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ABSTRACT 

function. Standard statistical analysis is applied to this function to obtain the relationship between mean degree 
The probability function of degree days below the base 65' F. is derived from the temperature probability 

days and mean temperature. This relationship is modified for use with available data and applied in the conversion 
of a  monthly normal temperature for Detroit to  the corresponding degree day normal. 

INTRODUCTION 
Almost from the  time  that  heating degree days first 

came into use there  has been a need for a  rational relation- 
ship between temperature  and  degreeday statistics. The 
lack of such a relationship has always  made it necessary 
to estimate degree-day means or normals  from degree-day 
records  which  were often  not available and tedious to com- 
pile. Temperature  means,  on the  other  hand,  are  already 
available for most  stations  and if not,  are easy to compute 
from published data. Such a relationship makes degree- 
day statistics quickly available from any place with a 
temperature record. It also removes the difficulties  asso- 
ciated  with the  lack of consistency between  temperature 
and degree-day means which has been troublesome in the 
past. This has  made it difficult to  adjust degree-day 
means for a heterogeneous record. In  the recent normals 
revision program of the  Weather  Bureau, for example, the 
usual arithmetical procedures could not be applied to 
obtain degree-day normals because of the numerous 
heterogeneities in  the records at most  stations.  With  a 
rational conversion formula available, properly adjusted 
temperature normals may be converted directly to degree- 
day normals with  uniform consistency. More  important 
than this use, perhaps, is the  fact  that  the  rational relation- 
ship  is basic to  the full development of the climatological 
analysis  of degree-day data. 
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The  study reported here is another phase [l] in the 
development of a general climatological analysis for de- 
gree days below a given base. With proper modification 
it may also be employd in  the analysis of degree days 
above any base. The  probability  function of degree days 
derived here from the  temperature  distribution will  form 
the basis for the  later development of methods for obtain- 
ing degree-day probabilities. 

THE TEMPERATURE  FREQUENCY  CURVE 
I n  a previous paper [l] it was observed that  the average 

temperatures of a  particular  day  through  a series of years 
have  been  found to have a normal  probability or frequency 
function, or to be normally  distributed.  This probability 
function describes bell-shaped curves like those shown in 
figure 1 which are  normal frequency curves on  temperature 
scale t. 

A normal  probability  function is known to be completely 
specified by  its  mean  and  standard deviation. The mean 
serves to locate the curve along the t axis while the  stand- 
ard  deviation u determines its scale, or how  widely it is 
spread along the t axis. In  figure 1 it  is seen that both 
frequency curves are located by a  mean  temperature of 
60" F. but  have different scales or standard deviations. 
The curve with a standard  deviation of 5.0 is spread out 
widely along the t axis  while the  curve with a  standard 
deviation of 2.5 is more closely concentrated  about  the 
mean. 
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D-Degree Days 

FIGURE 1.-Two examples of normal frequency curves, one for .7=5.0, the other for 

transformation by equation (1) to  the degree-day scale D, are shown. As t is trans- 
0-2.5, both  with mean temperatures of 60° F. Both the temperature scale t and  its 

is the unshaded portion under  the temperature frequency curve distributed over the D 
formed to D, the  distribution  oft is transformed into  the degree-day distribution.  This 

scale together with an area of probability corresponding to  the shaded portion concen- 
trated at zero  degree days. The  entire  distribution of degree days  may be represented 
by the frequency curves shown in figure 2. 

It is clear that as a  result of these properties two changes 
may occur in  the  normal curve and hence in  the  distribu- 
tion of temperature: (1) The  mean  may  shift  and move 
the curve to  the left or right along the t axis, giving a 
location at a  different value of t .  ( 2 )  The scale or stand- 
ard deviation may change causing the  curve  to spread out 
or become thinner. These changes are  not statistically 
independent of each other  but  may be considered as 
separate  component properties. An  example of the first 
type of change is to move the curve a=2.5 to  the left 
two  degrees of temperature, giving it a new mean of 58" 
but leaving the scale u unchanged.  The second type of 
change is represented in figure 1 by  a change  in scale from 
u=2.5 to u=5.0. This spreads the frequency curve 
without change in its location or mean. Also both types 
of change could occur together, giving a  curve which is 
spread out  as well as displaced along the t scale. 

While the discussion of location and scale changes as 
climatic factors  is  a  subject  in itself, it will assist in our 
explanation of the  degreeday  distribution  to  have some 
understanding of climatic location and scale changes in 
the  temperature  distribution.  The general principle ob- 
served over a wide  range of climatic conditions is that 
the location of the  temperature  distribution increac,  ,es as 
the scale decreases and conversely. This is in  contrast 
to bounded elements such  as  precipitation where the lo- 
cation, as measured by  the mean, varies directly as  the 
scale.  Since the location of the  temperature  distribution 
varies seasonally, as well as climatically, such variations 
are reflected in  the seasonal march at a given station  as 
well as from station t,o station  for  the  same season. 

The location and scale of the  temperature  distribution 
are best measured by the  mean  and  standard deviation of 
the distribution. These  parameters  can therefore be re- 
lated through the general principle. Although the  varia- 
tion of mean  temperature  with geographic position is  not 
precise, there is,, of course, a  very  marked  tendency for it 
to decrease with increasing distance from the  equator. 

Since the mean  and standard deviation vary inversely, 
the  standard deviation increases with increasing distance 
from the  equator. In  general then,  the  mean decreases 
with  latitude while the  standard deviation increases with 
latitude. Similarly in seasonal variation t,he mean is 
higher in summer  and lower in winter and hence the  stand- 
ard deviation is lower in summer  and higher in "inter. 

Large bodies of water  have a great effect on the relation 
between location and scale of the  temperature  distribu- 
tion. The  pronounced effects of decreasing the  rate of 
change of mean  temperature  with  latitude  and  the  nar- 
rowing of the range between  summer and winter are well 
known.  The  effect  on the  standard deviation is even 
more pronounced. As a consequence, standard devia- 
tions are stabilized over extended areas along seacoasts 
and  through  the seasons in such areas. For example, the 
standard deviation for  January along the  east coast of 
the United States is almost uniform  from  Maine to 
Florida while in  the  interior it is three times larger in 
Minnesota than  in Louisiana. Seasonal variation  in  the 
standard deviation is also smaller along the coasts, some 
stations  having  nearly  the same standard  deviation  the 
year around. This occurs particularly along the west 
coast where the  effect is  more  pronounced becaus9 of the 
prevailing winds off the ocean. 

THE  DEGREE-DAY  FREQUENCY CURVE 

These location and scale changes in  the  temperature 
frequency distribution  produce corresponding changes in 
the associated degree-day distribution,  They  may be 
illustrated  by transforming temperature  to degree days  by 
the well-known relationship 

D=65- t ,  D>O (1) 

where D is the degree-day value for a day  and t is the 
day's average temperature  in " F. The  inequality  on 
the  right is especially to  be  noted for it is an essential 
feature of the  transformation which converts the t scale 
to  the D scale  of  figure 1. As t is transformed to Dl the 
distribution of t is transformed into  the degree-day dis- 
tribution.  This  is  the  unshaded  portion  under  the  tem- 
perature frequency curve distributed over the D scale 
together with  an area or probability corresponding to  the 
shaded  portion concentrated at  zero degree-days. Thus 
the  probability of having degree days  greater  than zero 
on  a  particular  day  is equal to  the unshaded portion 
below the  temperature frequency curve and  the proba- 
bility of having zero  degree days  is  the shaded portion. 
The  manner  in which these shaded  and  unshaded areas 
vary  with  the  temperature  distribution  is clearly the key 
to  the relation between  temperature  and degree-day 
statistics.  Such  variations may be  interpreted in terms 
of the location and scale changes discussed above. 

Since the degree-day base is fixed at 65" F., all location 
and scale changes occur in  relation  to it. With k e d  
scale or  standard deviation, shifts in  the  mean produce 
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important changes in  the size of the shaded area,. As the 
mean temperature increases, the  temperature frequency 
curve  moves toward the  right  and  the shaded  area of the 
curve is increased while the unshaded  area  is decreased. 
This produces an increase in  the  probability of zero  degree 
days and both  a decrease in  probability of degree days 
and an increased concentration of the  probability at  the 
lower degree-day values. The overall effect is to decrease 
the mean  degree days. For  a decrease in  mean tempera- 
ture the shaded portion of the curve decreases while the 
unshaded portion increases. This produces a decrease in 
the probability of zero  degree days  and an increased con- 
centration of probability at  higher degree days with a 
consequent increase in degree days. As the  temperature 
mean moves to low values on  the left, the  amount of 
shaded area becomes  negligible and  the degree-day mean 
approaches 65"E(t) where E(t) is the  mean  temperature. 
Thus, as has long been known, the degree-day mean 
increases as  the  temperature decreases and a t  low values 
is a function of the  mean  temperature alone. At higher 
values  of mean  temperature  the  shaded  area becomes 
important and  must  be accounted for through use of both 
the  mean and  standard  deviation since the size of the 
shaded area is a  function of both  parameters. 

Variations in  the degree-day mean  produced by  varying 
the temperature scale or standard deviation are  not  as 
easily depicted as those resulting from  variation  in  the 
mean. With  a  fked mean  temperature, an increase in 
standard deviation increases the  probability of zero  degree 
days but also spreads the  distribution  to higher degree 
days. These changes have opposite effects on the degree- 
day mean so the effect of scale change is not  a simple one 
and  must be accounted for by  an  analytical relationship. 
Nevertheless, it  is clear that changes in  the  temperature 
scale produce marked changes in  the degree-day mean 
and  hence must  be accounted for in  any  relationship 
between  degree days  and  temperature. As will be seen 
later, the scale or standard deviation is an  important 
variable in  the  rational relationship. 

THE PROBABILITY FUNCTION OF DEGREE DAYS 
From the previous discussion it appears that  the prob- 

ability or frequency function of degree days consists of 
the portion of the  temperature frequency curve below 
65' and  a  probability  concentrated at zero degree days 
equal to the  probability of temperatures being above 65O. 
The  former is the unshaded  portion of the  temperature 
frequency  while the  latter is equal to  the shaded  portion 
of the curve but concentrated at  zero degree days. The 
unshaded portions of the frequency curves are  truncated 
normal distributions which, when  compounded  with the 
probability densities at  zero degree days, form mixed 
distributions which are  the degree-day distributions. I n  
sampling from such a  distribution for a day  on which 
zero degree days  may occur, that  day will have degree 
days greater than zero with a probability equal to  the 

A 0 0  ' 

,300 , 

0- Degree Doys 

FIGURE 2.-Representation of the entire distribution of degree days, D, for two examples, 
corresponding to the two temperature  frequency curves of flgure 1 for  which the staqd- 
ard deviations of temperature  are 5.0 and 2.5, respectively, and mean  temperature is 
6 o o  F. Note the area of probability, p ,  concentrated at zero degree days. 

unshaded  area of the frequency curve  and zero degrete 
days  with a probability equal to  the  shaded portion of 
the curve. When degree-day values are  greater  thap 
zero they will be  further  distributed according to the 
truncated  probability  function,  the  unshaded portion of 
the curve. They  are  not  further  distributed  in  the shaded 
portion of the curve, for here  they  always  take  the value 
zero. 

The  truncated normal  distribution  has  been thoroughly 
investigated by several statisticians  and most of the 
results we need have  been  reported in  the  literature (see 
[2, 3, 4, and 51). There remains  only to  adapt  the theory 
to cover the mixed distribution described above. 

Let F(t)  be  the normal  distribution function of the 
average temperature for a  day defined by 

where f(x) is the  normal  probability  function  as shown in 
figure 1. Evidently F(t)  is the  probability  that  an aver- 
age temperature is less than t ,  and hence the probability 
that  the average temperature  is  above  the degree-day 
base is p=l"F(65) and below the base is p=F(65). 
Performing the  transformation  to degree days  by equation 
(l) ,  the  distribution of degree days is 

G(DID1O)=p+qF(65"tlt165) (3) 

where G gives the  probability of less than D degree days 
and F i s  the normal  distribution  truncated a t  65' (c. f. [2]). 
It will be  noted that G(O)=p which is  the probability of 
the average temperature being 65' or greater,  and  hence 
is the  probability of zero degree days. When 0 2 0 ,  
G is equal to p plus the  probability of temperature being 
between 65' and some assigned lower value. 

The  probability  function for degree days is the deriva- 
tive of (3) which is 
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This  function is the  equation of the unshaded portions 
of the curves in figure 1 referred to  the D scale and is 
required in  obtaining  the  mean value of D. The  entire 
distribution  may  be represented by  the frequency curves 
shown in figure 2. 

THE RATIONAL RELATIONSHIP 

The expected or  mean  value of degree days is defined 
in  the usual manner  by 

E(D)=JrnDg(D)dD. 0 ( 5 )  

.Applying this  operation  to  the  right  hand side of equation 
(4) it  is found that [2, 31 

Assuming that t is normally  distributed, ( 6 )  is the exact 
relationship between  mean  temperature  and  mean degree 
days. Since E(t) and u completely define the normal 
distribution which in  turn determines p and X, the mean 
value of D is easily found  when E(t) and u are known. 
Values of F and f are given as functions of the  argument 
(t-E(t))/a in  any  table of the  normal  probability function. 
p and X are evaluated at t=65 and for convenience we 
designate ( 6 5 - E ( t ) ) / u  as h. 

For a=5.0 and E ( t ) = 6 0  as shown in figure 1, it is seen 
that  the base 65 is one standard  deviation  above  the 
mean so, from tables of the norma.1 distribution, q=0.841 
and X=0.242/0.841=0.288. Hence the degree-day mean 
for a day  with u=5.0 and E ( t ) = 6 0  is 

E(D)=.841[65-60+(0.288)5]=5.4. 

Here E(t) is the  mean  temperature, Q is the  standard The  rational relationship applies to the  means of daily 
deviation 111, and X=f(65) /F(65) .  Tables of the recip- degree days. However our interest is primarily inmonthly 
rocal of this function  have been prepared by Pearson [4]. means so the relationship will  be adjusted  to give these di- 

.7 - 

.6 - 
i, 

.5 - 

.4 - 

.3 - 

.2 - 

. I  - 

 SA**^ e** -a 0% 
* *  

.O 

I 1 I I I I I I I I I I I 1 I I 
-1.4 -1.2 -1.0 -.a -.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1,8 2.0 2-2 

h 
FIGURE %-The empirical relationship of 1 vs. h. The dots are observed values of 1 against h. 

1 



rectly. A simplc way of doing tbis is t.0 detcrmine  the 
relat,ionship  for a hypothetical average clay of t,hc month 
and multiply thc rcsulting clcgrcc d a ~ - s  by t,hc number of 
days in thc m0nt.h. This averngc da,y is not. n. real day 
on  which any  particular  average occurs, but. n hypot,het.ical 
day  whoso mcan a.nd st,anda.rd devidon arc such thnt when 
the  conversion is mndc to dcgrw dsys and  the  rrsult  multi- 
plied by the. numbcr of chys in tlw mont,h tllr result, is the 
mean dcgree days for t.ho month. 
In adjust,ing the relationship to obtain mont.111y statis- 

tics it was found convcnicnt t,o use tho  stancln.rd deviation 
of monthly  avcragt.  t,empcra,tru:c  which is n. function of thc 
daily standard deviat,ion a.ncl much cnsicr to obtain. If u 
is  the standard  dcviation for thc avc~rn.gc~ day as abovc, 
c,,, the standard  deviation of tlw mont,hly avcrngc~, nntl r 
t,he  mcan corrttlat,ion bet\vccn all t l ~ . ~ - s  for n montll of N 
days, it may be sl lo~m [5] t1ln.t. 

Since the factor ( 1  - t X r )  is not known but, tloc>s not, swm 
to vary greatly  from  stat.ion to  station, IVI: let it. be t w -  
counted for in  the overall proportiona.1 stljustment t.o the 
rat,ional rclat.ionship by nssurning 

u = 

Sice u for a single day is known only proportmionally, 
q, which is a function of h, will  also he known only pr.0- 

portionall-. Tllc y)prosimat,ion n-e ncccl ma>- be ob- 
tained  by rcmranging t,he rntional .wlationship ((;) in the 
form 

x - "_ E(D)  .... ( l - - ) -K(D)-65+E(t)  ." - "" . 
" ... " (8) 

U !I U 

Substituting T'?Vunh for u and 1 for. thc t,wm on t l w  h a f t ,  WP 
find 

= -. E(D)-  6 5 4- E(t) 
.......... " . "" ... 

T x U  M (9) 

Sincc all of the variabh~s in (8) are functions of h,, 1 will also 
be a function of h. Solving (9) for -YE(T)), thc m c m ~  
monthly d-gree days, gives 

- 
NE(D) =iV(66--EEjtj -+ b,'Na,n). ( 1 0 )  

Nest, 1 can be c~st~ablishcd as n function of I/.. by plott,ing 
observed values of 1 against 11.. Thcstl valucs were corn- 
puted from  30-yea.r records at. 30 sta.t.ions representing all 
cliirtt.ic conditions in  the Unitcd States. 'I'he data which 
arc for all of thc 12 mor. ths arc shown plot.ted on figure 3 
togethrr with t.hc empirical 1 vs. 11 relationship. I t  is t.o be 
noted that  thc relationship is indq)cndcnt of  c1inmt.c and 
season and is only dcpendcnt on t,hc  paramctclrs of t.he 
temperature frequency dist.ribubion. In t,his rcspect  the 1- 
funct.ion is general, like the X-function, in t,lmt it is a.lso 
dependent only  on h .  It is a.lso similar in shapc. t.o t h o  

1" h 2 O.i8.1=0 
Vnr It 5 -0.i0, I =  "h 

... . .  

h 1 

X-funct.ion and  has analogous limiting properties, e .  g., 
I== "h for largo values of-h, a.ntlI=O for h 2  0.78. Values 
reacl from figure 3 have bcm rnt,wed  in t.able 1 for con- 
vc6encc in use. 

In ordcr t,o IISC (10) to compube normnl monthly degree 
tl:\>-s, II set. of mnnuscript  clmrts h : ~  bcen prepared showing 
isolines of mont,hly stmda.r.cl deviations, s,. Using the 
approprint,c vduc of s,,, and  the  normal  value of tho tcm- 
pcrnture, t, as est.imates of urn nncl E@) ,  h may be  readily 
cnlculn,tccl. Entering  the t.al)le or graph  with  this  value 
of 1~ o m  finds the proper va.lue of 1. Substituting  this 
togct.llcr with i and s,,' in (10) and multiplying by N,  the 
numher of C ~ R ~ S  in the month, gives thc degree-day  norrnnl 
,vD a stntistical  &mate of NE(D). 

As n.11 csample, for Scpt,cmbcr a t  Detroit wc  find the 
normal t,empernture t=64.3 and  thc  standard deviation 
srn=3.7. Thcn IL is easily found to bc (65--64.3)/ 
(5.48)(2.ij=0.047. For t.his  vn.lue of h table 1 gives 
1=0.17 and hence f l l . s m =  (5.48)  (2.7)  (0.17)=2.51. Sub- 
st.it.otinp in (10) gives 

1V~=:30(0:i--;4.:3+3.51)=96 

This is LMroit's degrw-dt~y normal for Septembcr. 
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