deviation ¢ determines its scale, or how widely it is
spread along the ¢ axis. In figure 1 it is seen that both
frequency curves are located by a mean temperature of
60° F. but have different scales or standard deviations.
The curve with a standard deviation of 5.0 is spread out
widely along the ¢ axis while the curve with a standard
deviation of 2.5 is more closely concentrated about the
mean.
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FIGURE 1.—Two examples of normal frequency curves, one for ¢=5.0, the other for
=25, both with mean temperatures of 60° ¥. Both the temperature scale ¢ and its
transformation by equation (1) to the degree-day scale D, are shown. Asf¢ is trans-
formed to D, the distribution of ¢ is transformed into the degree-day distribution. This
is the unshaded portion under the temperature frequency curve distributed over the D
scale together with an area of probability corresponding to the shaded portion concen-
trated at zero degree days. The entire distribution of degree days may be represented
by the frequency curves shown in figure 2,

Itis clear that as a result of these properties two changes
may occur in the normal curve and hence in the distribu-
tion of temperature: (1) The mean may shift and move
the curve to the left or right along the ¢ axis, giving a
Jocation at a different value of £. (2) The scale or stand-
ard deviation may change causing the curve to spread out
or become thinner. These changes are not statistically
independent of each other but may be considered as
separate component properties. An example of the first
type of change is to move the curve ¢=2.5 to the left
two degrees of temperature, giving it 8 new mean of 58°
but leaving the scale ¢ unchanged. The second type of
change is represented in figure 1 by a change in scale from
¢=2.5 to o¢=5.0. This spreads the frequency curve
without change in its location or mean. Also both types
of change could occur together, giving a curve which is
spread out as well as displaced along the ¢ scale.

While the discussion of location and scale changes as
climatic factors is a subject in itself, it will assist in our
explanation of the degree-day distribution to have some
understanding of climatic location and scale changes in
the temperature distribution. The general principle ob-
served over a wide range of climatic conditions is that
the location of the temperature distribution increases as
the scale decreases and conversely. This is in contrast
to bounded elements such as precipitation where the lo-
cation, as measured by the mean, varies directly as the
seale. Since the location of the temperature distribution
varies seasonally, as well as climatically, such variations
are reflected in the seasonal march at a given station as
well as from station to station for the same season.

The location and scale of the temperature distribution
are best measured by the mean and standard deviation of
the distribution. These parameters can therefore be re-
lated through the general principle. Although the varia-
tion of mean temperature with geographic position is not
precise, there is, of course, a very marked tendency for it
to decrease with increasing distance from the equator.
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Since the mean and standard deviation vary inversely,
the standard deviation increases with increasing distance
from the equator. In general then, the mean decreases
with latitude while the standard deviation increases with
latitude. Similarly in seasonal variation the mean is
higher in summer and lower in winter and hence the stand-
ard deviation is lower in summer and higher in winter.

Large bodies of water have a great effect on the relation
between location and scale of the temperature distribu-
tion. The pronounced effects of decreasing the rate of
change of mean temperature with latitude and the nar-
rowing of the range between summer and winter are well
known. The effect on the standard deviation is even
more pronounced. As 8 consequence, standard devia-
tions are stabilized over extended areas along seacoasts
and through the seasons in such areas. For example, the
standard deviation for January along the east coast of
the United States is almost uniform from Maine to
Florida while in the interior it is three times larger in
Minnesota than in Louisiana. Seasonal variation in the
standard deviation is also smaller along the coasts, some
stations having nearly the same standard deviation the
year around. This occurs particularly along the west
coast where the effect is more pronounced because of the
prevailing winds off the ocean.

THE DEGREE-DAY FREQUENCY CURVE

These location and scale changes in the temperature
frequency distribution produce corresponding changes in
the associated degree-day distribution. They may be
illustrated by transforming temperature to degree days by
the well-known relationship

D=65—t, D>0 (1)
where D is the degree-day value for a day and ¢ is the
day’s average temperature in ® F. The inequality on
the right is especially to be noted for it is an essential
feature of the transformation which converts the ¢ scale
to the D scale of figure 1. As ¢ is transformed to D, the
distribution of ¢ is transformed into the degree-day dis-
tribution. This is the unshaded portion under the tem-
perature frequency curve distributed over the D scale
together with an area or probability corresponding to the
shaded portion concentrated at zero degree-days. Thus
the probability of having degree days greater than zero
on a particular day is equal to the unshaded portion
below the temperature frequency curve and the proba-
bility of having zero degree days is the shaded portion.
The manner in which these shaded and unshaded areas
vary with the temperature distribution is clearly the key
to the relation between temperature and degree-day
statistics. Such variations may be interpreted in terms
of the location and scale changes discussed above.

Since the degree-day base is fixed at 65° F., all location
and scale changes occur in relation to it. With fixed
scale or standard deviation, shifts in the mean produce
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important changes in the size of the shaded area. As the
mean temperature increases, the temperature frequency
curve moves toward the right and the shaded area of the
curve is increased while the unshaded area is decreased.
This produces an increase in the probability of zero degree
days and both a decrease in probability of degree days
and an increased concentration of the probability at the
lower degree-day values. The overall effect is to decrease
the mean degree days. For a decrease in mean tempera-
ture the shaded portion of the curve decreases while the
unshaded portion increases. This produces a decrease in
the probability of zero degree days and an increased con-
centration of probability at higher degree days with a
consequent increase in degree days. As the temperature
mean moves to low values on the left, the amount of
shaded area becomes negligible and the degree-day mean
approaches 65— E () where E(f) is the mean temperature.
Thus, as has long been known, the degree-day mean
increases as the temperature decreases and at low values
is a function of the mean temperature alone. At higher
values of mean temperature the shaded area becomes
important and must be accounted for through use of both
the mean and standard deviation since the size of the
shaded area is a function of both parameters.

Variations in the degree-day mean produced by varying
the temperature scale or standard deviation are not as
easily depicted as those resulting from variation in the
mean. With a fixed mean temperature, an increase in
standard deviation increases the probability of zero degree
days but also spreads the distribution to higher degree
days. These changes have opposite effects on the degree-
day mean so the effect of scale change is not a simple one
and must be accounted for by an analytical relationship.
Nevertheless, it is clear that changes in the temperature
scale produce marked changes in the degree-day mean
and hence must be accounted for in any relationship
between degree days and temperature. As will be seen
later, the scale or standard deviation is an important
variable in the rational relationship.

THE PROBABILITY FUNCTION OF DEGREE DAYS

From the previous discussion it appears that the prob-
ability or frequency function of degree days consists of
the portion of the temperature frequency curve below
65° and a probability concentrated at zero degree days
equal to the probability of temperatures being above 65°.
The former is the unshaded portion of the temperature
frequency while the latter is equal to the shaded portion
of the curve but concentrated at zero degree days. The
unshaded portions of the frequency curves are truncated
normal distributions which, when compounded with the
probability densities at zero degree days, form mixed
distributions which are the degree-day distributions. In
sampling from such a distribution for a day on which
zero degree days may occur, that day will have degree
days greater than zero with a probability equal to the
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FIGURE 2.—Representation of the entire distribution of degree days, D, for two examples,
corresponding to the two temperature frequency curves of figure 1 for which the stand-
ard deviations of temperature are 5.0 and 2.5, respectively, and mean temperature"ls
60° F. Note the area of probability, p, concentrated at zero degree days.

unshaded area of the frequency curve and zero degree
days with a probability equal to the shaded portion of
the curve. When degree-day values are greater than
zero they will be further distributed according to the
truncated probability function, the unshaded portion of
the curve. They are not further distributed in the shaded
portion of the curve, for here they always take the value
Zero.

The truncated normal distribution has been thoroughly
investigated by several statisticians and most of the
results we need have been reported in the literature (see
{2, 3, 4, and 5]). There remains only to adapt the theory
to cover the mixed distribution described above.

Let F(t) be the normal distribution function of the
average temperature for a day defined by

Flo)= f | f@)da 2)

where f(z) is the normal probability function as shown in
figure 1. Evidently F(t) is the probability that an aver-
age temperature is less than ¢, and hence the probability
that the average temperature is above the degree-day
base is p=1—F(65) and below the base is ¢g=F(65).
Performing the transformation to degree days by equation
(1), the distribution of degree days is

G(D|D20)=p+qF(65—t[t<65) 3)

where G gives the probability of less than D) degree days
and F'is the normal distribution truncated at 65° (c. £. [2]).
It will be noted that G(0)=p which is the probability of
the average temperature being 65° or greater, and hence
is the probability of zero degree days. When D20,
G is equal to p plus the probability of temperature bemg
between 65° and some assigned lower value.

The probability function for degree days is the deriva-
tive of (3) which is

g(DID >0)=qf (65—t|t <65). @
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This function is the equation of the unshaded portions
of the curves in figure 1 referred to the D scale and is
required in obtaining the mean value of D. The entire
distribution may be represented by the frequency curves
shown in figure 2.

THE RATIONAL RELATIONSHIP

The expected or mean value of degree days is defined
in the usual manner by

E(D)= f " Dg(D)aD. )
0
Applying this operation to the right hand side of equation
(4) it is found that [2, 3]
E(D)=q(65—E(t)+No]. (6)

Here E(t) is the mean temperature, o is the standard
deviation [1], and A=f(65)/F(65). Tables of the recip-
rocal of this function have been prepared by Pearson [4].
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Assuming that ¢ is normally distributed, (6) is the exact
relationship between mean temperature and mean degree
days. Since E(t) and ¢ completely define the normal
distribution which in turn determines ¢ and A\, the mean
value of D is easily found when E(t) and ¢ are known.
Values of F and f are given as functions of the argument
(t—E(2))/es in any table of the normal probability function.
¢ and \ are evaluated at {=65 and for convenience we
designate (65— E(@#))/c as h.

For ¢=5.0 and E(t)=60 as shown in figure 1, it is seen
that the base 65 is one standard deviation above the
mean so, from tables of the normal distribution, g=0.841
and A=0.242/0.841=0.288. Hence the degree-day mean
for a day with ¢=5.0 and E(t)=60 is

E(D)=.841[65—60-} (0.288)5]=5.4.
APPLICATION OF THE RATIONAL RELATIONSHIP

The rational relationship applies to the means of daily
degree days. However our interest is primarily in monthly
means so the relationship will be adjusted to give these di-
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F1GURE 3.—The empirical relationship of 7 vs. k. The dots are observed values of ¢ against k.
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rectly. A simple way of doing this is to determine the
relationship for a hypothetical average day of the month
and multiply the resulting degree days by the number of
days in the month. This average day is not a real day
on which any particular average occurs, but a hypothetical
day whose mean and standard deviation arc such that when
the conversion is made to degree days and the result multi-
plied by the number of days in the month the result is the
mean degree days for the month.

In adjusting the relationship to obtain monthly statis-
tics it was found convenient to use the standard deviation
of monthly average temperature which is a function of the
daily standard deviation and much casier to obtain. If ¢
is the standard deviation for the average day as above,
on the standard deviation of the monthly average, and r
the mean correlation between all days for a month of N
days, it may be shown [5] that

Since the factor (1--Nr) is not known but does not secin
to vary greatly from station to station, we let it be ac-
counted for in the overall proportional adjustment to the
rational relationship by assuming

e=+No,. (7)

Since ¢ for a single day is known only proportionally,
g, which is a function of h, will also be known only pro-
portionally. The approximation we nced may be ob-
tained by rcarranging the rational relationship (6) in the
form

_ED)(1—q)_EWD)—-65+EQ)

o q o

A (8)
Substituting v/Ng,, for ¢ and I for the term on the left, we
find

_ED)—65+E()

—\-'!A_-’YO' m

(9)

Since all of the variables in (8) are functions of k, { will also
be a function of h. Solving (9) for NE(D), the mean
monthly dagree days, gives
NEIN=N(65—E{t)+I[yNo,). (10)
Next, [ can be established as a function of 2 by plotting
observed values of [ against h. These values were com-
puted from 30-year records at 30 stations representing all
cimatic conditions in the United States. The data which
are for all of the 12 mor ths are shown plotted on figure 3
together with the empirical [ vs. & relationship. It is to be
noted that the relationship is independent of climate and
season and is only dependent on the paramcters of the
temperature frequency distribution. In this respect the I-
function is general, like the A-function, in that it is also
dependent only on k. It is also similar in shape to the
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TABLE 1.--~The factors h and 1, for use in computing degree days from
equation (10)

301 0,05, _0.17]0.42_

3| 0 B T S '

0.

For h 2> 0.78, l=0
For h < —0.70, l=—h

Mfunction and has analogous limiting properties, e. g.,
= —hforlarge values of —h, and I=01{or 2> 0.78. Values
read from figure 3 have been entered in table 1 for con-
venience in use,

In order to use (10) to compute normal monthly degree
days, a set of manuseript charts has been prepared showing
isolines of monthly standard deviations, s,. Using the
appropriate value of s, and the normal value of the tem-
perature, £, as estimates of o, and E(t), b may be readily
calculated. Entering the table or graph with this value
of h one finds the proper value of I. Substituting this
together with ¢ and s, in (10) and multiplying by N, the
number of days in the month, gives the degree-day normal
ND a statistical estimate of NE(D). ‘

As an example, for September at Detroit we find the
normal temperature {=64.3 and the standard deviation
$,=2.7. Then L is easily found to be (65—64.3)/
(5.48)(2.7)=0.047. TFor this value of A table 1 gives
1=0.17 and hence ¥Nlis,=(5.48)(2.7)(0.17)=2.51. Sub-

stituting in (10) gives
ND=30(65—064.3+2.51)=096

This is Detroit’s degree-day normal for September.
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